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Curvature Flow
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ABSTRACT. In this article, we define a new class of middle dimensional submanifolds of a Hyperkähler
manifold which contains the class of complex Lagrangian submanifolds, and show that this larger class is
invariant under the mean curvature flow. Along the flow, the complex phase map satisfies the generalized
harmonic map heat equation. It is also related to the mean curvature vector via a first order differential
equation. Moreover, we proved a result on nonexistence of Type I singularity.

A hyperkähler manifold M is a Riemanninan manifold with holonomy Sp (n). It admits
a complex structure J and a holomorphic symplectic form �J ∈ �2,0 (M) because Sp (n) =
U (2n) ∩ Sp (2n,C). In fact it admits a 2-sphere family of such structures, called the twistor
family S

2. Hyperkähler geometry arises naturally in many moduli problems, see, for example,
[1, 7] and it is also intimately related to physical theory with N = 4 supersymmetries, see,
for example, [6]. A submanifold L in M is called a complex Lagrangian submanifold if it is
Lagrangian with respect to�J for some J ∈ S

2. Since�J is a complex form, Lagrangian respect
to �J implies two independent conditions. This is more restrictive than the usual meaning of
being Lagrangian in a symplectic manifold. Complex Lagrangian submanifold with respect to
�J is always a J -complex submanifold of M . In particular, it is calibrated by the Kähler form
ωJ and an absolute minimal submanifold in M . The geometry of such submanifolds are studied
in [8, 9], for instance.

Since we have a 2-sphere family of holomorphic symplectic structures �J with J ∈ S
2 on

M , we could relax the assumption to the tangent spaces

TxL ⊂ TxM
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to be a complex Lagrangian subspace with respect to �J(x) with varying J (x) ∈ S
2. Such an

L is called a hyper-Lagrangian submanifold of M and the above map x → J (x) is called the
complex phase map

J : L → S
2 .

It is not difficult to see that this notion is defined for a larger class of manifolds, namely
Quaternionic-Kähler manifolds, i.e., Riemannian manifolds with holonomy Sp (n)Sp (1). For
example, CP

n ⊂ HP
n and any surface in an oriented four manifold are examples of hyper-

Lagrangian submanifolds.

In this article we study the geometry of hyper-Lagrangian submanifolds in a hyperkähler
manifold. We prove the formula relating the mean curvature vector H of L and the complex
phase map J ,

∂J = i

2
H��J . (1.1)

In particular, if L is minimal and the cohomology class [J ] ∈ H 2 (L,Z) vanishes, then L is a
complex Lagrangian submanifold of M . This class [J ] is called the complex Maslov index of L.

We show that the mean curvature flow of a hyper-Lagrangian submanifold L inM preserves
the hyper-Lagrangian condition. To prove this, we need to couple the mean curvature flow of
L with a harmonic map flow for J and derive appropriate estimates in order to use a maximum
principle argument as in [11].

We also show that if the image of J lies in a hemisphere of S
2, then this remains so under

the mean curvature flow. Furthermore, Type I singularity will not occur in this situation.

When the hyperkähler manifold is of dimension four, or more generally a Kähler Einstein four
manifold, these results were obtained by Jingyi Chen [2] and Mutao Wang [13] independently.
In this case, the above hemisphere condition is equivalent to the surface being a symplectic
submanifold in the Kähler Einstein four manifold.

Another well-behaved class of middle dimensional submanifolds under mean curvature flow
are Lagrangian submanifolds in a Calabi-Yau manifold[2, 11, 12, 13]. The results there are
completely analogous to those we obtain in this article. This is not a coincidence as our results
are the quaternion version of their complex geometric statements. The comparisons of geometry
defined over different normed algebras were studied by the first author in [10]. The following
table compares the corresponding notions used in this article:

Complex C Quaternion H

Lagrangian Submanifold Hyper-Lagrangian Submanifold
∩ ∩

Kähler Manifold Quaternionic-Kähler Manifold
Special Lagrangian Submanifold Complex Lagrangian Submanifold

∩ ∩
Calabi-Yau Manifold Hyperkähler Manifold

Remark that given any hyper-Lagrangian submanifold L in a hyperkähler manifold M ,
suppose that Re

(
�J(x)

)
is constant for all x ∈ L. ThenL is also a Lagrangian submanifold inM ,
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regarded as a Calabi-Yau manifold via a natural inclusion Sp (n) ⊂ SU (2n). In this circumstance,
our results for hyper-Lagrangian submanifolds in hyperkähler manifolds are indeed the same as
the corresponding results for Lagrangian submanifolds in Calabi-Yau manifolds.

Our article will be organized as follows. We will first prove some formulae which are needed
in the rest of the article in Section 2. In Section 3, we study the mean curvature flow and show
that the hyper-Lagrangian condition is preserved. After this, we study the compatibility condition
for a hyper-Lagrangian submanifold and prove the formula (1.1) in Section 4. Finally, we give
a brief discussion on the regularity of mean curvature flow of a hyper-Lagrangian submanifold
in Section 5.

2. Terminologies and basic computations

Let (M4n, g) be a hyperkähler manifold, L2n ⊂ M be a submanifold of middle dimension,
and F : L → M be the inclusion. Let Jα , α = 1, 2, 3 be parallel complex structures such that
J1J2 = J3 = −J2J1. Then any J = ∑3

α=1 aαJα with constant a = (a1, a2, a3) ∈ S
2 is also a

parallel complex structure. Let J be the set of all J ∈ �(F−1(End(TM)) such that

J (p) =
3∑
α=1

aα(p)Jα with (a1(p), a2(p), a3(p)) ∈ S
2 .

Note that J can be identified with the set of smooth maps a : L → S
2.

For any J ∈ J we follow the definitions in [11] to define

(1) the 2-form

ω(J )(·, ·) = g(J ·, ·) ,
(2) an operator N(J ) : TpL → (TpL)

⊥ by

N(J )v := (J v)⊥, and

(3) a tensor on L:

h(J )(u, v,w) := −g(N(J )(u),∇vw
) = g

(∇v(N(J )(u)), w
)
.

In order to simplify notations, we will writeω,N and h forω(J ),N(J ), and h(J ), respectively, if
the dependence on J is clear. And we will reserve the notationsωα ,Nα , and hα forω(Jα),N(Jα),
and h(Jα), respectively, once a choice of {Jα}3

α=1 is fixed. It is then obvious thatω = ∑
aαω(Jα),

N = ∑
aαN(Jα), and h = ∑

aαh(Jα); and the construction is independent on the choice of the
orthogonal set of parallel complex structures Jα , α = 1, 2, 3.

