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Hyper-Lagrangian Submanifolds of
Hyperkahler Manifolds and Mean
Curvature Flow

By Naichung Conan Leung and Tom Y. H. Wan

ABSTRACT.  In this article, we define a new class of middle dimensional submanifolds of a Hyperkdhler
manifold which contains the class of complex Lagrangian submanifolds, and show that this larger class is
invariant under the mean curvature flow. Along the flow, the complex phase map satisfies the generalized
harmonic map heat equation. It is also related to the mean curvature vector via a first order differential
equation. Moreover, we proved a result on nonexistence of Type I singularity.

A hyperkihler manifold M is a Riemanninan manifold with holonomy Sp (n). It admits
a complex structure J and a holomorphic symplectic form Q; € Q%9 (M) because Sp (n) =
U (2n) N Sp (2n, C). In fact it admits a 2-sphere family of such structures, called the twistor
family S?. Hyperkihler geometry arises naturally in many moduli problems, see, for example,
[1, 7] and it is also intimately related to physical theory with N = 4 supersymmetries, see,
for example, [6]. A submanifold L in M is called a complex Lagrangian submanifold if it is
Lagrangian with respect to Q7 for some J € S?. Since Q2 is a complex form, Lagrangian respect
to € implies two independent conditions. This is more restrictive than the usual meaning of
being Lagrangian in a symplectic manifold. Complex Lagrangian submanifold with respect to
2 is always a J-complex submanifold of M. In particular, it is calibrated by the Kéhler form
wy and an absolute minimal submanifold in M. The geometry of such submanifolds are studied
in [8, 9], for instance.

Since we have a 2-sphere family of holomorphic symplectic structures Q; with J € S? on
M, we could relax the assumption to the tangent spaces
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to be a complex Lagrangian subspace with respect to €2 with varying J (x) € S?. Such an
L is called a hyper-Lagrangian submanifold of M and the above map x — J (x) is called the
complex phase map

J:L—>$%.

It is not difficult to see that this notion is defined for a larger class of manifolds, namely
Quaternionic-Kihler manifolds, i.e., Riemannian manifolds with holonomy Sp (n) Sp (1). For
example, CP" C HP" and any surface in an oriented four manifold are examples of hyper-
Lagrangian submanifolds.

In this article we study the geometry of hyper-Lagrangian submanifolds in a hyperkihler
manifold. We prove the formula relating the mean curvature vector H of L and the complex
phase map J,

9] = %HJQJ. (1.1)

In particular, if L is minimal and the cohomology class [J] € H? (L, Z) vanishes, then L is a
complex Lagrangian submanifold of M. This class [J] is called the complex Maslov index of L.

We show that the mean curvature flow of a hyper-Lagrangian submanifold L in M preserves
the hyper-Lagrangian condition. To prove this, we need to couple the mean curvature flow of
L with a harmonic map flow for J and derive appropriate estimates in order to use a maximum
principle argument as in [11].

We also show that if the image of J lies in a hemisphere of S?, then this remains so under
the mean curvature flow. Furthermore, Type I singularity will not occur in this situation.

When the hyperkihler manifold is of dimension four, or more generally a Kéhler Einstein four
manifold, these results were obtained by Jingyi Chen [2] and Mutao Wang [13] independently.
In this case, the above hemisphere condition is equivalent to the surface being a symplectic
submanifold in the Kihler Einstein four manifold.

Another well-behaved class of middle dimensional submanifolds under mean curvature flow
are Lagrangian submanifolds in a Calabi-Yau manifold[2, 11, 12, 13]. The results there are
completely analogous to those we obtain in this article. This is not a coincidence as our results
are the quaternion version of their complex geometric statements. The comparisons of geometry
defined over different normed algebras were studied by the first author in [10]. The following
table compares the corresponding notions used in this article:

Complex C Quaternion H
Lagrangian Submanifold Hyper-Lagrangian Submanifold
N N
Kihler Manifold Quaternionic-K#hler Manifold
Special Lagrangian Submanifold | Complex Lagrangian Submanifold
N N
Calabi-Yau Manifold Hyperkihler Manifold

Remark that given any hyper-Lagrangian submanifold L in a hyperkédhler manifold M,
suppose that Re (2 (x)) is constant for all x € L. Then L is also a Lagrangian submanifold in M,
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regarded as a Calabi-Yau manifold via a natural inclusion Sp (n) C SU (2#n). In this circumstance,
our results for hyper-Lagrangian submanifolds in hyperkihler manifolds are indeed the same as
the corresponding results for Lagrangian submanifolds in Calabi-Yau manifolds.

Our article will be organized as follows. We will first prove some formulae which are needed
in the rest of the article in Section 2. In Section 3, we study the mean curvature flow and show
that the hyper-Lagrangian condition is preserved. After this, we study the compatibility condition
for a hyper-Lagrangian submanifold and prove the formula (1.1) in Section 4. Finally, we give
a brief discussion on the regularity of mean curvature flow of a hyper-Lagrangian submanifold
in Section 5.

2. Terminologies and basic computations

Let (M an g) be a hyperkihler manifold, L?" C M be a submanifold of middle dimension,
and F : L — M be the inclusion. Let J,, o = 1,2, 3 be parallel complex structures such that

J1Jo = J3 = —JoJi. Thenany J = Zz=1 ayJy With constant a = (a1, az, a3) € S? is also a

parallel complex structure. Let 7 be the set of all J € I'(F ~Y(End(T M)) such that

3
J(p) =Y _au(p)Jy with (ai(p).ax(p).a3(p)) € S*.

a=1
Note that 7 can be identified with the set of smooth mapsa : L — s2.

