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Abstract

A theorem of Lawson and Simons[8] states that the only stable minimal
submanifolds in CP" are complex submanifolds. We generalize their result
to the cases of HP" and QP?. The treatment is given in the context of
Jordan algebra, so that the seemingly unrelated case of S™ is unified
naturally with the above projective spaces.

1 Introduction

Complex geometry is a very rich subject. Some of its beautiful theorems have
natural generalizations to quaternion geometry or even octonion geometry. This
paper gives one such generalization.

In the seventies, Lawson and Simons [8] showed that the average second
variation of any submanifold S in CP" is negative unless S is complex, where
the average is taken over all holomorphic vector fields in CP". As a corollary,
complex submanifolds are the only stable minimal submanifolds in CP". (Here
stability means that the submanifold has non-negative second variation along
every vector field.) We generalize this result to HP"™ and OP?, leading to the
following theorem:

Main Theorem: Let A = R,C,H,0. For any submanifold S
(or more generally rectifiable current) in AP", the average second
variation of S is given by

A
—/ (Z 13: - Sw||2> dzr <0
S \i=1

where S, denotes the unit simple vector representing the oriented
tangent space of S at each z € S, and {J;,l € 1,...,A} is an ortho-
normal basis of the space of linear complex structures of AP" at x,
each acting on S, as derivation.



As a consequence, complex submanifolds are the only stable minimal
submanifolds in CP"; quaternionic submanifolds are the only stable
minimal submanifolds in HP™; octonionic submanifolds are the only
stable minimal submanifolds in OP?.

The term ‘average’ second variation appeared in the above theorem will be
explained in detail in Section 3.

In the same paper, Lawson and Simons showed that the average second
variation of any submanifold S in S™ is negative unless S is of dimension 0 or
m, where the average is taken over all conformal vector fields in S™. As a
corollary, there are no stable minimal submanifolds in S™ other than points and
S™ itself. At first glance, the conformal geometry of S” may seem differ a lot
from the complex geometry of CP".

Surprisingly, under the notion of Jordan algebra, these different kinds of
geometries can be treated in a unified manner. To see this, we recall that for
any normed algebra A € {R, C, H, O}, its projective space AP" can be identified
as the subset of all rank one projections in the space §,4+1(A) of (n+1) x (n+1)
Hermitian matrices over A. These b,41(A) are simple formally real Jordan
algebras. When A = Q is non-associative, we can only take n < 2. From the
classification result [7], there is one more family of simple Jordan algebra: This
corresponds to A = R™, which is not even an algebra, and we can only take
n = 1. In this case, AP! is the standard sphere S™.

We give a uniform treatment to AP™ C b, 11 (A) to achieve our main theorem.
First we give a brief introduction to Jordan algebras in Section 2. Then in
Section 3 we derive a formula for average second variation of cycles in a compact
symmetric space G/K which is a G-orbit in an orthogonal representation of G.
This formula is applied to the projective spaces in Section 4 to show the main
theorem. The results of Lawson and Simons in the complex and conformal
cases are recovered when A equals to C and R™. On the one hand, we have
generalized their results for submanifolds in CP" to HP" and OP?; On the other
hand, our approach unifies the conformal case with the others.

2 Projective spaces and simple Jordan algebra

Let’s begin by recollecting some facts about our working platform: projective
spaces inside simple Jordan algebras. A formally real Jordan algebra is an
algebra over R whose multiplication o is commutative and power associative
(that is, (a o a)oa = ao(aoa)), together with

aioa;+...+ap0a,=0=>a1=...=a, =0

This notion is invented by Jordan [6] in 1932 to describe the algebra of ob-
servables in quantum mechanics. These algebras are classified by Jordan, von
Neumann and Wigner [7]: Every formally real Jordan algebra can be written



as direct sum of simple ones, which are listed completely below as sets of Her-
mitian matrices. Inside each of them we get a projective space consisting of all
rank one projections, which are exactly those matrices p with pop = p and
trp = 1. Multiplication is defined as symmetrization of the ordinary matrix
multiplication:

AB+ BA

AoB= 5

—_

. Brt1(R) := {Hermitian real (n + 1) x (n + 1) matrices} D RP".

b=g® h?H_l(R), where b is the Lie algebra of B = SL(n + 1,R), and
g is the Lie algebra of its maximal compact subgroup G = SO(n + 1),
who acts on b2 | (R), the subspace of trace-free matrices in h,41(R), as
automorphisms by adjoint action.