Let xi , i = 1, . . . , 2n, and yκ , κ = 1, . . . , 4n be local coordinates on L and M , re-
spectively. Let ei = dF(∂xi ). Then {ei} is a basis for T L in F−1TM . And we will denote
hijk = h(J )ijk = h(J )(ei, ej , ek) for J ∈ J and hα,ijk = hα(ei, ej , ek). Similarly, we will
write ωα,ij = ωα(ei, ej ).

Suppose that N(J ) is an isomorphism in a coordinate neighborhood. Then η(J )ij :=
g(N(J )(ei), N(J )(ej )) is invertible and we will denote the inverse by η(J )ij . As before, we will
write ηij and ηij for the purpose of simplifying notations.
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Most of the equations used in [11] are still valid for general J ∈ J . In particular, we have

N(ei) = Jei −
2n∑
j=1

ω
j
i ej , (2.1)

ηij = gij + ωki ωkj . (2.2)

∇ek ej = �nkj en − ηmnhmkjN(en) . (2.3)

Note that only quantities in the second term on the right-hand side of the Equation (2.3) depends
on J . We also have

∇lhikj − ∇khilj = Rijkl + ηmnωsn
(
hmljhski − hmkjhsli

)
+ ηmnωsi

(
hmkjhnls − hmljhnks

)
, (2.4)

where Rijkl = g(R(ek, el)ej , N(ei)), and

Rijkl = Rijkl + ηmn
(
hmikhnjl − hmilhnjk

)
. (2.5)

However, when ω is no longer parallel or closed, other equations have to be modified.

Proposition 2.1. For any orthogonal set of parallel complex structures {Jα}3
α=1 and any J =∑3

α=1 aαJα , the corresponding h = h(J ) and ω = ω(J ) satisfy

hkij = hikj + ∇jωik −
3∑
α=1

(∇j aα)ωα,ik .

Proof. The proof is straightforward by the corresponding proposition of [11]. As each Jα
is parallel,

hkij =
∑
α

aαhα,kij

=
∑
α

aα(hα,ikj + ∇jωα,ik)

= hikj +
∑
α

aα∇jωα,ik

= hikj + ∇jωik −
∑
α

(∇j aα)ωα,ik .

Proposition 2.2. For any J ∈ J , the corresponding 2-form ω = ω(J ) satisfies

∇k∇jωli − ∇l∇jωki = ∇j∇iωlk + Rsiljωks + Rsijkωls − Rsjklωsi + ∇j (dω)lik .

Proof. The proof is exactly the same as in [11]. The only modification is that ω is not closed,
so the last term does not vanish in general.

Proposition 2.3. For any orthogonal set of parallel complex structures {Jα}3
α=1 and any J =
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α=1 aαJα , we have

∇lhkij − ∇khlij = Rijkl + ∇j∇iωlk + ωsi Rsjkl + ωskRsilj + ωsl Rsijk

+ ηmnωsn
(
hmljhski − hmkjhsli

)
+
∑
α

(∇i∇j aα)ωα,kl

+
∑
α

(∇iaα∇jωα,kl + ∇j aα∇iωα,kl)

+
∑
α

(∇laα∇jωα,ik + ∇kaα∇jωα,li ) .

Proof. By Proposition 2.1,

∇lhkij − ∇khlij = ∇l
(
hikj + ∇jωik −

∑
α

(∇j aα)ωα,ik
)

− ∇k
(
hilj + ∇jωil −

∑
α

(∇j aα)ωα,il
)

= (∇lhikj − ∇khilj
)+ (∇k∇jωli − ∇l∇jωki

)
+
∑
α

[∇k ((∇j aα)ωα,il)− ∇l
(
(∇j aα)ωα,ik

)]
.

The first two terms can be handled using Proposition 2.2 and Equation (2.4) as in [11] and we obtain

∇lhkij − ∇khlij = Rijkl + ∇j∇iωlk + ωsi Rsjkl + ωskRsilj + ωsl Rsijk

+ ηmn(hmljhski − hmkjhsli)

+ ∇j (dω)lik +
∑
α

[∇k ((∇j aα)ωα,il)− ∇l
(
(∇j aα)ωα,ik

)]
. (2.6)

Since ωα are closed for all α = 1, 2, 3, we have

∇j (dω)lik =
∑
α

∇j (daα ∧ ωα)lik

=
∑
α

∇j
[
(∇laα)ωα,ik − (∇iaα)ωα,lk + (∇kaα)ωα,li

]
=

∑
α

[
(∇j∇laα)ωα,ik + (∇j∇iaα)ωα,kl + (∇j∇kaα)ωα,li

]
+
∑
α

[
(∇laα)∇jωα,ik + (∇iaα)∇jωα,kl + (∇kaα)∇jωα,li

]
.

On the other hand,

∑
α

[∇k ((∇j aα)ωα,il)− ∇l
(
(∇j aα)ωα,ik

)]
=

∑
α

[
(∇k∇j aα)ωα,il + ∇j aα∇kωα,il

]
−
∑
α

[
(∇l∇j aα)ωα,ik + ∇j aα∇lωα,ik

]
=

∑
α

[
(∇k∇j aα)ωα,il − (∇l∇j aα)ωα,ik + ∇j aα∇iωα,kl

]
.
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Therefore, the extra terms in the last line of Equation (2.6) can be written as

∇j (dω)lik +
∑
α

[∇k ((∇j aα)ωα,il)− ∇l
(
(∇j aα)ωα,ik

)]
=

∑
α

(∇j∇iaα)ωα,kl +
∑
α

(∇iaα∇jωα,kl + ∇j aα∇iωα,kl)

+
∑
α

(∇laα∇jωα,ik + ∇kaα∇jωα,il) ,

which is the desired result.

3. Mean curvature flow

In this section, we are going to prove that hyper-Lagrangian submanifolds are preserved under
mean curvature flow. Our proof is similar to that of Smoczyk [11]. However, the defining almost
complex structure J of the hyper-Lagrangian submanifold and the 2-forms here corresponding
the symplectic form are no longer parallel or closed. This introduces a lot of extra terms and a
need of an estimate of the covariant derivative of the corresponding symplectic form. Moreover,
unlike the situation in [11], the harmonic map heat flow equation is not just a consequence of the
mean curvature flow, it will also be used to obtain the necessary estimate.

3.1. Mean curvature flow

As in [11], the assumption that N is an isomorphism ensures that the mean curvature vector
of L can be written as

H = −ηmngklhmklN(en) .
From now on, the corresponding mean curvature form with respect to J is defined by

σH := H�ω

which can be written in term of coordinates as follow

σH = Hi dx
i := gklhikl dx

i .

