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Abstract

A theorem of Lawson and Simons[8] states that the only stable minimal
submanifolds in CPn are complex submanifolds. We generalize their result
to the cases of HPn and OP2. The treatment is given in the context of
Jordan algebra, so that the seemingly unrelated case of Sm is uni�ed
naturally with the above projective spaces.

1 Introduction

Complex geometry is a very rich subject. Some of its beautiful theorems have
natural generalizations to quaternion geometry or even octonion geometry. This
paper gives one such generalization.
In the seventies, Lawson and Simons [8] showed that the average second

variation of any submanifold S in CPn is negative unless S is complex, where
the average is taken over all holomorphic vector �elds in CPn. As a corollary,
complex submanifolds are the only stable minimal submanifolds in CPn. (Here
stability means that the submanifold has non-negative second variation along
every vector �eld.) We generalize this result to HPn and OP2, leading to the
following theorem:

Main Theorem: Let A = R;C;H;O. For any submanifold S
(or more generally recti�able current) in APn, the average second
variation of S is given by

�
Z
S

 
�X
l=1

kJl � Sxk2
!
dx � 0

where Sx denotes the unit simple vector representing the oriented
tangent space of S at each x 2 S, and fJl; l 2 1; : : : ;�g is an ortho-
normal basis of the space of linear complex structures of APn at x,
each acting on Sx as derivation.
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As a consequence, complex submanifolds are the only stable minimal
submanifolds in CPn; quaternionic submanifolds are the only stable
minimal submanifolds in HPn; octonionic submanifolds are the only
stable minimal submanifolds in OP2.

The term �average�second variation appeared in the above theorem will be
explained in detail in Section 3.
In the same paper, Lawson and Simons showed that the average second

variation of any submanifold S in Sm is negative unless S is of dimension 0 or
m, where the average is taken over all conformal vector �elds in Sm. As a
corollary, there are no stable minimal submanifolds in Sm other than points and
Sm itself. At �rst glance, the conformal geometry of Sm may seem di¤er a lot
from the complex geometry of CPn.
Surprisingly, under the notion of Jordan algebra, these di¤erent kinds of

geometries can be treated in a uni�ed manner. To see this, we recall that for
any normed algebra A 2 fR;C;H;Og, its projective space APn can be identi�ed
as the subset of all rank one projections in the space hn+1(A) of (n+1)�(n+1)
Hermitian matrices over A. These hn+1(A) are simple formally real Jordan
algebras. When A = O is non-associative, we can only take n � 2. From the
classi�cation result [7], there is one more family of simple Jordan algebra: This
corresponds to A = Rm, which is not even an algebra, and we can only take
n = 1. In this case, AP1 is the standard sphere Sm.
We give a uniform treatment to APn � hn+1(A) to achieve our main theorem.

First we give a brief introduction to Jordan algebras in Section 2. Then in
Section 3 we derive a formula for average second variation of cycles in a compact
symmetric space G=K which is a G-orbit in an orthogonal representation of G.
This formula is applied to the projective spaces in Section 4 to show the main
theorem. The results of Lawson and Simons in the complex and conformal
cases are recovered when A equals to C and Rm. On the one hand, we have
generalized their results for submanifolds in CPn to HPn and OP2; On the other
hand, our approach uni�es the conformal case with the others.

2 Projective spaces and simple Jordan algebra

Let�s begin by recollecting some facts about our working platform: projective
spaces inside simple Jordan algebras. A formally real Jordan algebra is an
algebra over R whose multiplication � is commutative and power associative
(that is, (a � a) � a = a � (a � a)), together with

a1 � a1 + : : :+ an � an = 0) a1 = : : : = an = 0

This notion is invented by Jordan [6] in 1932 to describe the algebra of ob-
servables in quantum mechanics. These algebras are classi�ed by Jordan, von
Neumann and Wigner [7]: Every formally real Jordan algebra can be written
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as direct sum of simple ones, which are listed completely below as sets of Her-
mitian matrices. Inside each of them we get a projective space consisting of all
rank one projections, which are exactly those matrices p with p � p = p and
tr p = 1. Multiplication is de�ned as symmetrization of the ordinary matrix
multiplication:

A �B = AB +BA

2

1. hn+1(R) := fHermitian real (n+ 1)� (n+ 1) matricesg � RPn.
b = g� h0n+1(R), where b is the Lie algebra of B = SL(n + 1;R), and
g is the Lie algebra of its maximal compact subgroup G = SO(n + 1),
who acts on h0n+1(R), the subspace of trace-free matrices in hn+1(R), as
automorphisms by adjoint action.

