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Abstract

We study the problem of counting instantons with coassociative bound-
ary condition in (almost)G2-manifolds. This is analog to the open Gromov-
Witten theory for counting holomorphic curves with Lagrangian boundary
condition in Calabi-Yau manifolds. We explain its relationship with the
Seiberg-Witten invariants for coassociative submanifolds.

Intersection theory of Lagrangian submanifolds is an essential part of the
symplectic geometry. By counting the number of holomorphic disks bounding
intersecting Lagrangian submanifolds, Floer and others de�ned the celebrated
Floer homology theory. It plays an important role in mirror symmetry for
Calabi-Yau manifolds and string theory in physics. In M-theory, Calabi-Yau
threefolds are replaced by seven dimensional G2-manifolds M (i.e. oriented
Octonion manifolds [20]). The analog of holomorphic disks (resp. Lagrangian
submanifolds) are instantons or associative submanifolds (resp. coassociative
submanifolds or branes) inM [19]. An important project is to count the number
of instantons with coassociative boundary conditions. In particular we want to
study the following problem.

Problem: Given two nearby coassociative submanifolds C and C 0 in a (al-
most) G2-manifold M . Relate the number of instantons in M bounding C [C 0
to the Seiberg-Witten invariants of C.

The basic reason is a coassociative submanifold C 0 which is in�nitesimally
close to C corresponds to a symplectic form on C which degenerates along
C \ C 0. Instantons bounding C [ C 0 would become holomorphic curves on C
modulo bubbling. By the work of Taubes, we expect that the number of such
instantons is given by the Seiberg-Witten invariant of C.
In this paper we treat the special case when C and C 0 are disjoint, i.e. C is

a symplectic four manifold. Recall that Taubes showed that the Seiberg-Witten
invariants of such a C is given by the Gromov-Witten invariants [25] of C. Our
main result is following theorem.
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Theorem 1 Suppose that M is an (almost) G2-manifold and fCtg is an one
parameter family of coassociative submanifolds in M: Suppose that the self-dual
two form � = dCt=dtjt=0 2 
2+ (C) is nonvanishing, then it de�nes an almost
complex structure J on C0.
If fAtg is any one parameter family of instantons in M satisfying

@At � Ct [ C0; lim
t!0

At \ C0 = � in C1-topology,(c.f. Proposition 5)

then � is a J-holomorphic curve in C0.
Conversely, suppose that � is a regular J-holomorphic curve in C0, then it

is the limit of a family of instantons At�s as described above.

A few remarks are in order: First, counting such small instantons is basically
a problem in four manifold theory because of Bryant�s result [4] which says that
the zero section C in �2+ (C) is always a coassociative submanifold for some
incomplete G2-metric on its neighborhood provided that the bundle �2+ (C)
is topologically trivial. Second, when C and C 0 are not disjoint, the above
theorem should still hold true. However using the present approach to prove it
would require a good understanding of the Seiberg-Witten theory on any four
manifold with a degenerated symplectic form as in Taubes program. Third,
when C and C 0 are not close to each other then we have to take into account
the bubbling phenomenon which has not been established yet. Nevertheless,
one would expect that if the volume of At�s are small, then bubbling cannot
occur, thus they would converge to a holomorphic curve in C0.

1 Review of Symplectic Geometry

Given any symplectic manifold (X;!) of dimension 2n, there exists a compatible
metric g so that the equation

! (u; v) = g (Ju; v)

de�nes a Hermitian almost complex structure

J : TX ! TX ,

that is J2 = �id and g (Ju; Jv) = g (u; v).
A holomorphic curve, or instanton, is a two dimensional submanifold � in

X whose tangent bundle is preserved by J . Equivalently � is calibrated by
!; i.e. !j� = vol�. By counting the number of instantons in X, one can
de�ne a highly nontrivial invariant for the symplectic structure on X, called the
Gromov-Witten invariant.
When the instanton � has nontrivial boundary, then the corresponding free

boundary value problem would require @� to lie on a Lagrangian submanifold
L in X, i.e. dimL = n and !jL = 0. Floer studied the intersection theory
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of Lagrangian submanifolds and de�ned the Floer homology group HF (L;L0)
under certain assumptions.
Suppose that X is a Calabi-Yau manifold, i.e. the holonomy group of the

Levi-Civita connection is inside SU (n), equivalently J is an integrable complex
structure on X and there exists a holomorphic volume form 
X 2 
n;0 (X)
on X satisfying 
X �
X = Cn!

n. Under the mirror symmetry transformation,
HF (L;L0) is expected to correspond to the Dolbeault cohomology group of
coherent sheaves in the mirror Calabi-Yau manifold.
A Lagrangian submanifold L in X is called a special Lagrangian submanifold

with phase zero (resp. �=2) if Im
X jL = 0 (resp. Re
X jL = 0). Such a L
is calibrated by Re
X jL (resp. Im
X jL). They play important roles in the
Strominger-Yau-Zaslow mirror conjecture for Calabi-Yau manifolds [24].
When X is a Calabi-Yau threefold, there are conjectures of Vafa and others

(e.g. [2][11]) that relates the (partially de�ned) open Gromov-Witten invariant
of the number of instantons with Lagrangian boundary condition to the large
N Chern-Simons invariants of knots in three manifolds.

2 Counting Instantons in (almost) G2-manifolds

Notice that a real linear homomorphism J : Rm ! Rm being a Hermitian
complex structure on Rm is equivalent to the following conditions: for any
vector v 2 Rm we have (i) Jv is perpendicular to both v and (ii) jJvj = jvj. We
can generalize J to involve more than one vector. We call a skew symmetric
homomorphism

� : Rm 
 Rm ! Rm

a (2-fold) vector cross product if it satis�es

(i) (u� v) is perpendicular to both u and v, and
(ii) ju� vj = Area of parallelogram spanned by u and v.

The obvious example of this is the standard vector product on R3. By identifying
R3 with ImH, the imaginary part of the quaternion numbers, we have

u� v = Imu�v:

The same formula de�nes a vector cross product on R7 = ImO, the imaginary
part of the octonion numbers. Brown and Gray [12] showed that these two are
the only possible vector cross product structures on Rm up to isomorphisms.
Suppose that M is a seven dimensional Riemannian manifold with a vector

cross product � on each of its tangent spaces. The analog of the symplectic
form is a degree three di¤erential form 
 on M de�ned as follow:


 (u; v; w) = g (u� v; w) .