Similarly, for α = 1, 2, 3, we write

σHα := H�ωα = Hα,i dx
i .

In terms of the coefficients of σH , the mean curvature vector can be written as

H = −ηmnHmN(en) .
Note that all the above depend on the J ∈ J except the mean curvature vector.

Now, we assume that F : L → M is deformed under the mean curvature flow

d

dt
Ft = H, F0 = F ,

which can be written as
d

dt
Ft = −ηmnHmN(en), F0 = F
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for any J ∈ J . Suppose that the mean curvature flow exists for t ∈ [0, T ) and the metric at
time t is gt . Let a(t, p) : [0, T )× L → S

2 be a smooth mapping and J (t) = ∑
α aα(t, p)Jα be

the corresponding deformation of the tensor J along the mean curvature flow. We are going to
calculate the deformation of the corresponding 2- form ω(t) on Lt .

Proposition 3.1. Suppose that J (t) = ∑
α aα(t, p)Jα is a deformation of J = J (0) in J

along the mean curvature flow. Then the corresponding 2-form ω(t) = ω(J (t)) satisfies

d

dt
ωij = Rs

s

ji
+ �ωij

+ ωskRs
k
ji + ωsjRs

k
ik + ωsi Rs

k
kj

+ ηmnωsn
(
hmi

khsjk − hmj
khsik

)
+
∑
α

[
(∂taα − �aα)ωα,ij − 2∇kaα∇kωα,ij

]
+
∑
α

(
hα,kkj∇iaα − hα,kki∇j aα

)
.

Proof. Since ωα are parallel, we have for α = 1, 2, 3 that

∂

∂t
ωα,ij = (

dσHα
)
ij

+ (H� dωα)ij = (
dσHα

)
ij
.

Hence,

d

dt
ωij =

∑
α

[
∂aα

∂t
ωα,ij + aα

(
dσHα

)
ij

]

=
∑
α

[
∂aα

∂t
ωα,ij + (

d
(
aασHα

))
ij

− (
daα ∧ σHα

)
ij

]

=
∑
α

[
∂aα

∂t
ωα,ij − (

daα ∧ σHα
)
ij

]
+ (dσH )ij .

Using Proposition 2.3, we have

(dσH )ij = Rs
s

ji
+ �ωij

+ ωskRs
k
ji + ωsjRs

k
ik + ωsi Rs

k
kj

+ ηmnωsn
(
hmi

khsjk − hmj
khsik

)
+
∑
α

[
(�aα)ωα,ji + 2∇kaα∇kωα,ji

]
+
∑
α

(∇iaα∇kωα,kj − ∇j aα∇kωα,ki
)
.

Therefore, together with

∑
α

(daα ∧ σHα )ij =
∑
α

[
(∇iaα)Hα,j − (∇j aα)Hα,i

]
,
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we have

d

dt
ωij = Rs

s

ji
+ �ωij

+ ωskRs
k
ji + ωsjRs

k
ik + ωsi Rs

k
kj

+ ηmnωsn
(
hmi

khsjk − hmj
khsik

)
+
∑
α

[
(∂taα − �aα)ωα,ij − 2∇kaα∇kωα,ij

]
+
∑
α

[∇iaα(∇kωα,kj −Hα,j )− ∇j aα(∇kωα,ki −Hα,i)
]
.

Finally, by Proposition 2.1, for each α = 1, 2, 3, we have

Hα,i = hα,ikk = hα,kik + ∇kωα,ki .

Putting this in the above and note that hα,kik = hα,kki , we have proved the proposition.

Lemma 3.2. Let a : L → S
2 be the map corresponding to some J ∈ J with respect to an

orthogonal set of complex structures {Jα}3
α=1. Then we have

∑
α

(∇iaα)hα,kkj = ηlshlkj
∑
α

[
(a × ∇ia)αωα,ks + ωns (∇iaα)ωα,kn

]
,

where a × ∇ia is the cross product of a = (aα) and ∇ia = (∇iaα) by regarding them as vectors
in 3-space.

Proof. By definition

hα,kkj = −g(Nαek,∇ek ej
)

= −g((Jαek)⊥,∇ek ej
)

= −g(Jαek, (∇ek ej
)⊥)

= −g(Jαek, ηlshlkjN(es))
= −ηlshlkj g

(
Jαek, J es − ωns en

)
= ηlshlkj

[
ωα,knω

n
s − g(Jαek, J es)

]
= ηlshlkj

[
ωα,knω

n
s −

∑
β

aβg(Jαek, Jβes)

]
.

Therefore

∑
α

(∇iaα)hα,kkj = ηlshlkj
∑
α

(∇iaα)ωα,knωns

− ηlshlkj
∑
α,β

(aβ∇iaα)g(Jαek, Jβes)
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= ηlshlkj
∑
α

(∇iaα)ωα,knωns

− ηlshlkj
∑
α

(aα∇iaα)g(Jαek, Jαes)

+ ηlshlkj
∑
β<α

(aα∇iaβ − aβ∇iaα)g(JαJβek, es)

= ηlshlkj
∑
α

(∇iaα)ωα,knωns

− ηlshlkj gks
∑
α

(aα∇iaα)

+ ηlshlkj
∑
β<α

(aα∇iaβ − aβ∇iaα)g(JαJβek, es) .

Using the fact that
∑
α a

2
α = 1, we have

∑
α aα∇iaα = 0 and hence∑

α

(∇iaα)hα,kkj = ηlshlkj
∑
α

(∇iaα)ωα,knωns

+ ηlshlkj
∑
β<α

(aα∇iaβ − aβ∇iaα)g(JαJβek, es) .

This is the desired result.

Lemma 3.3. Let {Jα}3
α=1 be an orthogonal set of complex structures of a hyperkähler manifold

(M4n, ḡ) such thatN2 = N(J2) andN3 = N(J3) are isomorphisms at each point of a submanifold
L2n ⊂ M . Then

∇iω1,kl = −η3
mnh3,mikω2,ln + η3

mnh3,mikω1,ljω
j

3,n

− η2
mnh2,milω3,kn − η2

mnh2,milω1,kjω
j

2,n .

Moreover, if L is compact, then there is a constant C > 0 such that

|∇ω1| ≤ C

√
|ω2|2 + |ω3|2 .