For any J € J we follow the definitions in [11] to define

(1) the 2-form

(2) anoperator N(J) : T,L — (T,,L)J- by
N(v = (Jv)t, and

(3) atensoron L:
h(J)(u, v, w) = —g(N ()W), Vow) = (Vo (N ()W), w) .

In order to simplify notations, we will write w, N and & for w(J), N(J), and h(J), respectively, if
the dependence on J is clear. And we will reserve the notations wy, Ny, and h,, for w (Jy), N(Jy),
and h(Jy), respectively, once a choice of {Jy }3: | is fixed. Itis then obvious that w = > agw(Jy),
N =) ayN(Jy),and h = )" ayh(Jy); and the construction is independent on the choice of the
orthogonal set of parallel complex structures J,, @ = 1, 2, 3.

Let x{,i = 1,...,2n, and y€, k = 1,...,4n be local coordinates on L and M, re-
spectively. Let ¢; = dF(0y;). Then {¢;} is a basis for TL in F “17M. And we will denote
hijx = h(J)ijk = h(J)(ej,ej,ex) for J € J and hy jjk = hy(e;, ej, er). Similarly, we will
write wy jj = wy(e;, ;).

Suppose that N(J) is an isomorphism in a coordinate neighborhood. Then n(J);; =

8(N(J)(ei), N(J)(ej)) is invertible and we will denote the inverse by 1 (J ). As before, we will
write 7;; and n*/ for the purpose of simplifying notations.
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Most of the equations used in [11] are still valid for general J € J. In particular, we have

2n
N(ei)=J€i—Zw{€j, 2.1
j=1
Nij = gij + @ wyj . 2.2)
Veej =T3en — 1" b N (en) . 2.3)

Note that only quantities in the second term on the right-hand side of the Equation (2.3) depends
on J. We also have

Vihixj — Vihi; = Rijki + 0"} (hmijhsei — hmiihsii)
+ 0" @} (hmkjhnis — Bmijhaks) - (2.4)

where Eijkl = §(E(ek, e;)ej, N(e;)), and
Rijii = Rijit + 0™ (Amikhnji — hmithnji) - (2.5)
However, when w is no longer parallel or closed, other equations have to be modified.

Proposition 2.1.  For any orthogonal set of parallel complex structures {J, }3:1 and any J =
Zi:l ay Jy, the corresponding h = h(J) and w = w(J) satisty

3
hiij = hixj + Vjwik — Z(Vjao,)wa’,-k :

a=1

Proof.  The proof is straightforward by the corresponding proposition of [11]. As each J,
is parallel,

hiij = Zaaha,kij
o
= Zaa(hoz,ikj + Vjwg,ik)
o
= hiyj+ Zaavjwa,ik
o
= hjgj + Vo — Z(Vjaa)wa,ik . L

o

Proposition 2.2. Forany J € J, the corresponding 2-form w = w(J) satisfies
ViVjwii — ViVjori = VViog + Rjjos + Rjjors — Rigosi + Vi (dw)ir -

Proof. The proof is exactly the same as in [11]. The only modification is that w is not closed,
so the last term does not vanish in general. L]

Proposition 2.3.  For any orthogonal set of parallel complex structures {Ja}izl and any J =
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Zzzl aq Jy, we have
Vihij — Vihiij = Riju + VjViow + of Ryji + o} Ryitj + of Ryiji
+ 0" @), (hmijhski — hmkjhsii)
+ Y (ViViaw)ou ki
o

+ ) (ViagVjoex + VaaViowx)

o

+ Z(Vlaavjwa,ik + ViagViwg i) .

o

Proof. By Proposition 2.1,

Vihiij — Vihiij = 'V, (hikj + Vjwix — Z(Vjaa)wa,ik>
o

— Vi (hi[j + Vjwi — Z(Vjaoz)wa,il)
o
= (Vihixj — Vkhiij) + (Vi Vjwi — ViVjog)
+ Y [Vi ((Viaw)owit) = Vi ((Viaw)ow.ix)] -
o

The first two terms can be handled using Proposition 2.2 and Equation (2.4) asin [11] and we obtain
Vihkij — Vihiij = Riju + VjViow + of Ryjk + @} Rsitj + @f Ryijk
+ ™" (hmljhski - hmkjhsli)

+ Vido)ix + Y [Vi (Viaw)ow,it) — Vi ((Vjae)ow,ir)] - (2.6)
o
Since w,, are closed for all « = 1, 2, 3, we have

Vidoyix = Y Vjlday Awa)iik
o

= Z Vj [(Vlaol)wol,ik - (Viaa)wa,lk + (Vkaa)wa,li]

o

= Z [(Vjvlaa)wa,ik + (Vjviaa)wa,kl + (Vjvkaa)wa,li]

o

+ Z [(Vlaa)vjwa,ik + (Viaa)vjwoz,kl + (Vkaa)vjwa,li] .

o

On the other hand,

Z [Vi ((Vjaw)®a,it) — Vi ((Vjag)ww,ik) ]

o

= Y [(kVja)wa,is + VjaoVio,i]

o

Y [(Vi1Vjaa)oa,ik + Vo Vio,ik]

o

= Y [(Vjan) it — (ViVjaa)o,ik + VjaaViow) -

o
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Therefore, the extra terms in the last line of Equation (2.6) can be written as
Vi(dw)ik + Z [Vi ((Vjaw)wa,it) — Vi ((Vjaa)wq,ik) ]
o

= ) (ViVig)wwk + Y (ViaaVjoak + VjaaViow )
o

o

+ Y (ViaVjo.ik + ViaaV o) ,

o

which is the desired result. L]

3. Mean curvature flow

In this section, we are going to prove that hyper-Lagrangian submanifolds are preserved under
mean curvature flow. Our proof is similar to that of Smoczyk [11]. However, the defining almost
complex structure J of the hyper-Lagrangian submanifold and the 2-forms here corresponding
the symplectic form are no longer parallel or closed. This introduces a lot of extra terms and a
need of an estimate of the covariant derivative of the corresponding symplectic form. Moreover,
unlike the situation in [11], the harmonic map heat flow equation is not just a consequence of the
mean curvature flow, it will also be used to obtain the necessary estimate.

