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Abstract. For any non-simply laced Lie group G and elliptic curve Σ, we
show that the moduli space of flat G bundles over Σ can be identified with the
moduli space of rational surfaces with G-configurations which contain Σ as an
anti-canonical curve. We also construct Lie(G)-bundles over these surfaces.
The corresponding results for simply laced groups were obtained by the authors
earlier in [20]. Thus we have established a natural identification for these two
kinds of moduli spaces for any Lie group G.

Introduction

In [20], we constructed ADE bundles over ADE-surfaces, and established a
identification for the moduli space of flat G bundles over a fixed elliptic curve Σ
and the moduli space of the pairs (S, Σ) with Σ ∈ | − KS |, where G is any simply
laced (that is, of ADE-type), simple, compact and simply connected Lie group, and
S is an ADE-surface with Σ as a smooth anti-canonical curve. This identification
generalized the one for the moduli space of flat En bundles over Σ and the moduli
space of del Pezzo surfaces of degree 9 − n which contain Σ as an anti-canonical
curve. In this paper, we construct Lie(G) bundles for non-simply laced Lie group
G over G-surfaces, and extend the above identification to non-simply laced cases.
Therefore we establish a one-to-one correspondence between flat G bundles over a
fixed elliptic curve Σ and rational surfaces with Σ as an anti-canonical curve for
simple Lie groups of all types.

A non-simply laced Lie group G is uniquely determined by a simply laced Lie
group G′ and its outer automorphism group. Hence it is natural to apply the pre-
vious results for the simply laced cases to the current situation. Similar to simply-
laced cases, we can define G-surfaces and rational surfaces with G-configurations
(see Definition 13, 19, 26, 34). Our main result is the following theorem.

Theorem 1. Let Σ be a fixed elliptic curve with identity 0 ∈ Σ, G be any simple,
compact, simply connected and non-simply laced Lie group. Denote S(Σ, G) the
moduli space of the pairs (S, Σ), where S is a G-surface such that Σ ∈ | − KS |.
Denote MG

Σ the moduli space of flat G-bundles over Σ. Then we have
(i) S(Σ, G) can be embedded into MG

Σ as an open dense subset.

(ii) This embedding can be extended to an isomorphism from S(Σ, G) onto MG
Σ

by including all rational surfaces with G-configurations, and this gives us a natural

and explicit compactification S(Σ, G) of S(Σ, G).
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In the following, we illustrate briefly via pictures what G-configurations and G-
surfaces are in each case and compare it with the corresponding case that G′ is
simply-laced.

0.1. Bn-configurations as special Dn+1-configurations. In these cases we con-
sider rational surfaces with fibration structure and a fixed smooth anti-canonical
curve Σ. A Bn-configuration comes from a Dn+1-configuration. Roughly speaking,
by saying a rational surface S has a Dn+1-configuration (l1, · · · , ln+1), we mean
that S can be considered as a blow-up of F1 (a Hirzebruch surface) at n + 1 points
on Σ ∈ |−KF1

|, such that l1, · · · , ln+1 are the corresponding exceptional classes [20].
When these blown up points are in general position, S is called a G = Dn+1-surface.
See the following picture for a surface with a Dn+1-configuration.
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Figure 1. A surface with a Dn+1-configuration (l1, · · · , ln+1).

Given a surface S with a Dn+1-configuration ζ = (l1, · · · , ln+1), if it satisfies the
condition x1 = l1 ∩ Σ is the identity element 0 of the elliptic curve Σ, then ζ is a
Bn-configuration on S (Definition 13). If all blown up points but x1 are in general
position, S is called a Bn-surface. See Figure 2 for a surface with a Bn-configuration.
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Figure 2. A surface with a Bn-configuration (l1, l2, · · · , ln+1),

where x1 = l1 ∩ Σ = 0.
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0.2. Cn-configurations as special A2n−1-configurations. In these cases, we
consider rational surfaces with fibration and section structure and a fixed smooth
anti-canonical curve Σ.

A Cn-configuration comes from an A2n−1-configuration. By saying a rational
surface S has an A2n−1-configuration (l1, · · · , l2n), we mean that S can be con-
sidered as a blow-up of F1 at 2n points on Σ ∈ | − KF1

| which sum to zero, such
that l1, · · · , l2n are the corresponding exceptional classes [20]. When these blown
up points are in general position, S is called an A2n−1-surface. See the following
picture for a surface with an A2n−1-configuration.

s

f l1

· · · · · ·

ln ln+1 l2n

0

x1

−x1

Σ

S

P
1

s

SU(2n)

Figure 3. A surface with an A2n−1-configuration (l1, · · · , l2n).

Given a surface S with an A2n−1-configuration ζ = (l1, · · · , l2n), if it satisfies
the condition xi = −x2n+1−i with xi = li ∩ Σ, for i = 1, · · · , n, then ζ is called a
Cn-configuration on S (Definition 19). If all blown up points are in general position,
S is called a Cn-surface. See Figure 4 for a surface with a Cn-configuration.

f

0

S

P
1

s

s

l1
· · ·

ln

l−1 l−n

−x1 −xn

x1 xn Σ

Sp(n)

Figure 4. A surface with a Cn-configuration (l1, · · · , ln, l−n , · · · , l−1 ).
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0.3. G2-configurations as special D4-configurations. In these cases we still
consider rational surfaces with fibration structure and a fixed smooth anti-canonical
curve Σ.

A G2-configuration comes from a D4-configuration. We have seen what a D4-
configuration is from Subsection 0.1. Roughly speaking, by saying a rational surface
S has a D4-configuration (l1, · · · , l4), we mean that S can be considered as a blow-
up of F1 at 4 points on Σ ∈ | − KF1

|, such that l1, · · · , l4 are the corresponding
exceptional classes [20]. When these blown up points are in general position, S is
called a G = D4-surface. See Figure 5 for a surface with a D4-configuration.

f l4

0

−x4

x4

l2 l3
l1

x1

−x1

Σ

S

P
1

SO(8)

Figure 5. A surface with a D4-configuration (l1, · · · , l4).

Given a surface S with a D4-configuration ζ = (l1, · · · , l4), if it satisfies these
two conditions x1 = 0 and x4 = x2 + x3, where xi = li ∩ Σ, then ζ is called a
G2-configuration on S (Definition 26). If all blown up points but x1 are in general
position, S is called a G2-surface. See Figure 6 for a surface with a G2-configuration.
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Figure 6. A surface with a G2-configuration (l1, l2, l3, l4),

where x1 = 0 and x4 = x2 + x3 with xi = li ∩ Σ.
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0.4. F4-configurations as special E6-configurations. In these cases we con-
sider rational surfaces which are blow-ups of the projective plane P2 at 6 points in
almost general position, and which contain a fixed smooth anti-canonical curve Σ
[20].

An F4-configuration comes from an E6-configuration. Recall that by saying a
rational surface S has an E6-configuration (l1, · · · , l6), we mean that S can be con-
sidered as a blow-up of P2 at 6 points on Σ ∈ | − KP2|, such that l1, · · · , l6 are
the corresponding exceptional classes. When these blown up points are in general
position, S is called an E6-surface, which is in fact a cubic surface. See Figure 7
for a surface with an E6-configuration.
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Figure 7. A surface with an E6-configuration (l1, · · · , l6),

Given a surface S with an E6-configuration ζ = (l1, · · · , l6), if it satisfies the
condition x1 + x6 = x2 + x5 = x3 + x4, where xi = li ∩ Σ, then ζ is called an F4-
configuration on S (Definition 34). If all blown up points are in general position, S
is called an F4-surface. See Figure 8 for a surface with an F4-configuration.
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Figure 8. A surface with an F4-configuration (l1, · · · , l6),

where three lines L16, L25, L34 meet at p ∈ Σ, or equivalently,

x1 + x6 = x2 + x5 = x3 + x4 with xi = li ∩ Σ.
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Moreover, we can construct G= Lie(G) bundles over S with a G-configuration.
By restriction, we obtain Lie(G) bundles over Σ. And we can also constructed some
natural fundamental representation bundles over Σ which have interesting geomet-
ric meanings, such that the Lie algebra bundles are the automorphism bundles of
these representation bundles preserving certain algebraic structures.