[\)

. By41(C) := {Hermitian complex (n 4+ 1) X (n + 1) matrices} D CP".

b=g® h,oﬂ_l((C), where b is the Lie algebra of B = SL(n + 1,C), and
g is the Lie algebra of its maximal compact subgroup G = SU(n + 1),
who acts on h? ;(C), the subspace of trace-free matrices in b, 11(C), as
automorphisms by adjoint action.

w

. Bpy1(H) := {Hermitian quaternion (n + 1) x (n + 1) matrices} D HP".

b=ga® h?z+l(H)’ where b is the Lie algebra of B = SL(n + 1,H), and
g is the Lie algebra of its maximal compact subgroup G = Sp(n + 1),
who acts on b9, (H), the subspace of trace-free matrices in b, (H), as
automorphisms by adjoint action.

4. h3(0) := {Hermitian 3 x 3 matrices with octonion entries} D> QP

b =g @ b3(0), where b is the Lie algebra of B = E;2° [1], and g is the
Lie algebra of its maximal compact subgroup G = F}, who acts on h3(Q),
the subspace of trace-free matrices in h3(0), as automorphisms by adjoint
action [3].

5. Spin factor.

bQ(Rm);:{<“vb aib>:a,beR,veRm} ~ R"GROR
v
<ab v ) - b
v a+b
a

where we define v - w = v'w for v, w € R™ to carry out matrix multiplica-
tion. The embedded projective space is



1
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b =g @ bh(R™), where b is the Lie algebra of B = O(m + 1,1), and g
is the Lie algebra of its maximal compact subgroup G = O(m + 1)O(1),
who acts on hJ(R™), the subspace of trace-free matrices in hJ(R™), as
automorphisms by adjoint action.

Now we fix a simple formally real Jordan algebra §,,41(A), where it is un-
derstood that n € N for A=R,C,H; n =2 for A =0, and n =1 for A =R™.
The affine space b;,,;(A) of all trace-one matrices is invariant under G because
automorphisms preserve trace. The projective space AP" sits symmetrically in-
side b, 1 (A): AP™ is the orbit under G of the matrix Ey, 1,541 € b1 (A) with
value 1 at the (n 4+ 1,n + 1) position and all other entries zero. We have an
G-invariant metric on b}, (A):

(A, B) := 2Re(tr AB) = 2Re(tr Ao B)

inducing a G-invariant metric on AP"™. With this metric AP™ is in fact a Rie-
mannian symmetric space:

O(n+1) Un+1) Sp(n +1) O(m+1)
RIP)/’L — ’C]P)n — 7HIP)71/ — 78771, —
O(n)O(1) U(n)U(1) Sp(n)Sp(1) O(m)
are classical symmetric spaces, and
Fy
P? =
0 Spin(9)

is an exceptional symmetric space, the Cayley plane. (Page 292 of [4].)
The group G of symmetries is extremely helpful for investigating the varia-
tional behaviour of cycles in AP™, as we shall see in the next section.

3 Average second variation in symmetric orbits

In this section we consider the following situation:

Setting: Assume that M = G/K is a compact symmetric space which is a G-
orbit of an orthogonal representation V of G. Such an M is called a symmetric
orbit (Chapter 2 of [2]).

The projection of each u € V determines a vector field V,,, or simply denoted
by V, on M. Our main result in this section is the following simple formula for
the average second variation of any p-frame in M, where the average is taken over
{Vu:u eV} By setting V=5, ,(A), G to be the group of automorphisms of
Bnt1(A) (which is the notation we use in the last section) and M = AP", this
formula will be applied to projective spaces in the next section.



Theorem 1 In the above setting, the average second variation of an oriented
orthonormal p-frame § =e1 A ... Ne, at © € M 1is given by

P,q

trQe = > (2] M(ej,ni) 1> — (Il(ej, €5), W(ng, )

Jik=1

where II is the second fundamental form of M C'V at z, and {e; }Zj’z1 U{neg}i_,
18 an orthonormal basis of T, M.

