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HURST PARAMETER ESTIMATION FOR EPILEPTIC SEIZURE

DETECTION

IVAN OSORIO∗ AND MARK G. FREI†

Abstract. Estimation of the Hurst parameter provides information about the memory range or

correlations (long vs. short) of processes (time-series). A new application for the Hurst parameter,

real-time event detection, is identified. Hurst estimates using rescaled range, dispersional and bridge-

detrended scaled windowed variance analyses of seizure time-series recorded from human subjects

reliably detect their onset, termination and intensity. Detection sensitivity is unaltered by signal

decimation and window size increases. The high sensitivity to brain state changes, ability to operate

in real time and small computational requirements make Hurst parameter estimation using any of

these three methods well suited for implementation into miniature implantable devices for contingent

delivery of anti-seizure therapies.
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1. Introduction. Epilepsy, a disabling disease, affects 1-2% of the American and

industrialized world’s population, and up to 10% of people in under-developed coun-

tries. As seizures are brief and relatively unpredictable, continuous EEG/ECoG moni-

toring is needed to implement new therapies, such as contingent electrical stimulation

for seizure blockage, via implantable devices, in subjects with pharmaco-resistant

epilepsies.

Hurst parameter [1] estimation has been applied to many natural (non-biological)

[2] and also biological phenomena, such as neuron membrane channel kinetics [10], a

fundamental functional operation of the brain. The behavior of membrane channels

seems to exhibit long-term correlation (H > 0.78, implying “persistence”) and the

currents recorded through individual ion channels have self-similar properties, that

is, they are fractals and may be best modeled using fractional Brownian motion. The

fractal behavior may extend to the whole neuron as measured simultaneously across

many channels. This raises the possibility that brain electrical processes may be

fractal or self-similar, or that, at a minimum, useful information may be obtained

from treating them as such in analyzing data or signals generated by these processes

in the brain.

The Hurst parameter (H) [1, 2] may provide information about the behavior of

continuous and discrete event time series and its estimation in the EEG/ECoG of
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humans with epilepsy may be useful for tracking seizures (Fig. 1) due to its relative

simplicity. Of particular value for its implementation into miniature implantable or

portable devices is the relative insensitivity of H estimates to signal decimation. If sub-

stantiated in applications to seizures, this characteristic would decrease the demands

on the size and speed of digital signal processors allowing low power implementations.

H, also sometimes referred to as a rescaled range statistic, may be estimated using

the relationship:

RT

ST
∼ TH as T →∞

where R is the range, S the standard deviation and T, time. This leads to the Hurst

parameter estimator:

Ĥ ∼ log(
RT

ST
)/ log(T ).

2. Estimation of the Hurst parameter. While there are many available

methods for the estimation of H [2,3,4,5,6,7,8,9,11], this paper will apply rescaled

range (R/S) [2], dispersional analysis (DA) [5], and bridge-detrended scaled window

variance (bdSWV) [2,6], because they are well understood and yielded meaningful

results in preliminary seizure data analyses.

The rescaled range statistic, used by Hurst in his study of rainfall along the Nile

River, is defined according to the following equations:

X∗(t) =
∑t

s=1 X(s),

X2∗(t) =
∑t

s=1 X2(s),

R(d) = max
0≤u≤d

{X∗(u)− (u/d)X∗(d)} − min
0≤u≤d

{X∗(u)− (u/d)X∗(d)} ,

S2(d) = X2∗(d)/d− (X∗(d)/d)2,

Z(d) = R(d)/S(d).

If there exists a real number J, such that the limit as d →∞ of Z(d)/dJ converges in

distribution to a non-degenerate limit random variable, then the signal Xt is said to

have exponent J with constant R/S pre-factor and the exponent J will be referred to

as the Hurst parameter estimate for the signal Xt.

Dispersional Analysis (DA), a method introduced by Bassingthwaighte [5], is

based on the variability of local averages of the signal over windows of length, τ . It

uses standard deviation, SD(τ), of these local averages and repeats the calculation of

SD(τ) over many τ values. The estimate of H is then obtained by adding one to the

slope of the regression of log [SD(τ)/SD(τ0)] vs. log [τ/τ0], where τ0 is a reference

window size.