2. hn+1(C) := fHermitian complex (n+ 1)� (n+ 1) matricesg � CPn.

b = g� h0n+1(C), where b is the Lie algebra of B = SL(n + 1;C), and
g is the Lie algebra of its maximal compact subgroup G = SU(n + 1),
who acts on h0n+1(C), the subspace of trace-free matrices in hn+1(C), as
automorphisms by adjoint action.

3. hn+1(H) := fHermitian quaternion (n+ 1)� (n+ 1) matricesg � HPn.
b = g� h0n+1(H), where b is the Lie algebra of B = SL(n + 1;H), and
g is the Lie algebra of its maximal compact subgroup G = Sp(n + 1),
who acts on h0n+1(H), the subspace of trace-free matrices in hn+1(H), as
automorphisms by adjoint action.

4. h3(O) := fHermitian 3� 3 matrices with octonion entriesg � OP2.
b = g� h03(O), where b is the Lie algebra of B = E�266 [1], and g is the
Lie algebra of its maximal compact subgroup G = F4, who acts on h03(O),
the subspace of trace-free matrices in h3(O), as automorphisms by adjoint
action [3].

5. Spin factor.

h2(Rm) :=
��

a� b v
v a+ b

�
: a; b 2 R; v 2 Rm

�
�= Rm � R� R

�
a� b v
v a+ b

�
$

0@ v
b
a

1A
where we de�ne v �w = vtw for v; w 2 Rm to carry out matrix multiplica-
tion. The embedded projective space is
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8<:
0@ v
b
a

1A : kvk2 + b2 = 1

4

9=; �= Sm

b = g� h02(Rm), where b is the Lie algebra of B = O(m + 1; 1), and g
is the Lie algebra of its maximal compact subgroup G = O(m + 1)O(1),
who acts on h02(Rm), the subspace of trace-free matrices in h02(Rm), as
automorphisms by adjoint action.

Now we �x a simple formally real Jordan algebra hn+1(A), where it is un-
derstood that n 2 N for A = R;C;H; n = 2 for A = O, and n = 1 for A = Rm.
The a¢ ne space h1n+1(A) of all trace-one matrices is invariant under G because
automorphisms preserve trace. The projective space APn sits symmetrically in-
side h1n+1(A): APn is the orbit under G of the matrix En+1;n+1 2 h1n+1(A) with
value 1 at the (n + 1; n + 1) position and all other entries zero. We have an
G-invariant metric on h1n+1(A):

hA;Bi := 2Re(trAB) = 2Re(trA �B)

inducing a G-invariant metric on APn. With this metric APn is in fact a Rie-
mannian symmetric space:

RPn =
O(n+ 1)

O(n)O(1)
;CPn =

U(n+ 1)

U(n)U(1)
;HPn =

Sp(n+ 1)

Sp(n)Sp(1)
;Sm =

O(m+ 1)

O(m)

are classical symmetric spaces, and

OP2 =
F4

Spin(9)

is an exceptional symmetric space, the Cayley plane. (Page 292 of [4].)
The group G of symmetries is extremely helpful for investigating the varia-

tional behaviour of cycles in APn, as we shall see in the next section.

