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THEORY AND ALGORITHMS FOR THE HAPLOTYPE ASSEMBLY

PROBLEM∗

RUSSELL SCHWARTZ†

Abstract. Genome sequencing studies to date have generally sought to assemble consensus

genomes by merging sequence contributions from multiple homologous copies of each chromosome.

With growing interest in genetic variations, however, there is a need for methods to separate these

distinct contributions and assess how individual homologous chromosome copies differ from one an-

other. An approach to this problem was developed using small sequence fragments derived from

shotgun sequencing studies to determine the patterns of variations that co-occur on individual chro-

mosomes. This has become known as the “haplotype assembly” problem. This review paper surveys

results on the theory and algorithms for haplotype assembly. It first describes common abstractions

of the problem. It then discusses some notable intractibility results for different problem variants. It

next examines a variety of combinatorial, statistical, and heuristic methods for assembling fragment

data sets in practice. The review concludes with a discussion of recent directions in diploid genome

sequencing and their implications for haplotype assembly in the future.

1. Introduction. The availability of the first consensus human genome sequen-
ces [26, 28] has spawned numerous lines of research into genome function, organiza-
tion, and evolution. One major avenue of work to arise from genome sequencing is the
study of genome variations, or polymorphisms, which describe how individual copies
of the genome differ among members of a single species. Several major projects are
underway to characterize and catalog the common forms of genetic variation in the hu-
man genome and how they are distributed among individuals, populations, and even
individual chromosomes within one person [23, 27, 21] . Particularly notable among
these has been the International Haplotype Map (HapMap) project [24, 25], which
is in the process of gathering genotype sequences from diverse human populations
in order to assess the nature and distribution of variation between homologous chro-
mosomes across the human species. A key step in this analysis is determining likely
haplotypes, each describing the sequence of a portion of a single chromosome copy in a
single individual. While haplotype determination can be accomplished painstakingly
through direct sequencing of cloned data, it is more commonly and efficiently done
by computational inference. Data are generally sequenced in a diploid form known
as a genotype, where contributions from both chromosomes in a homologous pair are
conflated, and then computer algorithms are used to infer likely haplotypes from these
diploid genotypes [6]. For a review of this computational inference problem, known
as haplotype phasing, the reader can refer to Halldórsson et al. [10].

Haplotype assembly (sometimes called “individual haplotyping” or “single indi-
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vidual haplotyping”) emerged as an alternative to the inference of haplotypes from
genotypes. In a haplotype assembly approach, one constructs haplotypes from short
haploid fragments of DNA, each representing a small sequenced piece of one chromo-
some. Haplotype assembly was first developed as a fortuitous side-effect of the Celera
human genome sequencing project [28], whose shotgun sequencing approach [8] in-
volved generating several million haploid DNA fragments, each drawn from a pool of
five donors. While most sequenced bases on a fragment will be identical regardless
of its chromosome of origin, each fragment’s sequence may include the sequence of
one or more variant sites. We say that a fragment covers those sites for which it has
sequence data. These haploid fragments provided a data source from which one can
in principle directly identify haplotypes, provided one can find a way to sort them
into their source chromosomes and assemble them into sufficiently long stretches of
sequence. This sorting is itself a difficult inference problem, however, because most
fragments are approximately 1 kilobase (kb), roughly comparable to the distance be-
tween variant sites on two homologous chromosomes. A fragment is therefore unlikely
to cover more than one DNA site that varies between the two chromosome copies. It
is thus unlikely to directly carry any information from which one can determine which
variants co-occur on the same chromosome (a process known as phasing the data).

The phasing problem becomes feasible in part because Celera data was predomi-
nantly sequenced in the form of mate pairs, pairs of short sequences that are derived
from opposite ends of a single DNA strand of known length [7, 33]. While the two
paired ends were limited by the sequencing technology to about 1 kb, the distance
between each pair can be many kilobases. These mate pairs make it possible to link
phase information over long regions of sequence and thus potentially to construct
non-trivial haplotypes. Mate-paired sequencing, also known as paired-end sequencing
or double-barrel shotgun sequencing, is illustrated in Fig. 1, which shows how a set of
mate-paired fragments might be derived from a pair of homologous chromosomes. The
result is a set of fragment sequences, each covering some possible discontinuous set of
variable sites, which are the input to a haplotype assembly problem. For purposes of
illustration, we assume these sites take the form of single nucleotide polymorphisms
(SNPs), at which a single DNA base differs between the two DNA strands. In practice,
though, the methods described here can be applied to any form of variation.

