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Abstract

Vector cross product structures on manifolds include symplectic, vol-
ume, G2- and Spin (7)-structures. We show that their knot spaces have
natural symplectic structures, and we relate instantons and branes in these
manifolds with holomorphic disks and Lagrangian submanifolds in their
knot spaces.

For the complex case, the holomorphic volume form on a Calabi-Yau
manifold de�nes a complex vector cross product structure. We show that
its isotropic knot space admits a natural holomorphic symplectic struc-
ture. We also relate the Calabi-Yau geometry of the manifold to the
holomorphic symplectic geometry of its isotropic knot space.
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1 Introduction

In our earlier paper [8] we studied the geometry of manifolds with vector cross
product (abbrev. VCP) structure and manifolds with complex vector cross
product (abbrev. C-VCP) structure. For example manifolds with closed 1-
fold (resp. 2-fold, 3-fold) VCP include Kähler manifolds (resp. G2-manifolds,
Spin (7)-manifolds). They play important roles in String theory (resp. M-
theory, F-theory). For instance, instantons and branes for VCP geometry are
supersymmetric cycles in the corresponding physical theory. For closed C-VCP
we proved that their geometries are either Calabi-Yau geometry or hyperkähler
geometry. These geometries have special duality symmetries, called the Mirror
Symmetry. From a holonomy point of view, this gives a coherent description of
special holonomy structures on Riemannian manifolds, as classi�ed by Berger.
In this article we will show that (i) the geometry of r-fold VCP on M

can be realized as the symplectic geometry of the knot space K�M of (r � 1)-
dimensional knots in M and (ii) the geometry of (n� 1)-fold C-VCP geometry
on a Calabi-Yau manifoldM can be realized as the complex symplectic geometry
of the isotropic knot space K̂�M .
The idea of using in�nite dimensional mapping spaces to study the geometry

of the underlying manifold M had proved to be very useful in many situations.
For instance, Morse used the loop space to study the topology of M , Witten
used the loop space to interpret the Atiyah-Singer index theorem [13] and the
elliptic genus [14], Floer used the Morse theory on the loop space to study
the Lagrangian intersection theory of a symplectic manifold M and de�ned his
Floer homology group [4], Hitchin used the moment map on the mapping space
of a Calabi-Yau manifold M to study the moduli space of special Lagrangian
submanifolds in M [6]. The space of knots in three manifolds was used very
successfully by Brylinski [2] to study the knot theory and Chern-Simons theory.
Millson and Zombro found a Kähler structure on this knot space when M = R3
[10]
For VCP on a manifold M , we prove that its knot space K�M has a natural

symplectic structure. Furthermore branes (resp. instantons) inM correspond to
Lagrangian submanifolds (resp. holomorphic curves) in K�M . For instances,
quantum intersection theory of coassociative submanifolds in a seven dimen-
sional G2-manifold M , as studied by Wang and the second author in [9], would
correspond to Floer�s Lagrangian intersection theory in K�M: Such an interpre-
tation is useful in understanding the geometry of G2-manifolds and ultimately
the M-theory. We summarize our results on knot spaces below.

Theorem 1 Suppose M is a Riemannian manifold with a closed di¤erential
form �. Then we have
(1) � is a VCP form on M if and only if its transgression de�nes an almost

Kähler structure on K�M ;
(2) For a normal disk D in Map (�;M)emb, D̂ is a holomorphic disk in

K�M if and only if D ~�� gives a tight instanton in M as above;
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(3) K�C is a Lagrangian submanifold in K�M if and only if C is a brane
in M .

When we consider the complex analog of the above theorem, a holomorphic
volume form on a Kahler manifoldM de�nes a C-VCP onM , thusM is a Calabi-
Yau n-fold. We choose any smooth manifold � of dimension n�2, at �rst sight,
one might expect that Map (�;M)emb =Diff (�)
 C, if exists, is hyperkähler.
Since the complexi�cation of Diff (�) does not exist, we should interpret the
above quotient as a symplectic quotientMap (�;M)emb ==Diff (�), if it exists.
The problem arises because one needs to �x a background volume form on �
to de�ne a symplectic structure on Map (�;M)emb. We will explain in section
�ve how to resolve this issue and prove the following theorem.

Theorem 2 Suppose M is a Calabi-Yau n-fold and � is a closed manifold of
dimension n�2. Then the isotropic knot space K̂�M has a natural holomorphic
symplectic structure.

Notice that K̂�M consists only of isotropic knots because of the moment
condition, which was needed in the symplectic reduction construction.
Furthermore the Calabi-Yau geometry on M can be interpreted as the holo-

morphic symplectic geometry on K̂�M . Namely we prove the following theorem
in section 6.

Theorem 3 Suppose M is a Calabi-Yau n-fold. We have
(1) K̂�C is a J-complex Lagrangian submanifold in K̂�M if and only if C

is a complex hypersurface in M ;
(2) K̂�C is a K-complex Lagrangian submanifold in K̂�M if and only if C

is a special Lagrangian submanifold in M with phase ��=2.