3.1. Mean curvature flow

As in [11], the assumption that N is an isomorphism ensures that the mean curvature vector
of L can be written as
H = —""g" hnia N (en) .

From now on, the corresponding mean curvature form with respect to J is defined by
oy = How
which can be written in term of coordinates as follow
oy = H; dx' = gklhﬂd dx' .
Similarly, for « = 1, 2, 3, we write
on, = Howy = Hy i dx' .
In terms of the coefficients of oy, the mean curvature vector can be written as
H=—-n""H,N(e,) .

Note that all the above depend on the J € J except the mean curvature vector.

Now, we assume that F' : L — M is deformed under the mean curvature flow

d
_FIZH’ F():F,
dt

which can be written as

d
EFt Z_Umn mN(en), Fo=F
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for any J € J. Suppose that the mean curvature flow exists for ¢+ € [0, T) and the metric at
time ¢t is g;. Leta(t, p) : [0, T) x L — S? be a smooth mapping and J (t) = )", aq(t, p)Jy be
the corresponding deformation of the tensor J along the mean curvature flow. We are going to
calculate the deformation of the corresponding 2- form w(¢) on L;.

Proposition 3.1. Suppose that J (1) = Y, aq(t, p)Jy is a deformation of J = J(0) in J
along the mean curvature flow. Then the corresponding 2-form w(t) = w(J (1)) satisfies

d —
Ewlj Ry ji + Aw;j

sk s k s k
+ a)kRs ji + ijs ik + o; Ry kj
+ nm"wi (hmikhsjk - hmjkhsik)

+ Y [01a0 — Ade)wa.ij — 2Viaa Viww,ij]
o

+ Z (hakkj Viae — heixiViaa) -

o

Proof. Since w, are parallel, we have for o = 1, 2, 3 that

a
Ewa’ij = (dOHd)ij + (Hdea),-j = (dGHd)ij .

Hence,

d [ 3a
E(,{)l‘j = Xa: _8_;{0)&’” + ay (dGHa)i./]

[da
= Z 8_;16011,1']' + (d (aaO'Ha))ij - (daa A\ UH“)ij]

a L

[ 3a
= X[ - o o), | + o
o L
Using Proposition 2.3, we have
(dJH)lj = Eisji +A(,(),I

— k = k

+wp Ry i + ijskik + @ Rs

+ 1" S (i g — hom* i)

+ Z [(Aao{)wa,ji + 2Vkaavka)<¥»./i]
o

+ Z (ViaaVka)a,kj — Vjaavka)a,ki) .

o

Therefore, together with

Z(daa ANOH,)ij = Z [(Viag)Ha,j — (Vjag)Ha,i]

o
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we have
= s
Ew,-j Ry /.l.—‘,-Aa)ij

— k —k

+ wiRs ji + w_]v Rskik + wfRs kj
k k
+ 0" @) (hmi"hsji — hmj* hsik)
+ Z [(ataa - Aaa)a)a,ij - 2Vkaozvka)ot,ij]
o

+ Y [Viaa(Viwakj = Ha.j) = Vjta(Vioa ki — Hoi)] -
o

Finally, by Proposition 2.1, for each @ = 1, 2, 3, we have
Hyi = hoikk = hakik + Vi@a ki -

Putting this in the above and note that hy xix = he kki, We have proved the proposition. L]

Lemma 3.2. Leta : L — S? be the map corresponding to some J € J with respect to an
orthogonal set of complex structures {Jm}g[=1 . Then we have

Z(Viaa)ha,kkj = 0/"hy, Z [(a x Via)qwy ks + @} (Viag)Dajn]
o o

where a x V;a is the cross product of a = (ay) and Via = (Vjay) by regarding them as vectors
in 3-space.

Proof. By definition

hoiej = —8(Naek.Vee))
—2((Jaer) ™, Veeej)
= g(JOt (Vekej)L)
= (J ek 11" huj N (ey))
- h;kjg(.]aek, Jeg — a)?en)
= 10 hij [Ga @] —TUaek, Jes)]

= nlshlkj [wa,knw? - ZaﬂE(Jaek, J/Sex):| .
B

Therefore

Z(Viaa)ha,kkj = 77lshlkj Z(Viaa)wa,knw;l
o o

— 1y Z(aﬂviaa)g(-]aeka Jges)
a.p
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= nlshlkj Z(Viaa)wa,knw?
o
- nl‘vhlkj Z(aaviaa)g(-laek, Joes)
o
+ 1 hij Y (aaViag — agViag)Z(JaJpex, e5)
B<a
= 1" hiy ) (Vide) 0o kn®)
o

— 0" hikjgks Y (ag Vide)
o

+ 1 hij Y (aaViag — agVian)g(Japer. e) .