The problem has since attracted attention from several research communities.
Initially, the primary goal of this work was modest: to group fragments into pairs of
chromosomes to identify those fragments that were mistakenly assigned to an incorrect
but similar region of the genome (known as paralogous misrecruitment). It was also
useful as a way of discovering specific haplotypes that might be used to seed genotype-
based phase inference algorithms in order to improve their accuracy. In these contexts,
the problem attracted a research community among computational biologists who
have formulated several problem variants [14, 19], produced a variety of theoretical
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Fig. 1. Mate-paired fragments from a diploid sequence. A pair of chromosome sequences

containing a set of variable sites (center) are shotgun sequenced to produce a set of mate-paired

fragments. Fragments occur at random positions along the genome, generally in the form of mate

pairs corresponding to paired ends of individual cloned segments of DNA. Boxes linked by lines above

and below the strands show the regions of sequence covered by the paired ends of each mate pair.

Each mate pair will then cover some possibly discontiguous set of variable sites, which we can encode

in a string (right). For each variable site, the string may contain the base (allele) value at the site

or a dash for a site not covered by the mate pair. The collection of such strings forms the input to

a haplotype assembly problem.

results on their tractability [14, 19, 22, 1], and developed an assortment of exact [14,
19, 22, 1, 17, 34] and heuristic [20, 29, 31, 15, 32, 4] methods for solving variants of
the problem. Aspects of this topic have previously been reviewed by Halldórsson et
al. [10], Greenberg et al. [9], and Zhang et al. [35]. Haplotype assembly has since
found new prominence with the inference of the first true haploid human genome
sequence [15], which showed that haplotype assembly could produce large, accurate
haplotypes on a genomic scale. With the advent of new high-throughput sequencing
technologies, as well as more sophisticated statistical models of the haplotype assembly
problem [16, 12, 13, 2], there is good reason to believe that haplotype assembly will
become a standard part of whole-genome sequencing approaches.

This review surveys the history and possible future prospects of the haplotype
assembly problem with a primary focus on computational theory and algorithms. We
will first examine several formalizations of the problem as combinatorial optimiza-
tions. We will then explore a series of hardness results. We next cover algorithms
for solving the problem in its various guises, which include both exact algorithms and
heuristic approaches. We then discuss some statistical issues that have been raised
in establishing long-range haplotype inferences and the degree of confidence one can
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have in them. Finally, we discuss recent and possible future directions in haplotype
assembly and related problems.

2. Theory and Problem Variants.

2.1. Notation and Problem Abstractions. To describe the haplotype as-
sembly problem we must first develop a formal representation of the problem input.
The input is presumed to be a set of haplotype fragments each covering some number
of variant genomic sites, which we will assume here are SNPs. We will further assume
that we have exactly two chromosomes and thus exactly two possible alleles at each
variant site. We also assume that these fragments have been pre-aligned to a consen-
sus genome assembly, meaning that we have a linear order of variant sites and that
we know which fragments cover each site. As a result, we can represent our input
as an m× n matrix F whose m rows correspond to m input fragments and whose n

columns correspond to n SNP sites. We refer to row i of F as ~fi and column j of
row i as fij . Each element of F is drawn from the alphabet {0, 1,−}, where 0 and 1
refer by convention to the major (more frequent) and minor (less frequent) alleles at
the site. ‘−’ refers to a lack of information at a site, either because the fragment does
not span the site in question or possibly because of a failure of a sequencing assay
at a given site. We treat a mated pair of fragments as a single fragment, and hence
single matrix row, with a gap corresponding to the unsequenced regions between the
sequenced paired ends.

