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Abstract. This paper is concerned with the maintenance of rigid formations of mobile au-

tonomous agents. A key element in all future multi-agent systems will be the role of sensor and

communication networks as an integral part of coordination. Network topologies are critically im-

portant for autonomous systems involving mobile underwater, ground and air vehicles and for sensor

networks. This paper focuses on developing techniques and strategies for the analysis and design of

sensor and network topologies required to achieve a rigid formation for cooperative tasks. Energy ef-

ficiency and communication bandwidth are critically important in formations of mobile autonomous

agents, and hence strategies that make efficient use of power and energy are beneficial. Therefore,

we develop topologies for providing sensing and communications with the minimum number of links,

and propose methods requiring the minimum number of changes in the set of links in dynamic mis-

sions and maneuvers, including agent departure from a rigid formation, splitting a rigid formation

and merging rigid sub-formations. To do this in a systematic manner, it is necessary to develop a

framework for modeling agent formations that characterizes the sensing and communication links

needed to maintain the formations. The challenge is that a comprehensive theory of such topologies

of formations with sensing and communication limitations is in the earliest stage of development.

Central to the development of these techniques and strategies will be the use of tools from rigidity

theory, and graph theory.

1. Introduction. Recent years have seen significant interest in formations of
multiple mobile autonomous agents. This interest arises from the broad potential for
applications, including formation flight, advanced transportation systems, distributed
sensor networks, flocking and schooling, search-and-rescue operations, competitive
games, and military reconnaissance and surveillance. A formation is defined as a
group of mobile agents moving in real 2- or 3-dimensional space. This paper addresses
“rigid formations.” A formation is rigid if the distance between each pair of agents does
not change over time, at least under ideal conditions. In the context of this paper,
“agents” are considered to be autonomous vehicles or sensors such as autonomous
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underwater vehicles (AUVs), microsatellites, uninhabited air vehicles (UAVs), mobile
ground-based robots, and mobile sensors.

A key element in all future multi-agent systems will be the role of sensor and
communications networks as an integral part of coordination. In a rigid formation,
distances between agents are held fixed by measurements and information gathered
through “sensing and communication links” between agents. One of the challenges
in building sensor and communications networks between agents is the “topology”
of the network. By topology, we mean the interconnection structure of sensing and
communication links among agents. In other words, topology refers to the network’s
layout. A network’s topology determines how different agents in the network are
connected to each other. Two networks have the same topology if the interconnection
structure is the same, although the networks may differ in physical interconnections,
distances between agents, transmission rates, and signal types. Network topologies
are critically important for autonomous systems involving mobile underwater, ground
and air vehicles, and for sensor networks. Rigid formations with the minimum number
of sensing and communication links required to achieve rigidity are called minimally
rigid formations.

Formations of autonomous agents usually operate under time-varying conditions
where sensor and network topologies need to be restructured. Such conditions can be
changes in the environment, obstacles along the trajectories of agents or departures
of agents from formation. In this paper, we focus on such topological changes during
“operations” on formations. By an operation, we mean missions and maneuvers that
include agent departures, splitting, and merging, which result in changes in agent set
and/or interconnection structure of sensing and communication links.

First, we consider the problem of splitting rigid formations. By splitting, we mean
creating two or more rigid post-split sub-formations from a rigid pre-split formation.
When a formation encounters an obstacle, splitting may be useful to maneuver around
the obstacle. Instead of all agents moving to the same side of the obstacle, it might
be more efficient in terms of trajectory lengths of agents, if some agents move to one
side of the obstacle and the others move to the other side.

One strategy to solve the splitting problem would be determining entirely new
sets of links for the post-split sub-formations. Olfati-Saber and Murray present such
a strategy [20]. When splitting a rigid formation, it is necessary to break the links
between agents belonging to different post-split sub-formations. However we can
preserve a link between two agents belonging to the same sub-formation. Generating
entirely new sets of links for post-split sub-formations is impractical when we can
preserve the links that can be maintained. Such a strategy achieves splitting with
a minimum number of changes in the topology of sensing and communication links.
Our goal is to find such a strategy by inserting the minimum number of links in post-
split non-rigid sub-formations to make each of them rigid while preserving the links
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between agents belonging to the same sub-formations.
To motivate our discussion of splitting a rigid formation, we have the following

example:
Example: Consider a rigid formation as shown in Figure 1 in 3-dimensional space.
We would like to split the formation in such a way that agents with labels {1, 2, 3, 4, 5}
belong to one post-split sub-formation and agents with labels {6, 7, 8, 9, 10} belong
to the other post-split sub-formation. Splitting can be achieved by removing the
links between agents belonging to different post-split sub-formations while preserving
the links between agents belonging to the same post-split sub-formations. In this
example, the links (1,6), (3,6), (4,6), (4,7), (4,8), (5,6), (5,7), (5,10) (shown with
dashed lines) are removed. This results in two non-rigid post-split sub-formations.
The splitting problem is to find new sets of links to insert into each non-rigid post-split
sub-formation resulting in rigid post-split sub-formations. In this example, those new
links are (3, 5) and (6, 10) shown with double lines.

Fig. 1. A rigid formation is split into two sub-formations by removing the links shown with

dashed edges, i.e., (1,6), (3,6), (4,6), (4,7), (4,8), (5,6), (5,7), (5,10), which results in two non-

rigid sub-formations. The splitting problem is to find the new links that need to be inserted into

each non-rigid post-split sub-formation so that each post-split sub-formation regains rigidity. In this

example, the new links are (3,5), (6,10) shown with double lines.

Second, we address merging rigid sub-formations. By merging, we mean inserting
links between these rigid sub-formations which results in a single post-merged rigid
formation. During a merging operation, it is a natural starting point to preserve the
links in each pre-merged rigid sub-formation. Hence a reasonable goal is to create a
new post-merged rigid formation by inserting a minimum number of links between
sub-formations. A merging operation, for example, can be used to create one single
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rigid formation after split sub-formations pass around an obstacle.

As a further application of splitting and merging operations, one can consider
using both of these operations together when there is a change in a mission. For
example, some changes in sensor and network topologies can be achieved by a series of
splitting-merging operations by splitting a formation into two or more sub-formations
and then merging these sub-formations into one post-merged formation which has a
completely different topology of sensing and communication links.

To motivate our discussion of merging a rigid formation, we have the following
example:

Example: Consider two rigid formations in 3-dimensional space as shown in Figure
2. We would like to merge these two formations resulting in a single rigid formation
in such a way that all pairs of links in each formation are preserved and a minimum
number of links is inserted between these two formations.

Fig. 2. Two formations are merged to form one single rigid formation. Finding the new links to

be inserted between these two formations, which will make the whole formation rigid, is the merging

problem.

Merging rigid bodies has been studied in rigidity theory. We refer the reader to
Whiteley [27] for a detailed explanation. Here, we use a different approach to find the
new links for merging formations. This approach can be used for both splitting and
merging formations.

The approach in this paper is based on the strategies developed in Eren et al.
[11]. Olfati-Saber and Murray gave an approach to merging sub-formations in 2-
dimensional space so that the resulting formation is rigid [20]. The approach we
develop here allows us to merge two rigid sub-formations with different types of com-
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binations of inserting links including their strategy. Furthermore the approach in this
paper also solves the merging problem in 3-dimensional space.

The splitting and merging problems can be considered as special cases of the
“minimal cover problem,” which we present in the sequel. The minimal cover problem
is basically to find new links to insert into a non-rigid formation so that it becomes
rigid. To solve the minimal cover problem, we develop a novel procedure. This
procedure can be used for creating minimally rigid post-split sub-formations from
non-rigid post-split sub-formations and also for creating a minimally rigid post-merged
formation from rigid pre-merged sub-formations.

Third, we address the “closing ranks” problem in formations of mobile au-
tonomous agents with limited sensing and communication requirements. By closing
ranks, an analogy to the situation in which each unit acts in a coordinated way to
meet a challenge, we mean a minimal rearrangement of sensing and communication
links between agents in case of agent departures (e.g., an agent is destroyed or has a
failure) so that the remaining agents regain a rigid formation. To illustrate the closing
ranks problem, consider the following example: A minimally rigid formation is shown
in Figure 3a. Let us assume that the agent indicated with an arrow departs from the
formation (e.g., because of a failure or destruction) and this results in the formation
shown in Figure 3b. Note that, as will be explained in §2, unless the departed agent
has only d links in d-space (d=2,3), the formation with the remaining agents is not
going to be rigid anymore. It is desirable that the formation regains rigidity.

One strategy to maintain rigidity is to create a rigid formation with the remaining
agents by generating entirely new links between them. Although this is a viable
solution, it has a disadvantage. There is no guarantee that any remaining agent
preserve its links. Therefore, any agent, even one far away from the departed agent,
may have to change its links.

Another strategy might be to create a new link between every pair of agents that
had a link with the removed agent as shown in Figure 4a. This strategy avoids creating
an entirely new set of links and also preserves all the remaining links. However, it
does not preserve minimal rigidity. It requires k(k − 1)/2 new links when an agent
with k links departs. As will be explained in §2, the number of new links required for
minimal rigidity is k − 2 and k − 3 in 2- and 3-dimensional space respectively (Figure
4b).

The main goal of this section is to find strategies for the closing ranks problem.
We take the following objectives into consideration in those strategies:

1. to regain “minimal” rigidity;
2. to preserve the remaining sensing and communication links after agent de-

parture;
3. to insert the new links between only the neighbors of the departed agent.

The paper is organized as follows: In §2, we introduce an approach for creating
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(a) (b)

Fig. 3. a) The initial formation with the minimum number of sensing and communication links

in 3-dimensional space. The agent to be removed is indicated with an arrow. (b) The remaining

non-rigid formation after the agent departs.