B<a

Using the fact that ), aé =1, we have ), a,Via, = 0 and hence

Z(Viaa)ha,kkj = nl‘vh[kj Z(Viaa)wa,knw;l
o o
+ " Z(aaviaﬁ —agViay)g(JuJger, es) .
B<a
This is the desired result. L]

Lemma3.3. Let{J,)>_, beanorthogonal set of complex structures of a hyperkihler manifold

(1\2/14", g) suchthat Ny = N (J,) and N3 = N (J3) are isomorphisms at each point of a submanifold
L“" C M. Then

J
Viork = —03""h3miko2,in + 13" 03 mikwr 1jo3,
J
= m"" o mitw3 kn — M2 homitw1,kj @3 ,, -

Moreover, if L is compact, then there is a constant C > 0 such that

[Voi| < Cy/|w2]? + |w3]? .

Proof. Lete; be an orthonormal basis of T L in a neighborhood of a point p. Then by definition,
Viwi ki = (Ve w1)(ek, e1) = ej(w1(ek, e1)) — w1 (Ve e, e1) — wi(ek, Veer) -
Since w is parallel, we have

Vioi gy = o1 (ﬁe,- ek, 61) + w (ek, 6461) —01(Ve e, e1) — o1(er, Ve,e1)
@1 ((Vaer) " @) + @1 (ex. (Voer) ) -

Using J1 = J2J3,

E(J2J3($e,'ek)La er) +2(1a S, (ge,el)l)
= —2g(he, J3($e,«ek)L) —g( e, JZWeiel)L) .

Viwy ki
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Note that N
(Veer)™ = —05"homixNa(en) = —13""h3 mixk N3 (en)
we have
= mn — mn
Vioru = g(he, J3(n3"" h3mikN3(en))) + 8 (Jzek, J2 (2" ha,mitNa(en)))

= 03" h3 mikg(2er, J3N3(en)) + m"" ho miig (Jzex, JaN2(ep)) .

Then by the definition of the operator N, we have
I No(e,) = Jz(Jzen — wé’nej) = —e, — wingej ,

and similarly for J3. Putting this into the above, we conclude that

Viorw = 13""h3 mik I:g(heh —en) — wg.',nE(Jzez, J3ej)]
+ 12" ha mit [E(hek, —e) — 0] B (Jzer, Jzef)]
= —n3""h3 mirw2,in — U3m"h3,mikw1,l,jw§,n
— " it @3 en — 2" B2 it 01 @, -

This completes the proof of the first part of the lemma and the last part of the lemma follows im-
mediately. L]

3.2. Main theorems and harmonic map heat flow

Theorem 3.4. Let (M*",g) be a hyperkihler manifold. Let L; C M**,t € [0, T) for some
T > 0, be a family of middle dimensional submanifolds given by the mean curvature flow.
Suppose that for each point (¢, p) € L,, there is a parallel complex structure J of M such that,
for all parallel complex structure K of M orthogonal to J,

8K+, )r,L, =0,

and that J is smooth in (t, p). Then the defining map J = J(t,x) from [0, T) x Lo to S?, the
space of parallel complex structures of M, satisfies the harmonic map heat flow equations with
variable metric

od = A J

where A, J is the tension field of J with respect to the induced metric g; on L;.

Proof. Lett, €[0,T) and p be apointin L;,. Then J; = J(1,, p) is a fixed parallel complex
structure of M. We may complete this to an orthogonal set { Jo,}3 e, JiJr = J3 = —DJ;.

a=1’
With respect to this basis, we can use standard spherical coordinates on S? to represent J in a
neighborhood of (¢,, p) € [0, T) x Lo by
J =cosfsinpJ; +sinfsingpJy + cospJ3
where 6 and ¢ are functions of (¢, x) in a neighborhood of (#p, p). Then it is easy to see that

K = —sinfJ; +cosbJy ,

and
JK = —cosf cos@Jy —sinf cospJr + sin ¢ J3
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are complex structures orthogonal to J. Let’s denote these three combinations by J = Y, aq Jo,
K =) ,byJy, JK = ), cqJy and write a = (ay, a2, a3) and so on. Then the map J is
represented by

a(t,x) = (cosOsing, sinf sing, cosy) .

By a straightforward calculation, we have

a(ty, p) =(1,0,0), b(t, p) =(0,1,0), c(t, p)=(0,0,1),
Vb(ty, p) = (=V0l1,.p),0,0), Vclto, p) = Voli,.p),0,0),
0:b(to, p) = (—0,01(,,p),0,0), 3c(to, p) = (0¢l(z,,p)» 0,0),
b x Vbl,,p) = (0,0,V0q,.p), ¢ X Velg,p =0, Voli,p.0),

Ab(ty, p) = (= 86, =IVOP,0)[,

and

Ac(to, p) = (A 9,2V6 - Vo, _|V‘p|2)|m,p> :

In the above, V and A denote the gradient and the Laplacian with respect to the induced metric
on L;,; b x Vb and ¢ x Vc the cross products by regarding b, Vb, ¢, and V¢ as 3-vectors.

By assumption, both g(K -, -) and g(J K -, -) vanish on Ty L; for any (z, x) in a neighborhood
of (¢,, p). In particular, wy = w3 = 0 at (¢,, p). Then by applying Proposition 3.1 to the 2-form
g(K-,-), we have at the point (¢,, p),

0 = [0 — DNbilwyij — 2Vikb1Viwy i
+ Z(ha,kkjviba — ho 1kiViba) .
o

Note that we have used the fact that ) Ei ji = 0 whenever g(K-, ) = 0 by the flatness of the
Ricci curvature, see [11]. On the other hand, Lemmas 3.3 and 3.2 imply

Va)l,,‘j =0 S
and
> haikjViby =0.
o
Hence, we conclude that
0=1[(3 — At)bl]wl,ij .
Since wy = w3 = 0, we have w; # 0. Therefore,

0 — A)b1 =0,

which is equivalent to
(0, — 2O =0 at(ty, p).