To understand the problem variants in the literature, we rely on a notion of
agreement between fragments. Two fragments i and j are said to conflict if there
exists some SNP site k such that

fik 6= fjk ∧ fik 6= ‘−′ ∧fjk 6= ‘−′

Informally, a conflict means that the fragments cover a common SNP site and have
different values at that site. For error-free data, a conflict implies that the fragments
come from an overlapping region of different chromosome copies. We can further
define a distance between two fragments as the number of sites at which they conflict.
If we assume n variant sites in total then

d(~fi, ~fj) =
n∑

k=1

I(fik 6= fjk ∧ fik 6= ‘−′ ∧fjk 6= ‘−′)

where I(b) is an indicator function: I(b) = 1 for b true and I(b) = 0 for b false.
The goal of haplotype assembly is to partition the rows of F into two subsets

F1 and F2 corresponding to the chromosomes. We do not necessarily require that
F1 ∪ F2 = F . Once we have F1 and F2, it is trivial to infer two consensus haplotype
vectors

~h1 = {h11, h12, . . . , h1n}
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~h2 = {h21, h22, . . . , h2n}

summarizing the partition F1 and F2, e.g., by taking the more common allele (if
any) at each site covered by each part. The specifics of how we judge the quality of
the partition F1 ∪ F2 and form the consensus haplotypes ~h1 and ~h2 distinguish the
different variants of the haplotype assembly problem.

In explaining the problem variants in the literature, it is helpful to consider two
further abstractions of the data [14]. We first construct a fragment conflict graph
GF = (VF , EF ) where |VF | = m (i.e., one node per fragment) and the edge set is
defined by the pairs of fragments that conflict:

EF = {(vi, vj)|vi ∈ VF , vj ∈ VF , d(~fi, ~fj) > 0}.

Fig. 2 illustrates a fragment conflict graph for a hypothetical data set. We can op-
tionally treat GF as a weighted graph, weighting each edge by the distance between
its corresponding fragments:

w(vi, vj) = d(fi, fj).

If the data is error-free, then it must be possible to partition the fragments into
two sets such that there are no conflicts within either set. Thus, error free data implies
that GF is bipartite; two fragments from the same chromosome will not conflict while
two fragments from different chromosomes may or may not conflict. In Fig. 2, the
grey line shows a partition of the fragments into two parts implying a solution to
the fragment assignment problem. For bipartite Gf , the haplotype assembly problem
trivially reduces to finding the two parts of a bipartite graph, which we can solve in
linear time.

A - A - - -

- C A - - -

- C - - T -

- - - G - A

G G - - - -

- - T A - -

- - - - C T

(a) (b)

Fig. 2. The fragment conflict graph. (a) A set of hypothetical fragments with edges labeling

conflicts between pairs of fragments. (b) The fragment conflict graph GF corresponding to the

fragments in (a). The grey bar cuts all edges in the graph, showing that GF is bipartite and that

the haplotype assembly problem hence has an error-free solution.

Some formulations of the haplotype assembly problem depend on an alternative
graph formulation based on conflicts between SNP sites. For this formulation, we
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Fig. 3. The SNP conflict graph. (a) A hypothetical data set consisting of five fragments

sequenced at four sites. (b) Highlight of a SNP conflict between columns 1 and 3 of (a), using rows

1, 3, and 5. (c) Highlight of a SNP conflict between columns 1 and 4 of (a) using rows 2, 3, and 5.

(d) The SNP conflict graph for (a), with edges corresponding to the conflicts shown in (b) and (c).

define a SNP conflict graph GS = (VS , ES) specifying SNP pairs that are inconsistent
with having come from at most two haplotypes. For the SNP conflict graph, |VS | = n

(one vertex per SNP) and ES is defined as follows:

ES = {(vi, vj)|vi, vj ∈ VS

∧

∃k1, k2, k3 s.t.

((fk1i, fk1j) 6= (fk2i, fk2j)) ∧ ((fk1i, fk1j) 6= (fk3i, fk3j)) ∧ ((fk2i, fk2j) 6= (fk3i, fk3j)) ∧
(fk1i 6= ‘−′) ∧ (fk1j 6= ‘−′) ∧ (fk2i 6= ‘−′) ∧ (fk2j 6= ‘−′) ∧ (fk3i 6= ‘−′) ∧ (fk3j 6= ‘−′)}

Informally, ES is the set of SNP pairs for which at least three haplotypes are observed
across all genotypes. When two SNPs conflict then the set of fragments covering
those sites cannot be resolved into two haplotypes without disagreements among the
fragments of at least one haplotype. Fig. 3 illustrates the construction of GS .