(a) (b)

Fig. 4. a) One strategy of maintaining rigidity is to connect every pair of agents (dotted links)

that were connected to the removed agent. (b) The four links chosen as depicted (dotted links) will

suffice to regain rigidity.

sensor and network topologies of rigid formations with distance information between
agents in 2- and 3-dimensional space [10]. Distances between all agents can be main-
tained fixed by directly measuring some distances between agents and keeping them
at their desired values. We introduce such a strategy for maintaining formations
with a limited number of links based on distances. The splitting and merging prob-
lems can be considered to be special cases of the “minimal cover problem”, which we
address in §3. To solve the minimal cover problem, we develop a novel procedure.
This procedure can be used for creating minimally rigid post-split sub-formations
from non-rigid post-split sub-formations and also for creating a minimally rigid post-
merged formation from rigid pre-merged sub-formations, which are addressed in §4
and §5, respectively. In §6, we show that minimal rigidity can be regained in the
closing ranks problem by inserting links between only the neighbors of the departed
agent without making any changes in the set of links between the other remaining
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agents. We end the paper with summary and concluding remarks in §7.

2. Rigid Formations. We start with an overview of rigidity. Recall that a
formation is rigid if the distance between each pair of agents does not change over
time under ideal conditions. It is not necessary to have sensing and communication
links between each pair of agents to maintain a rigid formation [10]. Distances between
all agent pairs can be held fixed by directly measuring distances between only some
agents and keeping them at desired values. We show such an approach for maintaining
formations with a limited number of links with distance information both in 2- and
3-dimensional space.

Central to the development of the approach in this section will be rigid frameworks
studied in mathematics and engineering for more than a century under different names
such as frameworks, linkages, and mechanisms (see for example [2, 8, 12, 15, 16, 17, 18,
21, 22, 23, 25]). One way of visualizing rigidity is to imagine a collection of rigid bars
connected to one another by idealized ball joints, which is called a bar-joint framework.
By an idealized ball joint we mean a connection between a collection of bars which
imposes only the restriction that the bars share common endpoints. Now, can the
bars and joints be moved in a continuous manner without changing the lengths of
any of the bars, where translations and rotations do not count? If so, the framework
is non-rigid; if not, it is rigid. (Precise definitions will appear in the sequel.) The
answer depends on factors such as which bars are connected to each other at which
ball joints, bar lengths, and the dimensionality of the space in which the framework
is placed. Actual physical bar-joint frameworks can be used in modeling a wide
variety of physical structures, including rigid ones such as bridges as well as non-rigid
structures such as organic molecules. Appropriate bar-joint frameworks representing
such structures could be constructed to test the model for rigidity. However, such a
concrete framework is feasible only for 2- and 3-dimensional space, and such concrete
models become cumbersome as the number of bars and joints increases. The aim of
rigidity theory is to develop methods for predicting rigidity without building a model.

In this section, essentially complete theory of rigid formations in 2-dimensional
space is reviewed, as well as known partial results for 3-dimensional space. We review
“generic” rigidity, which is the type of rigidity most useful for our purposes. In
practice, actual agent groups cannot be expected to move exactly in rigid formation
because of sensing, modeling, and actuation errors. With generic rigidity, the topology
will be robust for maintaining formations under small perturbations. Although there
is no existing comparable complete theory for 3-dimensional space, there are useful
partial results [27, 28]. We introduce sequential techniques to generate rigid classes
of formations both in 2- and 3-dimensional space. The approach presented in this
section forms the basis of the techniques developed in the subsequent sections.



230 TOLGA EREN ET AL.

2.1. Point Formations and Rigidity. By a d-dimensional point formation at
p � column {p1, p2, . . . , pn}, written Fp, is meant a set of n points {p1, p2, . . . , pn} in
IRd together with a set L of k maintenance links, labelled (i, j), where i and j are dis-
tinct integers in {1, 2, . . . , n}; the length of link (i, j) is the Euclidean distance between
point pi and pj. The idea of a point formation is essentially the same as the concept
of a “framework” studied in mathematics [22, 27, 25] as well as within the theory of
structures in mechanical and civil engineering. For our purposes, a point formation
Fp = ({p1, p2, . . . , pn},L) provides a natural high-level model for a set of n agents
moving in real 2- or 3- dimensional space. In this context, the points pi represent the
positions of agents in IRd {d = 2 or 3} and the links in L label those specific agent
pairs whose inter-agent distances are to be maintained over time. In practice actual
agent positions cannot be expected to move exactly in formation because of sensing
errors, vehicle modelling errors, etc. The ideal benchmark formation against which
the performance of an actual agent formation is to be measured is called a reference
formation.

Each point formation Fp uniquely determines a graph G � (V ,L) with vertex set
V � {1, 2, . . . , n} and edge set L, as well as a distance function δ : L → IR whose
value at (i, j) ∈ L is the distance between pi and pj. Let us note that the distance
function of Fp is the same as the distance function of any point formation Fq with the
same graph as Fp provided q is congruent to p in the sense that there is a distance
preserving map T : IRd → IRd such that T (qi) = pi, i ∈ {1, 2, . . . , n}. In the sequel
we will say that two point formations Fp and Fq are congruent if they have the same
graph and if q and p are congruent.

By a trajectory of Fp, we mean a continuously parameterized, one-parameter
family of points {q(t) : t ≥ 0} in IRnd, which contains p. A point formation Fp is said
to be rigid if the distance between every pair of its points remains constant along any
trajectory on which the lengths of all of its maintenance links in L are kept fixed.
Alternatively, we can define a rigid point formation as follows: A formation is said to
undergo rigid motion along a trajectory q([0,∞)) � {column {q1(t), q2(t), . . . , qn(t)} :
t ≥ 0} if the Euclidean distance between each pair of points qi(t) and qj(t) remains
constant all along the trajectory. Let us note that Fp undergoes rigid motion along
a trajectory q([0,∞)) just in case each pair of points q(t1), q(t2) ∈ q([0,∞)) are
congruent. The set of points Mp in IRnd which are congruent to p is known to be a
smooth manifold. It is clear that any trajectory along which Fp undergoes rigid motion
must lie completely within Mp; conversely any trajectory of Fp that lies within Mp

is one along which Fp undergoes rigid motion. A point formation Fp is said to be
rigid if rigid motion is the only kind of motion it can undergo along any trajectory on
which the lengths of all links in L remain constant. Thus, if Fp is rigid, it is possible
to “keep formation” by making sure that the lengths of the formation’s maintained
links do not change as the formation moves.
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A graph is called complete if each pair of its vertices is connected by an edge.
The definition of rigid formation implies that every formation Fp whose graph G is
complete is automatically rigid. The converse, however, is not generally true.

Whether a given point formation is rigid or not can be studied by examining what
happens to the given point formation Fp = ({p1, p2, . . . , pn},L) with m maintenance
links, along the trajectory q([0,∞)) � {{q1(t), q2(t), . . . , qn(t)} : t ≥ 0} on which the
Euclidean distances dij � ||pi − pj || between pairs of points (pi, pj) for which (i, j) is
a link are constant. Along such a trajectory

(1) (qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ L, t ≥ 0.

We note that the existence of a trajectory is equivalent to the existence of a piecewise
analytic path, with all derivatives at the initial point [23]. It is also equivalent to
the existence of a sequence of formations on p(n), n = 1, 2, . . . with the same mea-
surements, and with limn→∞ p(n) converging to p. Assuming a smooth (piecewise
analytic) trajectory, we can differentiate to get

(2) (qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0.

Here, q̇i is the velocity of point i. The m equations can be collected into a single
matrix equation

(3) R(q)q̇ = 0,

where q̇ = column {q̇1, q̇2, . . . , q̇n} and R(q) is a specially structured m × dn matrix
called the rigidity matrix [22, 27, 28].

Example 1. Consider a planar point formation Fp shown in Figure 5. This has
a rigidity matrix as follows:

Fig. 5. A planar point formation.
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R(p) v1 v2 v3 v4

(1, 2) x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0

(1, 3) x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0

(1, 4) x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1

(2, 3) 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0

(2, 4) 0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2

(3, 4) 0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

Because any trajectory of Fp which lies within Mp, is one along which Fp un-
dergoes rigid motion, (2) automatically holds along any trajectory which lies within
Mp. From this, it follows that the tangent space to Mp at q, written Tq, must
be contained in the kernel of R(q). Since p must be on any such trajectory, it
must be true that Tp ⊂ kernel R(p). If q̇ satisfies (3), then it lies in the tangent
space. If the affine span of the points p1, p2, . . . , pn is IRn (which means that the
points p1, p2, . . . , pn do not lie on any hyperplane in IRn), then Mp is n(n + 1)/2
dimensional since it arises from the n(n − 1)/2-dimensional manifold of orthogonal
transformations of IRn and the n-dimensional manifold of translations of IRn [22].
Thus Mp is 6-dimensional for Fp in IR3, and 3-dimensional for Fp in IR2. We have
rankR(q) = nd− dimension(kernel(R(q))) ≤ nd − n(n + 1)/2.

We have the following theorem [2, 12, 22, 28]:

Theorem 2. Assume Fp is a formation with at least d points in d-space {d = 2,

or 3} where rankR(p) = max{rankR(x) : x ∈ IRd}. Fp is rigid in IRd if and only if

rankR(p) =

⎧⎨
⎩2n− 3 if d = 2,

3n− 6 if d = 3.

This theorem leads to the notion of the “generic” behavior of rigidity. When the rank
is less than the maximum, the formation may still be rigid. However, this type of
rigidity is unstable. For almost all small changes in the position of p (or in the lengths
of the maintenance links), the formation will no longer be rigid. We are interested in
“generic rigidity”, a property that will hold for all small changes in p.

2.2. Generic Rigidity. In this section, we define a type of rigidity, called
“generic rigidity,” that is more useful for our purposes. A point formation Fp is
generically rigid if it is rigid for almost all choices of p in IRdn. It is possible to
characterize generic rigidity in terms of the “generic rank” of R where by R’s generic
or maximal rank we mean the largest value of rank{R(q)} as q ranges over all values
in IRnd. The following theorem is due to Roth [22].