Even though complex hypersurfaces and special Lagrangian submanifolds
look very di¤erent inside a Calabi-Yau manifold, their isotropic knot spaces are
both complex Lagrangian submanifolds in K̂�M . The key reason is that any
knot inside a special Lagrangian submanifold is automatically isotropic. To
prove this theorem, we need to construct carefully certain appropriate deforma-
tions of isotropic knots inside C so that K̂�C being a J-complex Lagrangian
(resp. I-complex Lagrangian) implies that the dimension of C is at least 2n� 2
(resp. at most n).
For example, when M is a Calabi-Yau threefold, � �M is simply a loop, or

a string in physical language, and the isotropic condition is automatic. In this
case K̂�M is the space of loops inM modulo the equivalence relations generated
by deforming � along complex directions inM: It would be desirable to interpret
the mirror symmetry for Calabi-Yau manifolds as the twistor rotation for their
isotropic knot spaces (see remark 18 for details).

The organization of this paper is as follow: In section two, we recall some
basic results from [8] on the geometry of manifolds M with VCP structure. In
section three, we show that the knot space of M admits a natural symplectic
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structure. Moreover branes and instantons in M correspond to Lagrangian
submanifolds and holomorphic curves in K�M: In section four, we recall some
basic results from [8] on the geometry of manifolds M with C-VCP. In section
�ve, we construct the isotropic knot space K̂�M using a generalization of the
symplectic quotient construction. Moreover we prove that it has a natural
complex symplectic structure and a compatible almost hyperkähler structure.
In section six, we prove that both special Lagrangian submanifolds and complex
hypersurfaces in M give complex Lagrangian submanifolds in K̂�M , but with
respect to di¤erent complex structures in the twistor family.

2 Geometry of Vector Cross Product

In this section, we review the de�nition, basic properties and classi�cations
of manifolds with vector cross product, as studied in [8]. VCP structure on
manifolds was introduced by Gray [?] and it is a natural generalization of the
vector product, or sometimes called the cross product, on R3.

De�nition 4 Suppose thatM is an n-dimensional manifold with a Riemannian
metric g.
(1) An r-fold Vector Cross Product (VCP) is a smooth bundle map,

� : ^rTM ! TM

satisfying 8<:
g (� (v1; :::; vr) ; vi) = 0 ; (1 � i � r)

g (� (v1; :::; vr) ; � (v1; :::; vr)) = kv1 ^ ::: ^ vrk2

where k�k is the induced metric on ^rTM . We also write

v1 � � � � � vr = � (v1; :::; vr) :

(2) We de�ne the VCP form � 2 
r+1 (M) as

� (v1; :::; vr+1) = g (� (v1; :::; vr) ; vr+1) :

(3) The VCP � is called closed (resp. parallel) if � is a closed (resp. parallel)
di¤erential form.

The classi�cation of the linear VCP�s on a vector space V with positive
de�nite inner product g, by Brown and Gray [1], can be summarized in the
following.
(i) r = 1 : A 1-fold VCP is a Hermitian complex structure on V and its

VCP form is the Kähler form. For V = Cm we have

� = dx1 ^ dy1 + � � �+ dxm ^ dym.
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(ii) r = n� 1 : The VCP form is the induced volume form V olV on V . For
V = Rn we have

� = dx1 ^ dx2 ^ � � � ^ dxn.
(iii) r = 2 : a 2-fold VCP on a 7-dimensional vector space R7 is a cross

product de�ned as a � b = Im (ab) for any a; b in R7 = ImO, where O is the
Octonions, or the Cayley numbers. For coordinates (x1;:::; x7) on ImO, the
VCP form is

� = dx123 � dx167 + dx145 + dx257 + dx246 � dx356 + dx347

where dxijk = dxi ^ dxj ^ dxk.
(iv) r = 3 : a 3-fold VCP on an 8-dimensional vector space R8 = O is a

cross product de�ned as a� b� c = 1
2

�
a
�
�bc
�
� c

�
�ba
��
for any a; b and c in O.

Its VCP form is

� = �dx1234 � dx5678 �
�
dx21 + dx34

� �
dx65 + dx78

�
�
�
dx31 + dx42

� �
dx75 + dx86

�
�
�
dx41 + dx23

� �
dx85 + dx67

�
:

Remark that the existence of a VCP on a Riemannian manifold M is equiv-
alent to the reduction of the structure group of the frame bundle from O (n)
to the groups of real-linear transformation preserving both g and VCP. These
groups are U (m), SO (n) ; G2 and Spin (7), for r = 1, n � 1, 2 and 3 respec-
tively. For simplicity we assume that the VCP structure onM is always parallel
in this paper.

Next we introduce the natural class of submanifolds inM; called instantons.

De�nition 5 Let M be a Riemannian manifold with a closed r-fold VCP �.
An r + 1 dimensional submanifold A is called an instanton if it is preserved
by �.

Instantons are always calibrated submanifolds of M . In particular they are
absolute minimal submanifolds inM: It is not di¢ cult to identify instantons for
r-fold VCP with various r: When r = 1, instantons are holomorphic curves in
Kähler manifolds. When r = n� 1, instantons are open domains in M . When
r = 2, instantons are associative submanifolds in G2-manifolds. When r = 3,
instantons are Cayley submanifolds in Spin (7)-manifolds (see [5]). In [8] we also
discuss di¤erent characterizations of instantons and the deformation theory of
them.

The natural boundary condition for an instanton is to require its boundary
to lie on a brane.