Proof. Let ei be an orthonormal basis ofT L in a neighborhood of a pointp. Then by definition,

∇iω1,kl = (∇eiω1)(ek, el) = ei(ω1(ek, el))− ω1(∇ei ek, el)− ω1(ek,∇ei el) .
Since ω1 is parallel, we have

∇iω1,kl = ω1
(∇ei ek, el

)+ ω1
(
ek,∇ei el

)− ω1(∇ei ek, el)− ω1(ek,∇ei el)
= ω1

((∇ei ek
)⊥
, el
)+ ω1

(
ek,
(∇ei el

)⊥)
.

Using J1 = J2J3,

∇iω1,kl = g
(
J2J3

(∇ei ek
)⊥
, el
)+ g

(
J2J3ek,

(∇ei el
)⊥)

= −g(J2el, J3
(∇ei ek

)⊥)− g
(
J3ek, J2

(∇ei el
)⊥)

.
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Note that (∇ei ek
)⊥ = −ηmn2 h2,mikN2(en) = −η3

mnh3,mikN3(en) ,

we have

∇iω1,kl = g
(
J2el, J3

(
η3
mnh3,mikN3(en)

))+ g
(
J3ek, J2

(
η2
mnh2,milN2(en)

))
= η3

mnh3,mikg(J2el, J3N3(en))+ η2
mnh2,milg(J3ek, J2N2(en)) .

Then by the definition of the operator N , we have

J2N2(en) = J2
(
J2en − ω

j

2,nej
) = −en − ω

j

2,nJ2ej ,

and similarly for J3. Putting this into the above, we conclude that

∇iω1,kl = η3
mnh3,mik

[
g(J2el,−en)− ω

j

3,ng(J2el, J3ej )
]

+ η2
mnh2,mil

[
g(J3ek,−en)− ω

j

2,ng(J3ek, J2ej )
]

= −η3
mnh3,mikω2,ln − η3

mnh3,mikω1,ljω
j

3,n

− η2
mnh2,milω3,kn − η2

mnh2,milω1,kjω
j

2,n .

This completes the proof of the first part of the lemma and the last part of the lemma follows im-
mediately.

3.2. Main theorems and harmonic map heat flow

Theorem 3.4. Let (M4n, g) be a hyperkähler manifold. Let Lt ⊂ M4n, t ∈ [0, T ) for some
T > 0, be a family of middle dimensional submanifolds given by the mean curvature flow.
Suppose that for each point (t, p) ∈ Lt , there is a parallel complex structure J of M such that,
for all parallel complex structure K of M orthogonal to J ,

g(K·, ·)|TpLt = 0 ,

and that J is smooth in (t, p). Then the defining map J = J (t, x) from [0, T ) × L0 to S
2, the

space of parallel complex structures of M , satisfies the harmonic map heat flow equations with
variable metric

∂tJ = �t J ,

where �t J is the tension field of J with respect to the induced metric gt on Lt .

Proof. Let to ∈ [0, T ) and p be a point in Lto . Then J1 = J (to, p) is a fixed parallel complex
structure of M . We may complete this to an orthogonal set {Jα}3

α=1, i.e., J1J2 = J3 = −J2J1.
With respect to this basis, we can use standard spherical coordinates on S

2 to represent J in a
neighborhood of (to, p) ∈ [0, T )× L0 by

J = cos θ sin ϕJ1 + sin θ sin ϕJ2 + cosϕJ3 ,

where θ and ϕ are functions of (t, x) in a neighborhood of (t0, p). Then it is easy to see that

K = − sin θJ1 + cos θJ2 ,

and
JK = − cos θ cosϕJ1 − sin θ cosϕJ2 + sin ϕJ3
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are complex structures orthogonal to J . Let’s denote these three combinations by J = ∑
α aαJα ,

K = ∑
α bαJα , JK = ∑

α cαJα and write a = (a1, a2, a3) and so on. Then the map J is
represented by

a(t, x) = (cos θ sin ϕ, sin θ sin ϕ, cosϕ) .

By a straightforward calculation, we have

a(to, p) = (1, 0, 0), b(to, p) = (0, 1, 0), c(to, p) = (0, 0, 1) ,

∇b(to, p) = (−∇θ |(to,p), 0, 0), ∇c(to, p) = (∇ϕ|(to,p), 0, 0) ,

∂tb(to, p) = (−∂t θ |(to,p), 0, 0), ∂t c(to, p) = (∂tϕ|(to,p), 0, 0) ,

b × ∇b|(to,p) = (0, 0,∇θ |(to,p)), c × ∇c|(to,p) = (0,∇ϕ|(to,p), 0) ,

�b(to, p) = (− �θ,−|∇θ |2, 0
)∣∣
(to,p)

,

and
�c(to, p) = (� ϕ, 2∇θ · ∇ϕ,−|∇ϕ|2)∣∣

(to,p)
.

In the above, ∇ and � denote the gradient and the Laplacian with respect to the induced metric
on Lto ; b × ∇b and c × ∇c the cross products by regarding b, ∇b, c, and ∇c as 3-vectors.

By assumption, both g(K·, ·) and g(JK·, ·) vanish on TxLt for any (t, x) in a neighborhood
of (to, p). In particular, ω2 = ω3 = 0 at (to, p). Then by applying Proposition 3.1 to the 2-form
g(K·, ·), we have at the point (to, p),

0 = [(∂t − �)b1]ω1,ij − 2∇kb1∇kω1,ij

+
∑
α

(hα,kkj∇ibα − hα,kki∇j bα) .

Note that we have used the fact that
∑
s R

s

sji = 0 whenever g(K·, ·) ≡ 0 by the flatness of the
Ricci curvature, see [11]. On the other hand, Lemmas 3.3 and 3.2 imply

∇ω1,ij = 0 ,

and ∑
α

hα,kkj∇ibα = 0 .

Hence, we conclude that
0 = [(∂t − �t )b1]ω1,ij .

Since ω2 = ω3 = 0, we have ω1 �= 0. Therefore,

(∂t − �t )b1 = 0 ,

which is equivalent to
(∂t − �t )θ = 0 at (to, p) .

Similarly, by applying Proposition 3.1, and Lemmas 3.3 and 3.2 to the symplectic form g(JK·, ·),
we have

(∂t − �t )ϕ = 0 at (to, p) .

All together, we have proved that J satisfies

(∂t − �t )J = 0

as a mapping from [0, T )× L0 to S
2.
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Note that we have used the same notation to denote the Laplacian of functions and the tension
field of a map. However, as we have seen, no confusion will be created.

