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Abstract

We obtain an e¤ective lower bound on the distance of sum of co-
adjoint orbits from the origin. Even when the distance is zero, thus the
symplectic quotient is well-de�ned, our result give a nontrivial constraint
on these co-adjoint orbits.

In the particular case of unitary groups, we recover the quadratic in-
equality for eigenvalues of Hermitian matrices satisfying

A+B = C:

This quadratic inequality was obtained earlier by the authors using com-
pletely di¤erent means, namely Klyachko�s theory of toric stable re�exive
sheaves and the Chern number inequality for Hermitian Yang-Mills con-
nection.

1 Introduction

Given any rank r Hermitian matrix A, we may order its eigenvalues in such a
way that

�1 (A) � �2 (A) � ::: � �r (A) ;
and denote � (A) := (�1 (A) ; � � � ; �r (A)) 2 Rr as its spectrum. In [K2] (Also
see [Fu] for an excellent account of the subject), Klyachko discovered following
series of linear inequalities for Hermitian matrices A;B;C satisfying A+B = C :X

k2K
�k (C) �

X
i2I

�i (A) +
X
j2J

�j (B)

for some triple of subsets I; J;K � f1; 2; :::; rg of the same cardinality and
such that the associated Schubert cycle sK is a component of sI � sJ . This
result can be interpreted as describing the linear inequalities which determine
the intersection of the sum of co-adjoint orbits O�(A) + O�(B) + O�(�C) with
the positive Weyl chamber for the unitary group, which is a convex polytope by
Kirwan�s convexity theorem. Klyachko�s result was generalized to any compact
Lie group by Berenstein and Sjamaar in the beautiful paper [BeS], they are
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able to relate above eigenvalue inequalities to the convexity of the image of the
moment map. All above inequalities are linear on eigenvalues of matrices.
In [LW], we �nd a natural quadratic inequality on these eigenvalues by relat-

ing the Hermitian matrices to stable re�exive sheaves over the projective spaces.
More precisely, we have shown

Theorem 1 Suppose A1; � � � ; AN are rank r Hermitian matrices satisfying

NX
�=1

A� = 0:

Then the following inequality holds true

NX
�=1

� (A�)
2 �

X
1��6=��N

� (A�)� (�A�) . (1)

Moreover, the equality holds if and only if all but two of A��s are scalar matrices.

In this paper, we give a direct proof of the above theorem in terms of sum
of co-adjoint orbits for unitary groups. In fact our result in this paper is much
stronger in the sense that it applies to ANY compact Lie group.

Main Theorem: Let O���s be co-adjoint orbits of a compact Lie group G
with � = 1; 2; � � � ; N: If we choose �� be the unique point of the intersection of
O�� with the positive Weyl chamber. Then for any � in the sum of co-adjoint
orbits

� 2
NX
�=1

O�� ;

we have

j�j2 �
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i ; (2)

where w0 is the longest element in the Weyl group W:
Furthermore the equality holds if and only if all but at most two of ���s,

1 � � � N are in the center of g:

Notice that
PN

�=1O��� g� is the image of the moment map for the diag-
onal G-action on

QN
�=1O�� : If we want to construct the symplectic quotient�QN

�=1O��
�
==G; we need the origin to be inside of the image of moment map.

Thus our main theorem gives a necessary constraint for this to happen, namelyPN
�=1 j��j

2
+
P

�6=� h��; w0 � ��i must be non-positive.
Suppose

PN
�=1 j��j

2
+
P

�6=� h��; w0 � ��i is positive, then our main theorem
gives an e¤ective lower bound on the distance between

PN
�=1O�� and the origin
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in g�: If we de�ne

r2 =
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i

R2 =
NX
�=1

j��j2 +
X
�6=�

h��; ��i =

�����
NX
�=1

��

�����
2

:

Then we have
NX
�=1

O�� � B (R)�B (r) � g�

where B (R) and B (r) are balls centered at origin of radii R and r respectively.
As it was found in [LW], that the equation (1) is closely related to the Chern
number inequality for stable vector bundles, the main motivation of the gener-
alization made in this note is to obtain the analogy of Chern number inequality
for the zeros of moment map.
Finally, let us close this section by introducing our notations for the remain-

ing sections.