De�nition 6 SupposeM is an n-dimensional manifold with a closed VCP form
� of degree r + 1. A submanifold C is called a brane if8<:

� jC= 0

dimC = (n+ r � 1) =2:
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When r = 1, branes are Lagrangian submanifolds in Kähler manifolds.
When r = n � 1, branes are hypersurfaces. When r = 2, branes are coas-
sociative submanifolds in G2-manifolds. When r = 3, brane does not exist at
all. The deformation theory of branes is also studied in [8].
The intersection theory branes with instanton corrections is an important

topic. When r = 1 this is the theory of Fukaya-Floer category. When r = 2,
the second author and X. Wang [9] found a relationship between this and the
Seiberg-Witten theory.
We summarize various structures associated to VCP in the following table.

Manifolds M
(dimM)

VCP form �
(degree of �)

Instanton A
(dimA)

Brane C
(dimC)

Oriented mfd.
(n)

Volume form
(n)

Open Subset
(n)

Hypersurface
(n� 1)

Kähler mfd.
(2m)

Kähler form
(2)

Holomorphic
Curve

(2)

Lagrangian
Submanifold

(m)

G2-manifold
(7)

G2-form
(3)

Associative
Submanifold

(3)

Coassociative
Submanifold

(4)
Spin (7) -mfd.

(8)
Cayley form

(4)
Cayley submfd.

(4)
N/A

3 Symplectic Geometry on Knot Spaces

Recall that a 1-fold VCP on M is a symplectic structure. In general an r-fold
VCP form on M induces a symplectic structure on the space of embedded sub-
manifolds � inM of dimension r�1, which we simply call a (multi-dimensional)
knot space K�M = Map (�;M) =Diff (�). For instance when M is an ori-
ented three manifold, K�M is the space of knots in M . In this case Brylinski
[2] showed that K�M has a natural complex structure which makes it an in�-
nite dimensional Kähler manifold and used it to study the problem of geometric
quantization. For generalM with a VCP, we will relate the symplectic geometry
of K�M to the geometry of branes and instantons in M .

3.1 Symplectic Structure on Knot Spaces

Let (M; g) be an n-dimensional Riemannian manifold M with a closed VCP
form � of degree r + 1. Suppose � is any (r � 1)-dimensional oriented closed
manifold �, we consider the mapping space of embeddings from � to M ,

Map (�;M) = ff : �!M j f is an embedding.g.

Let
ev : ��Map (�;M)!M
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be the evaluation map ev (x; f) = f(x) and p1, p2 be the projection map from
��Map (�;M) to its �rst and second factor respectively. We de�ne a two form
!Map on Map (�;M) by taking the transgression of the VCP form �,

!Map = (p2)� (ev)
�
� =

Z
�

ev��.

Explicitly, suppose u and v are tangent vectors to Map (�;M) at f , that is
u; v 2 � (�; f� (TM )), we have

!Map (u; v) =

Z
�

�u^v�.

Since (�u^v�) j� can never be a top degree form if u is tangent to �, !Map de-
generates along tangent directions to the orbits of the natural action ofDiff (�)
on Map (�;M). Thus it descends to a two form !K on the quotient space

K�M =Map (�;M) =Diff (�) ,

the space of submanifolds in M . For simplicity, we call it a (multi-dimensional)
knot space. Note that tangent vectors to K�M are sections of the normal bundle
of � in M .
On K�M there is a natural L2-metric given as follow: Suppose [f ] 2 K�M

and u; v 2 �(�; N�=M ) are tangent vectors to K�M at [f ], then

gK[f ] (u; v) =

Z
�

g (u; v) ��;

where �� is the volume form of � with respect to the induced metric on �. We
de�ne an endomorphism JK on the tangent space of K�M as follow: Suppose
[f ] 2 K�M and u; v 2 �(�; N�=M ) are tangent vectors to K�M at [f ], then

!K[f ] (u; v) = g
K
[f ]

�
JK[f ](u); v

�
.

Proposition 7 Suppose (M; g) is a Riemannian manifold with a VCP. Then
JK is a Hermitian almost complex structure on K�M , i.e. a 1-fold VCP.

Proof. Suppose [f ] 2 K�M and u;w 2 �(�; N�=M ) are tangent vectors to
K�M at [f ]. Let ei�s be an oriented orthonormal base of � at a point x. Then

{u^w (ev
��) = � (e1; :::er�1; u; w) v�

= g (�(e1; :::er�1; u); w) v�:

From the relationship !K[f ] (u; v) = gK[f ]

�
JK[f ](u); w

�
and the de�nitions of !K[f ]

and gK[f ], we conclude that J
K on the tangent space of K�M at [f ] is given by

JK : �(�; N�=M ) ! �(�; N�=M )
JK (u) = �(e1; :::er�1; u):
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On the other hand, from the remark ?? on the dimension of branes, we know
that if � is an r-fold VCP on TxM , then � (e1; :::; er�1;�) de�nes a 1-fold VCP
on the orthogonal complement to any oriented orthonormal vectors ei�s at TxM .
This implies that JK is a 1-fold VCP on K�M .

Remark: The above proof actually shows that if JK on K�M is induced by
an arbitrary di¤erential form � on M , then JK is an Hermitian almost complex
structure on K�M if and only if � is a r-fold VCP form on M .

When the VCP form � onM is closed and � is a closed manifold, then !Map

on Map(�;M) is also closed because

d!Map=d

Z
�

ev�� =

Z
�

ev�d� = 0:

Therefore !Map descends to a closed 1-fold VCP form on K�M .
Conversely the closedness of !Map on Map (�;M), or on K�M , implies

the closedness of � on M: Since this type of localization arguments will be
used several times in this paper, we include the proof of the following standard
lemma.