2.2. Problem Formulations. In general, data will not be error free and thus
GF may not be bipartite. Conflicts may occur because of sequencing errors, which
introduce erroneous SNP values into individual fragments, and paralogous misrecruit-
ment, which introduces erroneous fragments into the data set. Different problem for-
mulations reflect different ways of inducing some bipartite G′F close to GF . Our first
formulations of the haplotype assembly problem approximately captures the intuition
that sequencing errors are the main source of conflicts in haplotypes:

Minimum edge removal (MER) [19]: Find V1, V2 ⊆ VF

such that V1 ∪ V2 = VF minimizing
∑

vi,vj∈V1
w(vi, vj) +∑

vi,vj∈V2
w(vi, vj).

Note that although we define MER to minimize edge weights, we could alternatively
define an unweighted version of the problem:
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Fig. 4. Illustration of haplotype assembly problem variants. (a) Minimum edge removal (MER).

(b) Minimum fragment removal (MFR). (c) Minimum SNP removal (MSR). (d) Minimum error

correction (MEC). (e) Longest fragment reconstruction (LFR).

Unweighted minimum edge removal (UMER) [19]:

Find V1, V2 ⊆ VF such that V1 ∪ V2 = VF minimizing
|{(vi, vj) ∈ EF |vi, vj ∈ V1 ∨ vi, vj ∈ V2}|.

MER is illustrated in Fig. 4(a). We assume that we need to remove some subset
of the edges of GF (marked in grey in the figure) to produce a bipartite graph on all
nodes. We may then have conflicting fragments assigned to a given chromosome and
must choose consensus SNP alleles for each chromosome to derive the two haplotypes.
Although it does not precisely correspond to any reasonable error model, MER can
nonetheless be a useful formulation algorithmically because it reduces the the problem
to a well-studied graph optimization problem, Maximum Cut [11].

An analogous formulation of the problem can also be derived from the fragment
conflict graph:

Minimum fragment removal (MFR) [14]: Find V1, V2 ⊆ VF

minimizing |VF /(V1 ∪ V2)| such that V1 ∩ V2 = ∅ and @vi, vj ∈ V1

s.t. (vi, vj) ∈ E and @vi, vj ∈ V2 s.t. (vi, vj) ∈ EF .

Informally, the problem is to remove as few fragments as possible so as to leave a
bipartite fragment conflict graph. The remaining graph will then be conflict-free and
we can therefore easily derive the two haplotypes from its bipartition. This variant
is illustrated in Fig. 4(b), which shows how we can remove some subset of the nodes
of GF (marked in grey) to produce a bipartite graph on the remaining nodes. MFR
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intuitively corresponds to an error model in which we assume that conflicts arise be-
cause of extraneous fragments, as from paralogous misrecruitment, and that we can
best solve the problem by finding a minimum set of extraneous fragments.

We can use the SNP conflict graph GS to help us understand an alternative for-
mulation of the problem:

Minimum SNP removal (MSR) [14]: Find V ′ ⊆ Vs minimizing
|V ′| such that ∀(u, v) ∈ Es either u ∈ V ′ or v ∈ V ′.

Informally, MSR is the problem of locating a minimum number of SNP sites one needs
to remove such that the full fragment set on the remaining sites can be assembled
into two conflict-free haplotypes. The problem is equivalent to finding a maximum
independent set in GS . Lancia et al. [14] showed that the SNPs corresponding to
any independent set in GS induce a bipartite graph in GF and hence correspond to
an error-free solution to the problem. The MSR problem variant corresponds to the
intuition that errors in data are likely to come from problematic sites on the genome
where either a chance sequencing error or some unusual local sequence property leads
to spurious conflicts. Fig. 4(c) illustrates the MSR problem, highlighting in grey a sin-
gle SNP that can be removed from a hypothetical GS to permit error-free haplotype
assembly.