3 Average second variation in symmetric orbits

In this section we consider the following situation:
Setting: Assume that M = G=K is a compact symmetric space which is a G-
orbit of an orthogonal representation V of G. Such an M is called a symmetric
orbit (Chapter 2 of [2]).
The projection of each u 2 V determines a vector �eld Vu, or simply denoted

by V , on M . Our main result in this section is the following simple formula for
the average second variation of any p-frame inM , where the average is taken over
fVu : u 2 Vg. By setting V = h1n+1(A), G to be the group of automorphisms of
hn+1(A) (which is the notation we use in the last section) and M = APn, this
formula will be applied to projective spaces in the next section.
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Theorem 1 In the above setting, the average second variation of an oriented
orthonormal p-frame � = e1 ^ : : : ^ ep at x 2M is given by

trQ� =
p;qX
j;k=1

�
2 k II(ej ; nk)k2 � h II(ej ; ej); II(nk; nk)i

�
where II is the second fundamental form of M � V at x, and fejgpj=1[fnkg

q
k=1

is an orthonormal basis of TxM .

The method of proof is similar to [8]. Let us �rst have a quick review
on the general setup given in [8]. For a Riemannian manifold M with Levi-
Civita connection r, the second variation of a recti�able current S under a �ow
f�t : M ! Mgt2R generated by a global gradient vector �eld V on M is given
by

d2

dt2

����
t=0

M((�t)�S) =

Z
M

hAV;V Sx; Sxi+ 2kAV Sxk2 � (hAV Sx; Sxi)2 dkSk(x)

where M denotes the volume of a current, Sx is the unit simple vector repre-
senting the oriented tangent space of S at x, and kSk denotes the Borel measure
associated with S. Given vector �elds V;W on M , AV (u), AV;W are endomor-
phisms of TM de�ned by

AVX := rXV ;
AV;WX := (rVAW )X = rVr ~XW �rrV

~XW (1)

where ~X is a smooth local extension of X 2 TM . Each endomorphism L of
TM is extended to operate on

Vp
TM by Leibniz rule:

L(e1 ^ : : : ^ ep) =
pX
j=1

e1 ^ : : : ^ Lej ^ : : : ^ ep

A recti�able current is said to be stable if its second variation along every
vector �elds on M are non-negative. We will denote the integrand in the above
formula by QSx (V ), the second variation of Sx under V . For each oriented
orthonormal p-frame � = e1 ^ : : : ^ ep at x 2 M , the second variation Q� is
a quadratic form on the space of smooth vector �elds on M , and it can be
rewritten as

Q�(V ) =

0@ pX
j=1

hAV ej ; eji

1A2

+ 2

pX
j=1

qX
k=1

(hAV ej ; nki)2 +
pX
j=1

hAV;V ej ; eji (2)

where fe1; : : : ; ep; n1; : : : ; nqg forms an orthonormal basis of TxM .
Now let�s take a closer look on our setting introduced in the beginning of

this section. Let G be a compact Lie group with Lie algebra g, which acts
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linearly on an Euclidean space V with a G-invariant metric h�; �i. Fix a point
0 6= x0 2 V, consider the orbit M = G � x0 with the induced G-invariant metric
from V. G acts on the space of orthonormal p-frames on M by

g � (e1 ^ : : : ^ ep) := (g� � e1) ^ : : : ^ (g� � ep)

For u 2 V, the projection of u on TxM at each x 2M gives a vector �eld Vu
onM , which may also be regarded as a gradient vector �eld of the function h�; ui
on M . Q� becomes a quadratic form on V by sending each u 2 V to Q�(Vu),
which may be identi�ed by the metric as a self-adjoint operator on V. Our aim
is to compute the average second variation trQ�.

Lemma 2 Suppose �; � are two unit simple vectors on M . If � = g �� for some
g 2 G, then the average second variation of � is the same as that of �.
Proof. Since the metric is G-invariant, the Levi-Civita connection r is G-
equivariant, that is,

rg��X(g� � V ) = g� � (rXV )

Apply this to equation (1),

AV (g � �) = g � (Ag�1� V � �); AV;W (g � �) = g � (Ag�1� V; g�1� W � �)

Apply to equation (2), we get

Qg��(Vu) = Q�(g�1� Vu) = Q�(Vg�1� u)

the last equality is due to G-invariance of metric. And so

trQ� =
X
u

Q�(u) =
X
u

Q�(g�1� u) = trQ�

where u, and hence g�1� u, run through an orthonormal basis of V. The last
equality follows from the fact that trace is independent of choice of orthonormal
basis.