Theorem 3. A formation Fp with at least d points in d-space {d = 2, or 3} is
generically rigid if and only if

generic rank {R} =

⎧⎨
⎩2n − 3 if d = 2,

3n − 6 if d = 3.
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To understand this type of rigidity, it is useful to observe that the set of points
p that satisfy the condition rankR(p) = max{rankR(x) : x ∈ IRd} is a dense open
subset of IRnd [22]. Generic rigidity is a property of only the set of maintenance links,
or the underlying graph. It does not even claim that Fp itself is rigid but only that
almost all nearby points q give rigid formations Fq. The concept of generic rigidity
does not depend on the precise distances between the points of Fp but examines
how well the rigidity of formations can be judged by knowing the vertices and their
incidences, in other words, by knowing the underlying graph. A point formation Fp is
strongly generically rigid if it is generically rigid and if rankR(p) = generic rank{R}.
Hence, a strongly generically rigid point formation is rigid and it remains rigid under
small perturbations. For this reason, it is a desirable specialization of the concept of
a “rigid formation” for our purposes. We have the following theorem for a strongly
generically rigid point formation and a generically rigid graph [27]:

Theorem 4. For a formation Fp in d-space with at least d points, the following
are equivalent:

1. the formation’s underlying graph G = (V ,L) is generically rigid in d-dimen-
sional space (d = 2, 3);

2. for some p,

rank {R(p)} =

⎧⎨
⎩2n − 3 if d = 2,

3n − 6 if d = 3.

3. for almost all p, the formation Fp is strongly generically rigid.

The generic rigidity question can be reduced to developing a test for computing
the generic rank of a matrix. The generic rank question is closely related to the
question of structural controllability treated some time ago by Corfmat and Morse
[7] and Anderson and Hong [1]. In particular, in Anderson and Hong [1], explicit
constructions are given for determining the generic rank of an arbitrary matrix net of
the form

M(z) = M0 + z1M1 + · · · + znMn, Mi ∈ IRn×n

over the linear space of all real n-vectors z = column {z1, z2, · · · , zn}, zi ∈ IR.
Unfortunately these constructions are computationally complex and reveal little about
the structure of generically rigid formations.

As noted above, the concept of generic rigidity does not depend on the precise
distances between the points in Fp. For 2-dimensional space, we have a complete
combinatorial characterization of generically rigid graphs, which was first proved by
Laman in 1970 [17]. In the theorem below, | . | is used to denote the cardinal number
of a set, i.e., the number of elements in a set.
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Theorem 5 (Laman [17]). A graph G = (V ,L) (where L �= ∅ or n > 1) is gener-
ically rigid in 2-dimensional space if and only if there is a subset L′ ⊆ L satisfying
the following two conditions: (1) |L′| = 2|V| − 3, (2) For all L′′ ⊆ L′,L′′ �= ∅, |L′′| ≤
2|V(L′′)|−3, where |V(L′′)| is the number of vertices that are end-vertices of the edges
in L′′.

There is no comparable complete result for 3-dimensional space, though there are
useful partial results [27, 28]. So one has to place randomly chosen entries in the rigid-
ity matrix and examine the rigidity matrix in 3-dimensional space. The generalization
of the Laman counts: (1) |L′| = 3n−6, (2) for all L′′ ⊆ L′,L′′ �= ∅, |L′′| ≤ 3|V(L′′)|−6
are clearly necessary, where |V(L′′)| is the number of vertices that are end-vertices
of the edges in L′′. However, as the graph in Figure 6 illustrates, these counts are
not sufficient [27]. One can verify that this graph satisfies the generalization of the
Laman counts. Nevertheless, it is not rigid since the two “bananas” can twist about
the axis passing through their two end-points. Although we lack a characterization in
3-dimensional space, there are sequential techniques to generate rigid classes of graphs
both in 2- and 3-dimensional space based on the vertex addition, edge splitting and
vertex splitting operations [3, 16, 25, 26, 27]. Some of these sequential results from
the 19th century are summarized in [16] and all are proven in [25, 26]. We explain
these techniques in the sequel, but before that, we discuss minimal rigidity in the next
section.

Fig. 6. This graph is not rigid since the two “bananas” can twist about the axis passing through

their two end-points. On the other hand it can be verified that it satisfies Laman’s conditions, with

(1) |L′| = 3n − 6, (2) For all L′′ ⊆ L′,L′′ �= ∅, |L′′| ≤ 3|V(L′′)| − 6.

2.3. Minimal Rigidity. A dependence on the maintenance link set of a point
formation Fp = ({p1, p2, . . . , pn},L) is an assignment λ : L → R, with λ(i, j) = λi,j =
λj,i, such that for each vertex i:

(4)
∑

j|(i,j)∈L
λij(pi − pj) = 0.
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This equation gives a row dependence of the rigidity matrix. A point formation is
independent if its maintenance link set is independent as rows of the rigidity matrix.
The scalars λi,j are known as equilibrium stresses or self-stresses in structural engi-
neering and in the mathematical theory of rigidity. A point formation is minimally
rigid if removing any link makes it non-rigid. There are 2n − 3 and 3n − 6 mainte-
nance links in minimally rigid formations in 2- and 3-dimensional space respectively.
A graph is called (generically)1 minimally rigid in d-space if it is rigid and has exactly

dn −
(

d + 1
2

)
edges. Minimally rigid point formations are also maximally indepen-

dent point formations, corresponding to bases in vector spaces as minimally spanning
sets and maximally independent sets.

If a point formation is rigid but not minimally rigid, we say that there is redun-
dancy in the link set L. Let us suppose that a link (i, j) is removed from a rigid
point formation. If the formation remains rigid then (i, j) is called a redundant link
in the initial formation (redundant edge in the underlying graph). If adding a link
(i, j) does not increase the rank of the rigidity matrix, then we call (i, j) an implicit
link (implicit edge in the underlying graph).

In 2-dimensional space, a set of edges L is called a set of independent edges or an
independent edge set if |L| ≤ 2|V(L)| − 3 and for every L′ ⊆ L, |L′| ≤ 2|V(L′)| − 3.
If the set of edges L of a planar graph G = (V ,L) is independent, then G = (V ,L) is
called an independent graph. The two conditions in Laman’s Theorem check whether
there are at least 2n− 3 independent edges and whether the edges are distributed in
such a way that there are no redundancies.

Example 6. Consider the planar point formation Fp in Example 1. This has a
rigidity matrix with the column for row dependence λ as follows:

R(Fp) v1 v2 v3 v4 λ

(1, 2) x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0 λ12

(1, 3) x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0 λ13

(1, 4) x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1 λ14

(2, 3) 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0 λ23

(2, 4) 0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2 λ24

(3, 4) 0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3 λ34

If we consider a particular point formation p1 = (0, 0), p2 = (2, 0), p3 = (3, 2), and
p4 = (1, 1), then it can be verified that the assignment λ given in the final column is
a row dependence.

1In the sequel, we use the term rigid graph instead of generically rigid graph unless there is a

danger of confusion.
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R(Fp) v1 v2 v3 v4 λ

(1, 2) -2 0 2 0 0 0 0 0 3
2

(1, 3) -3 -2 0 0 3 2 0 0 -3

(1, 4) -1 -1 0 0 0 0 1 1 6

(2, 3) 0 0 -1 -2 1 2 0 0 1

(2, 4) 0 0 1 -1 0 0 -1 1 -2

(3, 4) 0 0 0 0 2 1 -2 -1 4

2.4. Sequential Techniques. In this section, we present sequential techniques
to create minimally rigid point formations. As noted earlier, Laman’s Theorem char-
acterizes rigidity in 2-dimensional space. But there is no comparable complete result
for 3-dimensional space. Although we lack a characterization in 3-dimensional space,
there are sequential techniques for generating rigid classes of graphs both in 2- and
3-dimensional space based on what are known as the vertex addition, edge splitting,
and vertex splitting operations. First, we introduce the first two of these three op-
erations, namely the vertex addition and edge splitting operations. Then we present
sequences to create rigid point formations in which these operations are used. Before
explaining these operations and sequences, we introduce some additional terminology.

If (i, j) is an edge, then we say that i and j are adjacent or that j is a neighbor
of i and i is a neighbor of j. 2 The vertices i and j are incident with the edge (i, j).
Two edges are adjacent if they have exactly one common end-vertex. The degree or
valency of a vertex i is the number of neighbors of i. If a vertex has k neighbors, it is
called a vertex of degree k or a k-valent vertex. We refer to Bollobás [6], and Godsil
and Royle [13] for a detailed treatment of graph theoretic terms.

One operation is the vertex addition: given a minimally rigid graph G = (V ,L),
we add a new vertex i with d edges between i and d other vertices in V . The other
is the edge splitting: given a minimally rigid graph G = (V ,L), we remove an edge
(j, k) in L and then we add a new vertex i with d + 1 edges by inserting two edges
(i, j), (i, k) and d − 1 edges between i and d − 1 vertices (other than j, k) in V .

Now we are ready to present the following theorems:

Theorem 7 (vertex addition [25]). Let G = (V ,L) be a graph with a vertex i of
degree d in d-space; let G∗ = (V∗,L∗) denote the subgraph obtained by deleting i and
the edges incident with it. Then G is generically minimally rigid if and only if G∗ is
generically minimally rigid.

Theorem 8 (edge splitting [25]). Let G = (V ,L) be a graph with a vertex i of
degree d + 1; let Vi be the set of vertices incident to i; and let G∗ = (V∗,L∗) be the
subgraph obtained by deleting i and its d + 1 incident edges. Then G is generically
minimally rigid if and only if there is a pair j, k of vertices of Vi such that the edge

2The neighbor relation is symmetric throughout the paper, i.e., if agent i senses or communicates

with agent j, so does agent j with agent i.



OPERATIONS ON RIGID FORMATIONS OF AUTONOMOUS AGENTS 237

(j, k) is not in L∗ and the graph G′ = (V∗,L∗⋃(j, k)) is generically minimally rigid.