Lemma 8 (Localization) Let � be an s-dimensional manifold without bound-
ary. A form � of degree k > s on a manifold M vanishes if the corresponding
(k � s)-form on Map (�;M) obtained by transgression vanishes.

Proof. We need to show that

�(p)(v1; v2; ::; vk) = 0

for any �xed p 2 M and any �xed vi 2 TpM . For simplicity, we may choose vi�s
to be orthonormal vectors. We can �nd f 2Map(�;M) with p 2 f (�) such that
v1; :::; vs are along the tangential directions, and vs+1; :::; vk are along the normal
directions at p in f(�). Moreover, we can choose sections �vs+1; ~vs+2; :::; ~vk 2
�(�; f�(TM )) which equal vs+1; :::; vk at p respectively. By multiplying �vs+1
with a sequence of functions on � approaching the delta function at p, we
obtain sections (�vs+1)" which approach � (p) vs+1 as "! 0 where � (p) is Dirac
delta function. Therefore,

�(p)(v1; v2; ::; vk) = lim
"!0

(

Z
�

ev��)((�vs+1)" ; ~vs+2; ::; ~vk):

From the given condition
Z
�

ev�� = 0, we conclude that

�(p)(v1; v2; ::; vk) = 0:

Hence the result.
As a corollary of the above lemma and discussions, we have the following

result.
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Theorem 9 Suppose (M; g) is a Riemannian manifold with a di¤erential form
� of degree r + 1. Then � is a closed r-fold VCP form on M if and only if !K

is an almost Kähler structure on K�M , i.e. a closed 1-fold VCP form.

Remark: In general the transgression of any closed form � always gives a
closed form on the knot space K�M of degree r + 1 � s where dim� = s.
However this can never be a VCP form unless s = r�1. To see this, we can use
the above localization method and the fact that there is no VCP form of degree
bigger than two on any vector space with su¢ ciently large dimension.
When r = 1, that is M is a symplectic manifold, Map (�;M) is the same as

M and therefore it is symplectic by trivial reasons.

Remark: Given any �-preserving vector �eld v 2 V ect (M;�), it induces a
vector �eld V of K�M preserving !K. Furthermore, if v is �-Hamiltonian, that
is

�v� = d�,

for some � 2 
r (M), then we can de�ne a function on the knot space,

F� : K�M ! R

F� (f) =

Z
�

f��.

It is easy to see that F� is a Hamiltonian function on the symplectic manifold
K�M whose Hamiltonian vector �eld equals V .

3.2 Holomorphic Curves and Lagrangians in Knot Spaces

In this subsection, we are going to show that holomorphic disks (resp. La-
grangian submanifolds) in the knot space K�M of M correspond to instantons
(resp. branes) in M . More generally the geometry of vector cross products on
M should be closely related to the symplectic geometry of its knot space K�M .
A natural problem is to understand the analog of the Floer�s Lagrangian inter-
section theory for manifolds with vector cross products. Note that if two branes
C1 and C2 intersect transversely along a submanifold �, then the dimension of
� equals r�1 and [�] represents a transverse intersection point of (Lagrangians)
K�C1 and K�C2 in K�M . The converse is also true.
Because K�M is of in�nite dimensional, a Lagrangian submanifold is de�ned

as a subspace inK�M where the restriction of !K vanishes and with the property
that any vector �eld !K-orthogonal to L is a tangent vector �eld along L, see
[11] and [2]. In fact, it is easy to see that the latter condition for a submanifold
L to be Lagrangian is equivalent to the statement that !K will not vanish on any
bigger space containing L. So, we refer the this condition as the maximally
self !K-perpendicular condition.

Theorem 10 Suppose that M is an n-dimensional manifold with a closed VCP
form � of degree r+1 and C is a submanifold in M . Then K�C is a Lagrangian
submanifold in K�M if and only if C is a brane in M .
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Proof. For the only if part, we suppose that K�C is a Lagrangian in K�M
and we want to show that � vanishes along C and dim C = (n+ r � 1) =2. For
any �xed [f ] 2 K�C, we have

0 = !K[f ](u; v) =

Z
�

�u^v (ev
��)

where u; v 2 �(�; N�=C). By applying the localization method as in lemma 8
along C, we obtain the following: For any x in �,

�(u (x) ; v (x) ; e1; :::; er�1) = 0;

where e1;:::; er�1 are any oriented orthonormal vectors of Tx�. By varying u; v;
f to cover TC : One can show � jC= 0.
Moreover, K�C being !K-perpendicular in K�M implies that C has the

biggest possible dimension with �jC = 0. As explained in the remark following
the de�nition of branes that this gives dim C = (n+ r � 1) =2.
For the if part, we assume that C is any brane inM . The condition �jC = 0

implies that !KjK�C = 0. To show that K�C is a Lagrangian in K�M , we need
to verify the maximally self !K-perpendicular condition in K�M . Recall that
the tangent space at any point [f ] 2 K�C is �(�; N�=C). Suppose there is a
section v in �(�; N�=M ) but not in �(�; N�=C) such that it is !K-perpendicular
to �(�; N�=C). By the localization arguments as in lemma 8, given any point
x 2 f (�) � C, � vanishes on the linear space spanned by v (x) and TxC. This
contradicts to the fact that C is a brane. Hence the result.
Remark: �-Hamiltonian deformation of a brane C in M corresponds to