The method of proof is similar to [8]. Let us first have a quick review
on the general setup given in [8]. For a Riemannian manifold M with Levi-
Civita connection V, the second variation of a rectifiable current S under a flow
{¢; : M — M};cr generated by a global gradient vector field V' on M is given
by

d2

FTE) M((¢t)*5):/M (Av,ySa, Sz) + 2| Av Sa[* = ((Av Ss, S2))* d||S |l (=)

t=0

where M denotes the volume of a current, S, is the unit simple vector repre-
senting the oriented tangent space of S at x, and ||.S|| denotes the Borel measure
associated with S. Given vector fields V,W on M, Ay (u), Av,w are endomor-
phisms of T'M defined by

.Avx = VXV;
AviwX = (Vvdw)X = VyVgW - Vg W (1)

where X is a smooth local extension of X € TM. Each endomorphism L of
TM is extended to operate on A\’ TM by Leibniz rule:

p
Lies Ao Nep) =Y er A ALejN... Nep
j=1

A rectifiable current is said to be stable if its second variation along every
vector fields on M are non-negative. We will denote the integrand in the above
formula by Qg, (V), the second variation of S, under V. For each oriented
orthonormal p-frame & = e; A ... Ae, at * € M, the second variation Q¢ is
a quadratic form on the space of smooth vector fields on M, and it can be
rewritten as

2

P q P
Q(V) =D (Avejep) | +2D ) ((Aves,me)” + ) (Avvej,es) (2)
j=1 j=1k=1 j=1
where {e1,...,ep,n1,...,n,} forms an orthonormal basis of T,, M.

Now let’s take a closer look on our setting introduced in the beginning of
this section. Let G be a compact Lie group with Lie algebra g, which acts



linearly on an Euclidean space V with a G-invariant metric (-,-). Fix a point
0 # x¢ € V, consider the orbit M = G - x¢ with the induced G-invariant metric
from V. G acts on the space of orthonormal p-frames on M by

g-(er N .. Aep) = (ge-e1) N  A(gu-ep)

For u € V, the projection of uw on T, M at each x € M gives a vector field V,,
on M, which may also be regarded as a gradient vector field of the function (-, u)
on M. Q¢ becomes a quadratic form on V by sending each u € V to Q¢(V,,),
which may be identified by the metric as a self-adjoint operator on V. Our aim
is to compute the average second variation tr Q.

Lemma 2 Suppose £,n are two unit simple vectors on M. Ifn = g-£ for some
g € G, then the average second variation of £ is the same as that of 7).
Proof. Since the metric is G-invariant, the Levi-Civita connection V is G-
equivariant, that is,

Vg*‘X(g* V) =g.-(VxV)

Apply this to equation (1),
Av(g-& =9 (A;-1y & Avw(g-&) =g (A-1y —1yp - §)
Apply to equation (2), we get
Qye(Vi) = Qelg: Vi) = Qe(V,1,,)

the last equality is due to G-invariance of metric. And so
tr Qn = Z Q’r/(u) = Z Qg(g:lu) =tr Q&
u u

where u, and hence g;‘u, run through an orthonormal basis of V. The last
equality follows from the fact that trace is independent of choice of orthonormal
basis. m

By the above lemma, it suffices to consider average second variation of each
p-frame { = e; A...Aep, at xg, because p-frames at another point can be moved
to zg by some g € G, who acts transitively on M.

Denote the isotropy subgroup of xo by K, so that M = G/K. This gives a
decomposition

g =t®m where m := ¢+

Now suppose that M is at the same time a symmetric space, that is, we have
an involutive isometry o : M — M with zy as an isolated fixed point. On G
we have a natural G-invariant metric given by negative of the Killing form. We
may scale this metric such that m is isometric to T, M.

Let’s complete £ = e1A. . .Aep, to an orthonormal basis {e1, ..., €e,,n1,..., 14}
of T, M = m, and further take an orthonormal basis {8,...,05,} of £ so that
{B1,---,B,,€1,...,€p,n1,...,n,} forms an orthonormal basis of g.