Notation 2. In this paper, the notations are the same as those in [20]. Let G be
a compact, simple and simply-connected Lie group. We denote

r(G): the rank of G;
R(G): the root system;
Rc(G): the coroot system;
W (G): the Weyl group;
Λ(G): the root lattice;
Λc(G): the coroot lattice;
Λw(G): the weight lattice;
T (G): a maximal torus;
ad(G): the adjoint group of G, i.e. G/C(G) where C(G) is the center of G;
∆(G): a simple root system of G.
Out(G): the outer automorphism group of G, which is defined as the quotient of

the automorphism group of G by its inner automorphism group. It is well-known
that Out(G) is isomorphic to the diagram automorphism group of the Dynkin
diagram of G.

When there is no confusion, we just ignore the letter G.

1. Reductions to simply laced cases

From now on, we always assume that G is a compact, simple, simply-connected
Lie group of non-simply laced type, that is, of type Bn, Cn, F4, G2. There are two
natural approaches to reduce situations to simply laced cases. One is embedding
G into a simply laced Lie group G′ such that G is the subgroup fixed by the outer
automorphism group of G′. Another is taking the simply laced subgroup G′′ of
maximal rank.

In the following we explain the first reduction. The following result is well-known.

Proposition 3. Let G be a compact, non-simply laced, simple, and simply con-
nected Lie group. There exists a simple, simply connected and simply laced Lie
group G′, s.t. G ⊂ G′ and G = (G′)ρ, where ρ is an outer automorphism of G′ of
order 3 for G′ = D4, and of order 2 otherwise.

Proof. By the functorial property, we just need to prove it in the Lie algebra level.
For the construction of G = Lie(G) and G′ = Lie(G′), one can see [17] for the
details, where the construction of Lie algebras is determined by the construction of
root systems. �

Remark 4. For later use, we list the construction of non-simply laced root systems
via simply laced root systems.

(1) G = Cn = Sp(n), G′ = A2n−1 = SU(2n).
∆(G′) = {αi, i = 1, · · · , 2n− 1}.
Out(G′) = {1, ρ} ∼= Z2, where ρ(αi) = α2n−i, i = 1, · · · , n − 1, and
ρ(αn) = αn.
∆(G) = {βi = 1

2 (αi + α2n−i), i = 1, · · · , n − 1, βn = αn}.
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(2) G = Bn = Spin(2n + 1), G′ = Dn+1 = Spin(2n + 2).
∆(G′) = {αi, i = 1, · · · , n + 1}.
Out(G′) = {1, ρ} ∼= Z2, where ρ(αi) = αi, i = 3, · · · , n + 1, ρ(α1) = α2,
ρ(α2) = α1.
∆(G) = {β1 = 1

2 (α1 + α2), βi = αi+1, i = 2, · · · , n}.

(3) G = F4, G′ = E6.
∆(G′) = {αi, i = 1, · · · , 6}.
Out(G′) = {1, ρ} ∼= Z2, where ρ(αi) = α6−i, i = 1, · · · , 5, and
ρ(α6) = α6.
∆(G) = {β1 = 1

2 (α1 + α5), β2 = 1
2 (α2 + α4), β3 = α3, β4 = α6}.

(4) G = G2, G′ = D4 = Spin(8).
∆(G′) = {αi, i = 1, · · · , 4}.
Out(G′) = 〈ρ1, ρ2〉 ∼= S3, where ρ1 interchanges α1 and α2, and ρ2 inter-
changes α1 and α4.
∆(G) = {β1 = 1

3 (α1 + α2 + α4), β2 = α3}.

The Dynkin diagrams of G and G′ are as the following:

<

G G′

Cn A2n−1

β1 β2 βn−1 βn
α1 α2 αn α2n−2 α2n−1

>Bn Dn+1

βn βn−1 β2 β1
αn+1 αn α3

α2

α1

<F4 E6

β1 β2 β3 β4 α1 α2 α3 α4 α5

α6

<G2 D4

β1 β2 α1 α2 α3

α4

Figure 9. Non-simply laced G reduced to simply laced G′.

Remark 5. Note that W (G) is the subgroup of W (G′) fixing the root system R(G),
and also the subgroup pointwise fixed by Out(G′). For a root α, let Sα ∈ W (G) be
the reflection with respect to α, that is, Sα(x) = x+(x, α)α. Thus as a subgroup of
W (A2n−1), W (Cn) is generated by Sαi

◦ Sα2n−i
for i = 1, · · · , n− 1 and Sαn

. As a
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subgroup of W (Dn+1), W (Bn) is generated by Sα1
◦Sα2

and Sαi
for i = 3, · · · , n+1.

As a subgroup of W (E6), W (F4) is generated by Sα1
◦Sα5

, Sα2
◦Sα4

, Sα3
and Sα6

.
As a subgroup of W (D4), W (G2) is generated by Sα1

◦ Sα2
◦ Sα4

and Sα3
.

In the following we let Σ be a fixed elliptic curve with identity element 0, and
we fix a primitive dth root of Σ ∼= Jac(Σ), where d = 2 for Dn case, d = 9 − n
for En case, and d = n + 1 for An case, respectively (see [20]). Recall that for any
compact, simple and simply-connected Lie group H , the moduli space of flat H
bundles over Σ is

MH
Σ

∼= (Λc(H) ⊗ Σ)/W (H).

For G′, the group Out(G′) acts on

(Λc(G
′) ⊗ Σ)/W (G′)

naturally.
Let χ be the natural map from (Λc(G) ⊗ Σ)/W (G) to the fixed part

((Λc(G
′) ⊗ Σ)/W (G′))Out(G′).

The image of χ is contained in a connected component of the fixed part.

Lemma 6. The map

χ : (Λc(G) ⊗ Σ)/W (G) → ((Λc(G
′) ⊗ Σ)/W (G′))Out(G′)

is injective.

Proof. It suffices to prove that for any x, y ∈ Λ(G) ⊗ Σ, if ∃ w′ ∈ W (G′), such
that w′(x) = y, then ∃ w ∈ W (G), such that w(x) = y. For An and Dn cases, this
is obvious if we check the root lattices. For E6 case, we can also check it directly
with the help of computer. Of course we can also check this case by hand following
the discussion in Section 2.4.1. �

Corollary 7. (i) The fixed part ((Λc(G
′)⊗Σ)/W (G′))Out(G′) is determined by the

condition ρ(x) = x, up to W (G′)-action, where x ∈ Λc(G
′)⊗Σ, and ρ is a generator

of Out(G′), of order 3 for G′ = D4 and order 2 for G′ = An, En.
(ii) The moduli space MG

Σ
∼= (Λc(G) ⊗ Σ)/W (G) is a connected component of

the fixed part

(MG′

Σ )Out(G′) ∼= ((Λc(G
′) ⊗ Σ)/W (G′))Out(G′)

containing the trivial G′ bundle.