These two operations are used in Henneberg sequences.

Henneberg Sequences:. Henneberg sequences are a systematic way of generat-
ing minimally rigid graphs based on the vertex addition and edge splitting operations
[25]. In d-space, we are given a sequence of graphs: Gd, Gd+1, . . . , G|V| such that:

1. Gd is the complete graph on d vertices;
2. Gi+1 comes from Gi by adding a new vertex either by (i) the vertex addition

or (ii) the edge splitting operation.

Note that Gi and Gi+1 correspond to G∗ and G in the statements of Theorem 7
and Theorem 8. All graphs in the sequence are minimally rigid in d-space. Figure 7
depicts such a Henneberg sequence in 3-dimensional space.

Fig. 7. A rigid point formation generated by a Henneberg sequence in 3-dimensional space.

Double-lined edges indicate edges created for new vertices. Dashed edges indicate removed edges in

the edge splitting operation.

In 2-dimensional space, the two operations of vertex addition and edge splitting
are sufficient to generate all minimally rigid graphs starting from a single edge [25].
In 3-dimensional space, they generate a proper subclass of minimally rigid graphs
starting from a triangle. The reason behind this difference between planar and spatial
cases is the following observation.

A minimally rigid graph in 2-dimensional space may have all vertices of degree
larger than 2; |L| = 2|V| − 3 or equivalently 2|L| = 4|V| − 6 guarantees that some
vertices have degree 3 or less. If G = (V ,L) is a graph with |V| vertices which is
minimally rigid, the existence of at least one vertex of degree 2 or 3 means that by
Theorem 7 or Theorem 8 there exists a minimally rigid graph G∗ with |V|−1 vertices,
and one can go from G to G∗ by the vertex addition or edge splitting operations.
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Then one uses the same procedure on G∗. Hence, all minimally rigid graphs can be
generated by the vertex addition and edge splitting operations alone. It is also true
that starting with a single edge only minimally rigid graphs are generated with these
operations in 2-dimensional space.

On the other hand, a minimally rigid graph in 3-dimensional space may have
all vertices of degree larger than 4; |L| = 3|V| − 6 or equivalently 2|L| = 6|V| − 12
guarantees only that some vertices have degree 5 or less. A quick check with the
vertex addition and edge splitting operations in 3-dimensional space tells us that we
can generate vertices of degree 3 and 4 with these operations, but not of degree 5. We
need other types of operations to generate minimally rigid graphs in 3-dimensional
space with all vertices having a degree of 5 or higher, and to remove a vertex of degree
5 from a minimally rigid graph in 3-dimensional space. For example, the graph of an
icosahedron shown in Figure 8 is minimally rigid and has all vertices of degree 5 [27].

Fig. 8. The graph of an icosahedron is minimally rigid and has all vertices of degree 5.

The following theorem is about removing a 5-valent vertex in a minimally rigid
graph.

Theorem 9 (Removing a 5-valent vertex [25]). Let G = (V ,L) be a minimally
rigid graph with a 5-valent vertex a and edges (a, bi), 1 ≤ i ≤ 5. Let G

∗ = (V∗,L∗) be
a graph obtained by removing vertex a and the edges (a, bi), 1 ≤ i ≤ 5 from G. Then
one of the following is true (see Figure 9):

1. for some choice of two non-adjacent edges with vertices drawn from b1, b2, . . .,
b5, the graph obtained by inserting these edges is minimally rigid in 3-dimen-
sional space.

2. for two choices of adjacent pairs of edges with vertices drawn from b1, b2, . . .,
b5 (not all adjacent with a single vertex), the two graphs obtained from G∗ by
inserting these pairs are both minimally rigid in 3-dimensional space.
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Adding a 5-valent vertex to a minimally rigid graph in 3-dimensional space to
guarantee preservation of minimal rigidity is a long-standing problem. So far there
are only partial results [14, 24, 25]. There are two sequential operations for adding
5-valent vertices to minimally rigid graphs. They are conjectured to preserve minimal
rigidity in 3-dimensional space. The first operation is replacing an X (i.e., two edges
that do not share any vertices) by a vertex of degree five by connecting the vertex to
the end vertices of these two edges plus an additional vertex. The second operation
is the double V replacement. This operation takes two graphs G1 and G2 that are
minimally rigid in 3-dimensional space to a graph G that is generically rigid in 3-
dimensional space.

Conjecture 10 (Adding a 5-valent vertex by replacing a single X [25]). If G =
(V ,L) is a minimally rigid graph in 3-dimensional space containing edges (a, b), (c, d),
then the graph obtained by deleting these two edges and adding a 5-valent vertex i

attached to the vertices a, b, c, d and another vertex e ∈ V is minimally rigid in 3-
dimensional space (see Figure 9a).

Conjecture 11 (Adding a 5-valent vertex by replacing 2 V’s [25]). If G1 = G∪
{(a, b), (b, c)} and G2 = G∪{(ã, b̃), (b̃, c̃)} are minimally rigid graphs in 3-dimensional
space with b �= b̃, then the graph G∗ obtained from G by adding a 5-valent vertex
i, attached to vertices including a, b, c, ã, b̃, c̃, is also a minimally rigid graph in 3-
dimensional space (see Figure 9b).

Every minimally rigid graph can be generated by this extended Henneberg se-
quence, which includes the two operations in the conjectures with the vertex addition
and the simpler edge splitting operations. What is unproven is that only minimally
rigid graphs in 3-dimensional space are generated in this way. The lack of a simpler
technique for adding 5-valent vertices is connected to the failure of any simple spatial
analogues of Laman’s Theorem. As explained in §2.2, the graph in Figure 6 is an
example of this failure.

There are two partial results which give sufficient conditions for the replacement of
two edges by a 5-valent vertex and three edges by a 6-valent vertex. These operations
are called vertex splitting. These operations can be used to create triangulated spheres,
which are minimally rigid in 3-dimensional space and which have nice local properties
in rigidity. We refer the reader to Gluck [12] and Eren [9] for further information on
triangulated spheres.

Vertex Splitting: If the graph G′ is a vertex split of a generically rigid graph G

on d edges in d-space or a vertex split on d − 1 edges, then G′ is generically rigid in
d-space [26]. Vertex 3-splits on two edges and three edges are depicted in Figures 10a
and 10b. By vertex d-split, we mean a split in d-space.

3. The Minimal Cover Problem. This section focuses on the “minimal cover
problem.” Before giving the definition of the minimal cover problem, we state our
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(a) (b)

Fig. 9. (a) Replacing a vertex of degree 5 with an X or vice versa in a minimally rigid formation;

(b) Replacing a vertex of degree 5 with 2 V’s or vice versa in a minimally rigid formation.

(a) (b)

Fig. 10. (a) Vertex 3-split on two edges. Edges which are shifted to the new vertex 0 are shown

with dashed edges, and new edges after split are shown with wider edges. (b) Vertex 3-split on three

edges. Edges which are shifted to the new vertex 0 are shown with dashed edges, and new edges after

split are shown with wider edges.

assumption.
Assumption: Let G = (V ,L) represent the underlying graph of each post-split

formation in the splitting problem in d-space (d=2,3), and the union of the underlying
graphs of pre-merged sub-formations in the merging problem in d-space (d=2,3). In
splitting, we assume that G = (V ,L) ⊆ Ḡ = (V̄ , L̄), where Ḡ = (V̄ , L̄) is a graph
created by a Henneberg sequence in d-space (d=2,3) as explained in §2.2. In splitting,
Ḡ refers to the pre-split rigid formation created by a Henneberg sequence. In merging,
we assume that each pre-merged rigid subgraph is created by a Henneberg sequence.

We note that the assumption is not a limitation on pre-split and pre-merged
graphs in 2-dimensional space since there is a Henneberg sequence for all minimally
rigid graphs in 2-dimensional space. However, the assumption is a limitation on
pre-split and pre-merged graphs in 3-dimensional space since it is currently unknown
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whether there is a Henneberg sequence for all minimally rigid graphs in 3-dimensional
space as explained in §2.4.

The minimal cover problem is to find a set of new edges to be inserted into graph
G = (V ,L) so that the resulting graph G

∗ = (V ,L∗) after insertions, is minimally
rigid. Note that G and G∗ have the same vertex set. We have the following lemma.

Lemma 12. The edge set of a graph G = (V ,L) that satisfy the assumption of
the minimal cover problem is a set of independent edges.

Proof. In splitting, since the graph Ḡ = (V̄ , L̄) in the assumption for the minimal
cover problem is created by a Henneberg sequence, it has a set of independent edges.
Since G is a subgraph of Ḡ, it also has a set of independent edges. In merging, since
each pre-merged rigid subgraph is created by a Henneberg sequence, G has a set of
independent edges.

The minimal cover problem can be posed using concepts from lattice theory. Let
G denote the set of all simple graphs3 G = (V ,L) with vertex set V including the graph
with empty edge set which is called the edgeless graph. Containment, denoted by ⊂,
is a relation on G such that G1 = (V ,L1) is contained in G2 = (V ,L2) if L1 ⊂ L2.
Containment is a partial ordering on G, and the complete graph and edgeless graph
are G’s largest and smallest elements with respect to this ordering (see for example
Birkhoff [5] and MacLane and Birkhoff [19]). Every graph G in G is contained in at
least one rigid graph. We are interested in minimally rigid graphs in G that contain
G, and we call such a minimally rigid graph a minimal cover. The set of edges we
want to preserve is represented by L.

We can define the minimal cover problem in terms of partial ordering and graph
rigidity. Suppose that a graph G = (V ,L) ∈ G, which satisfies the assumption of
the minimal cover problem, is given. The minimal cover problem is to find some
G∗ = (V ,L∗) ∈ G such that G ⊂ G∗ and G∗ is minimally rigid. In other words,
we want to find a set of new edges, namely Lnew, between the vertices of V to add
to the set L such that the resulting graph G∗ = (V ,L∗) is minimally rigid, where
L∗ = L ∪ Lnew. We note that G∗ is not necessarily unique.