De�nition 2 Suppose that (M; g) is a Riemannian manifold of dimension seven
with a vector cross product � on its tangent bundle. Then (1) M is called an
almost G2-manifold if d
 = 0 and (2)M is called a G2-manifold if r
 = 0.
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It can be proven that if M is compact then the condition r
 = 0 is equiv-
alent to 
 being a harmonic form, i.e. �
 = 0. Furthermore M is a G2-
manifold if and only if its holonomy group is inside the exceptional Lie group
G2 = Aut (O). The geometry of G2-manifolds can be interpreted as the sym-
plectic geometry on its knot space (see e.g. [19], [23]).
For example, if (X;!X) is a Calabi-Yau threefold with a holomorphic volume

form 
X , then the product manifold M = X � S1 is a G2-manifold with


 = Re
X + !X ^ d�.

Next we de�ne the analogs of holomorphic curves and Lagrangian subman-
ifolds in the G2 setting.

De�nition 3 Suppose that A is a three dimensional submanifold of an almost
G2-manifold M . We call A an instanton or associative submanifold, if A
is preserved by the vector cross product �.

Harvey and Lawson [13] showed that A � M is an instanton if and only if
A is calibrated by 
, i.e. 
jA = volA.
In M-theory, associative submanifolds are also called M2-branes. For exam-

ple when M = X � S1 with X a Calabi-Yau threefold, �� S1 (resp. L� fpg)
is an instanton in M if and only if � (resp. L) is a holomorphic curve (resp.
special Lagrangian submanifold with zero phase) in X.
A natural interesting question is to count the number of instantons inM . In

the special case of M = X � S1, these numbers are reduced to the conjectural
invariants proposed by Joyce [17] by counting special Lagrangian submanifolds
in Calabi-Yau threefolds. This problem has been discussed by many physicists.
For example Harvey and Moore discussed in [14] the mirror symmetry aspects
of these invariants; Aganagic and Vafa in [2] related these invariants to the open
Gromov-Witten invariants for local Calabi-Yau threefolds; Beasley and Witten
argued in [3] that when there is a moduli of instantons, then one should count
them using the Euler characteristic of the moduli space. In this paper we count
the number of instantons with boundary lying on a coassociative submanifold
in M . The compactness issues of the moduli of instantons is a very challenging
problem because the dimension of an instanton is bigger than two. This makes
it very di¢ cult to de�ne an honest invariant by counting instantons.

When an instanton A has a nontrivial boundary, @A 6= �; one should require
it to lie inside a brane or a coassociative submanifold [19], i.e. submanifolds in
M where the restriction of 
 is zero and have the largest possible dimension.
Branes are the analog of Lagrangian submanifolds in symplectic geometry.

De�nition 4 Suppose that C is a four dimensional submanifold of an almost
G2-manifold M . We call C a coassociative submanifold if


jC = 0 and dimC = 4:
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For example when M = X � S1 with X a Calabi-Yau threefold, H � S1

(resp. C � fpg) is a coassociative submanifold in M if and only if H (resp. C)
is a special Lagrangian submanifold with phase �=2 (resp. complex surface) in
X. In [19] J.H. Lee and the �rst author showed that the isotropic knot space
K̂S1X ofX admits a natural holomorphic symplectic structure. Moreover K̂S1H
(resp. K̂S1C) is a complex Lagrangian submanifold in K̂S1X with respect to
the complex structure J (resp. K).
Constructing special Lagrangian submanifolds with zero phase in X with

boundaries lying on H (resp. C) corresponds to the Dirichlet (resp. Neumann)
free boundary value problem for minimizing volume among Lagrangian sub-
manifolds as studied by Schoen and others. For a general G2-manifold M , the
natural free boundary value for an instanton is a coassociative submanifold.
Similar to the intersection theory of Lagrangian submanifolds in symplectic
manifolds. We propose to study the following problem: Count the number of
instantons in G2-manifolds bounding two coassociative submanifolds.
The product of a coassociative submanifold with a two dimensional plane

inside the eleven dimension spacetime M � R3;1 is called a D5-brane in M-
theory. Counting the number of M2-branes between two D5-branes has also
been studied in the physics literatures.
In general this is a very di¢ cult problem. For instance, counting S1-invariant

instantons inM = X�S1 is the open Gromov-Witten invariants. However when
the two coassociative submanifolds C and C 0 are close to each other, we can
relate the number of instantons between them to the Seiberg-Witten invariant
of C.

3 Relationships to Seiberg-Witten invariants

To determine the number of instantons between nearby coassociative subman-
ifolds, we �rst recall the deformation theory of coassociative submanifolds C
inside any G2-manifold M , as developed by McLean [22]. Given any normal
vector n 2 NC=M , the interior product �n
 is naturally a self-dual two form on
C because of 
jC = 0. This gives a natural identi�cation,

NC=M
'! �2+ (C)

n! �0 = �n
.

Furthermore in�nitesimal deformations of coassociative submanifolds are para-
metrized by self-dual harmonic two forms �0 2 H2

+ (C), and they are always
unobstructed. Notice that the zero set of �0 is the intersection of C with a
in�nitesimally near coassociative submanifold, that is

f�0 = 0g = lim
t!0

(C \ Ct) ,

where C = C0 and �0 = dCt=dtjt=0.
Since

�0 ^ �0 = �0 ^ ��0 = j�0j2 � 1,
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�0 de�nes a natural symplectic structure on Creg := Cn f�0 = 0g. If we normal-
ize �0,

� = �0= j�0j ,
then the equation

� (u; v) = g (Ju; v)

de�nes a Hermitian almost complex structure on Creg.
The next proposition says that when two coassociative submanifolds C and

C 0 come together, then the limit of instantons bounding them will be a holo-
morphic curve � in Creg with boundary C \ C 0.

Proposition 5 Suppose that Ct is an one parameter family of coassociative
submanifolds in a G2-manifold M . Suppose that At is a smooth family of in-
stantons in M bounding C0 [ Ct for nonzero t and

lim
t!0

At \ C0 = �

exists in C1-topology. Then � is a J-holomorphic curve in C0 .

Proof. For simplicity we assume that n = dCt=dtjt=0 is nowhere vanishing. Let
us denote the boundary component of At in C0 as �t and the unit normal vector
�eld for �t in At as t. Note that nt is perpendicular to C0. This is because At
being preserved by the vector cross product implies that

nt = u� v;

for some tangent vectors u and v in �t, therefore given any tangent vector w
along C0, we have

g (nt; w) = g (u� v; w) = 
 (u; v; w) = 0:

The last equality follows from C0 being coassociative and �t � C0. Using this
and the fact that At bounds C0 [ Ct with limt!0 Ct = C0, i.e. nt is pointing
towards Ct, we obtain

�n0
 = �0 where n0 := lim
t!0

nt

Therefore � = limt!0 �t is a holomorphic curve in C0 with respect to the almost
complex structure J de�ned by � (u; v) = g (Ju; v).
The reverse of the above proposition should also hold true. The Lagrangian

analog of it is proven by Fukaya and Oh in [7]. On the other hand, by the
celebrated work of Taubes, we expect that the number of such open holomorphic
curves in C0 equals to the Seiberg-Witten invariant of C0. We conjecture the
following statement.