Lemma 3.5. Suppose that (M4n, g) is a hyperkähler manifold and Lt ⊂ M4n, t ∈ [0, T )
for some T > 0, is a family of compact middle dimensional submanifolds given by the mean
curvature flow. Let J = J (t, x) ∈ J be a harmonic map heat flow along the mean curvature
flow Lt , i.e., (∂t − �t )J = 0; and let K = K(t, p) be the parallel complex structure of M
corresponding to J (t, p) constructed in the proof of Theorem 3.4. If for each point (t, p) ∈ Lt ,
N(K), N(JK) : TpLt → (TpLt )

⊥ are isomorphisms, then there is a constant c > 0 such that

∂

∂t
|�|2 ≤ �t |�|2 + c|�|2 ,

where �(·, ·) = g(K·, ·)+ ig(JK·, ·).

Proof. Lets fix a point (t0, p) and use the same notations and conventions as in the proof of
the Theorem 3.4. Then as in [11], we use the flatness of the Ricci curvature, Proposition 3.1, and
Lemma 3.2 to deduce that, there is a constant A1 > 0 such that

∂

∂t
|ω(K)|2 ≤ A1|ω(K)|2 + 2〈ω(K),�ω(K)〉

+ 2
∑
α

[(∂tbα − �bα)〈ωα, ω(K)〉 − 2∇kbα〈∇kωα, ω(K)〉]

+ 2η(K)lsh(K)lkj
∑
α

(b × ∇ib)α〈ωα, ω(K)〉 ,

where b × ∇i is the cross product by regarding b and ∇b as 3-vectors.

Evaluating at (t0, p), we have

(∂t − �)|ω(K)|2 ≤ A2|ω2|2 + 2|∇θ |2|ω2|2
+ 4∇kθ〈∇kω1, ω2〉 + 2ηls2 h2,lkj∇iθ〈ω3, ω2〉 ,

for some constant A2 > 0. Since Lt are compact, we can apply the last part of Lemma 3.3 to
conclude that there is a constant A3 > 0 such that

(∂t − �)|ω(K)|2 ≤ A3
(|ω2|2 + |ω3|2

)
.

Similarly, we have at the point (t0, p),

(∂t − �)|ω(JK)|2 ≤ B2|ω3|2 − 4∇θ · ∇ϕ〈ω2, ω3〉
+ 2|∇ϕ|2|ω3|2 − 4∇kϕ〈∇kω1, ω3〉
+ 2ηls3 h3,lkj∇iϕ〈ω2, ω3〉 ,

for some constant B2 > 0. Hence, there exists a constant B3 > 0 such that

(∂t − �)|ω(JK)|2 ≤ B3
(|ω2|2 + |ω3|2

)
.

Combining these two inequalities, we have shown that

(∂t − �)|�|2 ≤ c|�|2

with c = A3 + B3.
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Next, we prove the main theorem of this section, namely, the mean curvature flow preserves
the hyper-Lagrangian condition.

Theorem 3.6. Let (M4n, g) be a hyperkähler manifold. Let Lt ⊂ M4n, t ∈ [0, T ) for some
T > 0, be a family of middle dimensional submanifolds given by the mean curvature flow.
Suppose that L0 ⊂ M is hyper-Lagrangian. Then Lt is hyper-Lagrangian for all t ∈ [0, T ).

Proof. Consider the initial value problem for the generalized harmonic map heat flow to S
2

along the mean curvature flow:{
(∂t − �t )� = 0, on (0, T )× L0

�(0, x) = J (x) .

The short time existence implies that there is a T1 ∈ (0, T ) such that solution �(t, x) = J (t, x)

exists for t ∈ [0, T1). Recall that if L0 is hyper-Lagrangian, then for each point (0, p) ∈ L0,
there is a parallel complex structure J of M such that, for all parallel complex structure K of M
orthogonal to J ,

g(K·, ·)|TpL0 = 0 .

So we can pick K(t, x) satisfying the condition in the Lemma 3.5 and conclude that the corre-
sponding complex 2-form � satisfies{

(∂t − �)|�|2 ≤ c|�|2, on (0, T1)× L0

|�|2(0, p) ≡ 0 .

Therefore maximum principle implies that |�|2 ≡ 0, by the assumption that L0 is hyper-
Lagrangian. This proves the result for a short time.

Now using the same notation as in the proof of the theorem, we see that

g(K·, ·) ≡ g(JK·, ·) ≡ 0

along Lt . Therefore at any point (t, p) ∈ [0, T1)×L0 and in the basis and coordinates chosen as
in the proof of the theorem, we have

∇(bαωα) = ∇(cαωα) = 0 .

This implies, at the point (t, p),

∇b1ω1 + ∇ω2 = ∇c1ω1 + ∇ω3 = 0 .

So
|∇θ | ≤ |∇ω2| and |∇ϕ| ≤ |∇ω3| .

Noting that ∇jωα,ik = hα,kij − hα,ikj and |hα,kij | ≤ |∇ei ej |, we conclude that |∇θ | and |∇ϕ|
are bounded in terms of the geometry of mean curvature flow Lt as long as it exists. Hence, if
T1 < T , we can find subsequence of J (t) converges to some element J in J as t → T1. It is
clear that J enjoys the same property on LT1 as J (t) on Lt , for t < T1. This implies that LT1 is
also hyper-Lagrangian.

In conclusion, we have proved that the set of t ∈ [0, T ) with hyper-Lagrangian Lt is both
open and closed in [0, T ). This, of course, implies that Lt is hyper-Lagrangian for all t ∈ [0, T ).
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4. Hyper-Lagrangian submanifolds

Let (L2n, g) be a hyper-Lagrangian submanifold in a hyperkähler manifold (M4n, ḡ) with
respect to some J (x) in 
2+,x and K(x) : L → 
2+,x be a smooth map such that K(x) is
orthogonal to J (x) for each x ∈ L. Then by the hyper-Lagrangian condition, we have

ωK |L = 0, ∀x ∈ L .
Suppose that {ei}2n

1 is an orthonormal frame field for T L around a point x = p satisfying

Je2ν−1 = e2ν for ν = 1, . . . , n ,

then {fi = Kei}2n
i=1 is an orthonormal frame field for the normal bundle satisfying

Jf2ν−1 = −f2ν, for ν = 1, . . . , n .

For the frame {ei, fi}, we denote{
e′ν = 1

2 (e2ν−1 − ie2ν), e′′ν = 1
2 (e2ν−1 + ie2ν) ,

f ′
ν = 1

2 (f2ν−1 + if2ν), f ′′
ν = 1

2 (f2ν−1 − if2ν) .