In splitting, for example, all the links that need not be removed are preserved in
each post-split sub-formation, and a minimum number of links is inserted into each
post-split sub-formation to regain rigidity in each non-rigid post-split sub-formation.
In merging, all the present links are maintained and a minimum number of new links
is inserted between sub-formations to result in a single rigid formation.

Recall that generic rigidity is directly related to the rank of a matrix. As such,
it has all the “exchange properties” associated with the independence of rows of a

3By definition a graph contains neither a “loop” nor “multiple edges.” A loop is an edge joining

a vertex to itself. Multiple edges are several edges joining the same two vertices. In a multigraph,

both loops and multiple edges are allowed. When there is any danger of confusion, graphs are called

simple graphs.
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matrix [27]. For example, we note that minimally rigid graphs are also maximally
independent graphs, corresponding to bases in vector spaces as minimal spanning
sets and maximal independent sets. Given any independent set of edges I which is a
subset of a basis (maximally independent set of edges) B for a vertex set V , a set of
edges J is a minimal cover of I, if the union of I and J is a (new) basis B′ for V .
Moreover, given an independent set of edges and some spanning set containing this
set (e.g., the complete graph), we can extend the the independent set to a basis in a
“greedy” manner, i.e., the new edges are added to the independent set one step at a
time.

3.1. Planar Case. One crude approach to solve the minimal cover problem in
2-dimensional space is based on the “generate and test” method. It is as follows:
Given a graph G = (V ,L) ∈ G, we test whether with the addition of a new edge e, the
graph G = (V ,L∪ {e}) is independent or not. If it is then we add e to L. We repeat,
adding such new edges, until we have a set of 2n − 3 independent edges where n is
the number of vertices. The resulting graph with the vertex set V and those 2n − 3
independent edges is the minimal cover of G. This approach works based on random
trials. If a new randomly generated edge gives us a set of independent edges then it
turns out to be a success, otherwise it is a failure.

Now we present a systematic strategy to solve the minimal covering problem.
First, we state the following lemma, then we introduce two types of reduction steps
that will be used in the sequel.

Lemma 13. Let G = (V ,L) denote a graph satisfying the assumption of the
minimal cover problem in 2-dimensional space. Then there exists a vertex of degree 3
or less in G.

Proof. From the definition of a set of independent edges in §2.3, |L| ≤ 2|V| − 3
which implies 2|L| ≤ 4|V| − 6. Hence there exists a vertex of degree 3 or less in
G = (V ,L).

Reduction Step - Type I: Let G = (V ,L) be a graph satisfying the assumption
of the minimal cover problem in 2-dimensional space. Let i be a vertex of degree ρ(i),
where ρ(i) ∈ {0, 1, 2}. Suppose that we create a set of 2 − ρ(i) new edges incident to
i and denote this set of new edges by Linew . Let G′ = (V ,L′) denote this new graph
where L′ = L ∪ Linew . We register Linew to use in subsequent steps. It can be easily
verified that the set of edges L′ is independent. Now let us remove the vertex i and all
the edges incident to i in G

′ = (V ,L′). Let G
′′ = (V ′,L′′) denote this reduced graph

where V ′ = V \ {i} and L′′ = L′ \ {all edges incident to i}. It can again be verified
that the edge set of G

′′ = (V ′,L′′) is also independent. Therefore there exists a vertex
of degree 3 or less in G′′ by Lemma 13.

Reduction Step - Type II: Let G = (V ,L) be a graph satisfying the assumption
of the minimal cover problem in 2-dimensional space. Let i be a vertex of degree 3
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and adjacent to a set of vertices denoted by Ni. We remove i and its three edges
and create a new edge (precisely one edge) between arbitrary vertices in Ni forming
a reduced graph G′ = (V ′,L′) where V ′ = V \ {i} and L′ = L \ { all edges incident
to i} ∪ { a new edge between the vertices in Ni} such that L′ is a set of independent
edges. 4 Therefore there exists a vertex of degree 3 or less in G′ by Lemma 13.

Now we present a reduction sequence in which the two types of reduction steps
previously described are used as main steps. This sequence is used to reduce a set of
independent edges down to a set of two vertices connected by an edge.

Reduction Sequence: Suppose that a graph G = (V ,L) satisfying the assump-
tion of the minimal cover problem in 2-dimensional space is given. From Lemma 13
it follows that there exists a vertex of degree 3 or less in G. Hence, at least one of the
reduction steps (type I or type II) can be applied to G. Let us note that the reduced
graphs we obtain after applying any one of these reduction steps are also independent.
We apply these two types of steps repeatedly until we are left with only two vertices.
While we apply the reduction steps to the vertices, we number those vertices in a
descending order as n, n − 1, n − 2, . . . , 4, 3. For example, we number the vertex
removed in the first reduction step with order n, we number the vertex removed at
the second reduction step with n−1 and so on until we are left with two vertices. The
last vertex on which a reduction step is applied is numbered with 3. Then the very
last two remaining vertices are numbered with orders 2 and 1. Each time we apply
the reduction step type I on a vertex i, we keep registering its new set of edges Linew

as described in reduction step type I. Depending on the initial set of independent
edges, there may or may not be left an edge between the last two vertices after the
execution of the reduction sequence. If there is no edge between them at the end of
the reduction sequence, we create such an edge and register it as L2new . If there is
already an edge between ordered vertices 1 and 2, then we register L2new = ∅. The
union of the registered sets of the new edges is Lnew =

⋃
i Linew where i denotes the

label of the vertices removed with a type I reduction step and the vertex with order
2.

Theorem 14. (Planar Minimal Cover Theorem) Let G = (V ,L) be a graph
satisfying the assumption of the minimal cover problem in 2-dimensional space. Sup-
pose that we apply the reduction sequence described above on G and find Lnew. Then
G∗ = (V ,L ∪ Lnew) is a minimal cover of G.

Proof. To prove that G∗ is a minimal cover of G, we need to prove that G ⊂ G∗ and
G∗ is minimally rigid. First, it is easy to verify that G = (V ,L) ⊂ G∗ = (V ,L∪Lnew).
Second, starting from the vertices 1 and 2 and the edge (1,2), let us suppose that we
apply the reduction sequence in reverse order including the edges in Lnew. Note that

4The existence of such a new edge can be seen from the proof of the edge splitting operation in

Whiteley [27].
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the reduction step types I and II applied in the reverse sequence are nothing but the
vertex addition and edge splitting operations in a Henneberg type sequence. Hence
the reduction sequence applied in reverse order is actually a Henneberg sequence.
At the end of such a Henneberg sequence, we obtain G

∗ = (V ,L ∪ Lnew), and it
is minimally rigid (From §2.4, the graphs generated by a Henneberg sequence are
minimally rigid.).

Note that Lnew obtained in the reduction sequence is not unique because the
edges in Lnew depend on the choice of the order of vertices in the reduction sequence.
Therefore a minimal cover of a set of independent edges is not unique.

We will not consider algorithmic complexities in this paper. But one can argue
that each time the reduction step type II is applied, there are up to three possible
insertions for a new edge. This results in an exponential algorithm for the reduction
sequence. To overcome this problem, the approach for the spatial case presented
in the sequel can be easily applied to the planar case. Alternatively one can use a
polynomial time algorithm called “the pebble game” for the planar case. There is a
recent paper by Berg and Jordan [4] which addresses this kind of algorithms.

3.2. Spatial Case. The approach for the minimal cover problem based on “gen-
erate and test” cannot be applied in 3-dimensional space simply because of the non-
availability of an appropriate analog of Laman’s Theorem in 3-dimensional space.

The approach in the Planar Minimal Cover Theorem can be translated to 3-
dimensional space with an additional condition in the order of the reduction sequence.
The reason behind this condition is that if a reduction sequence similar to the planar
case is applied then there is a possibility of reaching a graph with a set of vertices all
of which are of degree 5. If the conjectures for adding a 5-valent vertex to minimally
rigid graphs that we had explained in §2.4 are proven, then the reduction sequence
presented for the planar case can be easily extended to 3-dimensional space. Since
this is a long-standing unsolved problem, to get around those difficulties, we present
an alternative reduction sequence with an additional condition in the ordering of
reduction sequence. We have the following lemma in 3-dimensional space.

Lemma 15. Let G = (V ,L) denote a graph satisfying the assumption of the
minimal cover problem in 3-dimensional space. Then there exists a vertex of G of
degree 4 or less.

Proof. In merging, by the assumption, each pre-merged subgraph is created by
a Henneberg sequence. Therefore there exits a vertex of degree 4 or less in each
subgraph.

In splitting, by the assumption, recall that each post-split subgraph denoted by
G = (V ,L) is a subset of a bigger graph Ḡ = (V̄ , L̄) and Ḡ is a minimally rigid graph
created by the vertex addition and edge splitting operations in 3-dimensional space.
Let the vertices in V̄ be indexed {1, 2, . . . , n} with respect to their order of addition
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in the Henneberg sequence. We will prove that the vertex with the highest index in
each post-split subgraph cannot be of degree 5 or higher. Let us denote the highest
index in each subgraph G by a generic label k.

First let us suppose that vertex k was created, as part of the Henneberg sequence
construction of Ḡ, by the vertex addition operation, through inserting the edges (k, i),
(k, j), (k, l) (i, j, l < k). All the vertices with a higher index created by the vertex
addition operation connected to this vertex are not in this subgraph G or k is the
maximum index in Ḡ. Hence the edges between higher indexed vertices (e.g. q > k)
and k are not in the subgraph. All the vertices with a higher index created by edge
splitting one of the edges (k, i), (k, j), (k, l), do not imply an increase of the degree of
k, considered as a vertex of the subgraph G, and furthermore these associated edges
are not in the same subgraph, because they are either removed in splitting operation
or k is the maximum index in Ḡ. Hence the degree of vertex k in the subgraph can
be at most 3. It is less than 3 if at least one of i, j, l is not in G = (V ,L).