We now express the projection V =V, of u € V in terms of Killing vector
fields induced by g on M. We shall use the same symbol to denote an element
of g, its induced vector field on V, and the restricted Killing vector field on M.
Recall that

(91, 92|01 = —[91, 92] (3)
where [-, /| ps is the Lie bracket for vector fields on M, and [+, ] is the Lie bracket
on g. On the right hand side g1, g2 denote elements in g, while on the left hand
side they denote their induced Killing vector fields on M. This fact will be
used repeatedly to compute the Lie bracket, and hence covariant derivatives of
Killing vector fields.

Lemma 3

T P

V= Z<u,ﬁu>ﬂu+z<u,ey>ey —i—X:(u,nwnﬂY

p=1 v=1 y=1

Proof. Denote the basis {81,...,08,,€1,...,€p,M1,...,14} of g by A.

At g € M the above equation is obvious, because 3,,(7o) = 0,

and {e1,...,ep,n1,...,ny} forms an orthonormal basis of T}, M.

At another point « € M, let {€1,...,€,,11,...,1,} be an orthonormal basis
of T, M = m, and complete it to an orthonormal basis

B={B1,...,0€1,...,6p,M1,..., g}

of g. Both A, B are orthonormal basis of g, so B = AT, where T is an orthogonal
matrix.

Vi) = 3 (0B By = 3 (e AT AT = 3 (0. 45) 4

J J J

since »; TFT) = o m
Proof to Theorem 1: By Lemma 2 we may assume £ is a frame at xo. From
equation (2) the average second variation of £ is

2
p p,q p
DD Aveje) | +2> 0 >0 ((Avem)® + D> (Avves,e))
u \j=1 u j=1k=1 u =1

where u runs through an orthonormal basis of V, each gives a vector field V =V,
on M by projection. We compute term by term for the three terms appeared
in the above expression.

Recall [5] that for a symmetric space,

VKlKQ = [Kl,KQ]M

1
2



for Killing vector fields K7 and K5 on M. Applying this to the expression of V'
given in Lemma 3,

1 1
vejv = <u7aejﬁ‘u>6p,+§ <u76,u.>[6j7/8p.]M+<u7a€jel/> 61/+§ <’U,,€l,> [ej’el/]M

(1 Doy ey + 5 (1) [ @

2
where 0 is the trivial connection of V, and so 0, is the usual directional derivative
along v € T,,,V =2 V. (Recall that B v, My can be regarded as vector fields
on V, and so the above directional derivatives make sense.)

To simplify the above expression at z(, notice that ¢ induces zero vectors at
To, and hence 3, € ¢ vanishes at zo. Together with equation (3) and the fact
that

[ee Cee,m] Cm[mm]Ce (5)
we have
Ve, V(xg) = <u, Oe; ey> e, + <u, Oe; n,y> Ny
and hence
<.Avej,€j> = gvejV(xo),eD = gu, 8ejej>
(Avej,nk> = Ve].V(a:O),nk> = u, 8ejnk>

The first term is

p P
DA Aveey | = D07 (u,0e,e5) (, Deren)
u  \j=1

u g,k=1

P
= Z <a€j €js Oey ek>
k=1
2

p
D I(ej,e5)
j=1

where 0., e; = Il(ej, e;) because V. e; = [ej,e;]n/2 = 0.
The second term is

QZ Z ((Avej,ni) )2 = 22 Z <u 5‘67nk 2
u j=1,k=1 u j=1,k=1

p,q

= 2 [0,
G k=1
p,q

= 2 ) [ T(ej, )
jk=1

where 0;ny = I(ej,ni) at x because Ve, ng(xo) = [ej, ng]a/2 = 0.



Now we turn to compute the third term Y-, >°" | (Avve;,e;), which is
more complicated. At z,

<~/4V,Vej,€j> = <VvvejV—VVvejV,€j>

— (Vi)
q

P
D (ue) (Ve, Ve, Vies) + > (uny) (Vi Ve, Viej)
v=1

y=1

where Vv, ¢,V (z9) = 0 because

p q
Vves(eo) =3 (wen) MJFZW’WW — 0
v=1 ~y=1

We now compute the first part Y- (u,e,) (V, Ve, V,e;) of the third term.
Differentiating equation (4) along e,, we get

VGUVEjV(xO) = % <U'a 8&jﬂu> [el/7/8 ]M + = L <u 8€V/8 >[ej76H]M

1
+ <u,861,8€jea> €q + 1

+ (u, B, De,ny ) My + %

Using the identity ([X,Y]ar,Z) = — (Y, [X, Z]n) for Killing vector fields
X,Y, Z, together with the relation (5) repeatedly, we get

<Veu Ve, V(xo), ej> = <u, Oe, Oe, ej>

(u; ea) [ev, [e), ealm]m

<uvn’Y> [6,,, [ejvn’Y]M]M

and so

2.