One especially popular variant in the literature that does not lend itself to a sim-
ilarly simple graph construction is the following:

Minimum error correction (MEC) [19]: Find a set of set of
fragment/site tuples X = {(i1, j1), (i2, j2), . . . , (ik, jk)} minimizing
|X| = k such that there is a bipartite fragment conflict graph G′F
induced by the matrix F ′, where f ′ij = fij for (i, j) /∈ X and
f ′ij = f̄ij for (i, j) ∈ X.

For any SNP allele A, we define Ā to be the alternative allele at A’s SNP site. MEC
corresponds to a straightforward error-correction model of haplotype assembly: we
want to flip as few sequenced sites as possible so as to allow the assembly of two
error-free haplotypes. This problem is illustrated in Fig. 4(d), showing a hypothet-
ical data set (left) that cannot be resolved into two haplotypes because it contains
an odd-length conflict cycle and hence is not bipartite. By flipping one allele (right,
highlighted in grey), we can break the cycle and produce a bipartite fragment set.
This problem variant corresponds naturally to the intuition that spurious conflicts
are introduced into the data through random sequencing errors and that the most
plausible resolution is the one that requires assuming the fewest possible sequencing
errors. Note that MEC is also sometimes called the Minimum Letter Flip (MLF)

problem [9].

One final variant was proposed due to the practical desire to use haplotype as-
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sembly to generate long haplotypes:

Longest haplotype reconstruction (LHR) [14]: Find a subset
V ′ ⊆ Vf with induced edge set E′ maximizing the set of SNP sites
covered by any v ∈ V ′ such that (V ′, E′) is bipartite.

LHR identifies the longest conflict-free haploid region one can construct from a given
fragment set. This may be a useful outcome when one is performing haplotype as-
sembly to find candidate haplotypes for seeding diploid haplotype phasing algorithms.
This problem is illustrated in Fig. 4(e), where the same incompatible fragment set as
in Fig. 4(d) (left) is resolved by eliminating the bottom fragment (right, highlighted in
grey). The result is a pair of haplotypes spanning the full length of the sequence. LHR
does not correspond to any obviously reasonable error model for the data, however,
and appears to have been abandoned in the subsequent literature. We will therefore
devote minimal attention to it here.

In addition to these major variants, a few specialized formulations designed to
deal with other data sources [36] and other variations on these basic techniques [18]
have appeared in the literature and are discussed in the context of heuristic methods
in Sec. 3.2 below.

3. Algorithms.

3.1. Exact Algorithms. Most of the problem variants examined here have been
shown to be NP-hard, at least in the general case (arbitrary numbers and positions
of gaps within fragments). Lancia et al. [14] showed MFR and MSR to be NP-hard
in the general case. In fact, they showed MFR to be hard even if each fragment is
limited to a single gap and MSR to be hard even if each fragment is limited to at
most two gaps. Lippert et al. [19] have shown MER to be NP-hard in the general
case. Zhao et al. [37] showed MEC and two weighted variants on that problem to be
hard even in the case of no internal gaps in fragments. Rizzi et al. [22, 1] have further
established both MFR and MSR to be APX-hard (not approximable to any constant
bound in polynomial time) in the case of general gaps.

In some special cases, though, the haplotype assembly problems we examine are
efficiently solvable. A degenerate version of the problem is to assume that the fragment
matrix F is gapless, meaning that each fragment covers a contiguous set of sites on
the genome:

∀i, j, k, l such that j < k < l, (fij 6= ‘−′ ∧fil 6= ‘−′) =⇒ fik 6= ‘−′

Lancia et al. [14] showed that for all three variants they proposed (MFR, MSR, and
LHR), optimal inference can be performed in polynomial time in the gapless case.
While these algorithms were used as proofs of polynomial run-time, they were not
practical for realistic data sets. Rizzi et al. [22, 1] later improved on these algorithms
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to develop the first practical algorithms for gapless MFR and gapless MSR, using
dynamic programming to provide run times of O(m2n + m3) for MFR and O(mn2)
for MSR. Li et al. [17] extended this tractability result to the k-MFR problem, a
generalization of MFR allowing for k haplotypes (standard MFR is then 2-MFR).
They constructed an O(m2n + mk+1) algorithm for gapless k-MFR. As noted above,
MEC remains hard even in the gapless case [37].