Hamiltonian deformation of the corresponding Lagrangian submanifold K�C in
the symplectic manifold K�M . More precisely, if v is a normal vector �eld to
C satisfying

�v� = d�;

for some � 2 
r�1 (C), then the transgression of � de�nes a function on K�C
which generates a Hamiltonian deformation of K�C.
Next we discuss holomorphic disks, i.e. instantons, in K�M: We consider

a two dimensional disk D in Map (�;M) such that for each tangent vector
v 2 T[f ]D, the corresponding vector �eld in � (�; f�TM ) is normal to �. We
call such a disk D as a normal disk. For simplicity we assume that the r + 1
dimensional submanifold

A = [
f2D

f (�) �M ,

is an embedding. This is always the case if D is small enough. Notice that A
is di¤eomorphic to D � �. We will denote the corresponding disk in K�M as
D̂ =: � (D). We remark that the principal �bration

Diff (�)!Map (�;M)
�! K�M

has a canonical connection (see [2]) and D being a normal disk is equivalent to it
being an integral submanifold for the horizontal distribution of this connection.
In the following theorem, we describe the relation between a disk D̂ in K�M

given above and the corresponding r + 1 dimensional subspace A in M .
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Theorem 11 Suppose that M is a manifold with a closed r-fold VCP form �
and K�M is its knot space as before. For a normal disk D in Map (�;M),
D̂ =: � (D) is a JK-holomorphic disk in K�M , i.e. calibrated by !K, if and
only if A is an instanton in M and A! D is a Riemannian submersion.

We call such an A a tight instanton.
Proof. For a �xed [f ] 2 D̂, we consider �; � 2 T[f ](D̂) � �(�; N�=A). Since

� is a calibrating form, we have,

�(�; �; e1; :::; er�1) � V olA(�; �; e1; :::; er�1) = j� ^ �j

where e1; :::; er�1 is any orthonormal frame on f (�). In particular we haveZ
f(�)

��^� (ev
��) �

Z
f(�)

j� ^ �j vol�;

and the equality sign holds for every [f ] 2 D̂ if and only if A is an instanton

in M . We will simply denote
Z
f(�)

by
Z
�

. Notice that the symplectic form on

K�M is given by,

!K[f ](�; �) =

Z
�

��^� (ev
��) .

Since !K is a 1-fold VCP form on K�M , we have

!K[f ](�; �) �
�
j�j2K j�j

2
K � h�; �i

2
K

�1=2
where h�; �iK =: gK (�; �) and jaj

2
K =: gK (a; a). Furthermore the equality sign

holds when D̂ is a JK- holomorphic disk in K�M .
To prove the only if part, we suppose that D̂ is a JK-holomorphic disk

in K�M . From above discussions, we haveZ
�

j� ^ �j �
Z
�

{�^� (ev
��) =

�
j�j2K j�j

2
K � h�; �i

2
K

�1=2
=

 Z
�

j�j2
Z
�

j�j2 �
�Z

�

h�; �i
�2!1=2

:

Combining with the Hölder inequality,�Z
�

j� ^ �j
�2
+

�Z
�

h�; �i
�2
�
Z
�

j�j2
Z
�

j�j2 ;

we obtain

(i)
Z
�

��^� (ev
��) =

Z
�

j� ^ �j vol� and

(ii)
�Z

�

j� ^ �j
�2
+

�Z
�

h�; �i
�2
=

Z
�

j�j2
Z
�

j�j2 :
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Condition (i) says that A is an instanton in M . Condition (ii) implies that
given any [f ], there exists constant C1 and C2 such that for any x 2 �,

j� (x)j = C1 j� (x)j ; \ (� (x) ; � (x)) = C2:

This implies that A! D is a Riemannian submersion.
For the if part, we notice that A being an instanton in M implies thatZ

�

j� ^ �j =
Z
�

��^� (ev
��) = !K[f ](�; �) �

�
j�j2K j�j

2
K � h�; �i

2
K

�1=2
=

 Z
�

j�j2
Z
�

j�j2 �
�Z

�

h�; �i
�2!1=2

:

Recall that the Riemannian submersion condition implies an equality ,�Z
�

j� ^ �j
�2
+

�Z
�

h�; �i
�2
=

Z
�

j�j2
Z
�

j�j2

so the above inequality turns into an equality so that it gives

!K[f ](�; �) =

Z
�

��^� (ev
��) =

�
j�j2K j�j

2
K � h�; �i

2
K

�1=2
i.e. D̂ is JK holomorphic in K�M .

4 Geometry of Complex Vector Cross Product

In this section we review the complex version of the VCP geometry from [8].
The de�nition of instantons depends on a phase � and there are two types of
branes corresponding to the Dirichlet and Neumann boundary conditions for
instantons. In the case of M being a Calabi-Yau manifold, D-branes (resp.
N-branes) are special Lagrangian submanifolds (resp. complex hypersurfaces)
in M . We will see in the next two sections that all these geometric structures
will have a beautiful interpretation in terms of the hyperkähler geometry of the
isotropic knot space of M .