(u,ey,) veuvejv ej>

HNgE
M»s

u j=1lv=1
p P
= g E g u, e, <u,8el,5'ejej>
u j=1lv=1
P
= E ae,,ae7ejaeu>
J,v=1

2

= - ZH(%%‘) (6)

Now proceed to compute the second part Y- (u,n) (V, Ve, V,e;) of the



third term. Differentiating the equation (4) along n.,, we get

1

Vn,yvej V(wo) = 5 <u788j5u,> [n"HBﬂ]M + }

5 (u, 0, B,) lej, Bl

1
+ <u78n.yaejeu> €y + 1 <’U,7 ey> [n’ya [€j7 ey]M]M

+ (u, Oy, Oe, N ) ey + E

4 <u’na> [n’yv [6j>na]M]]\4

and so

<vnn, vej V(SC()), ej> = <7.L, an'y aej ej>

<7_L, n’y> <Vn,Y vej V, ej>

=[]
-
[

<
Il
-
2
Il
—

(U, ny) <u, On., Ok, ej>

<
I

—
Il

—

I

Y
M-
NE

Y

=

.q
= <8n7367e]7 ”W>

=1

S

p,q

= =) (I(eje), M(nq,ny)) (7)

Jr=1
Adding up equations (6) and (7), we get the third term

2

P P,
- ZH(ej,eJ Z (Il(e;,€5), II(ny, ny))
j=1 =1

Adding up all the three terms, the average second variation is

p,q

> 20T (es, n)|? = (1(ej, €5), T(ng, ny))) M

j,k=1

4 Proof of the main theorem

Our projective spaces fit into the scenario introduced in the last section, with
V = bl 1(A), G = Aut(hnt1(A)), 20 = BEpging1 € bl (A), which is the
matrix with value 1 at the (n+1,n+ 1) position and all other entries zero, and
M = AP™. To apply the average second variation formula we need to compute
the second fundamental form for AP™ C b}, (A) at 0.

Let’s take the following coordinates around x( for AP™:

An - APan7,+1()
1 Q «
Q - 1+||Q||2(1>(Q L)

10



Here we adopt the following notations:

A
Q= ZizXz
1=0

where X; are column n-vectors, ip := 1, and for 1 <[ < A, i; are the linearly
independent imaginary square roots of unity in A. Recall that for the case
A=R" n=1 A =0, Q = Xy is an element in R with @* = @ and
Q- Q:={(Q,Q). For the other four cases, the entries of X; are real numbers.
The basis of coordinate tangent vector fields is {i- 0<I<A1<j<N}

Oz
where % denote the i;-directions. N = m in the case of A =R™, and N =n
1

for all the other four cases. Using product rule (which is valid for multiplication
in A),

_ 1 ile ) *
mrar (%) (e )

1 =
rrar (1) (7 )

2X w; Q .
a+mv(1>(Q L)

where w; stands for the column n-vector with j-th coordinate 1 and other
coordinates zero, and T stands for transpose. Recall that when A =R™ n =1,
and so transpose of an element is just itself. Differentiating both sides along

B%,CatOGA”,
9
0 &vf
= <llg)j)(irw;:§ 0

)+
—(i,4 + i) wiw; < (i) ) (0 1)

x|

Q

+

0

k
Oxk

20k 0  om
< 0 25jk> for A=1R
e + 0l B0 for A =R,C,H,0
0 7(iril+ilir)5jk T

which is already perpendicular to T,,, AP", because

. 0 il’LUj
ﬂij 0

0

0

x|

11



Under the metric (4, B) = 2Retr (AB), our coordinate vectors are pairwise
orthogonal, each has length 2. We scale them to get an orthonormal basis
o .
%TT{IISJSTL,OSZSA}.
We conclude that

Lemma 4
0 0
1 Jk _ Tom
nld 210, (% 5 & =E
207 20xk" ) 1 [ LBy 4By 0
1 y 0 GiE + )0 for A e {R,C,H, O}

Now we are ready to compute tr Q¢ for an orthonormal p-frame £ = e; A
... Aepat g € AP". Complete B = {e;}/_, to an orthonormal basis {e;,n}
in the form

vy, Jiv, ... Janm
vy, Jiva, ... Javg
vy, Jivn, ... Javn

where J; @ T, AP" — T, AP" is the differential of left multiplication of i; on
A™ C AP™.