Second, let us suppose that the vertex was created by the edge splitting operation:
splitting the edge ek, linking two of the vertices i, j, l, m, and creating the edges
(k, i), (k, j), (k, l), (k, m) (i, j, l, m < k). All the vertices with a higher index created
by the vertex addition operation connected to the vertex k are not in the subgraph
G. Hence the edges connecting them to k are not in the subgraph G. If a vertex q

with a higher index (q > k) is created by an edge splitting operation by splitting one
of the edges incident to k (i.e., (k, i), (k, j), (k, l), (k, m)) in the Henneberg sequence,
then this vertex q > k would not be in the remaining subgraph, and the degree of the
vertex k would be of degree 3 or less. Therefore the degree of vertex k can be at most
4. If any of the vertices i, j, l, m are not in G(V ,L), the degree of k will be less than
4. If the degree is 4, it has the edges (k, i), (k, j), (k, l), (k, m).

The two reduction steps presented for the planar case can be directly extended
for 3-dimensional space.

Reduction Step - Type I: Let G = (V ,L) be a graph satisfying the assumption
of the minimal cover problem in 3-dimensional space. Let i be a vertex of degree ρ(i),
where ρ(i) ∈ {0, 1, 2, 3}. Suppose that we create a set of 3−ρ(i) new edges incident to
i and denote this set of new edges by Linew . Let G′ = (V ,L′) denote this new graph
where L′ = L ∪ Linew . We register Linew to use in subsequent steps. It can be easily
verified that the set of edges L′ is independent. Now let us remove the vertex i and all
the edges incident to i in G′ = (V ,L′). Let G′′ = (V ′,L′′) denote this reduced graph
where V ′ = V \{i} and L′′ = L′\{all edges incident to i}. It can be easily verified that
G′′ = (V ′,L′′) also satisfies the assumption of the minimal cover problem. Therefore
there exists a vertex of degree 4 or less in G′′ by Lemma 15.

Reduction Step - Type II: Let G = (V ,L) be a graph satisfying the assumption
of the minimal cover problem in 3-dimensional space. Let i be a vertex of degree 4
and adjacent to a set of vertices denoted by Ni. We remove i and its four edges and
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create a new edge (precisely one edge) between arbitrary vertices in Ni forming a
reduced graph G

′ = (V ′,L′) where V ′ = V \ {i} and L′ = L \ { all edges incident to
i} ∪ { a new edge between the vertices in Ni} such that G′ satisfies the assumption
of the minimal cover problem. 5 Therefore there exists a vertex of degree 4 or less in
G′ by Lemma 15.

Now we present the modified reduction sequence, in which the two types of reduc-
tion steps previously described are used as main steps. This sequence is used to reduce
a graph satisfying the assumption of the minimal cover problem in 3-dimensional space
down to a set of three vertices. It makes use of the order of vertices in the Henneberg
sequence that was used to create the original graph Ḡ = (V̄ , L̄).

Reduction Sequence: Let Ḡ = (V̄ , L̄) be a minimally rigid graph created by the
vertex addition and edge splitting operations in 3-dimensional space, where vertices
are indexed {1, 2, . . . , n} with respect to their order of addition in the Henneberg
sequence. If i denotes a vertex added by the edge splitting operation, then let ei

denote the edge removed in this operation. Let the graph G = (V ,L) be created
by removing some of the edges and vertices of the graph Ḡ = (V̄ , L̄). To complete
G = (V ,L) to a minimally rigid graph, we do the following. Starting from the vertex
with the highest index, we apply reductions steps type I and II repeatedly on the
vertices with descending order of indices. For example, let i denote the vertex with
the highest index in the remaining graph at some step in the reduction sequence. If i

is of degree ρ(i), where ρ(i) ≤ 3, we apply reduction step type I. Each time we apply
the reduction step type I on a vertex i, we keep registering its new set of edges Linew

as described in reduction step type I. If the vertex i is of degree 4, we then apply
reduction step type II by inserting the edge ei. We continue this until three vertices
are left. Depending on the initial set of independent edges, there may or may not be
three edges left between the last three vertices after the execution of the reduction
sequence. If there are not three edges between them at the end of the reduction
sequence, we complete the number of edges to three and register them as L3new . If
there are already three edges between vertices labelled 1, 2 and 3, then we register
L3new = ∅. The union of the registered sets of the new edges is Lnew =

⋃
i Linew

where i denotes the label of the vertices removed with a type I reduction step and the
vertex with index 3.

Lemma 16. At each reduction step, the vertex with the highest index is of degree
4 or less.

Proof. The proof is the same as the proof of splitting part of Lemma 15.

Theorem 17. (Spatial Minimal Cover Theorem) Let G = (V ,L) be a graph
satisfying the assumption of the minimal cover problem in 3-dimensional space. Sup-

5The existence of such an edge will become clear in the special reduction sequence presented in

the sequel.
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pose that we apply the reduction sequence described above on G and find Lnew. Then
G

∗ = (V ,L ∪ Lnew) is a minimal cover of G.

Proof. To prove that G∗ is a minimal cover of G, we need to prove that G ⊂ G∗ and
G∗ is minimally rigid. First, it is easy to see that G = (V ,L) ⊂ G∗ = (V ,L ∪ Lnew).
Second, starting from the vertices 1, 2 and 3 and the edges (1,2), (1,3), (2,3) let us
suppose that we apply the reduction sequence in reverse order including the edges in
Lnew . Note that the reduction step types I and II applied in the reverse order are
nothing but the vertex addition and edge splitting operations used in a Henneberg
type sequence. Hence the reduction sequence in reverse order is actually a Henneberg
sequence. At the end of such a Henneberg sequence, we obtain G

∗ = (V ,L ∪ Lnew),
and it is minimally rigid (From §2.4, the graphs generated by a Henneberg sequence
are minimally rigid.).

As in the planar case, Lnew obtained in the reduction sequence is not unique
because the edges in Lnew depend on the choice in the reduction sequence. Therefore
a minimal cover of a set of independent edges is not unique.

We note that the reduction strategies developed in this paper can be extended to
include other types of operations such as vertex splitting.

4. Splitting Formations. To find a strategy for splitting a rigid formation into
two rigid post-split sub-formations, it is convenient to introduce a suitable definition
of the splitting problem in terms of graph rigidity. Let G = (V ,L) be a minimally
rigid graph. Let V1 and V2 represent the two subsets of V such that V1 ∪ V2 = V and
V1 ∩V2 = ∅. Let L1 ⊂ L be the set of all edges whose both end-vertices are in V1 and
L2 ⊂ L be the set of all edges whose both end-vertices are in V2. Let Lr = L\(L1∪L2)
be the set of all edges whose one end-vertex is in L1 and the other end-vertex is in
L2. Let G1 = (V1,L1) and G2 = (V2,L2). When the graph G = (V ,L) is split into
G1 = (V1,L1) and G2 = (V2,L2), all edges in Lr are removed. The splitting problem is
to find new sets of edges L1new to insert into G1 and L2new to insert into G2 such that
the resulting graphs G

∗
1 = (V1,L1 ∪ L1new ) and G

∗
2 = (V2,L2 ∪ L2new) are minimally

rigid.

With the minimal cover problem in mind as defined in the previous section, the
splitting problem reduces to finding the minimal cover of G1 = (V1,L1) and G2 =
(V2,L2). As detailed in the analysis in the previous section, the underlying graphs
of the resulting post-split sub-formations determined by the reduction sequences are
minimally rigid by Theorem 14 and Theorem 17.

5. Merging Formations. As we did in the case of the splitting problem, we
introduce a suitable definition of the merging problem in terms of graph rigidity.

Let G1 = (V1,L1) and G2 = (V2,L2) be two minimally rigid graphs representing
the underlying graphs of two minimally rigid point formations. The merging problem
is to find a new set of edges Lnew to insert between G1 and G2 by choosing one
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end-vertex in V1 and the other end-vertex in V2 such that the resulting graph G∗ =
(V1 ∪ V2,L1 ∪ L2 ∪ Lnew) is minimally rigid.

As in the case of splitting, the merging problem reduces to finding the minimal
cover of G′ = (V1 ∪ V2,L1 ∪ L2). We exemplify this in the sequel.

Example: Let G1 = (V1,L1) and G2 = (V2,L2) be two minimally rigid graphs in
2-dimensional space. Suppose that we apply the reduction sequence first on G2 =
(V2,L2) as described in §3.1. Since G2 is minimally rigid, we obtain two vertices
connected by an edge at the end of the reduction sequence on G2 without inserting
any new edges. Let us denote this remaining edge by (i, j). At this intermediate step,
we are left with G1 = (V1,L1) and the edge (i, j) on which we continue applying the
reduction sequence. Suppose that we apply the reduction step type I on the vertex
i, by inserting an edge (i, k) where k ∈ V1. Then we apply the reduction step type I
on the vertex j by inserting the edges (j, k), (j, l) or by inserting the edges (j, l), (j, r)
where k, l, r ∈ V1. After applying those reduction steps on vertices i, j, we are left with
the graph G1 = (V1,L1) only, and we apply the reduction sequence on G1 without
inserting any new edges. Therefore the two possible combinations of merging G1 and
G2 create the set of edges (i, k), (j, k), (j, l) or (i, k), (j, l), (j, r). We depict these two
different strategies of merging two rigid sub-formations in Figures 11a and b. G1 and
G2 denote the underlying graphs of these two rigid point formations.