Similarly, by applying Proposition 3.1, and Lemmas 3.3 and 3.2 to the symplectic form g(J K -, -),
we have

(0, — 2 =0 at (1, p) .
All together, we have proved that J satisfies

0 —ANJ =0

as a mapping from [0, T) x Lo to S. L]
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Note that we have used the same notation to denote the Laplacian of functions and the tension
field of a map. However, as we have seen, no confusion will be created.

Lemma 3.5. Suppose that (M*",g) is a hyperkihler manifold and L, ¢ M*', t € [0, T)
for some T > 0, is a family of compact middle dimensional submanifolds given by the mean
curvature flow. Let J = J(t,x) € J be a harmonic map heat flow along the mean curvature
flow Ly, ie., (0; — Ay)J = 0; and let K = K (¢, p) be the parallel complex structure of M
corresponding to J(t, p) constructed in the proof of Theorem 3.4. If for each point (t, p) € L;,
N(K),NJK) :T,L, — (T,,L,)J- are isomorphisms, then there is a constant ¢ > 0 such that

d
5|s2|2 < MIQP +clQI?,
where Q(-,-) = g(K-, ) +ig(JK-, ).

Proof. Lets fix a point (79, p) and use the same notations and conventions as in the proof of
the Theorem 3.4. Then as in [11], we use the flatness of the Ricci curvature, Proposition 3.1, and
Lemma 3.2 to deduce that, there is a constant A; > 0 such that

0
§|w(1<>|2 < Alo(K)* +2(w(K), Aw(K))

+ 22 [(0rby — Abg){wa, @(K)) — 2Vibo (Viwa, w(K))]

+20(K) h(K)ij D (b X Vib)g(wa, @(K)) ,

where b x V; is the cross product by regarding b and Vb as 3-vectors.

Evaluating at (z9, p), we have

< Ajlwn)? 4 2|VO|ws]?

@ — D)lwK)* <
+ 4V (Viwr, @2) + 205 ha 11 Vi0 (w3, w2) |

for some constant A> > 0. Since L; are compact, we can apply the last part of Lemma 3.3 to
conclude that there is a constant A3 > 0 such that

@ — DK < Az(loa]* + |ws]?) .
Similarly, we have at the point (¢, p),

& — D)w(JK)P? < B3> — 4V - Vo(wa, w3)
+2|Vo w3 |* — 4Vip(Vior, @3)
+ 205 hs i Vig(wr, ws)

for some constant B> > 0. Hence, there exists a constant B3 > 0 such that
@ — Do K)* < Bs(joal” + w3]?) -
Combining these two inequalities, we have shown that
@ — DIQP < cleP?

with ¢ = A3 + Bj. L]
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Next, we prove the main theorem of this section, namely, the mean curvature flow preserves
the hyper-Lagrangian condition.

Theorem 3.6. Let (M*",3) be a hyperkihler manifold. Let L, ¢ M*",t € [0, T) for some
T > 0, be a family of middle dimensional submanifolds given by the mean curvature flow.
Suppose that Ly C M is hyper-Lagrangian. Then L, is hyper-Lagrangian for allt € [0, T).

Proof.  Consider the initial value problem for the generalized harmonic map heat flow to S?
along the mean curvature flow:

3 —A)O® =0, on (0,T)x Lo
(0, x) = J(x) .

The short time existence implies that there is a 77 € (0, T') such that solution ®(¢, x) = J (¢, x)
exists for ¢ € [0, 7T7). Recall that if Lg is hyper-Lagrangian, then for each point (0, p) € Lo,
there is a parallel complex structure J of M such that, for all parallel complex structure K of M
orthogonal to J,

8(K-,)lr,L, =0.
So we can pick K (¢, x) satisfying the condition in the Lemma 3.5 and conclude that the corre-
sponding complex 2-form €2 satisfies

(& — A)|Q? <c|Ql?, on(0,T1) x Lo
12070, p) =0.

Therefore maximum principle implies that |Q2|> = 0, by the assumption that Lg is hyper-
Lagrangian. This proves the result for a short time.

Now using the same notation as in the proof of the theorem, we see that
8(K-,)=g(JK-)=0

along L;. Therefore at any point (¢, p) € [0, T1) x Lo and in the basis and coordinates chosen as
in the proof of the theorem, we have

V(bgwe) = V(cqwy) = 0.
This implies, at the point (¢, p),
Vbiwi + Vwy = Veiwr + Vs =0.

So
[VO| < |[Vawz| and [Vg| < |Vws|.

Noting that Vjwy ik = hakij — haikj and |he kij] < |V€ie./|, we conclude that |V6| and |V|
are bounded in terms of the geometry of mean curvature flow L, as long as it exists. Hence, if
T1 < T, we can find subsequence of J(¢) converges to some element J in J ast — Tj. Itis
clear that J enjoys the same property on Ly, as J(¢) on L, for t < Ty. This implies that L7, is
also hyper-Lagrangian.

In conclusion, we have proved that the set of t € [0, T') with hyper-Lagrangian L, is both
open and closed in [0, T'). This, of course, implies that L, is hyper-Lagrangian for all ¢ € [0, T').
L]
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4. Hyper-Lagrangian submanifolds

Let (L?", g) be a hyper-Lagrangian submanifold in a hyperkihler manifold (M*", g) with
respect to some J(x) in Ai,x and K(x) : L — A?i-,x be a smooth map such that K (x) is
orthogonal to J (x) for each x € L. Then by the hyper-Lagrangian condition, we have

wkglr =0, VxelL.
Suppose that {e,'}%" is an orthonormal frame field for 7 L around a point x = p satisfying
Jery_1 =epy, for v=1,...,n,
then {f; = K e,-}izi | is an orthonormal frame field for the normal bundle satisfying
Jfov—1=—foy, for v=1,...,n.
For the frame {¢;, f;}, we denote

1 . 1 .
{e/v = 5(eav—1 —ien), ey = 5(exp—1+ie),

f=5mr it f =5 (fmt —if) .