G;T ;Z compact Lie group; its maximal torus; its center
g; t; z Lie algebra of G; T ; Z
h�; �i bi-invariant inner product on g, which identi�es g with g�

t+ positive Weyl chamber
W;w0 Weyl group of G; A longest element in the Weyl group
(O�;
O�

) � g; adjoint orbit through � 2 t+ with 
O�
being its symplectic form

c� � g centralizer of � 2 t
css� ; z� � c� semi-simple part of c�, center of c�
C�; C

ss
� � G closed subgroups of G with Lie algebra c� and css�

(�)> : g! z� orthogonal projection to z� with respect to h�; �ig
(�)? : g! z?� projection to the orthogonal completement of z� with respect to h�; �ig

2 Convexity of moment map

Let us consider the diagonal G-action on the symplectic manifold
QN
�=1O��with

Kostant-Kirillov-Souriau symplectic form, then the map

i� :
QN
�=1 g �! g

(�1; � � � ; �N ) �!
PN

�=1 ��

being dual to the diagonal embedding i : G ,! GN is the moment map of the
diagonal G-action. We de�ne

�N := i
�

 
NY
�=1

O��

!
\ t+
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i.e. �N is the moment polytope inside the positive Weyl chamber. If we restrict
the G-action to its maximal torus then the moment map for the T -action is
given by � := j� � i�jQN

�=1O��
, where j� : g! t is the projection induced from

j : T ! G: That is,

� :
QN
�=1O�� �! t

(�1; � � � ; �N ) �! j�
�PN

�=1 ��

�
:

In this section, we prove

Theorem 2 For any � 2 �N = i�
�QN

�=1O��
�
\ t+; we have*

�;
NX
�=1

��

+
� j�j2 : (3)

Moreover, the equality holds if and only if

� =
NX
�=1

�� or � = 0

The proof of the above theorem based on the convexity property of moment
maps. Let us �rst state the following elementary lemma and the proof will be
left to the readers.

Lemma 3 For any �; � 2 t+; we have

h�;w0 � �i � h�;w � �i � h�; �i

for any w 2W: Moreover, we have

1. h�; �i = h�;w0 � �i if and only if � or � 2 z.

2. If � lies in the interior of t+ then h�;w0 � �i = h�;w � �i if and only if
w0 � � = w � �:

The next lemma describes the convex hull Hull (W � �) of a Weyl group
orbit.

Lemma 4 Suppose �; � 2 t+ satisfying h�; �i = h�; �i for any � 2 z and h�; �i �
h�; �i for any � 2 t+; then

� 2 Hull (W��) :

Proof. First, we have a Lie algebra decomposition g = z� z?: By our assump-
tion h�; �i = h�; �i for any � 2 z and the fact that z is invariant under W; we
may reduce to the case that z = 0: By assumption h�; �� �i � 0 for any � 2 t+;
precisely means that � always lies in one side of the supporting hyperplane of
the convex set Hull (W��) � t; hence

� 2 Hull (W � �) :
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Let us recall the following convexity theorem due to Atiyah [A1], Guillemin
and Sternberg [GS].

Theorem 5 Let (X;!) be a symplectic manifold with a Hamiltonian T -action
such that �xed points are all isolated and � : X �! t be its moment map. Then

Im (�) = Hull (fc1; � � � ; cpg)

with fcig�s being the �xed points of the T -action.

In order to apply the above theorem, we restrict our G-action to its maximal
torus, then the moment map is given by � := j� � i�jQN

�=1O��
, where j� : g! t

is the map induced from j : T ! G: That is,

� :
QN
�=1O�� �! t

(�1; � � � ; �N ) �! j�
�PN

�=1 ��

�
:

Then we obtain

Theorem 6

Im�=Hull

 
W �

NX
�=1

��

!

where W�
�PN

�=1 ��

�
is the orbit of

PN
�=1 �� under the action of W: Further-

more, we have

��1

 
w �

NX
�=1

��

!
2

NY
�=1

t

for any w 2W:

Proof. First, we notice that the �xed points of the adjoint action of T on g is
t; this implies that the image of the �xed point set under � is(

NX
�=1

w� � �� 2 t
����� (w1; � � � ; wN ) 2WN

)
:

By Lemma 3, we have*
NX
�=1

��; �

+
=

NX
�=1

max
w2W

hw � ��; �i = max
(w1;���wN )2WN

*
NX
�=1

w� � ��; �
+

for � 2 t+:This implies that, for any � 2 t+*
NX
�=1

��; �

+
�
*

NX
�=1

w� � ��; �
+
:
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So we deduce

Hull

 
W �

NX
�=1

��

!
3

NX
�=1

w� � ��

for any (w1; � � � ; wN ) 2WN by Lemma 4. Combining this with Theorem 5, we
have

Im�=Hull

 
NX
�=1

w� � ��

����� (w1; � � � ; wN ) 2WN

!
= Hull

 
W�

NX
�=1

��

!
:

Corollary 7 Suppose � 2 �N . Then for any 0 6= � 2 t+; we have*
�;

NX
�=1

��

+
� h�; �i :

Moreover, the equality holds if and only if � =
PN

�=1 ��:

Proof of Theorem 2 Let � = � then the inequality follows from the above
corollary.

3 Proof of the main result

By using the co-adjoint action of G; it is enough for us to prove the inequality
for � 2 �N : Since we are going to prove the main theorem by induction, for
any positive integer N; we introduce the following statement (�N ) to indicate
its dependence on N:
Statement (�N ): Let G be a compact Lie group and f�1; � � � ; �Ng � t+.

For any � 2 �N ; we have

j�j2 �
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i

with the equality holds if and only if there are w1; � � � ; wN 2W; the Weyl group
of G; such that

� :=
NX
�=1

w� � ��

and
h��; w0 � ��i = hw� � ��; w� � ��i for 1 � �; � � N:

Before we proceed let us verify that the existence of w1; � � � ; wN 2W with

h��; w0 � ��i = hw� � ��; w� � ��i for 1 � �; � � N
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is equivalent to the condition that all but at most two of ���s are in z:
For simplicity, let us assume that wN = id and �N is semisimple, that is, it

is not �xed by any element in W: The identities

h�N ; w0 � ��i = h�N ; w� � ��i for 1 � � � N � 1

and the semisimplicity of �N imply w0 � �� = w� � �� for 1 � � � N � 1 due to
Lemma 3. Hence for 1 � �; � � N � 1; we have

h��; w0 � ��i = hw� � ��; w� � ��i = hw0 � ��; w0 � ��i = h��; ��i :

By Lemma 3 again, this implies that all but at most one of ���s, 1 � � � N �1
lie in z: For general �N ; the idea is very similar, and we leave it to the readers.
Now our main theorem stated in the introduction is equivalent to the fol-

lowing

Theorem 8 Statement (�N ) holds true for any positive integer N .

To make the proof more transparent, let us brie�y sketch the main idea
modulo the technical details. As we mentioned earlier, we will argue by math-
ematical induction on N: In Proposition 9 we show that that if � = 0 then the
inequality

0 �
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i

follows from statement (�N�1). So the argument boils down to reducing the
general case to the case of � = 0: To do that, we �rst show in Lemma 10 that
when j�j attain its minimum, its necessary that � 2 g� where � 2 i��1 (�) : Then
by introducing a smaller group Css� � G which is essentially perpendicular to
�; we will be able to reduce the problem to the case with � = 0 but a smaller
group Css� � G to which the Proposition 9 is applicable, hence we have �nished
the proof.