Bridge-detrended scaled windowed variance (bdSWV), [2,6], divides a signal into

windows of size τ and bridge-detrends it (i.e., subtracts the line connecting the first
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and last points in the window, then multiplies by a parabolic windowing function) and

computes the standard deviation in each of the windows. The average of the standard

deviations is then computed and used to estimate H as the slope of the regression of

log [SD(τ)/SD(τ0)] vs. log [τ/τ0], where τ0 is a reference window size.

3. Methods and Materials. R/S, DA and bdSWV were applied to twenty 10-

minute segments of ECoG data from 10 subjects (2 per subject), with each segment

containing a seizure. The data were collected from patients with pharmaco-resistant

mesial temporal lobe seizures who underwent evaluation for epilepsy surgery at the

University of Kansas Comprehensive Epilepsy Center. It was recorded using multiple

contact depth electrodes (Ad-Tech, Racine, WI) placed in the amygdala-hypocampal

regions and correctness of electrode placement was assessed with MRI. The signal was

sampled at a rate of 240 Hz, amplified to a dynamic range of ±300µV, and digitized

with 10 bits of precision with 0.59µV/bit using commercially available devices (Nico-

let, Madison, WI). The recordings were deemed of good technical quality and suitable

for analysis. Additionally, analysis of a continuous recording (85 hours containing 62

seizures) from one subject was performed.

4. Results. Estimation of the Hurst parameter using R/S, DA and bdSWV in

a moving window of data enables detection of certain changes in brain state, such

as those associated with seizures. Specifically, H accurately detected (as compared

to expert visual analysis, the “gold standard”) onset and termination (duration) of

all twenty seizures from 10 subjects, and provided an indirect estimate of intensity.

Moreover, the Hurst parameter estimates appear to be sensitive to certain signal

changes (which we refer to as “precursors”) indicative of probable/impending seizure

onset (Fig 2).

Estimation of H using R/S, DA and bdSWV showed comparable sensitivity and

specificity for seizure detection. Regardless of the pre-seizure H values (which are

different for each method), seizure onset is characterized in all of them by the sudden,

simultaneous and marked drop in value, which remains low for the duration of the

seizure (FIG. 3). H increases rapidly at the end of the seizure, remaining above pre-

seizure values for about 40 s., a period corresponding to the immediate post-ictal state;

the return of H to pre-seizure values marks the end of this state and the beginning

of the interictal period. The bdSWV characterized seizures as a transient increase

in “antipersistence,” whereas the others typically showed a decrease in “persistence”

(Fig. 3).

Using the R/S method, H was estimated in moving 2 s, non-overlapping windows,

from 62 segments of data each containing one seizure (Fig 4A) and from 61 non-

seizure segments of equal duration recorded midway between the seizures (Fig 4B).
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The temporal evolution of the distribution (illustrated using its decile values) of H

shows an appreciable increase approximately 15 s before the electrographic seizure

onset (at time 0; Fig 4A), remaining unchanged on segments without seizures (Fig

4B). That these changes in H estimates are seen in all deciles, indicates the sensitivity

of the entire distribution of this parameter to relevant signal changes.

To test the robustness of H to decimation, ECoG was increasingly down-sampled

from an original rate of 240 Hz to 1 Hz. Using R/S, H estimates were obtained from

moving 10 s windows (sliding 1s at a time) of ECoG containing a seizure (onset:

t=300s.; end: t=400 s; postictal period until t=435s.). Each trace (Fig. 5) is the out-

put of the signal decimated to the sampling rate annotated on the y-axis. The ability

of H estimates to detect the beginning of the seizure remains essentially unaffected

by decimation all the way down to the 15 Hz sampling rate. Moreover, the ability

to detect seizure onset is preserved even with sampling rates as low as 1 Hz., but for

sampling rates below 15 Hz., the direction of H change reverses (increases) at onset.

Moreover, increases in window size from 1s/window to 10s/window (Fig. 6) do not

impair detection of onset and termination using H estimates.

The ability of H to detect brain state changes is further demonstrated with the

following experimental paradigm: Administration of 3 mercapto-propionic acid (3-

MPA) to rats causes seizures after a relatively constant latency. FIG. 7 shows the

increase in H estimate, obtained from the ECoG of an animal injected with 3-MPA

at time 0 (x-axis). The state change (from non-seizure to seizure) manifests with an

increase in H values, which precedes the onset of seizures (annotated by a vertical

line) by several minutes, thus predicting the state change.