Then it is obvious that {
Je′ν = ie′ν, J e′′ν = −ie′′ν ,
Jf ′

ν = if ′
ν, Jf ′′

ν = −if ′′
ν ,{

Ke′ν = f ′′
ν , Ke′′ν = f ′

ν ,

Kf ′
ν = −e′′ν , Kf ′′

ν = −e′ν .
The frame fields {e′ν, f ′

µ} defined in the above will be referred as the canonical frame adapted to
(J,K) around the point p.

Correspondingly, we set{
φν = ζ2ν−1 + iζ2ν, φν = ζ2ν−1 − iζ2ν,

ψν = ϕ2ν−1 − iϕ2ν, ψν = ϕ2ν−1 + iϕ2ν ,

for the frame {ζ1, . . . , ζ2n, ϕ1, . . . , ϕ2n} dual to {e1, . . . , e2n, f1 . . . , f2n}. Then the
J -holomorphic symplectic form is given by

�J = ωJK − iωK = −i
n∑
ν=1

φν ∧ ψν ,

and the structural equations implies

dζi = ∑2n

j=1 ζij ∧ ζj −∑2n
j=1�ji ∧ ϕj

dϕi = ∑2n
j=1�ij ∧ ζj +∑2n

j=1 ϕij ∧ ϕj ,
for some 1-forms ζij , �ij , and ϕi satisfying

ζij + ζji = 0 and ϕij + ϕji = 0 .
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Along the submanifold L, there exist hijk , symmetric in j, k, such that

�ij =
2n∑
k=1

hijkζk .

It is clear that if we choose a normal coordinates around the point p, then the hijk defined here
coincides with the h(K)ijk defined in the previous section at the point p. Finally, the mean
curvature vector is of course given by

H = −
2n∑
i=1

(
2n∑
k=1

hikk

)
fi .

From the above, the covariant derivatives of the orthonormal frames are given by


∇̄ei = ∑2n
j=1 ζij ⊗ ej −∑2n

j=1�ji ⊗ fj

∇̄fi = ∑2n
j=1�ij ⊗ ej +∑2n

j=1 ϕij ⊗ fj ,

where ζij , �ij , and ϕij are 1-forms. If we set


Aµν = 1
2

[(
ζ2µ−1,2ν−1 + ζ2µ,2ν

)− i
(
ζ2µ,2ν−1 − ζ2µ−1,2ν

)]
,

Bµν = 1
2

[(
ζ2µ−1,2ν−1 − ζ2µ,2ν

)− i
(
ζ2µ,2ν−1 + ζ2µ−1,2ν

)]
,

Cµν = 1
2

[(
�2µ−1,2ν−1 −�2µ,2ν

)− i
(
�2µ,2ν−1 +�2µ−1,2ν

)]
,

Dµν = 1
2

[(
�2µ−1,2ν−1 +�2µ,2ν

)− i
(
�2µ−1,2ν −�2µ,2ν−1

)]
,

Eµν = 1
2

[(
ϕ2µ−1,2ν−1 + ϕ2µ,2ν

)+ i
(
ϕ2µ,2ν−1 − ϕ2µ−1,2ν

)]
,

Fµν = 1
2

[(
ϕ2µ−1,2ν−1 − ϕ2µ,2ν

)+ i
(
ϕ2µ,2ν−1 + ϕ2µ−1,2ν

)]
,

for ν, µ = 1, . . . , n, then straightforward calculation using ζij + ζji = 0 and ϕab + ϕba = 0
shows for any µ, ν = 1, . . . , n,{∇̄e′ν = ∑

µ

(Aνµ ⊗ e′µ + Bνµ ⊗ e′′µ
)−∑

µ

(Cµν ⊗ f ′
µ + Dµν ⊗ f ′′

µ

)
,

∇̄f ′
ν = ∑

µ

(Cνµ ⊗ e′µ + Dνµ ⊗ e′′µ
)+∑

µ

(Eνµ ⊗ f ′
µ + Fνµ ⊗ f ′′

µ

) (4.1)

and {
Aµν + Aµν = Bνµ + Bµν = 0 ,

Eµν + Eνµ = Fµν + Fνµ = 0 .
(4.2)

In order to prove the compatibility condition, for any fixed p ∈ L, we set J1 = J (p),
J2 = K(p), and J3 = J1J2. Then {Jα}3

α=1 is an orthogonal set of parallel complex structures
and they will be called the canonical basis adapted to (J,K) at p. At the point p, we have

J1 =
n∑
ν=1

(e2ν−1 ∧ e2ν − f2ν−1 ∧ f2ν)

J2 =
n∑
ν=1

(e2ν−1 ∧ f2ν−1 + e2ν ∧ f2ν)

J3 =
n∑
ν=1

(f2ν ∧ e2ν−1 − f2ν−1 ∧ e2ν)



358 Naichung Conan Leung and Tom Y. H. Wan

in the canonical identification between 2-forms and 2-vectors.

Now we can state the following.

Theorem 4.1. Let L2n be a hyper-Lagrangian in a hyperkähler manifold M4n with defining
map J . Let K : L → S

2 be any smooth map orthogonal to J at every point of L. Then for
any fixed point p ∈ L, the coefficient 1-forms of the structural equations for the canonical frame
adapted to (J,K) around p satisfy the following conditions at the point p:

Aµν + Aµν = 0 , (4.3)

Bνµ = 0, (4.4)

Cνµ = Cµν , (4.5)

Dνµ = 1

2
δνµ (da3 + i da2) , (4.6)

Eµν + Eνµ = 0 , (4.7)

Fνµ = 0 , (4.8)

Eνµ = Aνµ + iδνµ db3 , (4.9)

where aα and bα are, respectively, the components of J andK with respect to the canonical basis
adapted to (J,K) at p.

Moreover, the differential of J at p as a map into S
2 is given by

dJp = 2 ( ImDνν J2 + ReDνν J3) for any ν = 1, . . . , n .

Proof. We note that (4.3) and (4.7) are just (4.2). To prove the other conditions, we differentiate
Je′ν = ie′ν to obtain

(∇J )e′ν + J
(∇e′ν) = i∇e′ν

for all ν = 1, . . . , n. Let Jα be the canonical basis adapted to (J,K) at p, and aα , bα be the
coefficients of J = ∑

α aαJα and K = ∑
α bαJα , respectively. Then by the hyper-Lagrangian

condition, ∇J at the point p is a linear combination of J2 = K(p) and J3. Therefore, we have
the following.

∇J = da2J2 + da3J3

at the point p. Putting this and the structural equations in the above equation, we obtain at the
point p,

(da2 − i da3)f
′′
ν = 2iBνµe′′µ − 2iDνµf

′′
µ ,

which implies the Equations (4.6) and (4.4).