Then it is obvious that

;o s ) "no__ s
Je, =ie), Je, = —iey
I apl "o gl
Jf, =if,, Jf) =—if),
/ol "o pl
:Kev_ v Kev_fv’
/I Vi "o /
Kfu =€), Kfu =—e€,.

The frame fields {e/,, f;i} defined in the above will be referred as the canonical frame adapted to
(J, K) around the point p.

Correspondingly, we set
¢\) = {21)—1 + i§2w 51} = ;21)—1 - i;Zl)v
Yy = @ap—1 — iP2y, Yy, = -1 +i,
for the frame {¢1,...,%m, @1,...,¢} dual to {e1,...,exwm, fi-.., fon} Then the
J-holomorphic symplectic form is given by
n
Qy=wjk —iwk =—i2¢u/\1ﬂu,
v=1
and the structural equations implies
At =YL G NG =Y i Ay
2 2
doi =3 3L Vij A+ 5010 A
for some 1-forms ¢;;, ¥;;, and ¢; satisfying

Gij+¢ji=0 and ¢ij+¢ji=0.
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Along the submanifold L, there exist A; j;, symmetric in j, k, such that

2n
v = Zhijké“k .
k=1

It is clear that if we choose a normal coordinates around the point p, then the £;;; defined here
coincides with the h(K);j; defined in the previous section at the point p. Finally, the mean
curvature vector is of course given by

2n 2n
H=>(Shw) 1
=1 \k=I
From the above, the covariant derivatives of the orthonormal frames are given by

S 2 2

Vei =3 501Gj®ej =250 Vi ® f

S 2 2

Vi =X %ii®e+37% 00 fj,

where ;;, W;;, and ¢;; are 1-forms. If we set

A = %[(Zzu—l,zu—l + o) — i (Lu2v—1 — u—1.20)]
Bu = 3[(S2p-1.20-1 — C2u20) — i (C2u20—1 + C2u—1.20)]
Cow = %[(WZM—I,ZU—I —Wau00) — i (Wop20—1 + Wou—1.20)] .
Dy = % [(Wou—1.20—1 + W2u20) — i (Wop—1.20 — ¥2u.20-1)] .
Ew = %[(QOZ/L—I,ZU—I + o20) +i (02020-1 — ©2u-1.20)]
Fuv = 3 [(02u—1,20-1 — 220) + i (920.20-1 + P20-1,20)]
forv,u =1, ..., n, then straightforward calculation using ¢;; + ¢j; = 0 and @up + @pe = 0
shows forany u,v=1,...,n,
!w; =2 (A ®e, + By ®e) = 3, (Cuv ® £ + Dy ® 1)) @
Vi, =X, Cu®e, +Dyu®e)+ X, (En® fi,+ Fou ® f)))
and
{Alw +_7t,w =By + B =0, 2
Ew+Ep =Fu+Fu=0.

In order to prove the compatibility condition, for any fixed p € L, we set J1 = J(p),
Jo» = K(p), and J3 = J;J>. Then {Jo[}gt=1 is an orthogonal set of parallel complex structures
and they will be called the canonical basis adapted to (J, K) at p. At the point p, we have

n
Ji = Z(ezu—l ANeyp — favo1 A fon)

v=1

n
J= (en-1 A froi + e A fr)

v=1

n
J3 = Z (f2v AN eav—1 — fav—1 A e2y)
v=1
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in the canonical identification between 2-forms and 2-vectors.

Now we can state the following.

Theorem 4.1. Let L>" be a hyper-Lagrangian in a hyperkihler manifold M*"* with defining
map J. Let K : L — S? be any smooth map orthogonal to J at every point of L. Then for
any fixed point p € L, the coefficient I-forms of the structural equations for the canonical frame
adapted to (J, K) around p satisfy the following conditions at the point p:

»A;w +~71p.v = Oa (43)
By, = 0, (4.4)
Cou = Cuv, 4.5)
1
Dy = 55”" (daz +iday) , (4.6)
Ew+Eyp = 0, 4.7)
-7:1)11 = 0, (48)
Evp = Ay +idydbs, 4.9)

where a,, and by are, respectively, the components of J and K with respect to the canonical basis
adapted to (J, K) at p.

Moreover, the differential of J at p as a map into S? is given by

dJ, =2(ImD,, J» + ReD,, J3) forany v=1,...,n.

Proof. Wenote that (4.3) and (4.7) are just (4.2). To prove the other conditions, we differentiate
Je, = iel, to obtain
(VI)e, + J(Ve,) =iVe,

forallv = 1,...,n. Let J, be the canonical basis adapted to (J, K) at p, and ay, b, be the
coefficients of J = )", aqJy and K = ), by Jo, respectively. Then by the hyper-Lagrangian
condition, VJ at the point p is a linear combination of J, = K (p) and J3. Therefore, we have
the following.

VJ =darJr +dazJ3

at the point p. Putting this and the structural equations in the above equation, we obtain at the
point p,

(day —ida3) f) = 2iBWe;i —2iDy, /L’ ,
which implies the Equations (4.6) and (4.4).

Similarly, applying the same argument to J f, = if, and Ke| = f,, we obtain (4.6) again
and all other Equations (4.8), (4.5), (4.9) together with the identity das + db; = 0 at p. The last
identity is automatically satisfied by the definition of a, and b,,.