Proof. (i) For any x ∈ Λc(G
′) ⊗ Σ, denote x̄ the class in (Λc(G

′) ⊗ Σ)/W (G′).
Then ρ(x̄) = x̄ if and only if there exists w ∈ W (G′), such that ρ(x) = w(x). Thus
w−1ρ(x) = x. But w−1ρ ∈ Out(G′) since Out(G′) = Aut(G′)/W (G′). Thus we
can take a new simple root system such that w−1ρ is the generator of the diagram
automorphism (the automorphism of order 3 for D4).

(ii) By (i), (Λc(G) ⊗ Σ)/W (G) and (MG′

Σ )Out(G′) are both orbifolds with the
same dimension. Thus the result follows from Lemma 6. �

If we express the moduli space of flat G bundles over Σ as (T ×T )/W (G), where
T is a maximal torus of G, then we have the following corollary.

Corollary 8. If two elements of T × T are conjugate under W (G′), then they are
also conjugate under W (G). �
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Another method is to reduce G to its simply-laced subgroup G′′ of maximal
rank, and apply the results for simply laced cases to current situation. In another
occasion we will discuss our moduli space of G-bundles from this aspect in detail.
Here we just mention the following well-known fact from Lie theory.

Proposition 9. There exists canonically a simply laced Lie subgroup G′′ of G,
which is of maximal rank, that is, G′′ and G share a common maximal torus. And
there is a short exact sequence

1 → W (G′′) → W (G) → Out(G′′) → 1,

where Out(G′′) is the outer automorphism group of G′′. Thus, if we write the
moduli space as MG

Σ = (T × T )/W , then

MG
Σ = MG′′

Σ /Out(G′′). �

Remark 10. We give this construction of G′′ in each case.
(1) For G = Sp(n), G′′ = SU(2)n. Out(G′′) is the group Sn of permutations of

the n copies of SU(2) in G′′.
(2) For G = G2, G′′ = SU(3). Out(G′′) is the group Z2 that exchanges the

3-dimensional representation of SU(3) with its dual.
(3) For G = Spin(2n + 1), G′′ = Spin(2n). Out(G′′) is the group Z2 that

exchanges the two spin representations of Spin(2n).
(4) For G = F4, G′′ = Spin(8). Out(G′′) is the triality group S3 that permutes

the three 8-dimensional representations of Spin(8).

2. Flat G bundles over elliptic curves and rational surfaces:

non-simply laced cases

In this section, we study case by case the G bundles over elliptic curves and
rational surfaces for a non-simply laced Lie group G.

2.1. The Bn(n ≥ 2) bundles. According to the arguments of last section, for

G = Spin(2n + 1) we can take G′ = Spin(2n + 2), such that G = (G′)Out(G′).
Let S = Yn+1 be a rational surface with a Dn+1-configuration [20] which contains

Σ as a smooth anti-canonical curve. Recall [20] that Yn+1 is a blow-up of F1 at
n+1 points x1, · · · , xn+1 on Σ, with corresponding exceptional classes l1, · · · , ln+1.
Let f be the class of fibers in F1, and s be the section such that 0 = s ∩ Σ is the
identity element of Σ. The Picard group of Yn+1 is H2(Yn+1, Z), which is a lattice

with basis s, f, l1, · · · , ln+1. The canonical line bundle K = −(2s + 3f −
n+1
∑

i=1

li).

We know from [20] that

Pn+1 := {x ∈ H2(Yn+1, Z) | x · K = x · f = 0}

is a root lattice of Dn+1 type. We take a simple root system of G′ as

∆(Dn+1) = {α1 = l1 − l2, α2 = f − l1 − l2, α3 = l2 − l3, · · · , αn+1 = ln − ln+1}.

Let ρ be the generator of Out(G′) ∼= Z2, such that ρ(α1) = α2, ρ(α2) = α1 and
ρ(αi) = αi for i = 3, · · · , n + 1.

From [20] we know that the pair (S, Σ) determines a homomorphism

u ∈ Hom(Λ(G′), Σ)
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which is given by the restriction map:

u(α) = O(α)|Σ.

Lemma 11. Let u ∈ Hom(Λ(G′), Σ) correspond to a pair (S, Σ), where S is a
surface with a Dn+1-configuration. Then ρ · u = u if and only if 2x1 = 0.

Proof. Since u is the restriction map: αi 7→ O(αi)|Σ, u(α1) = O(l1 − l2)|Σ =
x1 − x2, and u(α2) = O(f − l1 − l2)|Σ = −x1 − x2. Hence ρ · u = u ⇔ u(α1) =
u(α2) ⇔ x1 − x2 = −x1 − x2 ⇔ 2x1 = 0 ⇔ x1 is one of the 4 points of order 2 on
the elliptic curve Σ. �

As in [20], we denote S(Σ, G′) the moduli space of G′ = Dn+1-surfaces with a

fixed anti-canonical curve Σ, and S(Σ, G′) the natural compactification by including
all rational surfaces with Dn+1-configurations (Figure 1). From [20] we know that

φ : S(Σ, G′)
∼
−→ MG′

Σ is an isomorphism.

Corollary 12. For u ∈ MG
Σ →֒ (MG′

Σ )Out(G′), φ−1(u) ∈ S(Σ, G′) represents a
class of surfaces Yn+1(x1, · · · , xn+1) with x1 = 0, and such a surface corresponds

to a boundary point in the moduli space, that is, φ−1(u) ∈ S(Σ, G′)\S(Σ, G′).

Proof. By Lemma 11, u ∈ (MG′

Σ )Out(G′) if and only if 2x1 = 0. There are 4
connected components corresponding to 4 points of order 2 on Σ. Since MG

Σ is the
component containing the trivial G′ bundle, we have x1 = 0. Recall (§4, [20]) that
Yn+1(x1, · · · , xn+1) ∈ S(Σ, G′) if and only if 0, x1, · · · , xn+1 are in general position,
which implies in particular x1 6= 0. Hence φ−1(u) corresponds to a boundary point.
�

Denote S = Y ′
n+1(x1 = 0, x2, · · · , xn+1) (or Y ′

n+1 for brevity) the blow-up of F1

at n+1 points x1 = 0, x2, · · · , xn+1 on Σ, with exceptional divisors l1, l2, · · · , ln+1,
where Σ ∈ |−KS|. Similar to the simply laced cases, we give the following definition.

Definition 13. A Bn-exceptional system on S is an n-tuple (e1, e2, · · · , en+1) where
ei’s are exceptional divisors such that ei · ej = 0 = ei · f, i 6= j and y1 = e1 ∩Σ = 0
is the identity of Σ. A Bn-configuration on S is a Bn-exceptional system ζBn

=
(e1, e2, · · · , en+1) such that we can consider S as a blow-up of F1 at n+1 points y1 =
0, y2, · · · , yn+1 on Σ, that is S = Y ′

n+1(y1 = 0, y2, · · · , yn+1), with corresponding
exceptional divisors e1, e2, · · · , en+1. When S has a Bn-configuration, we call S a
(rational) surface with a Bn-configuration (see Figure 2).

When x2, · · · , xn+1 ∈ Σ with xi 6= 0 for all i are in general position (refer to §4 of
[20] for definition), any Bn-exceptional system on S consists of exceptional curves.
Such a surface is called a Bn-surface. So a Bn-surface must have a Bn-configuration.

Lemma 14. (i) Let S be a rational surface with a Bn-configuration. Then the
Weyl group W (Bn) acts on all Bn-exceptional systems on S simply transitively.

(ii) Let S be a Bn-surface. Then the Weyl group W (Bn) acts on all Bn-
configurations simply transitively.