Proposition 9 Suppose statement (�N�1) holds true, then we have

0 �
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i

provided 0 2 �N : Moreover, the equality holds if and only if �� = 0 for 1 � � �
N or there is a �� 6= 0 such that

(1� w0) � �� =
NX
�=1

��

and
h��; w0 � ��i = h��; ��i for �; � 6= �;

That is, all but two of ���s are in z:
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Proof. Without loss of generality, we may assume �N 6= 0: Our assumption
� = 0 2 �N implies �w0 � �N 2 �N�1: Then statement (�N�1) says

j�w0 � �N j2 �
N�1X
�=1

j��j2 +
X
�6=�

1��;��N�1

h��; w0 (��)i

On the other hand, Theorem 2 implies*
�w0 � �N ;

N�1X
�=1

��

+
� j�w0 � �N j2 :

By adding up above inequalities, we obtain

0 �
NX
�=1

j��j2 +
X
�6=�

1��;��N

h��; w0 (��)i ;

which is precisely what we want. Moreover, by Theorem 2 the equality holds if
and only if

�w0 � �N =
N�1X
�=1

��

since �N 6= 0; and statement (�N�1) implies that equality holds if and only if
there are fw�gN�=1 �W satisfying

�w0 � �N :=
N�1X
�=1

w� � ��

and
h��; w0 � ��i = hw� � ��; w� � ��i for 1 � �; � � N � 1:

In particular, we have
PN�1

�=1 w� � �� =
PN�1

�=1 ��; which is only possible if
w� � �� = �� for 1 � � � N � 1 by Lemma 3. So the equality holds if and only
if

�w0 � �N =
N�1X
�=1

��

and
h��; w0 � ��i = h��; ��i for 1 � �; � � N � 1;

which is possible only if all but at most one of ��; 1 � a � N � 1 are in z:
Thus all we need to do is to reduce the general case to the � = 0 case, in

order to do so need some preparation from Lie theory and moment map theory.

Lemma 10 Suppose min�2�N
j�j2 is attained by � 2 �N : Then for any � 2

i��1 (�) �
QN
�=1O��we have � 2 g�; the stabilizer of �under the G-action, .
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Proof. Notice that the minimum of j�j2 over �N = i�(
Y
�

O��) \ t+ and

i�(
Y
�

O��) are the same because of the Ad-invariance of the metric j�j on g:

Hence � is a critical point for the norm squared of the moment map i� for the
G-action on

Y
�

O�� : By general theory of moment map [GS], � = i� (�) must

lie inside stabilizer of �:
From now on, let us assume j�j2 = min�2�N

j�j2 and � := (�1; � � � ; �N ) 2QN
�=1O�� satisfying � = i� (�) 2 �N . By Lemma 10 we have � 2 g�; which is

equivalent to
[�; ��] = 0; for 1 � � � N:

That is, �� 2 c�; the Lie algebra of the centralizer C� � G of � .
In order to reduce our considerations to the � = 0 case, we introduce the

Lie algebra decomposition
c� = c

ss
� � z�

where css� � c� is the semi-simple part and z� � c� is the center: Correspond-
ingly, for 8� 2 c�, we may write � = �? + �> with �? 2 css� and �> 2 z�; note
that this is an orthogonal decomposition of � with respect to the bi-invariant
inner product. Let Css� be the closed subgroup of G with Lie algebra css� and
O�?� �s be the C

ss
� -orbits of G-action restricted to C

ss
� . Then�

�?1 ; � � � ; �?N
�
2

NY
�=1

O�?� =
NY
�=1

O�� \ (css� )
N � gN ;

and �
i�jcss��

�?
:

NY
�=1

O�?� �! css��

is exactly the moment map of the Css� -action on
QN
�=1O�?� : This implies�

i�jcss��

�? �
�?1 ; � � � ; �?N

�
=

NX
�=1

�?� = �
? = 0;

and

� =

 
NX
�=1

��

!>
=

NX
�=1

�>� (4)

because � 2 z�: Since the maximal torus of C� is a subtori of T; there are
g� 2 Css� for 1 � � � N such that �� :=Adg��� 2 t�;+;the positive Weyl
chamber for C�: However t�;+ in general is not a subset of t+; in any case there
are w� 2 W such that �� = w� � ��: For any � 2 z� of unit length, we have

h��; �i � =
D
Adg�1�

��; �
E
�

= h��;Adg��i �
= h��; �i �
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which means
NX
�=1

�>� =
NX
�=1

�>� = � . (5)

The following lemma helps us to reduce the general case to � = 0 case.