The final part is an obvious conclusion of (4.6) and the proof is completed. L]

The theorem indicates that hyper-Lagrangian is a strong condition which imposes a lot of
restrictions on the structural equations. As a consequence, we have the following.

Corollary 4.2. Let L*" be a hyper-Lagrangian in a hyperkihler manifold M*" and for any
p € L, J(p) be the almost complex structure at p such that Q2 j( p)|Tp . = 0. Then J induces an
integrable Kéhler structure on L with holomorphic normal bundle.
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Proof. From Theorem 4.1, we have
/ o \T /
Vev = (Vev) = Zu Alw ® €
Lo (o mt l
\Y fv _(va) _Zugvﬂ®fu‘
The conclusions follow immediately. L]

In the neighborhood of the point p, it is more convenient to use the following local repre-
sentation of the map J

a1 (x) +iaz(x)

R RPRES

via stereographic projection. Then the theorem implies that at the point p,

1
Dy = 580, dO . (4.10)

Using O, the conditions on the second fundamental form can be written as in the following.
Corollary 4.3. Let L*" be a hyper-Lagrangian in a hyperkéhler manifold M*" with defining

map J. Let K : L — S? be any smooth map orthogonal to J at every point of L. Then for any
fixed point p € L, W, _120-1, Wou 20, Wou—1,20, Wou 20—1 are symmetric in v, v; and

\p2u71,2v71 + \Ij2u,2v = %Suv Re (d®)
\I"Z;L—I,ZV - “IJZ/L,ZV—I = _%8;/.11 Im (dO) ,

where {V;;} is the second fundamental form in the canonical frame adapted to (J, K) at p.

Proof. By definition, we have

Wou12v-1 = Re(Cuv+Dw) .
W00 = Re(—Cuv+Duw) ,
Vo120 = Im(—=Cuy —Dpy) ,

Wouov—1 = Im(=Cuy +Dpy)

Therefore, Equation (4.5) and (4.6) imply that all four 1-forms listed are symmetric in u, v. And
the two equations follow immediately by adding and subtracting corresponding equations.  []

Corollary 4.4. Let L>" be a hyper-Lagrangian in a hyperkihler manifold M*" with defining
map J. Let K : L — S? be any smooth map orthogonal to J at every point of L. Then for any
fixed point p € L, the second fundamental form {h; i} in the canonical frame adapted to (J, K)
at p satisfies

hijk = hjix for {i, j} #{2u—1,2u} forany pu,

and
hop—12uk = hop 21,k — Im(dO(er)) .

Moreover, for any i, v,

hop—120—1,k +hop vk = 8y Re (dO(er)) .
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Proof. It is immediately from the symmetries of W that h;jx = hji if i + j iseven. If i + j
is odd, then we consider h2;, 120 x — h2y 2,1,k By the symmetries of Wy, _1 2, and equation
for Wo, 1,2y — W2y ,00—1 We have

1
hap— 120k = hov2p—1.k = hop—120k — P2p 20— 1k = —55,”1111 (dO(er)) .
So we conclude that Ay, 120,k = hoy,20—1k if & 7 v. Otherwise, we have

hop—12uk = h2p2p—1,6 — Im(dO(er)) .

This completes the proof of the first part. The second part follows immediately from the corre-
sponding equation for W. L]

Note that the formula for commuting i, j in h; j; in this corollary can also be obtained from
Proposition 2.1.

It is interesting to compare the result in this corollary with the complete symmetry of all
three indices of the second fundamental form of a special Lagrangian submanifold in a Calabi- Yau
manifold. In our case, the second fundamental form of a hyper-Lagrangian does not have the
complete symmetry in all three indices in general. However, the corollary shows that the second
fundamental form has a lot of symmetry which is sufficient to implies the first-order equation on
O relating 9O to the mean curvature vector H and the holomorphic symplectic form 2.

If we denote d® ,(ex) = Py — i Oy, then
Py = hig + hoox = h3zi +hagr = - = hon—120—1.k + hon2onk

and
Ok = hiok — hotk = haak — hazg = -~ = hop—1 20k — h2n,2n—1,k
forallk =1, ...,2n. And we have

2n

dO, = (P —iQu0) -

k=1

In terms of the forms ¢, and ¢, this is given by
1
e, = 3 Z [(Pa—1 = Q20) = i(Pay + Q2v-1)] ¢
1 —
+3 Z [(Pav—t + Q20) +i(Pay = Q20-1] 6, -

Hence, one concludes that

1

90 = 5 Z [(P2—1 — 020) +i(P2y + Q20-1)] by .

v

Now we can prove the following.

Theorem 4.5. Let L*" be a hyper-Lagrangian submanifold in a hyperkihler manifold M*"
and for any p € L, J(p) be the almost complex structure at p such that Q2;(p)|r,.. = 0. Then

H.Qj;4+2idJ =0,
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where H is the mean curvature vector of L in M.