De�nition 12 On a Kähler manifold (M; g; J) of complex dimension n, an r-
fold complex vector cross product (abbrev. C-VCP) is a holomorphic form
� of degree r + 1 satisfying

j�e1^e2::^er (�)j = 2(r+1)=2;

for any orthonormal tangent vectors e1; :::; er 2 T 1;0x M , for any x in M .
A C-VCP is called closed (resp. parallel) if � is closed (resp. parallel with

respect to the Levi-Civita connection) form.
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There are only two classes of C-VCP corresponding to the holomorphic vol-
ume form (r = n � 1) and the holomorphic symplectic form (r = 1·). The
corresponding manifolds M are Calabi-Yau manifolds and hyperkähler mani-
folds. In particular, the analog of G2- and Spin (7)-manifolds do not exist.
For VCP, instantons are submanifolds calibrated by the VCP form. In the

complex case, the C-VCP form is a complex di¤erential form and we have a
circle family of calibrated forms Re

�
ei��

�
parametrized by the phase �.

De�nition 13 On a Kähler manifold M with an r-fold C-VCP �, an r +1
dimensional submanifold A is called an instanton with phase � 2 R if it is
calibrated by Re

�
ei��

�
; i.e.

Re
�
ei��

�
jA= volA.

As explained in [LL1] we can impose either the Dirichlet or the Neumann
boundary conditions for instantons. Thus we have the following de�nitions.

De�nition 14 On a Kähler manifold (M;!) of complex dimension n with an
r-fold C-VCP � 2 
r+1;0 (M) ;
(i) a submanifold C is called a Neumann brane (abbrev. N-brane) if

dim (C) = n+ r � 1 and
�jC = 0;

(ii) an n-dimensional submanifold C is called a Dirichlet brane (abbrev.
D-brane) with phase � 2 R if

!jC = 0 ; Re
�
ei��

�
jC= 0

Instantons and branes in CY manifold : (n-1)-fold C-VCP
A Kähler manifold of complex dimension n with a (n�1)-fold C-VCP � is a

Calabi-Yau n-fold M . An instanton in M is a special Lagrangian submanifold
with phase � since it is calibrated by Re

�
ei��

�
and a D-brane is a special

Lagrangian submanifold with phase � � �=2; because the de�nition of D-brane
implies it is calibrated by Re

�
ei(���=2)�

�
= Im

�
ei��

�
. An N -brane in M is a

complex hypersurface.

Instantons and branes in hyperkähler manifold : 1-fold C-VCP
A Kähler manifold of complex dimension 2n with a Kähler form !J and a

1-fold C-VCP � =: !I �
p
�1!K is a hyperkähler manifold M . Here, J , I and

K are the complex structure corresponding to Kähler structures !J , !I and !K
, respectively. Note that by putting ei�� =: !J� �

p
�1!J�+�=2 in place of �,

one can obtain another Kähler structure Re ei�� with a complex structure J� =:
cos �I + sin �K.
An instanton inM is a J�-holomorphic curve since it is calibrated by Re ei��,

namely preserved by J�: A D-brane is a real 2n-dimensional submanifold where
! and Re

�
ei��

�
vanish which implies it is preserved by J�+�=2 the almost com-

plex structure corresponding to � Im
�
ei��

�
, i.e. !J�+�=2 . Therefore, a D-brane

13



is a J�+�=2-complex Lagrangian. An N -brane in M is a real 2n-dimensional
submanifold where � = !I �

p
�1!K vanishes, i.e. calibrated by !J . So it is a

J-complex Lagrangian which is a complex submanifold preserved by a complex
structure J with complex dimension n.

The above classi�cation of instantons, N -branes and D-branes in manifolds
with C-VCP is summarized in the following table.

Manifolds
w/ C-VCP Calabi-Yau manifolds hyperkähler manifolds

Instantons Special Lagrangian�=0 I-holomorphic curves

N-Branes Complex Hypersurfaces J-complex Lagrangians

D-Branes Special Lagrangian�=��=2 K-complex Lagrangians

5 Isotropic Knot Spaces of CY manifolds

Recall that any volume form on a manifold M of dimension n determines a
closed 1-fold VCP on the knot space K�M = Map (�;M) =Diff (�) where
� is any closed manifold of dimension n � 2. It is natural to expect that the
holomorphic volume form on any Calabi-Yau n-foldM would determine a closed
1-fold C-VCP on the symplectic quotientMap (�;M) ==Diff (�). In particular
we obtain a hyperkähler knot space.
There are some complications to this naive approach. First we need to

choose a background volume form � on � to construct a symplectic structure
in Map (�;M) which is only invariant under Diff (�; �), the group of volume
preserving di¤eomorphisms of � ([3][6]). Therefore we can only construct the
symplectic quotientMap (�;M) ==Diff (�; �) = ��1 (0) =Diff (�; �). Second,
this larger space is not hyperkähler because the holomorphic two form

R
�

M

degenerates. We will show that a further symplectic reduction will produce a
Hermitian integrable complex manifold K̂�M with a 1-fold C-VCP, in particular
a holomorphic symplectic structure. This may not be hyperkähler because even
the Hermitian complex structure is integrable on K̂�M , its Kähler form may
not closed. K̂�M should be regarded as a modi�ed construction for the non-
existing space Map (�;M) ==Diff (�). We call this an isotropic knot space of
M for reasons which will become clear later.
Furthermore we will relate instantons, N -branes and D-branes in a Calabi-