Proposition 6 Let M be a G2-manifold. Suppose that

 : C � [0; 1] �!M
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is a smooth map such that for each t 2 [0; 1] ;  t (�) :=  (�; t) is a smooth
immersion of C into M as a coassociative submanifolds, and

�t : �� [0; t] �!M

is a smooth family of instantons in M such that for t > 0, Im�t is associative
and

�t (�� f0g) � C0 :=  (C � f0g) and �t (�� ftg) � Ct :=  (C � ftg) :

Then � is a J-holomorphic curve in C0 .

Proof. For simplicity we assume that n = dCt=dtjt=0 is nowhere vanishing.
Let us denote the boundary component of At = Im�t in C0 as �t; i.e. �t :=
�t (�� f0g) ; and the unit normal vector �eld for �t in At as wt. Note that wt
is perpendicular to C0. This is because At being preserved by the vector cross
product implies that

wt = u� v;
for some tangent vectors u and v in �t, therefore given any tangent vector w
along C0, we have

g (wt; w) = g (u� v; w) = 
 (u; v; w) = 0:

The last equality follows from C0 being coassociative and �t � C0. Using this
and the fact that At bounds C0 [Ct with limt!0 Ct = C0, we conclude that wt
is pointing towards Ct. To be precise, we have along �

lim
t!0

nt =

�
dCt
dt

����
t=0

�����
�

2 �
�
�; NC0=M

�
:

Therefore � = limt!0 �t is a holomorphic curve in C0 with respect to the almost
complex structure J de�ned by �0 (u; v) = g (Ju; v).
The reverse of the above proposition should also hold true. The Lagrangian

analog of it is proven by Fukaya and Oh in [7]. On the other hand, by the
celebrated work of Taubes, we expect that the number of such open holomorphic
curves in C0 equals to the Seiberg-Witten invariant of C0. We conjecture the
following statement.
Conjecture: Suppose that C and C 0 are nearby coassociative submanifolds

in a G2-manifold M . Then the number of instantons in M with small volume
and with boundary lying on C [C 0 is given by the Seiberg-Witten invariants of
C.

In the next section we will discuss the case when C and C 0 do not intersect.
The basic ideas are (i) the limit of such instantons is a holomorphic curve
with respect to the (degenerated) symplectic form � on C coming from its
deformations as coassociative submanifolds and this process can be reversed;
(ii) the number of holomorphic curves in the four manifold C should be related
to the Seiberg-Witten invariant of C by the work of Taubes ([26], [27]).
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Suppose that � is a self-dual two form on C with constant length
p
2, in

particular it is a (non-degenerate) symplectic form, and � is a holomorphic
curve in C, possibly disconnected. If � is regular in the sense that the linearized
operator �@ has trivial cokernel [25], then Taubes showed that the perturbed
Seiberg-Witten equations,

F+a = � ( 
  �)� r
p
�1�;

DA(a) = 0;

have solutions for all su¢ cient large r. Here a is a connection on the complex line
bundle E over C whose �rst Chern class equals the Poincaré dual of �, PD [�],
 is a section of the twisted spinor bundle S+ = E �

�
K�1 
 E

�
and DA(a) is

the twisted Dirac operator. The number of such solutions is the Seiberg-Witten
invariant SWC (�) of C. Furthermore the converse is also true, thus Taubes
established an equivalence between Seiberg-Witten theory and Gromov-Witten
theory for symplectic four manifolds. This result has far reaching applications
in four dimensional symplectic geometry.
For a general four manifold C with nonzero b+ (C), using a generic metric,

any self-dual two form � on C de�nes a degenerate symplectic form on C, i.e.
� is a symplectic form on the complement of f� = 0g, which is a �nite union of
circles (see [9][16]). Therefore, one might expect to have a relationship between
the Seiberg-Witten of C and the number of holomorphic curves with boundaries
f� = 0g in C. Part of this Taubes�program has been veri�ed in [26], [27].

4 Proof of the main theorem

Suppose that � is a nowhere vanishing self-dual harmonic two form on a coasso-
ciative submanifold C in a G2-manifold M . For any holomorphic curve � in C,
we want to construct an instanton inM bounding C and C 0, where C 0 is a small
deformation of the coassociative submanifold C along the normal direction �.
Notice that C and C 0 do not intersect. We will construct such an instanton
using a perturbation argument which requires a lower bound on the �rst eigen-
value for the appropriate elliptic operator. Recall that the deformation of an
instanton is governed by a twisted Dirac operator. We will reinterpret it as a
complexi�ed version of the Cauchy-Riemann operator.

4.1 Deformation of instantons

To construct an instanton A in M from a holomorphic curve � in C, we need
to perturb an almost instanton A0 to a honest one using a quantitative version
of the implicit function theorem. Let us �rst recall the deformation theory of
instantons A ([13] and [19]) in a Riemannian manifold M with a parallel (or
closed) r-fold vector cross product

� : �rTM ! TM .
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In our situation, we have r = 2. By taking the wedge product with TM we
obtain a homomorphism � ,

� : �r+1TM ! �2TM �= �2T �M ,

where the last isomorphism is induced from the Riemannian metric. As a matter
of fact, the image of � lies inside the subbundle g?M which is the orthogonal
complement of gM � so (TM ) �= �2T �M , the bundle in�nitesimal isometries of
TM preserving �. That is,

� 2 
r+1
�
M; g?M

�
:

Lemma 7 ([13], [19]) An r+ 1 dimensional submanifold A �M is an instan-
ton, i.e. preserved by �, if and only if

� jA = 0 2 
r+1
�
A; g?M

�
:

This lemma is important in describing deformations of an instanton. Namely
it shows that the normal bundle to an instanton A is a twisted spinor bundle
overA and in�nitesimal deformations of A are parametrized by twisted harmonic
spinors.
In our present situation,M is a G2-manifold. Using the interior product with


, we can identify g?M with the tangent bundle TM and we can also characterize
� 2 
3 (M;TM ) by the following formula,

(�
) (u; v; w; z) = g (� (u; v; w) ; z) .

Therefore A � M is an instanton if and only if �A (� jA) = 0 2 TM jA. As a
matter of fact, if A is already close to be an instanton, then we only need the
normal components of �A (� jA) to vanish.

Proposition 8 There is a positive constant � such that for any three dimen-
sional linear subspace A in M �= ImO with j� jAj < �, A is an instanton if and
only if �A (� jA) 2 TA.