Proof. It suffices to prove (i). Let (e1, e2, · · · , en+1) be a Bn-exceptional system
on S. By Definition 13, ei = lσ(i) or f − lσ(i) for i 6= 1, where σ is a permutation of
{2, · · · , n + 1}. Note that according to Remark 5, the Weyl group W (Bn) acts as
the group generated by permutations of the n pairs {(li, f − li) | i = 2, · · · , n + 1}
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and interchanging of li and f − li in each pair (li, f − li)i≥2. Then the result follows.
�

Let S(Σ, Bn) be the moduli space of pairs (S, Σ) where S is a Bn-surface (so
the blown-up points x1 = 0, x2, · · · , xn+1 are in general position), and Σ ∈ | −

KS|. Denote MBn

Σ the moduli space of flat Bn bundles over Σ. Then applying
Corollary 12 we have the following identification.

Proposition 15. (i) S(Σ, Bn) is embedded into MBn

Σ as an open dense subset.
(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, Bn) ∼= MBn

Σ ,

by including all rational surfaces with Bn-configurations.

Proof. The proof is similar to that in ADE cases [20]. Firstly, we have MBn

Σ
∼=

Λc(Bn) ⊗Z Σ/W (Bn), and Λc(Bn) ⊗Z Σ/W (Bn) ∼= Hom(Λ(Bn), Σ)/W (Bn) when
we fixed the square root of unity of Jac(Σ) ∼= Σ. Refer to Section 3 of [20] for the
detail.

Secondly, the restriction from S to Σ induces a map (again denoted by φ)

φ : S(Σ, Bn) → Hom(Λ(Bn), Σ)/W (Bn).

This map is well-defined, since by Lemma 14, choosing and fixing a Bn-configuration
on S is equivalent to choosing and fixing a system of simple roots ∆(Bn).

Thirdly, the map φ is injective. For this, we take a simple root system of Bn as

β1 = f − 2 l2 and βk = 2 αk+1 for 2 ≤ k ≤ n.

Then the restriction induces an element u ∈ Hom(Λ(Bn), Σ), which satisfies the
following system of linear equations

{

−2 x2 = p1,
2(xk − xk+1) = pk, k = 2, · · · , n.

where pi = u(βi). Obviously, the solution of this system of linear equations exists
uniquely for given pi with 1 ≤ i ≤ n.

Finally, the statement (ii) comes from Corollary 12 and the existence of the
solutions to the above system of linear equations. �

Remark 16. The situation here is very similar to that in the compactification
theory of the moduli space of (projective) K3 surfaces. A natural question there
is how to extend the global Torelli theorem to the boundary components of a
compactification [9][18][25][5]. If we consider the map φ : S(Σ, G) → MG

Σ [20]
for G = An, Dn or En as a type of period map, then the main result of [20] is
a type of global Torelli theorem. And Proposition 15 implies that we can extend
the theorem of Torelli type in Dn+1 case to a boundary component of the natural
compactification.

In the following, we let S = Yn+1(x1, · · · , xn+1) be the blow-up of F1 at n + 1
points. We can construct a Lie algebra bundle on S. Here we don’t need the
existence of the anti-canonical curve Σ. According to Section 2, we have a root
system of Bn type consisting of divisors on S:

R(Bn) , {±(f − 2 li), 2(li − lj),±2(f − li − lj) | i 6= j, 2 ≤ i, j ≤ n + 1}.
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Thus we can construct a Lie algebra bundle of Bn-type over S:

Bn , O
L

n
⊕

D∈R(Bn)

O(D).

The fiberwise Lie algebra structure of Bn is defined as follows (the argument here
is the same as that in [20]).

Fix the system of simple roots of Rn as

∆(Bn) = {α1 = f − 2l2, α2 = 2(l2 − l3), · · · , αn = 2(ln − ln+1)},

and take a trivialization of Bn. Then over a trivializing open subset U , Bn|U ∼=
U ×(C⊕n

⊕

α∈Rn
Cα). Take a Chevalley basis {xU

α , α ∈ Rn; hi, 1 ≤ i ≤ n} for Bn|U
and define the Lie algebra structure by the following four relations, namely, Serre’s
relations on Chevalley basis (see [15], p147):

(a) [hihj] = 0, 1 ≤ i, j ≤ n.
(b) [hix

U
α ] = 〈α, αi〉x

U
α , 1 ≤ i ≤ n, α ∈ Rn.

(c) [xU
α xU

−α] = hα is a Z-linearly combination of h1, · · · , hn.
(d) If α, β are independent roots, and β−rα, · · · , β+qα are the α-string through

β, then [xU
α xU

β ] = 0 if q = 0, while [xU
α xU

β ] = ±(r + 1)xU
α+β if α + β ∈ Rn.

Note that hi, 1 ≤ i ≤ n are independent of any trivialization, so the relation (a)
is always invariant under different trivializations. If Bn|V ∼= V × (C⊕n

⊕

α∈Rn
)

is another trivialization, and fUV
α is the transition function for the line bundle

O(α)(α ∈ Rn), that is, xU
α = fUV

α xV
α , then the relation (b) is

[hi(f
UV
α xV

α )] = 〈α, αi〉f
UV
α xV

α ,

that is,

[hix
V
α ] = 〈α, αi〉x

V
α .

So (b) is also invariant. (c) is also invariant since (fUV
α )−1 is the transition func-

tion for O(−α)(α ∈ Rn). Finally, (d) is invariant since fUV
α fUV

β is the transition

function for O(α + β)(α, β ∈ Rn).
Therefore, the Lie algebra structure is compatible with the trivialization. Hence

it is well-defined.

When the surface S contains Σ as an anti-canonical curve, restricting the above
bundle to this anti-canonical curve Σ, we obtain a Lie algebra bundle of Bn-type
over Σ, which determines uniquely a flat Bn bundle over Σ. On the other hand,
when x1 = 0, we can identify these two line bundles OΣ(l1) and OΣ(f − l1) when
restricting them to Σ. Recall the spinor bundles S+

n+1 and S−
n+1 of Dn+1 are defined

as follows[19][20] (here we omit the subscription n + 1 for brevity)

S+ =
⊕

D2=D·K=−1,D·f=1

O(D) and

S− =
⊕

T 2=−2,T ·K=0,T ·f=1

O(T ).

The identification of OΣ(l1) ∼= OΣ(f − l1) induces an identification of these two
spinor bundles S+ and S−, which is given by (of course, when restricted to Σ)

S+ ⊗O(−l1) ∼= S−.
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From representation theory, we know this determines a flat Bn bundle over Σ.
Conversely, if S+|Σ ∼= S−|Σ, then we must have x1 = 0 (up to renumbering).

For example, we consider the n = 2 case. Note that

S+|Σ ⊗ O(−(0)) = O ⊕O((−x1 − x2) − (0)) ⊕O((−x1 − x3) − (0))

⊕O((−x2 − x3) − (0)),

S−|Σ = O((0) − (x1)) ⊕O((0) − (x2)) ⊕O((0) − (x3))

⊕O(3(0) − (x1) − (x2) − (x3)).

Where for a point x ∈ Σ, (x) means the divisor of degree one, and O((x)) means
the line bundle determined by this divisor. Thus, S+

Σ ⊗O(−(0)) = S−
Σ implies that

x1 = 0 (up to renumbering). The general case follows from similar arguments.