5. Discussion. Estimation of the Hurst parameter on ECoG recorded from

epileptic brains and the results obtained in this investigation, do not imply or in-

fer a priori knowledge about the presence or absence of long-range dependencies in

this signal. Furthermore these results do not provide insight into the dynamics of

seizures or lead to their classification as fractional Gaussian noise, fractional Brow-

nian motion or as unclassifiable, since the required steps [7] to accomplish this were

not performed. Nonetheless, these results demonstrate that estimation of the Hurst

parameter using R/S, DA or bdSWV, reliably detect the onset and termination (dura-

tion) and intensity of certain brain state changes, in this case seizures. Its robustness

to decimation is a valuable feature for implementation into miniaturized, low-power

implantable devices. The decimation in the example provided here would correspond

to a factor of 16 improvement in number of required operations and amount of system

memory required to detect the seizure, as compared to the original 240 Hz sampling

rate.

Certain findings of this research raise questions about the signal’s features to
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which R/S, DA and bdSWV are sensitive. Despite their mathematical similarity,

the estimates they yield when applied to the same signal, are quantitatively and

qualitatively different (Fig 3). H estimates of the interictal state based on R/S and

DA, indicate “persistence”, the estimates using bdSWV point to “antipersistence”,

while all three show a nearly simultaneous decrease in H (in reference to interictal)

throughout the seizure. Of interest is also the reversal in the direction of change

in H values, as a function of sampling rate (Fig. 5), without affecting its ability to

detect state changes. This suggests that, at least when applied to short segments

and short windows, it may provide confounding dynamical information about the

signal in question. A systematic investigation of the effects of sampling rate and

window size may provide valuable knowledge about the behavior of these and other

Hurst estimators when applied to time series several orders of magnitude shorter than

those to which they have traditionally been applied. This is particularly relevant for

biological time series such as EKG and EEG to which Hurst estimators are applied

to probe into their dynamics, without sound basis.

To summarize, the Hurst parameter detects in real time certain brain state

changes, such as epileptic seizures, and is well suited for implementation into low-

power implantable devices for contingent delivery of anti-seizure therapies. The va-

lidity of applying this method to biological time series for purposes other than event

detection deserves investigation.

6. Figure legends. FIG. 1 shows an electrocorticogram (ECoG) signal contain-

ing a seizure with electrographic and clinical seizure onsets (EO and CO, respectively)

and subject activation of an event button (EB) annotated.

FIG. 2 displays 62 ECoG segments each containing seizure precursors, with several

of these further evolving to higher frequency electrographic seizures. This illustrates

the utility of Hurst parameter estimation for detection, quantification, and classifica-

tion of different state changes. H estimates are represented by color changes in the

traces, with numerical values indicated in the legend to the right.

FIG. 3 shows the changes in H parameter estimates (y-axis) obtained using three

different methods (R/S, DA. bdSWV) applied to a moving window of human ECoG

containing a seizure and postictal period (annotated by vertical bars).

FIG. 4A shows the evolution of the distribution of H parameter estimates (il-

lustrated using 10 percentile divisions) with an increase approximately 15 s before

electrographic seizure onset (time 0 in x-axis) as marked using expert visual analysis.

Fig. 4B shows the evolution of the distribution of H parameter estimates obtained

from interictal segments of the same length recorded midway between the seizures.

FIG. 5 illustrates the robustness of Hurst parameter estimates as the ECoG signal

from which they are obtained is markedly decimated from an original sampling rate
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of 240 Hz to various lower sampling rates ranging from 120 Hz down to 1 Hz.

FIG. 6 illustrates the robustness of Hurst parameter estimates for seizure detection

as the window size used for computing the estimates is varied.

FIG. 7 shows the increase in H estimate obtained from the ECoG of an animal

to whom a convulsant substance (3-mercaptopropionic acid) was injected at time 0.

The state change (from non-seizure to seizure) manifests as an increase in H values

that precedes the onset of seizures (annotated by a vertical line) by several minutes,

thus predicting the state change.

Fig. 1

EO CO EB
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Fig. 2

Fig. 3
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Deciles of H estimates over 62 seizures (onsets at t=0), 2s/window, no overlap

Deciles of H estimates over 61 interictal segments, 2s/window, no overlap
B

A
Fig. 4
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Fig. 6
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