Proof. McLean [22] observed that if At is a family of linear subspaces in
M �= R7 with A0 an instanton, then

�At

�
d� jAt

dt

�����
t=0

2 NA0=M � TM jA0 .

Explicitly, if we denote the standard base for R7 as ei�s, e.g. e1 � e2 = e3, then
we can assume that A is spanned by e1; e2 and ~e3 = e3 +

P7
i=4 tiei for some

small ti�s because the natural action of G2 on the Grassmannian Gr (2; 7) is
transitive. Then an easy computation(c.f. equation (5.4) in [?]) shows that the
normal component of � (� jA) in NA=M is given by

� (� jA)? = �t5 (e4)? + t4 (e5)? + t7 (e6)? � t6 (e7)? ;
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where (�)? denote the projection to NA=M :When tj�s are all zero, we have

(ej)
?
= ej for 4 � j � 7. In particular, they are linearly independent when tj�s

are small. In that case, � (� jA)? = 0 will actually imply that tj = 0 for all j,
i.e. A is an instanton in M . Hence the proposition.
This proposition will be needed later when we perturb an almost instanton

to an honest one. We also need to identify the normal bundle NA=M to an
instanton A with a twisted spinor bundle over A as follow [22]: We denote P
the SO (4)-frame bundle of NA=M . Using the identi�cation

SO (4) = Sp (1)Sp (1)! SO (H) ;

(p; q) � y = py�q,

the tangent bundle to A can be identi�ed as an associated bundle to P for the
representation SO (4) ! SO (ImH), (p; q) � y = qy�q. As a result the spinor
bundle S of A is associated to the representation SO (4) ! SO (H) given by
(p; q) � y = y�q. Hence we obtain

NA=M �= S
H E,

where E is the associated bundle to P for the representation SO (4)! SO (H)
given by (p; q) � y = py.

4.2 Complexi�ed Cauchy-Riemann equation

Recall that the normal bundle to any instanton A is a twisted spinor bundle
S
HE, or simply S, over A. Let D be the Dirac operator on A. If V := V a @

@!a

is a normal vector �eld to A and we write the covariant di¤erentiation of V as
r (V ) := V ai

@
@!a 
 !i, then by viewing V as a twisted spinor or a quaternion

valued function on A,

V = V 4 + iV 5 + jV 6 + kV 7;

we have,

DV = �
�
V 51 + V

6
2 + V

7
3

�
+ i
�
V 41 + V

6
3 � V 72

�
+ j
�
V 42 � V 53 + V 71

�
+ k

�
V 43 + V

5
2 � V 61

�
;

where D : =r1i+r2j+r3k.
Let us �rst consider a simpli�ed model, suppose that A is a product Rie-

mannian three manifold [0; "]� � with coordinates (x1; z) where z = x2 + ix3.
Let e1 be the unit tangent vector �eld on A normal to �, namely along the
x1-direction. We have

D = e1 �
@

@x1
+ �@;

where �@ is the Dolbeault operator on the Riemann surface � for the holomorphic
line bundle S+ and S�.
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The Cli¤ord multiplication of e1 on S satis�es e21 = �1 and therefore we
have an eigenspace decomposition S := S+ � S� corresponding to eigenvalues
�i.
If we write V = (u; v) with u = V 4 + iV 5 2 S+ and v = V 6 + iV 7 2 S�,

then we have

DV =
�
@u

@x1
i� @zv

�
+

�
� @v

@x1
i+�@zu

�
� j

=

��
@u

@x1
+ i@zv

�
+

�
@v

@x1
+ i�@zu

�
� j
�
� i

=

�
i 0
0 �i

��
@

@x1
+

�
0 i@z
i�@z 0

���
u
v

�
;

where
�@z :=

@

@x2
+ i

@

@x3
and @z :=

@

@x2
� i @

@x3
:

We will also denote i@z and i�@z by @+ and @� respectively. They are Dirac
operators on � and they satisfy

@+ =
�
@�
��
.

This implies that the Dirac equation DV = 0 is equivalent to the following
complexi�ed Cauchy-Riemann equations,

�@zu =
@v

@x1
i,

@zv =
@u

@x1
i:

4.3 Eigenvalue estimates

In this subsection we �rst give a quantitative estimate of the eigenvalue of the
linearized operator for the simpli�ed model A" = [0; "]�� with product metric
gA" = dx21 + g�: Then we use the conformal property of the Dirac operator to
obtain a corresponding result for any warped product metric on A":

We introduce the following function spaces for spinors V = (u; v) over A".

De�nition 9 Let S be the spinor bundle over (A"; gA") and V be a smooth sec-
tion of S;

1. We de�ne the norm

kV kLm;p(A";S) :=

0@ X
�+��m

Z "

0

Z
�

���(rx)� (r�)� V ���p dxd�
1A1=p
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and
kV kCm(A";S) :=

X
�+��m

sup
���(rx)� (r�)� V ���

where the covariant derivatives and Lp-norm are all with respect to gA" :
Consequently, we have an " independent constant C so that for any smooth
section V;

kV kLp(A";S) � C kV kLm;q(A";S) ; for p �
3q

3�mq

kV kCm(A";S) � C kV kLl;p(A";S) ; for p �
3

l �m

as long as " 2 [1=2; 3=2] :

2. We de�ne the function spaces

Lm;p (A";S) :=
n
V = (u; v) 2 � (A";S) j kV kLm;p(A";S) < +1

o
and Lm;p� (A";S) (resp.Lm;p+ (A";S) ) be the closure (with respect to the norm
k�kLm;p(A")

) of the subspace of smooth sections V = (u; v) 2 � (A";S) such
that v 2 C10 (A"n@A") (resp. u 2 C10 (A"n@A")). Let us also introduce the
space

Cm (A";S) :=
n
V = (u; v) 2 � (A";S) j kV kCm(A";S) < +1

o
Cm� (A";S) :=

n
V = (u; v) 2 � (A";S) j kV kCm(A";S) < +1; vj@A" = 0

o
:

It is known (c.f. [5] Theorem 21.5) that the Dirac operators

D� := DjL1;2�
: L1;2� (A";S)! L2 (A";S)

give well-posed local elliptic boundary problems and their formal adjoint oper-
ators are D�� = D�.
The following theorem compare the �rst eigenvalue for Dirac operator on

the Riemann surface � with the one on the product three manifold A".