2.2. The Cn bundles. We take G = Cn ⊂ G′ = A2n−1, where Cn = Sp(n) and

A2n−1 = SU(2n). They satisfy the relation G = (G′)Out(G′).
Let S = Z2n be a rational surface with an A2n−1-configuration (see [20] or

Figure 3) which contains Σ as a smooth anti-canonical curve. Recall [20] that Z2n

is a (successive) blow-up of F1 at 2n points x1, · · · , x2n on Σ, with corresponding
exceptional classes l1, · · · , l2n. Let f be the class of fibers in F1, and s be the
section such that 0 = s∩Σ is the identity element of Σ. The Picard group of Z2n is
H2(Z2n, Z), which is a lattice with basis s, f, l1, · · · , l2n. The canonical line bundle

K = −(2s + 3f −
2n
∑

i=1

li).

Recall

P2n−1 := {x ∈ H2(Z2n, Z) | x · K = x · f = x · s = 0}

is a root lattice of A2n−1 type. And we can take a simple root system of A2n−1 as

∆(A2n−1) = {αi = li − li+1 | 1 ≤ i ≤ 2n − 1}.

Note that [20] we have used the convention that
2n
∑

i=1

xi = 0.

Let ρ be the generator of Out(G′) ∼= Z2, such that ρ(αi) = α2n−i for i =
1, · · · , 2n− 1.

When the above simple root system is chosen, the pair (S, Σ) determines a
homomorphism u ∈ Hom(Λ(G′), Σ) which is given by the restriction map

u(α) = O(α)|Σ.

Lemma 17. Let u ∈ Hom(Λ(G′), Σ) be an element corresponding to a pair (S, Σ),
where S is a surface with an A2n−1-configuration. Then ρ · u = u if and only if
n(xi + x2n+1−i) = 0 for i = 1, · · · , n.

Proof. Since u is the restriction map: αi 7→ O(αi)|Σ, u(αi) = O(li − li+1)|Σ =
xi − xi+1 for i = 1, · · · , 2n− 1. Hence ρ · u = u ⇔ u(αi) = u(α2n−i) ⇔ xi − xi+1 =

x2n−i − x2n−i+1 ⇔ n(xi + x2n−i+1) = 0 since
2n
∑

i=1

xi = 0. �

As in [20], we denote S(Σ, G′) the moduli space of G′ = A2n−1-surfaces with a

fixed anti-canonical curve Σ, and S(Σ, G′) the natural compactification by including
all rational surfaces with A2n−1-configurations. From [20] we know that there is an

isomorphism φ : S(Σ, G′)
∼
−→ MG′

Σ .
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Corollary 18. For u ∈ MG
Σ →֒ (MG′

Σ )Out(G′), φ−1(u) ∈ S(Σ, G′) represents a
class of surfaces Z2n(x1, · · · , x2n) with xi + x2n+1−i = 0 for i = 1, · · · , n, and such
a surface corresponds to a boundary point in the moduli space, that is, φ−1(u) ∈

S(Σ, G′)\S(Σ, G′).

Proof. By Lemma 17, u ∈ (MG′

Σ )Out(G′) if and only if n(xi + x2n+1−i) = 0 for
i = 1, · · · , n. There are n2 connected components corresponding to n2 points of
order n on Σ. Since MG

Σ is the component containing the trivial G′ bundle, we have
xi+x2n+1−i = 0 for i = 1, · · · , n. Recall (§4, [20]) that Z2n(x1, · · · , x2n) ∈ S(Σ, G′)
if and only if 0, x1, · · · , x2n are in general position, which implies in particular
xi 6= −x2n+1−i. Hence φ−1(u) corresponds to a boundary point. �

Denote S = Z ′
2n(±x1, · · · ,±xn) the blow-up of F1 at n pairs of points (x1,−x1),

· · · , (xn,−xn) on Σ, with n pairs of corresponding exceptional divisors (l1, l
−
1 ), · · · ,

(ln, l−n ), where li (resp. l−i ) is the exceptional divisor corresponding to the blowing
up at xi (resp. −xi). Similar to the other cases, we give the following definitions.

Definition 19. A Cn-exceptional system on S is an n-tuple of pairs

((e1, e
−
1 ), · · · , (en, e−n ))

where (ei, e
−
i ) = (lσ(i), l

−
σ(i)) or (l−

σ(i), lσ(i)), i = 1, · · · , n, with σ is a permuta-

tion of 1, · · · , n. A Cn-configuration on S is a Cn-exceptional system ζCn
=

((e1, e
−
1 ), · · · , (en, e−n )) such that we can blow down successively e−1 ,· · · ,e−n , en,· · · ,e1

such that the resulting surface is F1 (see Figure 4).

We say that x1, x2, · · · , xn ∈ Σ ⊂ F1 are n points in general position, if they
satisfy

(i) they are distinct points, and
(ii) for any i, j, xi + xj 6= 0.
Equivalently, x1, x2, · · · , xn ∈ Σ ⊂ F1 are in general position if and only if any

Cn-exceptional system on S = Z ′
2n(±x1, · · · ,±xn) consists of smooth exceptional

curves. Such a surface is called a Cn-surface. Thus a Cn-surface must have a
Cn-configuration.

Lemma 20. (i) Let S be a surface with a Cn-configuration. Then the Weyl group
W (Cn) acts on all Cn-exceptional systems on S simply transitively.

(ii) Let S be a Cn-surface. Then the Weyl group W (Cn) acts on all Cn- config-
urations on S simply transitively.

Proof. It suffices to prove (i). According to Remark 5, the Weyl group W (Cn)
acts as the group generated by permutations of the n pairs {(li, l

−
i ) | i = 1, · · · , n}

and interchanging of li and l−i for each i. From this, we see that W (Cn) acts on all
G-configurations simply transitively. �

Denote S(Σ, Cn) the moduli space of pairs (Z ′
2n, Σ), where Z ′

2n is a Cn-surface,
that is, the blow-up of F1 at 2n points ±x1, · · · ,±xn such that x1, · · · , xn are in
general position. Denote MCn

Σ the moduli space of flat Cn bundles over Σ. By
Corollary 18 we have the following identification.

Proposition 21. (i) S(Σ, Cn) is embedded into MCn

Σ as an open dense subset.
(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, Cn) ∼= MCn

Σ ,
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by including all rational surfaces with Cn-configurations.

Proof. The proof is basically the same as that in Bn case. We only need to replace
the corresponding parts by the following two things. Firstly, according to Section
2, we can take a simple root system as

∆(Cn) = {βk = εk − εk+1, 1 ≤ k ≤ n − 1, βn = 2εn},

where εk = lk − l−k , 1 ≤ k ≤ n.
Secondly, the restriction map gives us the following system of linear equations:

{

4xn = pn,
2(xk − xk+1) = pk, k = 1, · · · , n − 1.

The solution of this system exists uniquely. �

Remark 22. As in Bn case (Remark 16), the above proposition is also similar to
extending the Torelli theorem to a certain boundary component.

Remark 23. Obviously, this description in Proposition 21 coincides with the well-
known description of flat Cn bundles over elliptic curves [12]. A flat Cn = Sp(n)
bundle over Σ corresponds to n pairs (unordered) of points (xi,−xi), i = 1, · · · , n
on Σ, uniquely up to isomorphism. And one pair (xi,−xi) will determine exactly

one point on CP
1, since the rational map determined by the linear system |2(0)|

induces a double covering from Σ onto CP
1. So the moduli space of flat Cn bundles

over Σ is just isomorphic to Sn(CP
1) = CP

n, the ordinary projective n space.

As in Bn case, we construct a Lie algebra bundle of Cn type over Z ′
2n:

Cn = O
L

n
⊕

D∈R(Cn)

O(D),

where R(Cn) is the root system of Cn according to Section 2:

R(Cn) = {±2(li − l−i ),±((li − l−i ) ± (lj − l−j )) | i 6= j, 1 ≤ i, j ≤ n}.