Lemma 11 Let � be as above and w 2WCss
�
; the Weyl group of Css� : Then

NX
�=1

j��j
2
+
X
�6=�



��; w � ��

�
� j�j2 =

X
�6=�



�?� ; w � �?�

�
+

NX
�=1

���?� ��2 (6)

Proof. The assumption w 2 WCss
�
implies that w � � = � for any � 2 z�:

Hence we have hw � �; �i = h�; �i for any � 2 t; � 2 z�; thus (w � �)> = �>; or
equivalently ((1� w) � �)> = 0: Moreover, w � �> = (w � �)> since w �xes z�:
Therefore, w � �? = (w � �)?.
Let � :=

PN
�=1 ��; we calculate, using above formulae and (5)

NX
�=1

j��j
2
+
X
�6=�



��; w � ��

�
=

NX
�=1

h��; (1� w) � ��i+ h�; w � �i

=
NX
�=1



�?� ; (1� w) � �?�

�
+


�? + �>; w �

�
�? + �>

��
=

NX
�=1

���?� ��2 � NX
�=1



�?� ; w � �?�

�
+
���>��2 + 
�?; w � �?�

=
NX
�=1

���?� ��2 � NX
�=1



�?� ; w � �?�

�
+ j�j2 +



�?; w � �?

�

Proof of Theorem 1: We prove the theorem by applying mathematical
induction on N:
For N = 1; the statement is trivially true. We assume now statement (�N�1)

holds true, and take G to be Css� then Proposition 9 says precisely

X
�6=�

D
�?� ;�w

Css
�

0 � �?�
E
�

NX
�=1

���?� ��2 ; (7)

where wC
ss
�

0 is the longest element of WCss
�
: Moreover, the equality holds if and

only if �?� = 0 for all 1 � � � N or �?N 6= 0

0 6= �wC
ss
�

0 �?N =
N�1X
�=1

�?� and


�?� ; �

?
�

�
=
D
�?� ; w

Css
�

0 � �?�
E
for 1 � �; � � N�1:
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By applying Lemma 11 we see that the inequality (7) is equivalent to

j�j2 �
NX
�=1

j��j
2
+
X
�6=�

D
��; w

Css
�

0 � ��
E

=
NX
�=1

jw� � ��j2 +
X
�6=�

D
w� � ��; wC

ss
�

0 � w� � ��
E
:

Since W acts on t isometrically, we have jw� � ��j2 = j��j2 andD
w� � ��; wC

ss
�

0 � w� � ��
E
=
D
��; w

�1
� � wC

ss
�

0 � w� � ��
E
� h��; w0 � ��i (8)

by Lemma 3. These imply that

j�j2 �
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i :

Moreover, it follows from (8) that for the equality to hold in the above
inequality, one needsD
��; w

Css
�

0 � ��
E
=
D
w� � ��; wC

ss
�

0 � w� � ��
E
= h��; w0 � ��i for 1 � �; � � N

(9)
and X

�6=�

D
�?� ;�w

Css
�

0 � �?�
E
=

NX
�=1

���?� ��2 :
If �?� = 0 for 1 � � � N then wC

ss
�

0 �� = �� for all �; since w
Css
�

0 � = �: This
together with the equality (9) imply that

� =
NX
�=1

�>� =
NX
�=1

�� =
NX
�=1

w� � ��

and

h��; w0 � ��i =
D
��; w

Css
�

0 � ��
E
=


��; ��

�
= hw� � ��; w� � ��i for1 � �; � � N;

which is exactly what we need.
If �?N 6= 0 then Proposition 9 implies that

�wC
ss
�

0 �?N =
N�1X
�=1

�?�

and 

�?� ; �

?
�

�
=
D
�?� ; w

Css
�

0 � �?�
E
for 1 � �; � � N � 1;
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from which we deduce



�?� ; �

?
N

�
=

*
�?� ;�w

Css
�

0 �
N�1X
�=1

�?�

+
= �

*
�?� ;

N�1X
�=1

�?�

+
=
D
�?� ; w

Css
�

0 �?N

E
:

So for 1 � �; � � N; we have

��; ��

�
=
D
��; w

Css
�

0 � ��
E

and

h��; w0 � ��i =
D
��; w

Css
�

0 � ��
E
=


��; ��

�
= hw� � ��; w� � ��i :