Theorem 10 Suppose �@+(resp. �@�) is the �rst eigenvalue of �� = @�@+

(resp. �� = @+@�) acting on the space L1;2 (�;S+)(resp.L1;2 (�;S�)) and let

�D := inf
V 2L1;2� (A")

kDV k2L2(A")
kV k2L2(A")

:

Then

�D � min
�
�@+ ;

2

"2

�
:

12



Proof. For any V = (u; v) 2 L1;2� (A") ; we have

hDV;DV iL2 =
Z
[0;"]��

���� @V@x1
����2+2� @V@x1 ;

�
0 @+

@� 0

�
V

�
+


@�v

2+ 

@+u

2 :

Using the formula @� = (@+)�, we haveZ
[0;"]��

�
@V

@x1
;

�
0 @+

@� 0

�
V

�
=

Z
[0;"]��

�
@u

@x1
; @+v

�
+

�
@v

@x1
; @�u

�
=

Z
[0;"]��

�
@�
�
@u

@x1

�
; v

�
�
�
v; @�

�
@u

@x1

��
+

Z
f"g��



v; @�u

�
�
Z
f0g��



v; @�u

�
= 0:

because vj@A = 0
In order to estimate

R
A
jVx1 j

2, we notice that, for any �xed point p 2 �,
vj[0;"]�fpg can be treated as a function over the interval [0; "] and we computeZ "

0

v2dx1 =

Z "

0

�Z x1

0

@v

@x1
(t) dt

�2
dx1

�
Z "

0

�Z x1

0

ds

� Z x1

0

���� @v@x1 (t)
����2 dt

!
dx1

�
Z "

0

x1dx1

Z "

0

���� @v@x1 (t)
����2 dt

=
"2

2

Z "

0

���� @v@x1 (t)
����2 dt:

Put all these together, we have

hDV (x1) ;DV (x1)i

=

Z
[0;"]��

�
kux1k

2
+ kvx1k

2
+


@�v

2 + 

@+u

2�

�
Z "

0

Z
�



@+u

2 + Z
�

Z "

0

kvx1k
2

� �@+

Z "

0

Z
�

kuk2 + 2

"2

Z
�

Z "

0

kvk2

� min
�
�@+ ; 2="

2
	�Z "

0

Z
�

kuk2 +
Z
�

Z "

0

kvk2
�

= min
�
�@+ ; 2="

2
	
kV (x1)k2L2(A";S) :

Hence the result.
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For our later application to the perturbation arguments, we need the eigen-
value estimate for a warped product metric gA";h = h (x) dx21 + g�: on A". Note
that such a metric is always conformally equivalent to a product metric. We
recall that if Dg is the Dirac operator on a Riemannian spin manifold (A; g)
with metric g then the conformal change of the metric g ! hg by any positive
function h 2 C1 (A) will lead to the change of Dirac operator as the following

Dhg = h�
n+1
4 � Dg � h

n�1
4 ;

where n is the dimension of A. If we compare the Rayleigh quotient we �nd

1

K
inf
V 2S

R
X
kDhgV k2hgR
X
kV khg

� inf
V 2S

R
X
kDgV k2gR
X
kV kg

� K inf
V 2S

R
X
kDhgV k2hgR
X
kV khg

;

where K > 0 is a constant depending only on minx2A h (x) and maxx2A h (x) :
In particular, this implies

1

K
�Dg � �Dhg

� K�Dg :

This allows us to extend the above theorem to any product three manifold
A" = [0; "]� � with a warped product metric,

gA";h = h (x) dx21 + g�:

where g� is a metric on � and h is a smooth positive function on �: This is
because gA";h is conformally equivalent to a product metric dx

2
1 + h�1g� with

conformal factor h (x) .
Suppose V = (u; v) 2 L1;2� (A";S) and W = (f; g) 2 L2 (A";S) and D is the

Dirac operator with respect to the metric gA";h = h (x) dx21 + g� thenZ "

0

Z
�

hDV;W i

=

Z "

0

Z
�

D
i
�
h1=2ux1 + @

+v
�
; f
E
�
D
i
�
h1=2vx1 + @

�u
�
; g
E

= i

Z "

0

Z
�

�
�
D
u; h1=2fx1

E
+


v; @�f

�
�


u; @+g

�
+
D
v; h1=2gx1

E�
+ i

Z
�

�D
u; h1=2f

E
j"0 �

D
v; h1=2g

E
j"0
�

= i

Z "

0

Z
�

D
u;�h1=2fx1 � @+g

E
+
D
v; h1=2gx1 + @

�f
E
+ i

Z
�

h1=2 (hu; fi j"0 � hv; gi j"0)

=

Z "

0

Z
�

D
u; i
�
h1=2fx1 + @

+g
�E
�
D
v; i
�
h1=2gx1 + @

�f
�E
+ i

Z
�

h1=2 (hu; fi j"0 � hv; gi j"0)

=

Z "

0

Z
�

hV;DW i+ i
Z
�

h1=2 (hu; fi j"0 � hv; gi j"0)

When V 2 L1;2� (A";S) and W 2 L1;2+ (A";S) ; the above boundary terms are
zero and we have Z "

0

Z
�

hDV;W i =
Z "

0

Z
�

hV;DW i :
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This implies that D is self adjoint operator from L1;2� (A";S) to L1;2� (A";S)
in the sense of [5]. Since L1;2+ (A";S) is dense in L2 (A";S) ; this implies that
D : L1;2� (A";S) ! L2 (A";S) is surjective if and only if kerDjL1;2+ (A";S) = 0 �
L1;2+ (A";S) ; which is equivalent to ker @� = 0 by the above arguments. Hence
we have obtained the following result.

Theorem 11 Suppose that the �rst eigenvalue for @+@� and @�@+ are both
strictly positive. Then

D : L1;2� (A";S)! L2 (A";S)

is one-to-one and onto.

4.4 Estimates for the linearized problem

In this section we will develop the necessary linear theory for the Dirac equation

DV =W on A" = �� [0; "]

with a warped product metric gA";h := h (x) dx21+ g�: The key issue is to obtain
a priori estimates for V with explicit dependence of ", as " goes to zero. When
" is away from zero, say " 2 [1=2; 3=2], we have "-free Schauder estimates. For
" small, we overcome the di¢ culty coming from " by choosing an appropriate
integer k so that k" 2 [1=2; 3=2] and we extend any solution V = (u; v) on A" to
Ak" in weak sense by re�ection suitably. However much care will be needed to
obtain the C�-estimate, because after the re�ection of W across the boundary
of A"; it will no longer be continuous in general. This problem will be resolved in
the case (ii) part of the proof of the following theorem. To make the exposition
more transparent we will assume that h � 1; and it is clear from the proof below
that the argument works equally well for any h (x) 2 C1 (�) :

Theorem 12 For any 0 < � < 1 and p > 3 there is a positive constant
C = C (�; p; �) independent of " such that for any V 2 C1� (A";S) and W 2
C1 (A";S) satisfying

DV =W on A" = �� [0; "] .