Proof.  We continue to work on the local representation ® of the map J : L — S”. The mean
curvature vector is

2n 2n
no= 3 (Sh) 5
j=1 \k=1

n  2n

= =) [haprak — ihou i) £, + (hapor ik + ihou i) 1] -
n=1 k=1

Therefore,

n
H.Q; = iH1 Y ¢y Ay

n=1
n 2n
= —i Z Zfﬁu(hzufl,kk — ithoy kk)
n=1 k=1
n n
= — Z Zq&u [(hop—1,20-1,20—1 + h2u—1,20,20) =i (h2p 20-1,20—1 + B2y 20.20)] -
n=1 v=1

If i # v, then by Corollary 4.4 and the symmetry of the last two index, one has
hop—1,20—1,20—1 +hopu—120,20 = hop 2v—1,20—1 + h2p 2020 = 0.
Hence, all the cross terms in the sum vanish and we have
n
HoQy=—=i Y ¢u [(hau—12u—120-1 + hou12000) = i Cha 21 21 + hap2u00)] -
u=1

Note that for any 1,

P2M—l - QZM = (hZ;,L—l,ZM—l,Zu—l + h2u,2p,,2u—l) - (_hZM—l,ZM,Zu + h2u,2u—l,2u)
= hou—12u-1,2u—-1+h2pu—12u2u

and

P+ Qop—1 = (hop—12pu—12p0 + h2p2020) + (Mo 2p—1,0u—1 = hop—1,20,20-1
hop2p—12u—1+ hop 22 -

Therefore, we have

H.Q;+2i00=0. L]

By the theorem, we immediately conclude the following.

Corollary 4.6. Let L>" be a hyper-Lagrangian submanifold in a hyperkihler manifold M*"
and for any p € L, J(p) be the almost complex structure at p such that 2j(p)|r,. = 0. Then
L is minimal if and only if J is anti-holomorphic.
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This corollary includes the case of complex Lagrangian submanifolds. In this case, J is
a constant.

In the case that L is in fact a Lagrangian with respect to a fixed w;,. We may choose J; to
be the fixed J,. Then at the point p € L, there is a function ¢ : L — R with ¥ (p) = /2 such
that ® (x) = sin ¥ (x)J1 + cos ¥ (x) J3. It follows immediately that d® = —d at x = p. These
imply that Oy = Oforallkanddyr = — )", Pi¢x. Onthe other hand, the holomorphic symplectic
format pisgivenby Q; = w3 —iwz. So H.Qj = H w3 —i H wy and by Theorem 4.5, we have

—H_w3 +i (Hiwy)

= 2i00

= i) (Py1—iPy)g,
v

i (Poo1 = i Pu) (-1 +it2)

Z [(Polav—1 = Pav—120) + i(Pav—182v—1 + Poui2y)] -

Vv

Therefore
H_.wy+dy =0,

which implies that v is in fact the phase map up to a constant. Moreover, we have an addi-
tional equation

Hows = Z(P2v—l§2u — Pyio-1) .
vV

5. A remark on regularity

Finally, we would like to make one remark about the regularity of the mean curvature flow of
hyper-Lagrangian submanifolds under a natural condition on the associated map J. It was proved
by M. T. Wang in [13] that a symplectic surface in a four-dimensional Kéhler-Einstein manifold
remains symplectic and does not develop any Type I singularity along the mean curvature flow.
If the Kédhler-Einstein is in fact hyperkihler, then a surface being symplectic is equivalent to the
condition that the image of the map J is contained in a hemisphere. To see this, we observe that
any surface L in a four-dimensional hyperkéhler manifold is always hyper-Lagrangian. Therefore,
there is a J(x) = Zizl aq(x)Jy, with a = (a1, a2, a3) € S? and an orthogonal set of parallel
complex structures {J }2:1 such that J(T,L) = T,y L for all x € L. In a neighborhood of any
point x € L, we may choose an orthonormal frame for 7'L of the form {e, e = Je;}. Then

w112 =8g(J1e1,e2) =a; Vx elL.

Therefore, a; > 0 if and only if L is symplectic with respect to w;. This shows the required
equivalence. Therefore Wang’s result can be rephrased as: If the image of the map J on L
contained in a hemisphere, then the image J on L; remains in the same hemisphere and does not
develop any Type I singularity along the mean curvature flow. In the following, we will see that the
proof in [13] actually can be applied to the higher dimensional hyper-Lagrangian submanifolds
and gives the following.

Theorem 5.1. Let (M*",3) be a hyperkéihler manifold. Let Ly C M 4t €10, T) for some
T > 0, be a family of middle dimensional submanifolds given by the mean curvature flow.
Suppose that Ly C M is hyper-Lagrangian and the image of the corresponding map J : Lo — S?
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is contained in a hemisphere. Then the image of J : [0, T) X Lo — S? is contained in the same
hemisphere and the mean curvature flow does not develop any Type I singularity.

Proof. By Theorems 3.4 and 3.6, L, is hyper-Lagrangian for each r € [0, T) and J (¢, x)
satisfies the harmonic map heat flow which can be written as

(0 — A)ag = |Val*ay, a=1,2,3,

where a, are components of J as a map into S*> ¢ R3. If J(Lg) is contained in a hemisphere
which may be assumed to be {a¢ € S?|a; > 0}. Then we have a;(x) > 0 for all x € Ly.
Applying maximum principle to the harmonic map heat flow, we conclude that a; (¢, x) > 0 for
all (t, x) € [0, T) x Lo. This proves the first part of the theorem.

To see the second part, we observed that L; is hyper-Lagrangian for all t. Theorem 4.5
implies that
H.Qj;+2i00 =0.

Hence,
|H|? = 2]90)> < 2|Val?.

This estimate implies

1
(@—MME?HWL

Then standard argument using a; > 0 imply the nonexistence of Type I singularity, see, for
example, [5], or the proof of Proposition 5.2 of [13]. L]

The same argument is also applied to Lagrangian submanifold in a Calabi-Yau manifold
(M, w, 2) with *Re2 > 0. Firstly, it was proved by Smoczyk [11] that it remains Lagrangian
along the mean curvature flow. Then Wang showed in [13], see also [14], that the condition
*ReQ2 > 0 is preserved and the flow does not develop any Type I singularity using the same ar-
gument.
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