We can pursue a different strategy. Let G1 = (V1,L1) and G2 = (V2,L2) be two
minimally rigid graphs in 2-dimensional space. Suppose that we apply the reduction
sequence first on G2 = (V2,L2) as described in §3.1 until we are left with three
vertices i, j, k connected by three edges (i, j), (i, k), (j, k). Since G2 is minimally rigid,
we obtain these three vertices connected by three edges at the end of the reduction
sequence on G2 without inserting any new edges. First, let us insert a new edge (i, r)
where r ∈ V1. Now the vertex i is of degree 3. Then, we can apply the reduction step
type II on the vertex i by inserting the edge (j, r). Note that while (i, r) is a new
inserted edge which needs to be registered in the reduction sequence process, (j, r) is
not. (j, r) is simply a result of reduction step type II. Now let us insert a new edge
(j, s) to make the vertex j of degree 3 where s ∈ V1. Then we can apply the reduction
step type II on the vertex j by inserting an edge (k, s). Note again that (j, s) is a
new edge which needs to be registered in the reduction sequence process but (k, s) is
not. Then we apply the reduction step type I on the vertex k by inserting a new edge
(k, t) where t ∈ V1. At this stage, we are only left with G1. Then we continue the
reduction sequence on G1. Since G1 is minimally rigid, the reduction sequence can
be applied without inserting any other extra edges. Therefore another strategy for
merging G1 and G2 creates the set of edges (i, r), (j, s), (k, t). We depict this strategy
in Figure 11c.

Merging rigid bodies in 3-dimensional space has been studied in rigidity theory.
We refer the reader to Whiteley [27] for a detailed explanation. Here, we use the
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solution of the minimal cover problem to determine these new links. It can be verified
that six links are needed in 3-dimensional space to merge two minimally rigid sub-
formations to form a minimally rigid post-merged formation provided that we use at
least three points in each sub-formation as an end-point of these six new links. Here,
we depict three possible strategies to determine these six links (Figures 12a, b, c) and
explain one of them in detail (Figure 12a). One can find different strategies by using
a modified version of the idea presented here by selecting a different combination
of vertices and reduction steps type I and II. Here, we do not go into each such
combinations because of space constraints and because the idea is essentially similar
to the planar version.

Let G1 = (V1,L1) and G2 = (V2,L2) be two minimally rigid graphs in 3-
dimensional space. Suppose that we apply the reduction sequence first on G2 =
(V2,L2) as described in §3.1. Since G2 is minimally rigid, we obtain three vertices
connected by three edges at the end of the reduction sequence on G2 without in-
serting any new edges. Let us denote this remaining vertices by i, j, k and edges by
(i, j), (i, k), (j, k). At this intermediate step, we are left with G1 = (V1,L1) and the
edge (i, j), (i, k), (j, k) on which we continue applying the reduction sequence. Sup-
pose that we apply the reduction step type I on the vertex i, by inserting an edge
(i, l) where l ∈ V1. Then we apply the reduction step type I on the vertex j by
inserting the edges (j, r), (j, s) where r, s ∈ V1. Then we apply the reduction step
type I on the vertex k by inserting the edges (k, t), (k, u), (k, v) where t, u, v ∈ V1.
After applying those reduction steps on vertices i, j, k, we are left with the graph
G1 = (V1,L1) only, and we apply the reduction sequence on G1 without inserting any
new edges. Therefore the two possible combinations of merging G1 and G2 create the
set of edges (i, l), (j, r), (j, s), (k, t), (k, u), (k, v). We depict this strategy of merging
two rigid sub-formations in Figure 5.12(a). G1 and G2 denote the underlying graphs
of these two rigid point formations.

6. The Closing Ranks Problem. The closing ranks problem can be formu-
lated as follows. We begin with a minimally rigid graph G = (V ,L), which is the
underlying graph of a minimally rigid point formation in real d-dimensional space {d
= 2 or 3}. Let i be a vertex in V with a neighbor set Ni. Let Li denote the set
of incident edges to i. Suppose that i and Li are removed from G. Let G

∗(V∗,L∗)
denote the remaining graph (i.e., V∗ = V \ {i} and L∗ = L \ Li). The closing ranks
problem is to find the set of new edges Lnew between the vertices in Ni so that the
resulting graph (V∗,L∗ ∪ Lnew) is minimally rigid.

We have the following theorem:

Theorem 18. Assume that a vertex of degree k and its incident edges are removed
from a minimally rigid graph in d-dimensional space. To regain minimal rigidity, k−d

new edges (or no edges if k = d) should be inserted and those new links can be inserted
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Fig. 11. Merging rigid sub-formations in 2-dimensional space.

between only the neighbors of the removed vertex, without using any other vertex as
an end-vertex of those inserted edges.

In the sequel, we give the proofs for removing vertices of any degree both in 2- and
3-dimensional space. When a vertex of degree k and its incident edges are removed
from a minimally rigid graph, k − d new edges should be inserted to regain rigidity.
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OPERATIONS ON RIGID FORMATIONS OF AUTONOMOUS AGENTS 251

This can be seen easily from the count of vertices and edges in minimally rigid graphs.
In the sequel, we show that it is indeed possible to insert those new links only between
the neighbors of the removed vertex and regain minimal rigidity, without using any
other vertex as an end-vertex of those inserted edges. For finding those edges, one
can simply insert possible combinations of new edges and test minimal rigidity. The
number of possible combinations of insertions in the case of the removal of a vertex
of degree k in a minimally rigid graph in d-space is

⎛
⎜⎝
(

k

2

)

k − d

⎞
⎟⎠ =

k(k − 1)
2(k − d)

.

“Generate and test” type strategy is efficient to try this number of combinations.
Alternatively, one might use a procedure similar to the one that is used in the minimal
cover problem. Here, our main concern is the existence of new edges between the
neighbors of the removed vertex such that insertion of those edges results in minimal
rigidity.

6.1. Planar Case. Removing a vertex with two edges: A minimally rigid
graph G = (V ,L) is shown in Figure 13a. Suppose that the vertex 8 and its two
incident edges (8, 5) and (8, 7) are removed from G. The resulting graph shown in
Figure 13b is minimally rigid. The reason is that removing a vertex of degree 2
with its incident edges from a minimally rigid graph is essentially the vertex addition
operation in reverse. As explained in §2.4, this operation preserves minimal rigidity.

The existence of new edges between the neighbors of the removed vertex of

degree 3: The vertex 1 is removed with its three incident edges (1, 2), (1, 3) and (1, 5)
in G. Then, one of the edges in {(2, 3), (2, 5), (3, 5)} is created as shown in Figure
14a such that the resulting graph is minimally rigid. The edge splitting operation
explained in §2.4 ensures that the addition of at least one edge in {(2, 3), (2, 5), (3, 5)}
results in a minimally rigid graph.

The existence of new edges between the neighbors of the removed vertex
of degree 4 or more:

For the case of a vertex of degree 3, the edge splitting operation was used to
explain the existence of an edge inserted between the neighbors of the removed vertex
such that the resulting graph after insertion is minimally rigid. For the cases of
removal of vertices of degree 4 and higher, we need to prove the existence of such
edges. We have the following lemma for the removal of a vertex of degree 4 [25].

Lemma 19. Let G = (V , E) be a minimally rigid graph with a vertex i of degree
4, which has a set of neighboring vertices, Vi. Let G∗ denote the resulting non-rigid
graph after the vertex is removed. Then, for some choice of two non-implicit edges
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among the vertices in Vi, the graph G∗∗ formed from G∗ by creating these edges is
minimally rigid.

Proof. We choose a minimally rigid graph G with the vertex i and the vertices
in Vi. We remove one of the edges of i, and call the resulting graph G′. To maintain
minimal rigidity we create an edge between two points in Vi, which is not implicitly
present. We refer the reader to Tay and Whiteley [25] for the proof of the existence
of such an edge. The proof uses simple linear algebra on the rigidity matrix. If we
add this edge, we create G′′, which is minimally rigid and has a vertex i of degree 3.
We can replace i with a non-implicit edge between two vertices in Vi. Hence, a vertex
with degree four can be replaced by two edges between the vertices in Vi.

Figure 14b shows an example in which the vertex 4 of degree 4 is removed and
the edges are created to maintain rigidity.

Now, we have the following lemma to regain rigidity when a vertex of degree 5 or
higher is removed from a minimally rigid graph [25].

Theorem 20. (replacing a vertex of degree k, k ≥ 5) Let G = (V , E) be a
minimally rigid graph with a vertex i of degree k and with a set of neighboring vertices
Vi. Then, for some choice of k − 2 non-implicit edges among the vertices in Vi, the
graph formed by removing i and the edges whose one end point is i, and then adding
these k − 2 edges, is minimally rigid.

Proof. The case for k = 4 has been shown in Lemma 19. Now we are going to
show for k ≥ 5. Suppose that the theorem holds for k = n− 1. For k = n, we choose
a minimally rigid graph G with vertex i and the set of neighboring vertices Vi. We
remove one of the edges of i, and call the resulting graph G′. To maintain minimal
rigidity we create an edge between two vertices in Vi which is not implicitly present.
We refer the reader to Tay and Whiteley [25] for the proof of the existence of such
an edge. If we add this edge, we create G′′, which is minimally rigid and has a vertex
i with degree n − 1. From our assumption, we can remove the vertex i by creating
n−3 new edges. Hence, we can maintain minimal rigidity by creating a total of n−2
edges in the case of removing a vertex with degree n.

6.2. Spatial Case. Removing a vertex with three edges: Given a min-
imally rigid graph G as shown in Figure 15a, consider the case when the vertex 3
with the three edges (3, 1), (3, 2) and (3, 5) is removed as shown in Figure 15b. For
maintaining rigidity, no changes with the remaining vertices and edges need to be
made. The reason is that removing a vertex of degree 3 with its incident edges from
a minimally rigid graph is essentially the vertex addition operation in reverse.

The existence of new edges between the neighbors of the removed vertex

of degree 4: Consider the case in which the vertex 8 with the four edges (8, 2), (8, 5),
(8, 7) and (8, 11) is removed in G (Figure 16a). Rigidity is maintained as follows. One
of the edges, which is non-implicit in the set {(2, 5),(2, 7),(2, 11),(5, 7),(5, 11),(7, 11)}
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(a) (b)

Fig. 13. (a)The initial graph representing a point formation. (b) The vertex 8 of degree 2 is

removed.