Similarly, applying the same argument to Jf ′
ν = if ′

ν and Ke′′ν = f ′
ν , we obtain (4.6) again

and all other Equations (4.8), (4.5), (4.9) together with the identity da2 + db1 = 0 at p. The last
identity is automatically satisfied by the definition of aα and bα .

The final part is an obvious conclusion of (4.6) and the proof is completed.

The theorem indicates that hyper-Lagrangian is a strong condition which imposes a lot of
restrictions on the structural equations. As a consequence, we have the following.

Corollary 4.2. Let L2n be a hyper-Lagrangian in a hyperkähler manifold M4n and for any
p ∈ L, J (p) be the almost complex structure at p such that �J (p)|TpL = 0. Then J induces an
integrable Kähler structure on L with holomorphic normal bundle.
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Proof. From Theorem 4.1, we have

{∇e′ν = (∇̄e′ν)T = ∑
µAµν ⊗ e′µ ,

∇⊥f ′
ν = (∇̄f ′

ν

)⊥ = ∑
µ Eνµ ⊗ f ′

µ .

The conclusions follow immediately.

In the neighborhood of the point p, it is more convenient to use the following local repre-
sentation of the map J

�(x) = a1(x)+ ia2(x)

1 − a3(x)

via stereographic projection. Then the theorem implies that at the point p,

Dνµ = 1

2
δνµ d� . (4.10)

Using �, the conditions on the second fundamental form can be written as in the following.

Corollary 4.3. Let L2n be a hyper-Lagrangian in a hyperkähler manifold M4n with defining
map J . Let K : L → S

2 be any smooth map orthogonal to J at every point of L. Then for any
fixed point p ∈ L, �2µ−1,2ν−1, �2µ,2ν , �2µ−1,2ν , �2µ,2ν−1 are symmetric in µ, ν; and

{
�2µ−1,2ν−1 +�2µ,2ν = 1

2δµν Re (d�)

�2µ−1,2ν −�2µ,2ν−1 = − 1
2δµν Im (d�) ,

where {�ij } is the second fundamental form in the canonical frame adapted to (J,K) at p.

Proof. By definition, we have

�2µ−1,2ν−1 = Re
(Cµν + Dµν

)
,

�2µ,2ν = Re
(−Cµν + Dµν

)
,

�2µ−1,2ν = Im
(−Cµν − Dµν

)
,

�2µ,2ν−1 = Im
(−Cµν + Dµν

)
.

Therefore, Equation (4.5) and (4.6) imply that all four 1-forms listed are symmetric in µ, ν. And
the two equations follow immediately by adding and subtracting corresponding equations.

Corollary 4.4. Let L2n be a hyper-Lagrangian in a hyperkähler manifold M4n with defining
map J . Let K : L → S

2 be any smooth map orthogonal to J at every point of L. Then for any
fixed point p ∈ L, the second fundamental form {hijk} in the canonical frame adapted to (J,K)
at p satisfies

hijk = hjik for {i, j} �= {2µ− 1, 2µ} for any µ,

and

h2µ−1,2µ,k = h2µ,2µ−1,k − Im (d�(ek)) .

Moreover, for any µ, ν,

h2µ−1,2ν−1,k + h2µ,2ν,k = δµν Re (d�(ek)) .
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Proof. It is immediately from the symmetries of � that hijk = hjik if i + j is even. If i + j

is odd, then we consider h2µ−1,2ν,k − h2ν,2µ−1,k . By the symmetries of �2µ−1,2ν and equation
for �2µ−1,2ν −�2µ,2ν−1 we have

h2µ−1,2ν,k − h2ν,2µ−1,k = h2µ−1,2ν,k − h2µ,2ν−1,k = −1

2
δµνIm (d�(ek)) .

So we conclude that h2µ−1,2ν,k = h2µ,2ν−1,k if µ �= ν. Otherwise, we have

h2µ−1,2µ,k = h2µ,2µ−1,k − Im (d�(ek)) .

This completes the proof of the first part. The second part follows immediately from the corre-
sponding equation for �.

Note that the formula for commuting i, j in hijk in this corollary can also be obtained from
Proposition 2.1.

It is interesting to compare the result in this corollary with the complete symmetry of all
three indices of the second fundamental form of a special Lagrangian submanifold in a Calabi-Yau
manifold. In our case, the second fundamental form of a hyper-Lagrangian does not have the
complete symmetry in all three indices in general. However, the corollary shows that the second
fundamental form has a lot of symmetry which is sufficient to implies the first-order equation on
� relating ∂� to the mean curvature vector H and the holomorphic symplectic form �J .

If we denote d�p(ek) = Pk − iQk , then

Pk = h11k + h22k = h33k + h44k = · · · = h2n−1,2n−1,k + h2n,2n,k

and
Qk = h12k − h21k = h34k − h43k = · · · = h2n−1,2n,k − h2n,2n−1,k

for all k = 1, . . . , 2n. And we have

d�p =
2n∑
k=1

(Pk − iQk)ζk .

In terms of the forms φν and φν , this is given by

d�p = 1

2

∑
ν

[
(P2ν−1 −Q2ν)− i(P2ν +Q2ν−1)

]
φν

+ 1

2

∑
ν

[
(P2ν−1 +Q2ν)+ i(P2ν −Q2ν−1)

]
φν .

Hence, one concludes that

∂� = 1

2

∑
ν

[
(P2ν−1 −Q2ν)+ i(P2ν +Q2ν−1)

]
φν .

Now we can prove the following.

Theorem 4.5. Let L2n be a hyper-Lagrangian submanifold in a hyperkähler manifold M4n

and for any p ∈ L, J (p) be the almost complex structure at p such that �J (p)|TpL = 0. Then

H��J + 2i∂J = 0 ,
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where H is the mean curvature vector of L in M .

Proof. We continue to work on the local representation� of the map J : L → S
2. The mean

curvature vector is

H = −
2n∑
j=1

(
2n∑
k=1

hjkk

)
fj

= −
n∑

µ=1

2n∑
k=1

[
(h2µ−1,kk − ih2µ,kk)f

′
µ + (h2µ−1,kk + ih2µ,kk)f

′′
µ

]
.

Therefore,

H��J = iH�
n∑

µ=1

φµ ∧ ψµ

= −i
n∑

µ=1

2n∑
k=1

φµ(h2µ−1,kk − ih2µ,kk)

= −i
n∑

µ=1

n∑
ν=1

φµ
[
(h2µ−1,2ν−1,2ν−1 + h2µ−1,2ν,2ν)−i(h2µ,2ν−1,2ν−1 + h2µ,2ν,2ν)

]
.