By the above lemma, it su¢ ces to consider average second variation of each
p-frame � = e1 ^ : : :^ ep at x0, because p-frames at another point can be moved
to x0 by some g 2 G, who acts transitively on M .
Denote the isotropy subgroup of x0 by K, so that M = G=K. This gives a

decomposition
g = k�m where m := k?

Now suppose that M is at the same time a symmetric space, that is, we have
an involutive isometry � : M ! M with x0 as an isolated �xed point. On G
we have a natural G-invariant metric given by negative of the Killing form. We
may scale this metric such that m is isometric to Tx0M .
Let�s complete � = e1^: : :^ep to an orthonormal basis fe1; : : : ; ep; n1; : : : ; nqg

of Tx0M �= m, and further take an orthonormal basis f�1; : : : ; �rg of k, so that
f�1; : : : ; �r; e1; : : : ; ep; n1; : : : ; nqg forms an orthonormal basis of g.
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We now express the projection V = Vu of u 2 V in terms of Killing vector
�elds induced by g on M . We shall use the same symbol to denote an element
of g, its induced vector �eld on V, and the restricted Killing vector �eld on M .
Recall that

[g1; g2]M = �[g1; g2] (3)

where [�; �]M is the Lie bracket for vector �elds onM , and [�; �] is the Lie bracket
on g. On the right hand side g1; g2 denote elements in g, while on the left hand
side they denote their induced Killing vector �elds on M . This fact will be
used repeatedly to compute the Lie bracket, and hence covariant derivatives of
Killing vector �elds.

Lemma 3

V =
rX

�=1



u; ��

�
�� +

pX
�=1

hu; e�i e� +
qX


=1

hu; n
in


Proof. Denote the basis f�1; : : : ; �r; e1; : : : ; ep; n1; : : : ; nqg of g by A.
At x0 2M the above equation is obvious, because ��(x0) = 0,
and fe1; : : : ; ep; n1; : : : ; nqg forms an orthonormal basis of Tx0M .
At another point x 2M , let f ~e1; : : : ; ~ep; ~n1; : : : ; ~nqg be an orthonormal basis

of TxM �= m, and complete it to an orthonormal basis

B = f~�1; : : : ; ~�r; ~e1; : : : ; ~ep; ~n1; : : : ; ~nqg

of g. Both A;B are orthonormal basis of g, so B = AT , where T is an orthogonal
matrix.

V (x) =
X
j

hu;BjiBj =
X
j



u;AkT

k
j

�
AiT

i
j =

X
j

hu;AjiAj

since
P

j T
k
j T

i
j = �

ki.
Proof to Theorem 1: By Lemma 2 we may assume � is a frame at x0. From
equation (2) the average second variation of � is

X
u

0@ pX
j=1

hAV ej ; eji

1A2

+ 2
X
u

p;qX
j=1;k=1

(hAV ej ; nki)2 +
X
u

pX
j=1

hAV;V ej ; eji

where u runs through an orthonormal basis of V, each gives a vector �eld V = Vu
on M by projection. We compute term by term for the three terms appeared
in the above expression.
Recall [5] that for a symmetric space,

rK1K2 =
1

2
[K1;K2]M
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for Killing vector �elds K1 and K2 on M . Applying this to the expression of V
given in Lemma 3,

rejV =


u; @ej��

�
�� +

1

2



u; ��

�
[ej ; ��]M +



u; @eje�

�
e� +

1

2
hu; e�i [ej ; e� ]M

+


u; @ejn


�
n
 +

1

2
hu; n
i [ej ; n
 ]M (4)

where @ is the trivial connection of V, and so @v is the usual directional derivative
along v 2 Tx0V �= V. (Recall that ��, e� , n
 can be regarded as vector �elds
on V, and so the above directional derivatives make sense.)
To simplify the above expression at x0, notice that k induces zero vectors at

x0, and hence �� 2 k vanishes at x0. Together with equation (3) and the fact
that