We have
C kV kC1;�

� (A";S) � "�(
3
p+�) kWkC�(A";S) :

Proof. We write V = (u; v) 2 C1� (A";S), W = (w1; w2) 2 C1 (A";S) and the
metric on A" as

gA";h := h (x) dx21 + g�

so the equation may be written as�
h1=2ux1 + @

+v = w1
h1=2vx1 + @

�u = w2
with vj@A" = 0:
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In the following we assume h � 1: Let us �x an integer k > 0 such that k" 2
[1=2; 3=2] and divide the estimates into two cases:
Case (i): Suppose that w1 = 0; then we will have along the boundary @A";

ux1 = 0 since v = 0. We extend v from A" to Ak" by odd re�ection along the
walls � � fj"g with 1 � j � k � 1. Similarly we consider an even extension of
u to Ak". That is,

v (x; z) =

�
�v ((2j + 2) "� x) for x 2 [(2j + 1) "; (2j + 2) "]

v (x� 2j") for x 2 [2j"; (2j + 1) "]

u (x; z) =

�
u ((2j + 2) "� x) for x 2 [(2j + 1) "; (2j + 2) "]

u (x� 2j") for x 2 [2j"; (2j + 1) "]

This will induce an even extension of w2 so that the Dirac equation

DV =W

is satis�ed in the weak sense on Ak": By di¤erentiating both sides of the equation
vx1 + @�u = w2 with respect to x1; we obtain an equation which is equivalent
to the Dirichlet problem of the second order elliptic equation

vx1x1 � @�@+v =
@w2
@x1

and vj@Ak" = 0

Note that @�@+ is a positive operator. Since the C�-norm is preserved under the
odd extension, Schauder estimate and Lp-estimate for the second order elliptic
equation would then imply that there are constants C (�) and ~C (p) independent
of " such that

kw2kC�(A";S�) + kV kC0(A";S)

= kw2kC�(Ak";S�) + kV kC0(Ak";S)

� C (�) kV kC1;�(Ak";S)

= C (�) kV kC1;�
� (A";S)

and
kw2kLp(Ak";S�) + kV kLp(Ak";S) � ~C (p) kV kL1;p� (Ak";S)

since k" 2 [1=2; 3=2] :
Case (ii): suppose that w2 = 0 and w1 2 C�0 (A";S+) : Since v = 0, this

implies that if we consider the odd extension of v and the even extension of u
to Ak"; as in the previous case, then they induce an odd extension of w1 so that
the equation �

ux1 + @
+v = w1

vx1 + @
�u = 0

is satis�ed in the weak sense on Ak": Notice that w1 does not vanish on @A" in
general, so after the odd extension, w1 is no longer continuous but still we have
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w1 2 Lp (Ak";S) for 8p. The Lp-estimate for the second order elliptic equation
then implies that there is a constant ~C (p) independent of " such that

kw1kLp(Ak";S�) + kV kLp(Ak";S) � ~C (p) kV kL1;p� (Ak";S) : (1)

Di¤erentiate the second equation with respect to x1; we obtain that the equation
is equivalent to the Dirichlet problem of the second order elliptic equation

vx1x1 � @�@+v = �@�w1 and vj@Ak" = 0:

The Schauder estimate for second order elliptic equation (c.f. [10] section 4.4
and 6.4 ) implies that there is a constant C (�) independent of " such that

" kw1kC�(A";S+) + kvkC0
�(A";S)

� C (�) "1+� kvkC1;�
� (A";S) : (2)

It follows from (1), the eigenvalue estimate of the previous subsection

kWkL2(A";S) � C (�) kV kL2(A";S) for V 2 C
1
� (A";S)

and the interpolation inequality

kV kLp(Ak";S) � � kV kL1;p(Ak";S) +
1

�
kV kL2(Ak";S) with � = ~C (p) =2

that

~C (p) kV kL1;p� (Ak";S) � kWkLp(Ak";S) +
1

�
kV kL2(Ak";S)

� kWkLp(Ak";S) +
1

C (�; p)
kWkL2(Ak";S)

� kWkLp(Ak";S)
�
1 +

1

C (�; p)

�
:

So

kV kL1;p� (Ak";S) � ~C (p)
�1
�
1 +

1

�C (�)

�
kWkLp(Ak";S)

in particular, there are constant C independent of " such that

kV k
C
1�n=p
� (A";S)

= kV k
C
1�n=p
� (Ak";S)

� C kV kL1;p� (Ak";S)

� ~C (p)
�1
�
1 +

1

C (�; p)

�
kWkLp(Ak";S)

� C (p; �) kWkC0(Ak";S)

= C (p; �) kWkC0(A";S) :
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By combining this with the fact that vj@A"=0, we have

kvkC0
�(A";S)

� kvk
C
1�n=p
� (A";S)

"1�n=p � C (p; �) kw1kC0(A";S) "
1�n

p :

Plug these into (2) we obtain

C (�) kvkC1;�
� (A";S) � "�� kw1kC�(A";S+) + C (p; �) kw1kC0(A";S) "

�(np+�):

We can also obtain a similar estimate for u because u = (@�)
�1
vx1 and

(@�)
�1 is independent on ". Thus we have

C (�) kV kC1;�
� (A";S) � "�� kw1kC�(A";S+) + C (p; �) kw1kC0(A";S) "

�(np+�):

By combining cases (i) and (ii) together and let n = 3; we obtain

C (�; p; �) kV kC1;�
� (A";S) � "�(

3
p+�) kWkC�(A";S) :

Hence the result.

Corollary 13 Let W 2 C1 (A";S) and suppose V 2 C1� (A";S) solves

DV =W on A" = �� [0; "] with h 2 C1 (�) :

Then for any 0 < � < 1; p > 3 there is a positive constant C = C (�; p; �; h)
independent of " such that

C kV kC1;�
� (A";S) � "�(

3
p+�) kWkC�(A";S) :

4.5 Perturbation arguments

Let C0 �M be a coassociative submanifold. Suppose that n is a normal vector
�eld on C0 such that its corresponding self-dual two form, �0 = �n
 2 ^2+ (C0)
is harmonic with respect to the induced metric. So �0 is actually a symplectic
form on the complement of the zero set Z (�0) of �0 in C0. Furthermore

Jn (u) := jnj�1 n� u

de�nes an almost complex structure Jn on the CnZ (�0) : Since deformations of
coassociative submanifolds are unobstructed, we may assume that there is an
one parameter family of coassociative submanifolds ' : [0; "]�C0 �!M which
corresponds to integrating out the normal vector �eld n; that is

@'

@t

����
t=0

= n 2 �
�
C0; NC0=M

�
and Ct := ' (ftg � C0)

In the remaining part of this article we assume that �0 is nowhere vanishing
on C0, that is (C0; �0) is a symplectic four manifold. We are going to establish
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a correspondence between the regular Jn-holomorphic curves � in C0 and the
existence of instantons with coassociative boundary conditions.
Given such a � � C0, we obtain a family �t � Ct whose total space A0" is

close to be associative and the induced metric on A0" is close to be a warped
product metric for small ". We want to perturb A0" to become an honest asso-
ciative submanifold in M . In order to apply the implicit function theorem to
obtain the desired perturbation for A0", we need the estimates for the linearized
problem to behave well as " approach zero. Such an estimate was established
in the previous section.
To prove this result, we will construct a map