On the other hand, �>N 2 z� implies w
Css
�

0 �>N = �
>
N ; which means

� =
NX
�=1

�>� + 0

=

N�1X
�=1

�>� + w
Css
�

0 �>N +

N�1X
�=1

�?� + w
Css
�

0 �?N

=
N�1X
�=1

�� + w
Css
�

0 �N

=

N�1X
�=1

w� � �� + wC
ss
�

0 wN � �N

and
h��; w0 � �N i =

D
��; w

Css
�

0 � �N
E
=
D
w� � ��; wC

ss
�

0 � wN � �N
E
:

So the proof of Theorem 1 will be completed if we replace wN by wC
ss
�

0 � wN .

Corollary 12 Suppose
� 2 �N

Then *
�;

NX
�=1

��

+
�

NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i : (10)

Moreover, there are two cases for the equality to hold:

1. Suppose � 6= 0; then all but at most one of �� lie in z:

2. Suppose � = 0; then all but at most two of ���s lie in z

12



Proof. By adding up inequalities (3) and (2), we obtain*
�;

NX
�=1

��

+
�

NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i :

Now suppose the equality holds, there are two cases:
If � 6= 0; then the identities � =

P
�� and h��; w0 � ��i = h��; ��i for all

�; � implies that all but one of ���s lie in z:
If � = 0, without loss of generality we may assume �N 6= 0; then the in-

equality

0 �
NX
�=1

j��j2 +
X
�6=�

h��; w0 � ��i

is equivalent to

2

*
�N ;

N�1X
�=1

��

+
� j�N j2 +

N�1X
�=1

j��j2 +
X
�6=�

1��;��N�1

h��; w0 � ��i ;

which can be obtained by adding up inequality (3) and (10) with N replaced by
N � 1. Now the equality would imply both (3) and (10) become equality, the
assumption �N 6= 0 would then reduces this case to the previous one.
In particular, if we let the group G = U (r), henceW = Sr; the permutation

group of r letters and w0 =
�
12���(r�1)r
r(r�1)���21

�
2 Sr: Then Corollary 12 implies

Corollary 13 For any rank r Hermitian matrix A, let � (A) := (�1 (A) ; � � � ; �r (A)) 2
Rr be the spectrum of A with

�1 (A) � �2 (A) � ::: � �r (A) :

Suppose A1; A2; :::; AN are Hermitian matrices satisfying

NX
�=1

A� = 0:

Then
NX
�=1

� (A�)
2 �

X
1��6=��N

� (A�)� (�A�) .

Moreover, the equality holds if and only if all but possibly two of A��s are scalar
matrices.

Finally, let us �nish this section by an example that the equality holds.

Example 14 Let

A =

�
a1

a2

�
; B =

�
b2

b1

�
; C =

�
c1

c2

�

13



such that A+B+C = 0 and a1 � a2; b1 � b2 and c1 � c2: Let � (A) := (a1; a2) ;
� (B) := (b1; b2) ; � (C) := (c1; c2) and

w0 : R2 �! R2
(x; y) 7! (y; x)

be the permutation of two elements then

j� (A)j2 + j� (B)j2 + j� (C)j2 + 2 h� (A) ; w0 � � (B)i
+2 h� (C) ; w0 � � (B)i+ 2 h� (A) ; w0 � � (C)i

= 2 (a1 � a2) (c2 � c1) � 0

since c1 � c2: Moreover the equality holds if and only if a1 = a2 or c1 = c2;
without loss of generality, let us assume a1 = a2: If we write A + B = �C
then � (�C) = � (A) + � (B) and h� (B) ; w0 � � (A)i = h� (B) ; � (A)i ; this will
correspond to the �rst case in the Corollary 13: On the other hand if we write
A+B + C = 0; then we have � (A) + w0 � � (B) + � (C) = 0 and

h� (A) ; w0 � � (B)i = h� (A) ; w0 � � (B)i ;
h� (A) ; w0 � � (C)i = h� (A) ; � (C)i ;
h� (C) ; w0 � � (B)i = h� (C) ; w0 � � (B)i :

This will correspond to the second case in the Corollary 13.
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