Several methods have also been developed to allow practical solution of instances
of the hard versions of the problem. One popular method for solving hard problems of
this sort in practice is branch-and-bound. Lippert et al. [19] developed the first prac-
tical approach for gapped haplotype assembly through a branch-and-bound algorithm
for MFR. They described a basic variant of this algorithm and also suggested some
more sophisticated cut heuristics that may prove helpful on especially hard instances.
Wang et al. [30] developed an alternative branch-and-bound approach to the MEC
problem.

An alternative approach has been to develop fixed parameter tractable (FPT)
algorithms. Rizzi et al. [22] showed the MFR and MSR variants to be fixed parameter
tractable in a parameter k corresponding to the maximum number of gap positions
per fragment between the first and last non-gap sites. Both methods use dynamic
programming over possible haplotypes within windows covering these gap segments
to achieve run-times exponential in k but otherwise polynomial in problem size. The
resulting methods allow run times of O(22knm2 + 23km3) for MFR and O(mn2k+2)
for MSR. Xie and Wang [34] noted that these approaches can be impractical for
mate-paired fragments because k can be quite large due to the number of gap sites
between paired ends. They therefore proposed a more involved FPT algorithm for
MFR parameterized with two new parameters — k1, the maximum number of SNP
sites covered by any fragment, and k2, the maximum number of fragments covering
any SNP site — and showed a run time of O(nk23k2 + m log m + mk1). Because k1

is at most n and k2 is generally below 10, this method should be far more practical
for mate-paired data. Li et al. [17] developed an FPT approach for k-MFR, yielding
run-time O(22κm2n + 2(k+1)κmκ+1), where κ is equivalent to Rizzi et al.’s k above.

A third common approach to solving similar hard combinatorial problems is the
use of integer linear programming (ILP) reductions. Lippert et al. [19] reported
having attempted such an approach that did not perform adequately in practice. They
provide no details on the method, though. Li et al. [17] describe an ILP reduction for
k-MFR, showing that it can be posed as a simple ILP and therefore is in principle
amenable to methods for ILP solution. The ILP strategy has thus so far received
comparatively little attention in the haplotype assembly field.

3.2. Optimization Heuristics.

Several heuristics were developed based on stochastic models of the process of
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fragment generation. One approach devised by Wang et al. [31] treats recruitment
of fragments to haplotypes as a Markov process in which successive allele pairs are
generated based on an examination of the preceding d SNP sites in the sequence,
where d is some small constant (often 1). Given this model, a probability for each
possible phasing of a given site can be estimated from the frequencies with which
alleles are shared in the fragments spanning the current site and those immediately
preceding it. A Viterbi-like dynamic programming algorithm can then find the most
probable haplotype pair for the fragment set. Chen et al. [4] developed a linear-time
greedy recruitment algorithm and two randomized variants of that algorithm for a
probabilistic variant of the MEC model, assuming conflicts arise from uniformly ran-
dom sequencing errors. They showed that under some assumptions about sequencing
errors in the data it was possible to prove a series of rigorous error bounds for these
fast, simple methods. Randomized approaches have also been used for pure optimiza-
tion versions of the problem. For example, Wang et al. [30] developed a randomized
genetic algorithm, concatenating the prefix of one solution to a suffix of another as
their mating operation and flipping random positions as their mutation operation.

Vinson et al. [29] developed their own novel heuristic approach for a practical
project sequencing the highly polymorphic sea squirt (Ciona savignyi) genome by
building haplotype assembly directly into the normal genome assembly process. High
polymorphism is normally problematic for a genome assembly, but it is an advantage
in haplotype assembly because it increases the average amount of phase information
available per fragment. Rather than inferring a consensus genome and then using it
to align fragments, they heuristically introduced a penalty function to the Arachne
genome assembler [3] to determine whether two imperfectly matched fragments might
correspond to the same genome location. The result was to force the assembler to
construct distinct assemblies for each haplotype, which could then be aligned after that
fact. While this approach does not solve for a precise specification of the problem, it
has the advantage of circumventing problems genomic polymorphism might otherwise
introduce at the assembly stage.