[k; k] � k; [k;m] � m; [m;m] � k (5)

we have
rejV (x0) =



u; @eje�

�
e� +



u; @ejn


�
n


and hence

hAV ej ; eji =


rejV (x0); ej

�
=



u; @ejej

�
hAV ej ; nki =



rejV (x0); nk

�
=



u; @ejnk

�
The �rst term is

X
u

0@ pX
j=1

hAV ej ; eji

1A2

=
X
u

pX
j;k=1



u; @ejej

�
hu; @ekeki

=

pX
j;k=1



@ejej ; @ekek

�

=








pX
j=1

II(ej ; ej)








2

where @ejej = II(ej ; ej) because rejej = [ej ; ej ]M=2 = 0.
The second term is

2
X
u

p;qX
j=1;k=1

(hAV ej ; nki)2 = 2
X
u

p;qX
j=1;k=1

�

u; @ejnk

��2
= 2

p;qX
j;k=1

k@ejnkk2

= 2

p;qX
j;k=1

k II(ej ; nk)k2

where @ejnk = II(ej ; nk) at x0 because rejnk(x0) = [ej ; nk]M=2 = 0.
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Now we turn to compute the third term
P

u

Pp
j=1 hAV;V ej ; eji, which is

more complicated. At x0,

hAV;V ej ; eji =


rVrejV �rrV ejV; ej

�
=



rVrejV; ej

�
=

pX
�=1

hu; e�i


re�rejV; ej

�
+

qX

=1

hu; n
i


rn
rejV; ej

�
where rrV ejV (x0) = 0 because

rV ej(x0) =
pX
�=1

hu; e�i
[e� ; ej ]M

2
+

qX

=1

hu; n
i
[n
 ; ej ]M

2
= 0

We now compute the �rst part
P
hu; e�i



re�rejV; ej

�
of the third term.

Di¤erentiating equation (4) along e� , we get

re�rejV (x0) =
1

2



u; @ej��

�
[e� ; ��]M +

1

2



u; @e���

�
[ej ; ��]M

+


u; @e�@eje�

�
e� +

1

4
hu; e�i [e� ; [ej ; e�]M ]M

+


u; @e�@ejn


�
n
 +

1

4
hu; n
i [e� ; [ej ; n
 ]M ]M

Using the identity h[X;Y ]M ; Zi = �hY; [X;Z]M i for Killing vector �elds
X;Y; Z, together with the relation (5) repeatedly, we get


re�rejV (x0); ej
�
=


u; @e�@ejej

�
and so X

u

pX
j=1

pX
�=1

hu; e�i


re�rejV; ej

�
=

X
u

pX
j=1

pX
�=1

hu; e�i


u; @e�@ejej

�
=

pX
j;�=1



@e�@ejej ; e�

�

= �








pX
j=1

II(ej ; ej)








2

(6)

Now proceed to compute the second part
P
hu; n
i



rn
rejV; ej

�
of the
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third term. Di¤erentiating the equation (4) along n
 , we get

rn
rejV (x0) =
1

2



u; @ej��

�
[n
 ; ��]M +

1

2



u; @n
��

�
[ej ; ��]M

+


u; @n
@eje�

�
e� +

1

4
hu; e�i [n
 ; [ej ; e� ]M ]M

+


u; @n
@ejn�

�
n� +

1

4
hu; n�i [n
 ; [ej ; n�]M ]M

and so 

rn
rejV (x0); ej

�
=


u; @n
@ejej

�
X
u

pX
j=1

qX

=1

hu; n
i


rn
rejV; ej

�
=

X
u

pX
j=1

pX

=1

hu; n
i


u; @n
@ejej

�
=

p;qX
j;
=1



@n
@ejej ; n


�
= �

p;qX
j;
=1

h II(ej ; ej); II(n
 ; n
)i (7)