If µ �= ν, then by Corollary 4.4 and the symmetry of the last two index, one has

h2µ−1,2ν−1,2ν−1 + h2µ−1,2ν,2ν = h2µ,2ν−1,2ν−1 + h2µ,2ν,2ν = 0 .

Hence, all the cross terms in the sum vanish and we have

H��J = −i
n∑

µ=1

φµ
[
(h2µ−1,2µ−1,2µ−1 + h2µ−1,2µ,2µ)− i(h2µ,2µ−1,2µ−1 + h2µ,2µ,2µ)

]
.

Note that for any µ,

P2µ−1 −Q2µ = (h2µ−1,2µ−1,2µ−1 + h2µ,2µ,2µ−1)− (−h2µ−1,2µ,2µ + h2µ,2µ−1,2µ)

= h2µ−1,2µ−1,2µ−1 + h2µ−1,2µ,2µ ,

and

P2µ +Q2µ−1 = (h2µ−1,2µ−1,2µ + h2µ,2µ,2µ)+ (h2µ,2µ−1,2µ−1 − h2µ−1,2µ,2µ−1

= h2µ,2µ−1,2µ−1 + h2µ,2µ,2µ .

Therefore, we have

H��J + 2i∂� = 0 .

By the theorem, we immediately conclude the following.

Corollary 4.6. Let L2n be a hyper-Lagrangian submanifold in a hyperkähler manifold M4n

and for any p ∈ L, J (p) be the almost complex structure at p such that �J (p)|TpL = 0. Then
L is minimal if and only if J is anti-holomorphic.
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This corollary includes the case of complex Lagrangian submanifolds. In this case, J is
a constant.

In the case that L is in fact a Lagrangian with respect to a fixed ωJo . We may choose J2 to
be the fixed Jo. Then at the point p ∈ L, there is a function ψ : L → R with ψ(p) = π/2 such
that�(x) = sinψ(x)J1 + cosψ(x)J3. It follows immediately that d� = −dψ at x = p. These
imply thatQk = 0 for all k and dψ = −∑k Pkζk . On the other hand, the holomorphic symplectic
form atp is given by�J = ω3−iω2. SoH��J = H�ω3−iH�ω2 and by Theorem 4.5, we have

−H�ω3 + i (H�ω2)

= 2i∂�

= i
∑
ν

(P2ν−1 − iP2ν)φν

= i
∑
ν

(P2ν−1 − iP2ν)(ζ2ν−1 + iζ2ν)

=
∑
ν

[
(P2νζ2ν−1 − P2ν−1ζ2ν)+ i(P2ν−1ζ2ν−1 + P2νζ2ν)

]
.

Therefore
H�ω2 + dψ = 0 ,

which implies that ψ is in fact the phase map up to a constant. Moreover, we have an addi-
tional equation

H�ω3 =
∑
ν

(P2ν−1ζ2ν − P2νζ2ν−1) .

5. A remark on regularity

Finally, we would like to make one remark about the regularity of the mean curvature flow of
hyper-Lagrangian submanifolds under a natural condition on the associated map J . It was proved
by M. T. Wang in [13] that a symplectic surface in a four-dimensional Kähler-Einstein manifold
remains symplectic and does not develop any Type I singularity along the mean curvature flow.
If the Kähler-Einstein is in fact hyperkähler, then a surface being symplectic is equivalent to the
condition that the image of the map J is contained in a hemisphere. To see this, we observe that
any surfaceL in a four-dimensional hyperkähler manifold is always hyper-Lagrangian. Therefore,
there is a J (x) = ∑3

α=1 aα(x)Jα , with a = (a1, a2, a3) ∈ S
2 and an orthogonal set of parallel

complex structures {Jα}3
α=1 such that J (TxL) = TxL for all x ∈ L. In a neighborhood of any

point x ∈ L, we may choose an orthonormal frame for T L of the form {e1, e2 = Je1}. Then

ω1,12 = ḡ(J1e1, e2) = a1 ∀x ∈ L .
Therefore, a1 > 0 if and only if L is symplectic with respect to ω1. This shows the required
equivalence. Therefore Wang’s result can be rephrased as: If the image of the map J on L
contained in a hemisphere, then the image J on Lt remains in the same hemisphere and does not
develop any Type I singularity along the mean curvature flow. In the following, we will see that the
proof in [13] actually can be applied to the higher dimensional hyper-Lagrangian submanifolds
and gives the following.

Theorem 5.1. Let (M4n, g) be a hyperkähler manifold. Let Lt ⊂ M4n, t ∈ [0, T ) for some
T > 0, be a family of middle dimensional submanifolds given by the mean curvature flow.
Suppose thatL0 ⊂ M is hyper-Lagrangian and the image of the corresponding map J : L0 → S

2
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is contained in a hemisphere. Then the image of J : [0, T )× L0 → S
2 is contained in the same

hemisphere and the mean curvature flow does not develop any Type I singularity.

Proof. By Theorems 3.4 and 3.6, Lt is hyper-Lagrangian for each t ∈ [0, T ) and J (t, x)
satisfies the harmonic map heat flow which can be written as

(∂t − �)aα = |∇a|2aα, α = 1, 2, 3 ,

where aα are components of J as a map into S
2 ⊂ R

3. If J (L0) is contained in a hemisphere
which may be assumed to be {a ∈ S

2 | a1 > 0}. Then we have a1(x) > 0 for all x ∈ L0.
Applying maximum principle to the harmonic map heat flow, we conclude that a1(t, x) > 0 for
all (t, x) ∈ [0, T )× L0. This proves the first part of the theorem.

To see the second part, we observed that Lt is hyper-Lagrangian for all t . Theorem 4.5
implies that

H��J + 2i∂� = 0 .

Hence,
|H |2 = 2|∂�|2 ≤ 2|∇a|2 .

This estimate implies

(∂t − �)a1 ≥ 1

2
|H |2a1 .

Then standard argument using a1 > 0 imply the nonexistence of Type I singularity, see, for
example, [5], or the proof of Proposition 5.2 of [13].

The same argument is also applied to Lagrangian submanifold in a Calabi-Yau manifold
(M,ω,�) with ∗Re� > 0. Firstly, it was proved by Smoczyk [11] that it remains Lagrangian
along the mean curvature flow. Then Wang showed in [13], see also [14], that the condition
∗Re� > 0 is preserved and the flow does not develop any Type I singularity using the same ar-
gument.
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