Recall [20] the first fundamental representation bundle of A2n−1 is

V2n−1 =

2n
⊕

i=1

O(li).

The condition that xi + x2n+1−i = 0, 1 ≤ i ≤ n is equivalent to an identification of
the following two fundamental representation bundles ∧i(V2n−1) and ∧2n−i(V2n−1)
with i = 1, · · · , n − 1, which is given by (of course, when restricted to Σ)

(∧i(V2n−1))
∗ ⊗ det(V2n−1) ∼= ∧2n−i(V2n−1).

Note that when restricted to Σ, the line bundle det(V2n−1) = O(l1 + · · · l2n) is
isomorphic to O(nf)|Σ = OΣ(2n(0)), by our assumption that

∑

xi = 0. This
identification determines uniquely a flat Cn bundle over Σ.

2.3. The G2 bundles. For G = G2, we take G′ = D4 = Spin(8) such that

G = (G′)Out(G′).
Let S = Y4 be a rational surface with a D4-configuration [20] which contains Σ

as a smooth anti-canonical curve. Recall ([20] or Figure 5) that Y4 is a (successive)
blow-up of F1 at 4 points x1, · · · , x4 on Σ, with corresponding exceptional classes
l1, · · · , l4. Let f be the class of fibers in F1, and s be the section such that 0 = s∩Σ
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is the identity element of Σ. The Picard group of Y4 is H2(Y4, Z), which is a lattice

with basis s, f, l1, · · · , l4. The canonical line bundle K = −(2s + 3f −
4
∑

i=1

li).

Recall
P4 := {x ∈ H2(Y4, Z) | x · K = x · f = 0}

is a root lattice of D4-type. And we can take a simple root system of D4 as

∆(D4) = {α1 = l1 − l2, α2 = f − l1 − l2, α3 = l2 − l3, α4 = l3 − l4}.

Let ρ ∈ Out(G′) ∼= S3 (the permutation group of 3 letters ) be the triality automor-
phism of order 3, such that ρ(α1) = α2, ρ(α2) = α4, ρ(α4) = α1, and ρ(α3) = α3.

When the above simple root system is chosen, the pair (S, Σ) determines a
homomorphism u ∈ Hom(Λ(G′), Σ) which is given by the restriction map

u(α) = O(α)|Σ.

Lemma 24. Let u ∈ Hom(Λ(G′), Σ) correspond to the pair (S, Σ), where S is
a surface with a D4-configuration. Then ρ · u = u if and only if 2x1 = 0 and
x1 + x4 = x2 + x3.

Proof. Since u is the restriction map: αi 7→ O(αi)|Σ, u(α1) = O(l1 − l2)|Σ =
x1 − x2, u(α2) = −x1 − x2, u(α4) = x3 − x4, and u(α3) = x2 − x3. Hence ρ · u = u
⇔ u(α1) = u(α2) = u(α4) ⇔ x1 − x2 = −x1 − x2 = x3 − x4 ⇔ 2x1 = 0 and
x1 + x4 = x2 + x3. �

Denote S(Σ, G′) the moduli space of G′ = D4-surfaces with a fixed anti-canonical

curve Σ, and S(Σ, G′) the natural compactification by including all rational surfaces

with D4-configurations. From [20] we know that S(Σ, G′)
∼
−→ MG′

Σ . Let φ be the
isomorphism.

Corollary 25. For u ∈ MG
Σ →֒ (MG′

Σ )Out(G′), φ−1(u) ∈ S(Σ, G′) represents
a class of surfaces Y4(x1, · · · , x4) with x1 = 0 and x4 = x2 + x3, and such a
surface corresponds to a boundary point in the moduli space, that is, φ−1(u) ∈

S(Σ, G′)\S(Σ, G′).

Proof. By Lemma 24, u ∈ (MG′

Σ )Out(G′) if and only if 2x1 = 0 and x1 + x4 =
x2 +x3. There are 4 connected components corresponding to 4 points of order 2 on
Σ. Since MG

Σ is the component containing the trivial G′ bundle, we have x1 = 0
and x4 = x2 + x3. Recall that Y4(x1, · · · , x4) ∈ S(Σ, G′) if and only if 0, x1, · · · , x4

are in general position, which implies in particular x1 6= 0. Hence φ−1(u) corre-
sponds to a boundary point. �

Denote S = Y ′
4(x1, · · · , x4) the blow-up of F1 at 4 points x1, · · · , x4 on Σ, with

x1 = 0 and x4 = x2 + x3. Let l1, · · · , l4 be the corresponding exceptional classes.
We give the following definition.

Definition 26. A G2-exceptional system on S is an ordered triple (e1, e2, e3, e4) of
exceptional divisors such that ei ·ej = 0 = ei ·f, i 6= j and y1 = 0, y4 = y2+y3 where
yi = ei ·Σ. A G2-configuration on S is a G2-exceptional system ζG2

= (e1, e2, e3, e4)
such that we can consider S as a blow-up of F1 at these 4 points y1 = 0, y2, y3, y4

on Σ, that is S = Y ′
4(y1 = 0, y2, y3, y4), with corresponding exceptional divisors

e1, e2, e3, e4. When S has a G2-configuration (of course Σ ∈ | − KS|), we call S a
(rational) surface with a G2-configuration. For S = Y ′

4(x1, · · · , x4) with x1 = 0 and
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x4 = x2 + x3, when x1,±x2,±x3,±x4 are distinct points on Σ, any G2-exceptional
system on S consists of exceptional curves. Such a surface is called a G2-surface.
So a G2-surface must have a G2-configuration. These four points x1, x2, x3, x4 ∈ Σ
are said to be in general position.

A G2-configuration is illustrated in Figure 6.

Lemma 27. (i) Let S = Y ′
4(x1, · · · , x4) with x1 = 0 and x4 = x2 + x3 be a surface

with a G2-configuration. Then the Weyl group W (G2) acts on all G2-exceptional
systems on S simply transitively.

(ii) Let S be a G2-surface. Then the Weyl group W (G2) acts on all G2-config-
urations on S simply transitively.

Proof. It suffices to prove (i). By an explicit computation, there are 12 G2-
configurations: (l1, l2, l3, l4), (f − l1, f − l2, f − l3, f − l4), (f − l1, f − l2, l4, l3),
(f − l1, l4, f − l2, l3), and so on. The rule is keeping the relation x2 +x3 = x4 fixed.
The Weyl group W (G2) is the automorphism group of the sub-root system A2 with
simple roots {3(l2 − l3), 3(l3 − (f − l4))}, so W (G2) ∼= Z2 ⋊ W (A2) = Z2 ⋊ S3.
We can also consider W (G2) as the subgroup of W (D4) generated by two elements
Sα1

Sα2
Sα4

and Sα3
, where Sα means the reflection with respect to a root α of

D4, according to Remark 5. Thus we can directly check that W (G2) acts on all
G2-exceptional systems simply transitively. �

Proposition 28. Let S(Σ, G2) be the moduli space of pairs (Y ′
4 , Σ) where Y ′

4 is a

G2-surface, and MG2

Σ be the moduli space of flat G2 bundles over Σ. Then we have

(i) S(Σ, G2) is embedded into MG2

Σ as an open dense subset.
(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, G2) ∼= MG2

Σ ,

by including all rational surfaces with G2-configurations.

Proof. We just note that only the following two things are different from their
counterparts of the proofs in Bn, Cn cases.

(i) Take a simple root system of G2 as (Remark 4)

∆(G2) = {β1 = f − 2l2 + l3 − l4, β2 = 3(l2 − l3)}.