In case of AP™, Such an orthonormal basis can be brought to the basis of
normalized coordinate vectors by action of the isotropy group K < G. This
is easy for RP", CP" and HP": SO(n), SU(n) and Sp(n) acts transitively on
orthonormal frames, unitary frames and quaternionic unitary frames respec-
tively. For OP?, K = Spin(9) < F4, we argue as follows: T, OP? is the spinor
representation of Spin(9). Under this action

T,,0P? > S = Spin(9)/Spin(7)

(see P.283 of [4]). Hence we can use o € Spin(9) to bring %a%l to vy. Spin(7)
0
fixes v1 and hence acts on T, S'®, which splits into the vector representation V
7
and spinor representation of Spin(7). {0’ (%%) }l and {J;v1}/_, form two
! =1
7
base of V7 having the same orientation. Then we can bring {0’ (%%) }l to
! =1
7
{Jiv1}7_, by an element in Spin(7). {a (%%) } can be brought to {J;v2}7_,
T/ )i=1
by Spin(7) using similar reasoning, because
Spin(7)/Gs = S7; G5 /SU(3) = §°
and SU(3) acts transitively on the collection of unitary bases.

Hence by Lemma 2 we may assume

1
Jl'l)j = gaix‘l]

12



so that we can apply Lemma 4 directly.
For A =R™, AP' = S™. Lemma 4 gives

10 10
HH(anj’ka)

which is the usual formula for the second fundamental form of S™ C R™*+1,
Together with Theorem 1, the result of Lawson and Simons [8] is reproduced:

pP.q

trAe= Y (-1)=-pg<0

jk=1

implying that the average second variation of a rectifiable current of non-zero
volume in S™ is negative for 0 < p < m, and hence cannot be stable.
Now let’s turn to the other four cases. Lemma 4 gives

' o | 0 forng=+Je; for some 1 <[ <A
Gl { % otherwise
and
o |1 for ny ==+Jje; for some 1 <1 <A
(1egee)) Ty ={ 3 W%

so the summand appeared in Theorem 1 is

—1 for ny = £Je; for some 1 <[ <A
2 ey ) P ey, M) = {1 198 e = e

meaning that for each e;, every Jjej-direction normal to £ contributes —1 to
tr Q¢, and all other normal directions make no effect. Hence

trQ¢ = (number of [ such that +Jje; & B)

'M"ﬁ

<
Il
—

A
S ller A ATie A Al
1i=1

I
M@

J

13- €7 < 0

[
M>

N
Il
-

(Here J acts on & by Leibniz rule.) Equality holds if and only if ||J; - £||* = 0 for
all 1 <1 < A, meaning that £ is invariant under each J;, and hence invariant
under the SA!-family of complex structures. In the case of RP™, A = 0, the
above formula says average second variation of S under those projections of
constant vector in h? (R) is always zero, which is not a useful information. For
the case that A = C, H and O, the result is interesting:

13



Theorem 5 In CP", a rectifiable current S is stable if and only if S is complez,
that is, T,.S is invariant under J for almost every x € S;

In HP™, S is stable if and only if S is quaternionic, that is, T,,S is invari-
ant under the S?-family of linear complex structures at x for almost every x € S;

In QP?, S is stable if and only if S is octonionic, that is, T,S is invariant
under the S8-family of linear complex structures at x for almost every x € S.
In S™, S is unstable unless S consists of points or S is S™ itself.

The result of Lawson and Simons provides a similarity between the confor-
mal geometry on S™ and the complex geometry on CP™. Our result gives a
unified treatment from the viewpoint of Jordan algebra. This provides a hint
on the reason behind the similarity of conformal geometry and complex geome-
try. We hope that our approach maybe helpful for generalizing other beautiful
results in complex geometry to quaternion and octonion geometry.
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