Adding up equations (6) and (7), we get the third term

�








pX
j=1

II(ej ; ej)








2

�
p;qX
j;
=1

h II(ej ; ej); II(n
 ; n
)i

Adding up all the three terms, the average second variation is
p;qX
j;k=1

�
2 k II(ej ; nk)k2 � h II(ej ; ej); II(nk; nk)i

�

4 Proof of the main theorem

Our projective spaces �t into the scenario introduced in the last section, with
V = h1n+1(A), G = Aut(hn+1(A)), x0 = En+1;n+1 2 h1n+1(A), which is the
matrix with value 1 at the (n+1; n+1) position and all other entries zero, and
M = APn. To apply the average second variation formula we need to compute
the second fundamental form for APn � h1n+1(A) at x0.
Let�s take the following coordinates around x0 for APn:

An ! APn � h1n+1(A)

Q 7! 1

1 + kQk2

�
Q
1

��
Q� 1

�
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Here we adopt the following notations:

Q =
�X
l=0

ilXl

where Xl are column n-vectors, i0 := 1, and for 1 � l � �, il are the linearly
independent imaginary square roots of unity in A. Recall that for the case
A = Rm, n = 1, � = 0, Q = X0 is an element in Rm with Q� = Q and
Q �Q := hQ;Qi. For the other four cases, the entries of Xl are real numbers.
The basis of coordinate tangent vector �elds is f @

@xjl
: 0 � l � �; 1 � j � Ng,

where @

@xjl
denote the il-directions. N = m in the case of A = Rm, and N = n

for all the other four cases. Using product rule (which is valid for multiplication
in A),

@

@xjl

�����
Q

=
1

1 + kQk2

�
ilwj
0

��
Q� 1

�
+

1

1 + kQk2

�
Q
1

��
ilw

T
j 0

�
� 2XT

l wj
(1 + kQk)2

�
Q
1

��
Q� 1

�
where wj stands for the column n-vector with j-th coordinate 1 and other
coordinates zero, and T stands for transpose. Recall that when A = Rm, n = 1,
and so transpose of an element is just itself. Di¤erentiating both sides along
@
@xkr

at 0 2 An,

@

@xkr

����
0

 
@

@xjl

!

=

�
ilwj
0

��
irw

T
k 0

�
+

�
irwk
0

��
ilw

T
j 0

�
�(iril + ilir)wTk wj

�
0
1

��
0 1

�

=

8>>>><>>>>:

�
2�jk 0
0 �2�jk

�
for A = Rm

�
irilEkj + ilirEjk 0

0 �(iril + ilir)�jk

�
for A = R;C;H;O

which is already perpendicular to Tx0APn, because

@

@xjl

�����
0

=

�
0 ilwj
ilw

T
j 0

�
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Under the metric hA;Bi = 2Re tr (AB), our coordinate vectors are pairwise
orthogonal, each has length 2. We scale them to get an orthonormal basis
f 12

@

@xjl
: 1 � j � n; 0 � l � �g.

We conclude that

Lemma 4

II(
1

2

@

@xjl
;
1

2

@

@xkr
) =

8>><>>:
1
2

�
�jk 0
0 ��jk

�
for A = Rm

1
4

�
irilEkj + ilirEjk 0

0 �(iril + ilir)�jk

�
for A 2 fR;C;H;Og

Now we are ready to compute trQ� for an orthonormal p-frame � = e1 ^
: : : ^ ep at x0 2 APn. Complete B = fejgpj=1 to an orthonormal basis fej ; nkg
in the form 8>>><>>>:

v1; J1v1; : : : J�v1
v2; J1v2; : : : J�v2
...