Lindsay et al. [18] developed a greedy algorithm that solves for a novel weight
function similar to the MER objective. Their approach repeatedly merges sets of
fragments until only two sets are left, greedily choosing the two overlapping sets with
minimal conflict. A similar greedy approach was chosen for the FastHare heuristic
method [20], which scans linearly across the genome greedily growing a haplotype pair.
This approach is meant to solve both for accuracy of haplotype reconstruction and
for an additional problem variant, Minimum Element Removal (MER), corresponding
to minimizing the number of fragment SNPs one must convert to gaps in order to
construct two error-free haplotypes.

The largest haplotype assembly project to date, that of Levy et al. [15] in assem-
bling the first diploid human genome, adopted a similar greedy approach with some
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refinements. This heuristic approach began by arbitrarily assigning one fragment to
a haplotype and then repeatedly identified the fragment with the most overlap with
the existing assignment of heterozygous alleles to merge with one of the two growing
haplotypes. The process would continue until no more fragments could be recruited to
the current haplotype pair and then start anew at a different location on the genome.
Finally, they applied a series of greedy refinements consisting of re-estimating the
haplotypes at a single site based on a majority vote of the assigned fragments and
reassigning individual fragments based on a majority vote of the fragment’s covered
SNP sites. These assignments were subsequently fed to an MCMC refinement method,
discussed in Sec. 3.3. Their study showed surprising success in assembling large, accu-
rate haplotypes from 7.5X of sequence coverage. They report that half of their variant
sites were assembled into haplotypes of more than 400 variants. Collectively, approx-
imately half the genome was covered with haplotypes of over 200 kb each. Further,
the haplotypes found were 97.4% consistent with the individual fragment data and
showed high correspondence to high-LD haplotype pairs found in the HapMap [25].

Some work has attempted to improve haplotype quality by introducing the as-
sumption of additional genotype data, which is easier to gather than fragment data
and may reduce the solution space. Zhang et al. [36] introduced this method through
a variant of MEC that they call Minimum Conflict Individual Haplotyping (MCIH),
which consists of optimizing for the MEC variant but subject to the additional con-
straint that the inferred haplotypes must correspond to possible phasings of a separate
unphased genotype data set. They developed a dynamic programming algorithm to
solve the MCIH problem in time exponential in the maximum fragment length (ex-
cluding leading and ending gaps) but otherwise polynomial in problem size. They
further derived a neural network approach for classifying fragments into two haplo-
types for the same problem variant. Wang et al. [32] proposed a similar model of
haplotype assembly augmented with external genotype information and developed a
greedy hill-climbing search heuristic for that model.

3.3. Sampling Methods. One issue largely neglected in the preceding formal-
izations is the uncertainty involved in haplotype estimation. A simple version of
uncertainty arises from the fact that incomplete data will usually produce many opti-
mal solutions to any given formalization of the problem. This multiplicity of solutions
occurs primarily because two fragments can only be phased relative to one another if
there is a chain of pairwise fragment conflicts linking them, corresponding to a path in
the fragment conflict graph. Distinct components of the fragment conflict graph will
thus need to be phased arbitrarily relative to one another, creating in general 2k−1

optimal solutions for a k-component conflict graph. Even over connected regions,
though, there may be some uncertainty due to the possibility of erroneous data. If we
consider the possibility that some conflicts may in fact be spurious then all phase as-
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signments will have some probability of error, with the probability of correct phasing
generally decreasing with increasing assembly length.