F" : C
m;�
� (A";S)! Cm�1;� (A";S)

such that the solution to the equation F" (V ) = 0 will give rise to an associative
submanifold with boundary lying on C0 [ C": Let us brie�y describe the seven
steps construction of F" here: We construct a three dimensional submanifold
A0" � M by �owing � along with Ct and an identi�cation between the normal
bundle of A0" � M with the spinor bundle S!A", this makes the linear theory
developed in the previous subsection applicable. Then we need to de�ne an
exponential map on Cm;�� (A";S) carefully so that expV always satis�es the
coassociative boundary condition. To do that, we need to deal with those normal
directions to A" inside C =' ([0; "]� C0) and perpendicular to C separately.
Now we are ready to describe our construction:

1. For " small, let C : = [0; "]�C0 and C := ' (C) is di¤eomorphic to C; and
all coassociative submanifolds Ct�s are mutually disjoint and ' (t; �) is an
embedding for 8t 2 [0; "].

2. Let � � C0 be a Jn-holomorphic curve, we denote

A" := [0; "]� � and A0" := ' (A")

then A0" is close to be associative in the sense that
��� jA0

"

�� � K" for some
constantK depending on the geometry of the family fCtg andM for small
". Notice that if we identifyN�=C
C with S+
C the complexi�ed positive
spinor bundle over �, then NC=M
Cj� = S�
C = K�


�
NC
�=C

��
; where

K� is the canonical line bundle of �: This follows from the fact that M is
a Riemannian manifold with G2-holonomy, then at every point x 2 C0 we
may canonically identify TxM with TxC0 + ^2+T �xC0. For 8x 2 � � C0,
we may choose feig4i=1 to be an orthonormal basis of TxC0 such that

TCx � = spanC fe1 � ie2g and NC
�=C jx = spanC fe3 � ie4g
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then

NC
C=M jx2�
= spanC f(e�1 ^ e�3 � e�2 ^ e�4) + i (e�1 ^ e�4 + e�2 ^ e�3)g
= spanC f(e�1 + ie�2) ^ (e�3 + ie�4)g

= K� 

�
NC
�=C

��
:

In particular,

H0
�
�; NC

C=M j�
�
= H0

�
�;K� 


�
NC
�=C

���
= H1

�
�; NC

�=C

��
since the dimension for the Seiberg-Witten moduli is 0. This implies that

dimH0
�
�; NC

�=C

�
= dimH1

�
�; NC

�=C

�
= 0; by our assumption that �

is regular. Moreover by Theorem 11, we have the linear operator

D : L1;2� (A";S)! L2 (A";S)

is one-to-one and onto.

3. Let
gA";h := h (x) dt2 + g�

be the warped product metric on [0; "] � � with g� being the induced
metric on � and h (x) is the squared length of n = dCt=dtjt=0 restricted
to �. Then

(1�K") gA";h � '�gM � (1 +K") gA";h
for some constant K depending on the geometry of family fCtg0�t�" ; �0
and M:

4. Let gC := dt2�gjC0 be the product metric on C and expC is the exponential
map associated to the metric gC:

5. Using the metric gM onM we have an orthogonal decomposition '�NA0
"=M

=
'�NA0

"=C � '�NC=M . We de�ne a vector bundle S on A" as the pullback
of the bundle '�NA0

"=M
jf0g�� by the projection map A"

��! �. Thus we
obtain a Cartesian product,

S �! '�NA0
"=M

jf0g��
# #
A"

��! �

and orthogonal decomposition

S = S+ � S� = ��
�
'�NA0

"=C jf0g��
�
+ ��

�
'�NC=M jf0g��

�
:
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6. Let NA"=C be the normal bundle of A" � C with respect to the metric gC:
For " small, we de�ne a bundle isomorphism

S = S+ � S�
I=(I+;I�)
�! NA"=C � '�NC=M

# #
A"

id�! A"

:

Fix a 0 � t � "; for u 2 S+jftg���A"and v 2 S�jftg���A" ; we may treat u
as a section of '�NA0

"=C jf0g�� and v as a section of '
�NC=M jf0g��: Then

I+ (u) 2 NA"=Cjftg�� is obtained by parallel transport along [0; t]�fxg � C
and then orthogonally project to NA"=C with respect to the metric gC,
and I� (v) is obtained by parallel transport along [0; t] � fxg � C and
orthogonally project to '�NC=M with respect to the pull back metric '�g:

7. We introduce

gexp : � (A";S) �! Map (A";M)
V = (u; v) expMexpC I+(u)

�
TexpC I+(u)I

� (v)
�

where expM is the exponential map with respect to the metric g on M;
expC is the exponential map with respect to the metric gC; and

TexpC I+(u) : NC=M jru(0;x) �! NC=M jru(1;x)

is the parallel transport with respect to the metric g on M along the
curve 
u (s; x) := expCx sI

+ (u) � C; for x 2 A" � C: We will denote the
image ofgexpV by A" (V ) � M . It follows from our construction that for
any V 2 Cm� (A";S) ; @A" (V ) � C0 [ C" andgexp (0; 0) = ':

Next we de�ne the nonlinear map F" with the important property that
elements in F�1" (0) with small norm correspond to associative submanifolds in
M near A0" for small ".

F" : C
m;�
� (A";S)! Cm�1;� (A";S)

F" (V ) = ~TV
�
�A"(V ) (gexpV )� ��?

where V = (u; v) and the map ~TV :(gexpV )�NA"(V ) ! S is obtained as following

� Parallel transport with respect to the metric g on M along 
M (s) :=
expMexpC I+(u) s

�
TexpC I+(u)I

� (v)
�
with s 2 [0; 1] :

� Identifying it as a section of NA"=C � '�NC=M ; which in turn can be iden-
ti�ed as a section of S via

NA"=C � '�NC=M
I�1�! S = S+ � S�:

de�ned in the step 6. In particular, ~T0 is I�1:
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Proposition 14 For any 0 < � < 1; p > 3 and R > 0; there is a positive
constant C = C (�; p; �;R) such that for any su¢ ciently small " > 0 we have

k(DF" (V )�DF" (W )) �V kC�(A";S) � C k�V kC1;�
� (A";S)

and
kDF" (0) �V kC�(A";S) � C"(

3
p+�) k�V kC1;�

� (A";S)

for any V 2 C1;�� (A";S), W 2 C1;� (A";S) with kV kC1;�(A";S) ; kWkC1;�(A";S) � R

and for any �V 2 C1;� (A";S).