...
...

vN ; J1vN ; : : : J�vN

9>>>=>>>;
where Jl : Tx0APn ! Tx0APn is the di¤erential of left multiplication of il on
An � APn.
In case of APn, Such an orthonormal basis can be brought to the basis of

normalized coordinate vectors by action of the isotropy group K < G. This
is easy for RPn, CPn and HPn: SO(n), SU(n) and Sp(n) acts transitively on
orthonormal frames, unitary frames and quaternionic unitary frames respec-
tively. For OP2, K = Spin(9) < F4, we argue as follows: Tx0OP2 is the spinor
representation of Spin(9). Under this action

Tx0OP2 � S15 �= Spin(9)=Spin(7)

(see P.283 of [4]). Hence we can use � 2 Spin(9) to bring 1
2

@
@x10

to v1. Spin(7)

�xes v1 and hence acts on Tv1S15, which splits into the vector representation V7
and spinor representation of Spin(7).

n
�
�
1
2

@
@x1l

�o7
l=1

and fJlv1g7l=1 form two

base of V7 having the same orientation. Then we can bring
n
�
�
1
2

@
@x1l

�o7
l=1

to

fJlv1g7l=1 by an element in Spin(7).
n
�
�
1
2

@
@x2l

�o7
l=1

can be brought to fJlv2g7l=0
by Spin(7) using similar reasoning, because

Spin(7)=G2 �= S7; G2=SU(3) �= S6

and SU(3) acts transitively on the collection of unitary bases.
Hence by Lemma 2 we may assume

Jlvj =
1

2

@

@xjl
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so that we can apply Lemma 4 directly.
For A = Rm, AP1 = Sm. Lemma 4 gives



 II(12 @

@xj
;
1

2

@

@xk
)





2 = �jk
which is the usual formula for the second fundamental form of Sm � Rm+1.
Together with Theorem 1, the result of Lawson and Simons [8] is reproduced:

trA� =
p;qX
j;k=1

(�1) = �pq � 0

implying that the average second variation of a recti�able current of non-zero
volume in Sn is negative for 0 < p < m, and hence cannot be stable.
Now let�s turn to the other four cases. Lemma 4 gives

k II(ej ; nk)k2 =
�
0 for nk = �Jlej for some 1 � l � �
1
4 otherwise

and

h II(ej ; ej); II(nk; nk)i =
�
1 for nk = �Jlej for some 1 � l � �
1
2 otherwise

so the summand appeared in Theorem 1 is

2k II(ej ; nk)k2�h II(ej ; ej); II(nk; nk)i =
�
�1 for nk = �Jlej for some 1 � l � �
0 otherwise

meaning that for each ej , every Jlej-direction normal to � contributes �1 to
trQ�, and all other normal directions make no e¤ect. Hence

trQ� = �
pX
j=1

(number of l such that �Jlej 62 B)

= �
pX
j=1

�X
l=1

ke1 ^ : : : ^ Jlej ^ : : : ^ epk2

= �
�X
l=1

kJl � �k2 � 0

(Here J acts on � by Leibniz rule.) Equality holds if and only if kJl � �k2 = 0 for
all 1 � l � �, meaning that � is invariant under each Jl, and hence invariant
under the S��1-family of complex structures. In the case of RPn, � = 0, the
above formula says average second variation of S under those projections of
constant vector in h0n(R) is always zero, which is not a useful information. For
the case that A = C, H and O, the result is interesting:

13



Theorem 5 In CPn, a recti�able current S is stable if and only if S is complex,
that is, TxS is invariant under J for almost every x 2 S;
In HPn, S is stable if and only if S is quaternionic, that is, TxS is invari-

ant under the S2-family of linear complex structures at x for almost every x 2 S;

In OP2, S is stable if and only if S is octonionic, that is, TxS is invariant
under the S6-family of linear complex structures at x for almost every x 2 S.
In Sn, S is unstable unless S consists of points or S is Sn itself.

The result of Lawson and Simons provides a similarity between the confor-
mal geometry on Sn and the complex geometry on CPn. Our result gives a
uni�ed treatment from the viewpoint of Jordan algebra. This provides a hint
on the reason behind the similarity of conformal geometry and complex geome-
try. We hope that our approach maybe helpful for generalizing other beautiful
results in complex geometry to quaternion and octonion geometry.
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