(ii) Then the restriction to Σ gives us the following system of linear equations:
{

3x2 = −p1,
3(x2 − x3) = p2.

�

As before, we construct a Lie algebra bundle of G2-type over S = Y ′
4 . For brevity,

denote ε1 = l2, ε2 = l3, and ε3 = f − l4. Then

G2 = O
L

2
⊕

D∈R(G2)

O(D),

where R(G2) is the root system of G2:

R(G2) = {±3(εi − εj),±(2εi − εj − εk) | i 6= j 6= k, 1 ≤ i, j, k ≤ 3},

according to Remark 4.
Recall [19] the 3 fundamental representation bundles of rank 8 of D4 are defined

as:
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





















W4 =
⊕

C2=C·K=−1,C·f=0

O(C),

S+
4 =

⊕

D2=D·K=−1,D·f=1

O(D),

S−
4 =

⊕

T 2=−2,T ·K=0,T ·f=1

O(T ).

These conditions x1 = 0, x4 = x2 + x3 enable us to identify S+
4 , S−

4 and W4

when restricted to Σ, by

S+
4 ⊗O(−l1) ∼= S−

4 and S+
4
∼= W4 ⊗O(s).

And these identifications determine uniquely a flat G2 bundle over Σ. Conversely,
the identification of these three bundles restricted to Σ implies the conditions x1 = 0
and x4 = x2 + x3 (up to renumbering). Note that

W4|Σ =
⊕

OΣ(li)
⊕

OΣ(f − li) =
⊕

O((xi))
⊕

O((−xi)),

S−
4 |Σ =

⊕

i

O((0) − (xi))
⊕

j

O(3(0) −
∑

i6=j

(xi)), and

S+
4 |Σ = O((0))

⊕

i6=j

O((−xi − xj))
⊕

O((−
∑

xi)).

So W4|Σ = S−
4 implies x1 = 0, and W4|Σ = S+

4 implies x4 = x2 + x3.

2.4. The F4 bundles. First we recall some fundamental facts on E6 root systems
and cubic surfaces, which are of independent interest.

2.4.1. The root system of E6, revisited. The relation between the root system of
E6-type and smooth cubic surfaces in CP

3 has been studied for a very long time
[14][6][24]. There are 27 lines on such a cubic surface S (a curve on S is a line if
and only if it is an exceptional curve). And every E6-exceptional system on S is an
ordered 6-tuples of lines (e1, · · · , e6) which are pairwise disjoint. The Weyl group
W (E6) is the symmetry group of all E6-exceptional systems, that is, W (E6) acts
simply transitively on the set of all E6-exceptional systems. Now we consider the
unordered 6-tuple L = {e1, · · · , e6}. There are 72 such 6-tuples. This corresponds
to 36 Schläfli’s double-sixes {L; L′} [14]. In the following we consider a cubic
surface S as the blow-up of P2 at 6 points x1, · · · , x6 in general position, that is
S = X6(x1, · · · , x6), with corresponding exceptional curves l1, · · · , l6. Fix a simple
root system of E6 as

∆(E6) = {α1, · · · , α6},

where α1 = l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, and αi = li−1 − li, for
i = 4, 5, 6 [20].

Lemma 29. One double-six {L; L′} corresponds to exactly one positive root of E6.

Proof. First take L0 = {l1, · · · , l6}, then L′
0 = {l′1, · · · , l′6} = sα0

(L0) where
α0 = 2h −

∑

li is a positive root and l′i = sα0
(li) = 2h −

∑

j 6=i lj. {L0; L
′
0} forms

a double-six and α0(≻ 0) is uniquely determined by {L0; L
′
0}, since W (E6) acts

simply and transitively. If L = g(L0) with g ∈ W (E6), then {g(L0); g(L′
0)} is also

a double-six. Let g(L′
0) = Sα(g(L0)), then L′

0 = (g−1Sαg)(L0). So g−1Sαg = Sα0
.

Then Sα = gSα0
g−1 = Sg(α0). This implies α = ±g(α0). Take α ≻ 0. Now if
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α = α0, then by a result in page 44 of [16], g ∈ S6, that is, g is a permutation of
the six lines li’s. Thus {L; L′} and {L0; L

′
0} are the same one. �

Remark 30. Let ρ be an outer automorphism of E6 of order 2, such that ρ(α1) =
α6, ρ(α2) = α5 and ρ fixes other simple roots. Consider F4 as the fixed part of E6

by ρ. Then the coroot lattice Λc(F4) of F4 is

Λc(F4) = Λc(E6)
ρ

= Λ(E6)
ρ

= {ah +
∑

aili | a1 + a6 = a2 + a5 = a3 + a4 = −a}

= Z〈h − l1 − l2 − l3, l1 − l6, l2 − l5, l3 − l4〉

= Λ(D4).

And the Weyl group of F4 is

W (F4) = {w ∈ W (E6) | w preserves Λc(F4) = Λ(D4)}

= Aut(Λ(D4))

= S3 ⋊ W (D4).

Remark 31. If 3 lines e1, e2, e3 pairwise intersect, we say that they form a triangle.

Denote by ∆ = {e1, e2, e3} a (unordered) triangle, and by
−→
∆ = (e1, e2, e3) an

ordered triangle. Every line belongs to 5 triangles, so there are 27 · 5/3 = 45
triangles. And if {e1, e2, e3} is a triangle, then −K = e1 + e2 + e3. W (E6) acts
on all these 45 triangles transitively, and W (F4) is the isotropy subgroup of the
triangle ∆0 = {h− l1 − l6, h− l2 − l5, h− l3 − l4}. Moreover W (D4) is the isotropy

subgroup of the ordered triangle
−→
∆0 = (h − l1 − l6, h − l2 − l5, h − l3 − l4). The

reason is the following:
Let ∆ = {e1, e2, e3} and ∆′ = {f1, f2, f3} be any two triangles. Since K2 = 3,

the position of these two triangles must be one of the following two cases. (1) They
have a common edge and other edges don’t intersect. (2) Each edge of ∆ intersects
with exactly one edge of ∆′. So we just check two special triangles in above cases.
what remains to do is a direct checking.

From above we can easily write down the 45 (left or right) cosets of W (F4) in
W (E6).

2.4.2. F4 bundles and rational surfaces. For G = F4 we take G′ = E6, such that
F4 = (E6)

Out(E6).
Let S = X6(x1, · · · , x6) be a surface with an E6-configuration (Figure 7), that

is, S is a blow-up of P2 at 6 points x1, · · · , x6 ∈ Σ, where Σ ∈ | − KS |. Take the
simple root system ∆(E6) and ρ ∈ Out(E6) just as in Section 2.4.1.

Once a simple root system is fixed, the restriction from S to Σ induces a homo-
morphism u ∈ Hom(Λ(E6), Σ).

Lemma 32. Let u ∈ Hom(Λ(E6), Σ) be an element corresponding to a pair (S, Σ),
where S is a surface with an E6-configuration. Then ρ · u = u if and only if
x1 + x6 = x2 + x5 = x3 + x4.