Proof. First, we notice that

DF" (V ) (�V ) =
n
D ~TV (�V ) + ~T(V )

�
divA"(V ) (�V )

�o �
�A"(V ) (gexpV )� ��

+ ~TV
�
�A"(V ) (DgexpV )� ��

and

Dgexp(u;v) (�u; �v)
=

d

ds

����
s=0

expMexpC I+(u+s�u)
�
TexpC I+(u+s�u)I

� (v + s�v)
�

=
n�
D1 exp

M
�
expC I+(u)

�
TexpC I+(u)I

� (v)
�

+
�
D2 exp

M
�
expC I+(u)

�
TexpC I+(u)I

� (v)
�
D1TexpC I+(u)

o
D expC I+ (�u)

+
�
D2 exp

M
�
expC I+(u)

�
TexpC I+(u)I

� (v)
�
TexpC I+(u)I

� (�v) ;

so there are smooth functions Gi; i = 1; 2; 3 depend on C and M such that

DF" (V ) �V = G1 (V;rV ) �V +G2 (V;rV )r�u+G3 (V;rV )r�v:

Since

Gi (V;rV )�Gi (W;rW )
= (Gi (V;rV )�Gi (V;rW )) + (Gi (V;rW )�Gi (W;rW )) ;

there is a constant C (R) only depend on the geometry of C and M but inde-
pendent of " such that for kV kC1;�(A";S) ; kWkC1;�(A";S) � R; we have

k(DF" (V )�DF" (W )) �V kC�(A";S) � C (R) kV �WkC1;�
� (A";S) k�V kC1;�

� (A";S) :

Second, by setting V = 0; we have

DF" (0) �V =
n
D ~T(0) (�V ) +

�
divA"(0) (�V )

�o
�A" '�� + �A" (Dgexpj0)� �
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and

Dgexp(0;0) (�u; �v)
=

d

ds

����
s=0

expMexpC I+(s�u)
�
TexpC I+(s�u)I

� (s�v)
�

= D
�
expC �I+

�
(�u) + d expMA" �dI

� (�v)

= dI+ (�u) + dI� (�v) 2 �
�
A"; NA"=C � '�NC=M

�
with

dI+ (�u) jf0g�� + dI� (�v) jf0g��
= �u+ �v 2 �

�
f0g � �;

�
NA"=C � '�NC=M

�
jf0g�� = S

�
:

Now we have

'�� = � (d' (�) ; d' (�) ; d' (�)) (x1; z)
= � (d' (�) ; d' (�) ; d' (�)) (0; z) + x1E

with
jE (x1; z;w1; w2)j � C (jx1j+ jw1j+ jw2j) :

for some constant C only depends on C and M but independent of ":Since
DF" (0) = DA" + x1E (x1; z;r�; @x1) with (x1; z) being the coordinates of A";
this implies that

k(DF" (0)�DA") �V kC�(A";S) � C" k�V kC1;�
� (A";S)

It follow from Corollary 13 that

C (�; p; �; h) k�V kC1;�
� (A";S) � "�(

3
p+�) kDA"�V kC�(A";S) :

therefore for " small we have

kDF" (0) �V kC�(A";S)

� kDA"�V kC�(A";S) � k(DF" (0)�DA") �V kC�(A";S)

� C (�; p; �; h)
�
"�(

3
p+�) + "

�
k�V kC1;�

� (A";S)

� C (�; p; �; h) "�(
3
p+�) k�V kC1;�

� (A";S) ;

hence the proposition.

To �nd the zeros of F", we are going to apply the following quantitative
version of the implicit function theorem (c.f. Theorem 15.6 [6]).

Theorem 15 Let X and Y be Banach space and F : Br (x0) � X ! Y a
C1-map, such that
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1. (DF (x0))
�1 is a bounded linear operator with

���(DF (x0))�1 F (x0)��� � �

and
���(DF (x0))�1��� � �;

2. jDF (x1)�DF (x2)j � � jx1 � x2j for all x1; x2 2 Br (x0) ;

3. 2��� < 1 and 2� < r:

Then F has a unique zero in B2� (x0) :

To apply above theorem, we de�ne the map

~F" := "�(
3
p+�)F" : C

1;� (A";S) \ C10 (A";S) �! C0;� (A";S)

then for any �V 2 C1;� (A";S) \ C10 (A";S) ;


D ~F" (0) �V 



C0;�(A";S)

� C (�; p) k�V kC1;�
� (A";S)

and for kV kC1;�(A";S) ; kWkC1;�(A";S) � R we have


�D ~F" (V )�D ~F" (W )� �V 



C�(A";S)

� C"�(
3
p+�) k�V kC1;�

� (A";S)

Now 


 ~F" (u; v)



C0;�(A";S)

� C"�(
3
p+�)" = C"1�(

3
p+�)

When we choose � = 1=4 and p > 12 then we have


D ~F" (0)





 ~F" (u; v)



C0;�(A";S)

"�(
3
p+�)

� "1�2(
3
p+�)

= "1=2 �! 0 as "! 0:

Theorem 15 then implies that there is a unique kV"kC1;�(A";S) � 2"1�2(
3
p+�)

solves F" (V") = 0:

Claim 16 For " small A" (V") :=gexpV" is an instanton.
Proof. First we notice that by our construction the tangent space TA" is already
"-away from being associative. The estimate kV"kC1;�(A";S) � 2"

1�2( 3p+�) then
implies that the tangent space of TA" (V") is also "-close to be associative and it
also implies that the map ~TV" de�ned in step 7 is an isomorphism for small ". So
Proposition 8 implies that the tangent space TA" (V") is indeed associative. Now
standard elliptic regularity implies that V" is actually smooth, thus A" (V") =gexpV" is an instanton in M .
Finally, we obtain our main result
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Theorem 17 Suppose that M is a G2-manifold and Ct is an one parameter
family of coassociative submanifolds in M . Suppose that the self-dual two form
� = dCt=dtjt=0 2 
2+ (C) is nonvanishing, then it de�nes an almost complex
structure J on C0.
For any regular J-holomorphic curve � in C0, there is an instanton A" in

M which is di¤eomorphic to [0; 1] � � and @A" � C0 [ C", for all su¢ ciently
small positive ".

In particular, by combining Taubes�result on GW=SW [25][26][27] with the
above theorem we obtain the following existence result.

Corollary 18 Suppose that C is a coassociative submanifold in a G2-manifold
M with non-trivial Seiberg-Witten invariants. Given any symplectic form on C,
we write Ct�s the corresponding coassociative deformations of C in M . Then
there is an instanton At in M with boundaries lying on C0 [ Ct for each su¢ -
ciently small t.

Lastly we expect that any instanton A inM bounding C0[Ct and with small
volume must arise in the above manner. Namely we need to prove a "-regularity
result for instantons.
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