(a) (b)

Fig. 14. (a) The vertex 1 of degree 3 is removed and the edge (2,5) is created to maintain

rigidity. (b) The vertex 4 of degree 4 is removed and the edges (2,6),(5,7) are created to maintain

rigidity.

(Figure 16b) is created. The edge splitting operation explained in §2.4 ensures that
at least one edge in this set results in a minimally rigid graph.

The existence of new edges between the neighbors of the removed vertex

of degree 5 or more: The vertex 7 with five edges is removed as shown in Figure
17a. To maintain rigidity with the remaining vertices, the following theorem is used
[25].

Lemma 21. Let G = (V , E) be a minimally rigid graph with a vertex i of degree 5
and with a set of neighboring vertices Vi. Then, one of the following is true: (i) for
some choice of two non-incident edges among the vertices in Vi, the graph G1 formed
from G by creating these edges is minimally rigid; or (ii) for two choices of incident
pairs of edges among the vertices in Vi, (not all incident with a single vertex), the two
graphs G2 and G3, formed from G by creating these pairs of edges, are both minimally
rigid.
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In Figure 17b, the edges (5,10),(6,8) are created to maintain rigidity. Now, an
agent with six or a higher number of links is removed in a rigid formation. The
following theorem is used to maintain rigidity, which has a proof analogous to that of
Theorem 20 [25].

Theorem 22. (replacing a vertex of degree k, k ≥ 6) Let G = (V , E) be a
minimally rigid graph with a vertex i of degree k and with a set of neighboring vertices,
Vi. Then, for some choice of k − 3 non-implicit edges among the vertices in Vi, the
graph formed by removing i and the edges whose end point is i, and adding these k−3
edges, is minimally rigid.

It is straightforward to generalize Theorem 18 to cover the case where a minimally
rigid graph loses several vertices and their incident edges at the same time.

Fig. 15. (a) A minimally rigid graph in 3-dimensional space. (b) The vertex 3 of degree 3 is

removed, and the resulting formation is still rigid.

Corollary 6.1. If two or more vertices are removed from a minimally rigid
graph, then the presented techniques in this section can be applied sequentially and
new edges can still be inserted just among the neighbors of the removed vertices to
ensure rigidity.

Throughout the section, we assumed that the initial graph is minimally rigid. It
seems that there will be practical situations where minimality is not present. Such
situations may take some effort to analyze but we believe that such cases can be
handled with strategies similar to those of this section. We leave their analysis for
future work.

7. Summary and Concluding Remarks. In this paper, we have explored
topics relevant to rigid formations of autonomous agents. In §2, we studied the
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Fig. 16. (a) The vertex 8 of degree 4 is removed. (b) The link (7,11) is created to maintain

rigidity.

Fig. 17. (a) The vertex 7 of degree 5 is removed. (b) The links (5,10), (6,8) are created to

maintain rigidity.

conditions for rigid formations using distance information between agents and de-
veloped techniques to create minimally rigid formations. The framework is scalable
for any number of agents. We introduced point formations to model formations of
autonomous agents. We reviewed the conditions for rigidity, the rigidity matrix and
the combinatorial characterization of rigidity (i.e., Laman’s Theorem). Central to the
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development of the approach was rigidity theory, which has been studied in mathe-
matics and structural engineering. §2 addresses a number of existing problems in the
mathematical theory of rigidity. We have been able to translate a number of classical
and modern results from rigidity to give a fairly complete theory in 2-dimensional
space and partial results in 3-dimensional space. We have also encountered some
basic unsolved problems in 3-dimensional space.

In §3, we studied the minimal cover problem. The splitting and merging problems
can be considered as special cases of the minimal cover problem, which is basically
to find new links to insert into a non-rigid formation so that it becomes rigid. To
solve the minimal cover problem, we develop a novel procedure. In §4 and §5, this
procedure is used for creating minimally rigid post-split sub-formations from non-rigid
post-split sub-formations and for creating a minimally rigid post-merged formation
from minimally rigid pre-merged sub-formations, respectively.

In §6, we studied the closing ranks problem. We developed strategies to regain
rigidity when an agent departs from a rigid formation. We considered the following
objectives in solving the closing ranks problem: to regain “minimal” rigidity; to
preserve remaining sensing and communication links after agent departure; to insert
new links only between the neighbors of the departed agent.

To solve the closing ranks problem with local information between agents, the
use of triangulations for creating rigid formations is proposed in Eren [9]. With
this approach, the new links can be inserted in such a way that local communication
between the neighbors of the departed agent is sufficient to determine those new links.
Here, we will not go into this approach because of space constraints.

Acknowledgments. Tolga Eren and Peter N. Belhumeur are supported by the
National Science Foundation under grants NSF ITR IIS-00-85864, NSF EIA-02-24431
and NSF IIS-03-08185. Brian D. O. Anderson is supported by the Australian Govern-
ment through the Department of Communications, Information Technologies and the
Arts and by the Australian Research Council via a Discovery-project Grant and the
Centre of Excellence program. A. Stephen Morse is supported by the National Science
Foundation. Walter Whiteley is supported by the Natural Science and Engineering
Research Council (Canada) and the National Institutes of Health (USA).

REFERENCES

[1] B. D. O. Anderson and H. M. Hong, Structural controllability and matrix nets, International

Journal on Control, 35(1982), pp. 397–416.

[2] L. Asimow and B. Roth, Rigidity of graphs, Transactions of the American Mathematical

Society, 245(1978), pp. 279–289.

[3] L. Berenchtein, L. Chavez, and W. Whiteley, Inductive constructions for 2-rigidity: Basis

and circuits via tree coverings, Preprint, York University, Toronto, Ontario, Canada, 2003.



OPERATIONS ON RIGID FORMATIONS OF AUTONOMOUS AGENTS 257

[4] A. R. Berg and T. Jordan, Algorithms for graph rigidity and scene analysis, In: G. Di

Battista and U. Zwick, editors, Lecture Notes in Computer Science, volume 2832, pages

78–89. Springer-Verlag Berlin Heidelberg, 2003.

[5] G. Birkhoff, Lattice Theory. American Mathematical Society, Providence, Rhode Island,

1960.

[6] B. Bollobás, Modern Graph Theory. Springer Verlag, New York, New York, 1998.

[7] J. P. Corfmat and A. S. Morse, Structurally controllable and structurally canonical systems,

IEEE Transactions on Automatic Control, February 1976.

[8] H. Crapo and W. Whiteley, Statics of frameworks and motions of panel structures: a

projective geometric introduction, Structural Topology, 6(1982), pp. 43–82.

[9] T. Eren, Rigid Formations of Autonomous Agents. Ph.D. thesis, Department of Electrical

Engineering, Yale University, New Haven, Connecticut, USA, 2003.

[10] T. Eren, P. N. Belhumeur, B. D. O. Anderson, and A. S. Morse, A framework for main-

taining formations based on rigidity, In: Proceedings of the 15th IFAC World Congress,

Barcelona, Spain, July 2002.

[11] T. Eren, P.N. Belhumeur, A. S. Morse, B. D. O. Anderson, and W. Whiteley. Split-

ting and merging formations, Draft preprint, Department of Electrical Engineering, Yale

University, New Haven, CT, 2002, March 2002.

[12] H. Gluck, Almost all simply connected closed surfaces are rigid, In: A. Dold and B. Eckmann,

editors, Geometric Topology in Lecture Notes In Mathematics, volume 438, pages 225–239.

Springer-Verlag, 1975.

[13] C. Godsil and G. Royle, Algebraic Graph Theory. Springer Verlag, New York, New York,

2001.

[14] J. Graver, A combinatrial approach to infinitesimal rigidity, Preprint, Department of Math-

ematics, Syracuse University, Syracuse, New York, USA, 1984.

[15] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity. American Mathematical

Society, Providence, Rhode Island, 1993.

[16] L. Henneberg, Die Graphische Statik der starren Systeme. Johnson Reprint, 1911.

[17] G. Laman, On graphs and rigidity of plane skeletal structures, Journal of Engineering Math-

ematics, 4(1970), pp. 331–340.

[18] L. Lovasz and Y. Yemini, On generic rigidity in the plane, SIAM Journal on Algebraic and

Discrete Methods, 3(1982), pp. 91–98.

[19] S. MacLane and G. Birkhoff, Algebra. Chealsea Publishing Company, New York, 3rd edition,

1988.

[20] R. Olfati-Saber and R. M. Murray, Graph rigidity and distributed formation stabilization

of multi-vehicle systems, In: Proceedings of the 41st IEEE Conference on Decision and

Control, Las Vegas, NV, December 2002.

[21] A. Recski, Matroid Theory and its Applications in Electric Network Theory and in Statics.

Springer Verlag, 1989.

[22] B. Roth, Rigid and flexible frameworks, American Mathematical Monthly, 88(1981), pp. 6–21.

[23] B. Roth and W. Whiteley, Tensegrity frameworks, Transactions AMS, 265(1981), pp. 419–

446.

[24] T. Tay, Linking rigid bodies in n-space. Ph.D. thesis, Department of Mathematics, University

of Waterloo, Waterloo, Ontario, Canada, 1982.

[25] T. Tay and W. Whiteley, Generating isostatic frameworks, Structural Topology, 11(1985),

pp. 21–69.

[26] W. Whiteley, Vertex splitting in isostatic frameworks, Structural Topology, 16(1990), pp.

23–30.

[27] W. Whiteley, Matroids from discrete geometry, In: Joseph E. Bonin, James G. Oxley,

and Brigitte Servatius, editors, Matroid Theory, volume 197, pages 171–313. American



258 TOLGA EREN ET AL.

Mathematical Society, Contemporary Mathematics, 1996.

[28] W. Whiteley, Rigidity and scene analysis, In: J. Goodman and J. O’Rourke, editors, Hand-

book of Discrete and Computational Geometry, CRC Press, 2004.



OPERATIONS ON RIGID FORMATIONS OF AUTONOMOUS AGENTS 259