Proof. Since u is induced by the restriction to Σ, u(α1) = O(l1 − l2)|Σ = x1 − x2,
u(α2) = x2 − x3, u(α5) = x4 − x5, u(α6) = x5 − x6. Therefore ρ · u = u ⇔
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u(α1) = u(α6), u(α2) = u(α5) ⇔ x1 + x6 = x2 + x5 = x3 + x4. �

Denote S(Σ, E6) the moduli space of G′ = E6-surfaces [20] with a fixed anti-

canonical curve Σ, and S(Σ, E6) the natural compactification by including all ra-
tional surfaces with E6-configurations. From [20] we know that there is an isomor-

phism φ : S(Σ, E6)
∼
−→ ME6

Σ . Thus we have

Corollary 33. For u ∈ MF4

Σ ⊂ (ME6

Σ )Out(E6), φ−1(u) ∈ S(Σ, E6) represents a
class of surfaces X6(x1, · · · , x6) with x1 + x6 = x2 + x5 = x3 + x4. �

Denote S = X ′
6(x1, · · · , x6) the blow-up of P2 at 6 points x1, · · · , x6 on Σ which

satisfies the condition x1 +x6 = x2 + x5 = x3 +x4, with corresponding exceptional
classes l1, · · · , l6. The condition x1 + x6 = x2 + x5 = x3 + x4 := p implies that the
three lines L16, L25 and L34 in P2 intersect at one points −p ∈ Σ, where Lij means
the line in P2 passing through these two points xi and xj . So after blowing up P2

at xi ∈ Σ, 1 ≤ i ≤ 6, the three (−1) curves h − l1 − l6, h − l2 − l5 and h − l3 − l4
intersect at one points −p ∈ Σ. So they form a special triangle (see Section 2.4.1).
As before, we give the following definition.

Definition 34. An F4-exceptional system on S = X ′
6 is a 6-tuple (e1, · · · , e6)

consisting of 6 exceptional divisors which are pairwise disjoint, such that y1 + y6 =
y2 + y5 = y3 + y4, where OΣ(yi) = O(ei)|Σ. And an F4-configuration ζF4

=
(e1, · · · , e6) just means an F4-exceptional system on S such that we can consider
S as a blow-up of P2 at 6 points y1, · · · , y6 with corresponding exceptional divisors
e1, · · · , e6. For S = X ′

6(x1, · · · , x6), when x1, · · · , x6 are in general position, any
F4-exceptional system on S consists of exceptional curves. Such a surface is called
an F4-surface.

So an F4-surface is automatically an E6-surface (namely, a del Pezzo surface
of degree 3). And any F4-exceptional system on an F4-surface is always an F4-
configuration. See Figure 8 for an F4-configuration.

According to the discussions in Section 2.4.1, the Weyl group W (F4) is the
automorphism group of the sub-root system of type D4 with simple roots {l1 −
l6, l2 − l5, l3 − l4, h − l1 − l2 − l3}, and W (F4) ∼= S3 ⋊ W (D4). Therefore we have

Lemma 35. (i) Let S = X ′
6 be a surface with an F4-configuration. Then the Weyl

group W (F4) acts on all F4-exceptional systems on S simply transitively.
(ii) Moreover, if S is an F4-surface, then the Weyl group W (F4) acts on all

F4-configurations on S simply transitively. �

Proposition 36. Let S(Σ, F4) be the moduli space of pairs (X ′
6, Σ) where X ′

6 is an

F4-surface containing Σ as an anti-canonical curve, and MF4

Σ be the moduli space
of flat F4 bundles over Σ. Then we have

(i) S(Σ, F4) is embedded into MF4

Σ as an open dense subset.
(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, F4) ∼= MF4

Σ ,

by including all rational surfaces with F4-configurations.

Proof. Firstly, we can take the simple root system of F4 as

∆(F4) = {β1, β2, β3, β4},
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where β1 = l1 − l2 + l5 − l6, β2 = l2 − l3 + l4 − l5, β3 = 2(h − l1 − l2 − l3), and
β4 = 2(l3 − l4), according to Remark 4.

Secondly, the restriction to Σ induces the following system of linear equations:






















x1 − x2 + x5 − x6 = p1,
x2 − x3 + x4 − x5 = p2,
2(−x1 − x2 − x3) = p3,
2(x3 − x4) = p4,
x1 + x6 = x2 + x5 = x3 + x4.

Since the determinant is non-zero, the result follows by the same argument as in
Bn case. �

The Lie algebra bundle of type F4 over X ′
6 can be constructed as (for brevity,

we denote ε1 = l2 − l3 + l4− l5, ε2 = l2 + l3− l4− l5, ε3 = 2h− 2l1− l2− l3− l4− l5,
and ε4 = 2h− 2l6 − l2 − l3 − l4 − l5)

F4 = O
L

4
⊕

D∈R(F4)

O(D),

where R(F4) is the root system of F4:

R(F4) = {±εi, ±(εi ± εj), ±
1

2
(ε1 ± ε2 ± ε3 ± ε4) | i 6= j}.

Remark 37. The 27 lines determine the 27-dimensional fundamental represen-
tation of E6. Restricted to Σ, they give us a representation bundle of rank 27
(of F4) over Σ. The weights associated to the 3 special lines h − l1 − l6, h −
l2 − l5, h − l3 − l4 restrict to zero and these 3 weights add to zero before restric-
tion (since (h − l1 − l6) + (h − l2 − l5) + (h − l3 − l4) = −K). The remain-
ing 24 weights associated to other 24 lines restrict to the 24 short roots of F4.
The 24 lines and a rank 2 bundle V determine the 26-dimensional irreducible
fundamental representation U of F4. Here V is determined as follows. Since
OΣ(h− l1 − l6) = OΣ(h− l2 − l5) = OΣ(h− l3 − l4) = OΣ((−p)), taking the trace,
we have the following exact sequence:

0 → ker(tr) → OΣ((−p))
L

3 → OΣ((−p)) → 0.

Then we take V = ker(tr).

For more details on the 26-dimensional fundamental representation of F4, one
can consult [1].

3. Conclusion

Let G be any simple, compact and simply connected Lie group. Then G is
classified into the following 7 types according to its Lie algebra.

(1) An-type, G = SU(n + 1);
(2) Bn-type, G = Spin(2n + 1);
(3) Cn-type, G = Sp(n);
(4) Dn-type, G = Spin(2n);
(5) En-type, n = 6, 7, 8;
(6) F4-type;
(7) G2-type.
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Among these, An, Dn and En are called of simply laced type, while Bn, Cn, F4

and G2 are called of non-simply laced type. And An, Bn, Cn, Dn are called classic
Lie groups, while En, F4 and G2 are called exceptional Lie groups.

We summarize our results in [20] and this paper as follows. Let Σ be a fixed
elliptic curve with identity 0 ∈ Σ. Let G be any compact, simple and simply
connected Lie groups, simply laced or not. Denote S(Σ, G) the moduli space of G-
surfaces containing a fixed anti-canonical curve Σ. Denote MG

Σ the moduli space
of flat G bundles over Σ. Then we have

Theorem 38. (i) We can construct Lie algebra Lie(G)-bundles over each G-
surface.

(ii) The restriction of these Lie algebra bundles to the anti-canonical curve Σ
induces an embedding of S(Σ, G) into MG

Σ as an open dense subset.

(iii) This embedding can be extended to an isomorphism from S(Σ, G) onto MG
Σ ,

where S(Σ, G) is a natural and explicit compactification of S(Σ, G), by including
all rational surfaces with G-configurations. �

Remark 39. (i) The result is known for G = En case (see [7][8][10][12]).
(ii) We have mentioned in the beginning of § 1 that there is another reduction

of the non-simply laced cases to simply laced cases. In fact, using this reduction,
we will obtain the same result, just following the steps as above.

According to Looijenga’s theorem [21][22], the moduli space S(Σ, G) is a weighted

projective space. Thus the compactification S(Σ, G) is a weighted projective space.

Conversely, we believe that the above identification between S(Σ, G) and S(Σ, G)
will give us another proof for Looijenga’s theorem. This is already done in En case
by [7][8][10][12] and so on.
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