Yau manifoldM to holomorphic curves and complex Lagrangian submanifolds in
the holomorphic symplectic manifold K̂�M . These constructions is of particular
interest when M is a Calabi-Yau threefold (see remark 18 for details).
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5.1 Holomorphic Symplectic Structures on Isotropic Knot
Spaces

Let M be a Calabi-Yau n-fold with a holomorphic volume form 
M , i.e. a
closed (n � 1)-fold C-VCP. To obtain a 1-fold C-VCP on a certain knot space
by transgression, we �rst �x an n�2 dimensional manifold � without boundary
and we let Map (�;M) be the space of embeddings from � to M as before. For
simplicity we assume that the �rst Betti number of � is zero, b1 (�) = 0.
If we �x a background volume form � on �, then the Kähler form ! on M

induces a natural symplectic form on Map (�;M) as follow: for any tangent
vectors X and Y at a point f in Map (�;M), we de�ne

!Map (X;Y ) =

Z
�

!(X;Y )�

where X;Y 2 �(�; f�(TM)). Note that this symplectic structure onMap (�;M)
is not invariant under general di¤eomorphisms of �. Instead it is preserved by
the natural action of Diff (�; �), the group of volume preserving di¤eomor-
phisms on (�; �).
As studied by Donaldson in [3] and Hitchin in [6], this action is Hamiltonian

on the components of Map (�;M) consisting of those f�s satisfying

f� ([!]) = 0 2 H2 (�;R) ;

and the moment map is given by

� : Map0 (�;M) ! 
1 (�)�d
0 (�)
f 7! � (f) = �

for any one form � 2 
1 (�) satisfying d� = f�!. Note that the dual of the
Lie algebra of Diff (�; �) can be naturally identi�ed with 
1 (�)�d
0 (�). In
particular ��1 (0) consists of isotropic embeddings of � in M . Therefore the
symplectic quotient

Map (�;M) ==Diff (�; �) = ��1 (0) =Diff (�; �)

is almost the same as the moduli space of isotropic submanifolds in M , which
is ��1 (0) =Diff (�). Observe that the de�nition of the map � is independent
of the choice of � and therefore ��1 (0) is preserved by the action of Diff (�).
Remark: For the moment map � to be well-de�ned, the condition b1 (�) = 0

is necessary. However even in the case of b1 (�) 6= 0, which always happens when
M is a Calabi-Yau threefold, there is modi�cation of the symplectic quotient
construction and we can obtain a symplectic manifold which is a torus bundle
over the moduli space of isotropic submanifolds inM with �ber dimension b1 (�)
([3][6]).
In order to construct a holomorphic symplectic manifold, we �rst consider

a complex closed 2-form 
Map on Map (�;M) induced from the holomorphic
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volume form 
M on M by transgression.


Map =

Z
�

ev�
M

=

Z
�

ev�Re
M +
p
�1
Z
�

ev� Im
M

= !I �
p
�1!K ,

where !I =
R
�
ev� (Re
M ) and !K = �

R
�
ev� (Im
M ). We also de�ne endo-

morphisms I and K on Tf
�
��1 (0)

�
as follows:

!I (A;B) = g(IA;B); !K (A;B) = g(KA;B)

where A;B 2 Tf
�
��1 (0)

�
and g is the natural L2-metric on ��1 (0). Both !I

and !K are degenerated two forms. We will de�ne the isotropic knot space as
the symplectic reduction of ��1 (0) with respect to either !I or !K and show
that it has a natural holomorphic symplectic structure.
To do that, we de�ne a distribution D on ��1 (0) by

Df =
�
X 2 Tf

�
��1 (0)

�
� � (�; f� (TM )) j �X!I;f = 0

	
� Tf

�
��1 (0)

�
;

for any f 2 ��1 (0).

Lemma 15 For any f 2 ��1 (0) �Map (�;M) ; we have,

Df = � (�; T� + JT�) :

Proof. First, it is easy to see that Df � � (�; T�) since for any X in
� (�; T�) and any Y in � (�; TM ), �X^Y Re 
M can not be a top degree form
on �. By similar reasons, Df is preserved by the Hermitian complex structure
J on M: Because f is isotropic, we have Df � � (�; T� + JT�). Now, as in
lemma 8, we consider localization of

0 = �X!I;f =

Z
�

�Xev
�Re 
M ;

at x in � by varying � and we obtain

0 = �X(x)^E1^:::^En�2 Re 
M

where E1;:::; En�2 is an orthonormal oriented basis of (T�)x. This implies that

Df = � (�; T� + JT�) ;

because for any X in TMn (T� + JT�), there is x in � such that

�X(x)^E1^:::^En�2 Re 
M 6= 0:

Note that the same construction applied to !K , instead of !I , will give another
distribution which is identical to Df because f is isotropic.
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Observe that, for each f 2 ��1 (0), the rank of the subbundle T� + JT� in
f�TM is 2 (n� 2), i.e. constant rank on ��1 (0). That is !I is a closed two form
of constant rank on ��1 (0). From the standard theory of symplectic reduction,
the distribution D is integrable and the space of leaves has a natural symplectic
form descended from !I . We call this space as the isotropic knot space of M
and we denote it as

K̂�M = ��1 (0) = hDi
where hDi are equivalence relations generated by the distribution D.