Li et al. [16] developed the first approach to place this haplotype inference prob-
lem on a more rigorous probabilistic footing. Their methods built on the Churchill
and Waterman [5] theory for analyzing uncertainty in assembling a single genome.
The theory established a probabilistic model in which there is presumed to be some
probability that any given variant site is incorrectly sequenced. Any two overlapping
fragment pairs will therefore have some probability of being mistakenly inferred to
be in conflict when they in fact come from the same haplotype, or to be mistakenly
inferred not to be in conflict when they in fact come from opposite haplotypes that
disagree within their region of overlap. This basic model allows for the derivation of
confidence bounds on any haplotype reconstruction based on accumulated potential
errors across the fragment assignments. Li et al. proposed a Gibbs sampler to sam-
ple over possible partitions of fragments within their probabilistic framework, making
possible the discovery of high-confidence regions of haplotype assignments and the
derivation of confidence bounds on those assignments.

This approach was extended by Kim et al. [12, 13] for sequencing the Ciona in-
testinalis genome, a relative of the Ciona savignyi organism assembled by Vinson et
al. [29] that has a similarly high polymorphism rate. Kim et al. [12] developed an
efficient method for calculating likelihoods using a somewhat generalized version of
the model of Li et al. and showed how these likelihood calculations could be used to
improve construction of high-confidence haplotypes. Kim et al. [13] further improved
on the method by extending their probability model to incorporate some additional
problem-specific data, such as confidence scores on individual base calls during se-
quencing. They also extended the Gibbs sampler of Li et al. [16] to start with local
haplotypes built from pairs of SNP sites and incorporate sampling transitions to suc-
cessively merge adjacent haplotypes as well as rephase within these local haplotypes.
This bottom-up process continues until estimated confidences become too small to
support further extension. This approach allowed for the more efficient construction
of large, high-confidence haplotypes.

Levy et al. [15] added a similar sampling step subsequent to their greedy haplotype
assembly strategy of the human genome. They report that this MCMC sampling
reduced conflicts between their assembly and known HapMap [25] by 30% relative
to their initial assembly. A similar sampling approach was adopted by Bansal et
al [2]. They developed a Metropolis sampler to enumerate over possible haplotypes
for which the move set consists of flipping the phase of some subset of the possible
haplotypes. To find good candidate cuts, they rely on a hierarchical partitioning of the
SNP conflict graph constructed by searching for low-weight graph cuts. These low-
cost cuts identify points of high uncertainty in the phase assignments, which allows
far more efficient sampling of the haplotype space than do more näıve approaches
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to MCMC sampling. Bansal et al. reanalyzed Levy et al.’s data with their method,
showing that the haplotypes produced by their method could cover half of the genome
with haplotypes over 350 kb. They further estimated, from comparison to HapMap
haplotypes, an error of under 1% in phasing adjacent sites in the diploid human
genome.

4. Discussion. The haplotype assembly problem has developed from initially a
specialized and largely theoretical curiosity to a valuable component of the sequencing
of diploid genomes. In the process, the problem has undergone a variety of transfor-
mations from simple combinatorial variants that lent themselves well to theoretical
analysis to sophisticated probabilistic models that allow examination of complex data
sources and estimation of rigorous confidence bounds on assembly. The most advanced
methods can now accurately cover a majority of the human genome with haplotypes
of several hundred kilobases using levels of sequence coverage typical of conventional
shotgun assembly studies.

The question remains what future there may be for computational work on this
problem. The substantial advantages offered by the statistical approaches would seem
to suggest that they are the future for haplotype assembly. Nonetheless, as Bansal
et al. [2] show, sophisticated optimization can be a key component of building an
efficient sampling approach. There is likely substantial additional work to be done
on developing more realistic error models and developing algorithms for sampling
efficiently from those models. Merging haplotype assembly with the normal assembly
process, as was done by Vinson et al. [29] would also appear to be a natural direction
for the field. There, too, there would seem to be a great deal of room for improvement
of probabilistic models of haploid assembly in the presence of polymorphism and for
genuinely new assembly algorithms to handle this form of assembly more efficiently.
There may also be important practical work still to be done to handle harder problem
variants than those considered here. The k-MFR problem [17] points to one such
hard problem that may prove valuable in practice: multiplex assembly of more than
two haplotypes. For example, such an approach may prove valuable for working with
data derived from environmental sequencing projects where contributions are likely
to come from many members of a given species as well as many species. As with the
haplotype assembly problem to date, biological research practice can be expected to
continue drive the work in exciting and unanticipated directions.
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