Remark: The isotropic knot space K̂�M is a quotient space of ��1 (0) =Diff (�),
the space of isotropic submanifolds in M . If f : � ! M parametrizes an
isotropic submanifold inM , then deforming � along T� directions simply changes
the parametrization of the submanifold f (�), namely the equivalence class in
��1 (0) =Diff (�) remains unchanged. However if we deform � along T� 
 C
directions, then their equivalence classes in K̂�M remains constant. Notice
that the isotropic condition on � implies that T� 
 C �= T� � J (T�) � f�TM .
Therefore, roughly speaking, K̂�M is the space of isotropic submanifolds in M
divided by Diff (�)
 C. In particular, the tangent space of K̂�M is given by

T[f ]

�
K̂�M

�
= � (�; f� (TM) = (T� + JT�))

for any [f ] in K̂�M . Note a leaf is preserved by the induced almost Hermitian
structure on ��1 (0) from the Hermitian complex structure J on M , because a
tangent vector on it is a section to the subbundle T� + JT�. However K̂�M
may not be symplectic, because the symplectic form !Map on ��1 (0) descends
to a 2-form !K on K̂�M which may not be closed.
We will show that K̂�M admits three almost complex structures IK, KK

and JK satisfying the Hamilton relation�
IK
�2
=
�
JK
�2
=
�
KK�2 = IKJKKK = �id:

Furthermore the associated Kähler forms !KI and !
K
K are closed. In [7], Hitchin

showed that existence of such structures on any �nite dimensional Riemannian
manifold implies that its almost complex structure JK is integrable. Namely we
obtain a 1-fold C-VCP on a Hermitian complex manifold. If, in addition, !KJ is
closed then IK, JK and KK are all integrable complex structures and we have
a hyperkähler manifold.

We begin with the following lemma which holds true both on ��1 (0) and
on K̂�M .

Lemma 16 On ��1 (0) �Map (�;M), the endomorphisms I, J and K satisfy
the following relations,

IJ = �JI and KJ = �JK;
I = �KJ and K = IJ:
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Proof: The formula IJ = �JI can be restated as follows: for any f 2 ��1 (0)
and for any tangent vectors of Map (�;M) at f , A;B 2 �(�; f� (TM )) we have

gf (IfJf (A) ; B) = gf (�JfIf (A) ; B) :

For simplicity, we ignore the subscript f . Since J2 = �id, we have

g (IJ (A) ; B)� g (�JI (A) ; B)
= g (IJ (A) ; B)� g (I (A) ; JB)
= !I (JA;B)� !I (A; JB)

=

Z
�

�JA^B Re 
M �
Z
�

�A^JB Re 
M

=

Z
�

�(JA^B�A^JB)
1

2
(
M + �
M ) = 0.

The last equality follows from the fact that 
M and �
M vanish when each is
contracted by an element in ^1;1TM . By replacing Re 
M with Im 
M in the
above calculations, we also have KJ = �JK.
To prove the others formulas, we consider

g(IA;B)� g(�KJA;B)
= !I(A;B) + !K(JA;B)

=

Z
�

�A^B Re 
M +

Z
�

�JA^B (� Im 
M )

=

Z
�

�A^B
1

2

�

M + �
M

�
�
Z
�

�JA^B
�
p
�1
2

�

M � �
M

�
=
1

2

Z
�

�(A+
p
�1JA)^B 
M +

1

2

Z
�

�(A�
p
�1JA)^B

�
M = 0

since i(A+p�1JA) 
M = 0 and taking complex conjugation. This implies that
g(IA;B) � g(�KJA;B) = 0 and therefore I = �KJ . Finally J2 = �Id and
I = �KJ imply that K = IJ: Hence the results. �

Theorem 17 Suppose that M is a Calabi-Yau n-fold M . For any n�2 dimen-
sional closed manifold � with b1 (�) = 0, the isotropic knot space K̂�M is an
in�nite dimensional integrable complex manifold with a natural 1-fold C-VCP
structure, in particular a natural holomorphic symplectic structure.

Proof. From the construction of K̂�M , it has a Hermitian Kähler form !K

induced from that of M and a closed holomorphic symplectic form 
K given
by the transgression of the closed (n � 1)-fold C-VCP form 
M on M . As
we have seen above, the induced holomorphic symplectic form is closed but
the induced Hermitian Kähler form may not be closed. If their corresponding
almost complex structures satisfy the Hamilton relation then this implies that
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JK is integrable [7]. Namely K̂�M is a Hermitian integrable complex manifold
with a 1-fold C-VCP structure. In order to verify the Hamilton relation,�

IK
�2
=
�
JK
�2
=
�
KK�2 = IKJKKK = �id;

we only need to show that
�
IK
�2
= �Id and

�
KK�2 = �Id because of the

previous lemma. Namely, IK and KK are almost complex structures on K̂�M .
We consider a �xed [f ] in K̂�M and by localization method as in the proof

of lemma 8, we can reduce the identities to the tangent space of a point x in �.
The transgression Z

�

ev�
M = !KI;[f ] �
p
�1!KK;[f ]

is descended to

�E1^:::^En�2 
M = !KI;[f ];x �
p
�1!KK;[f ];x

where E1;:::; En�2 is an orthonormal oriented basis (T�)x. Since f is isotropic,
the complexi�ed vectors Ei �

p
�1JEi of Ei can be de�ned over (T� + JT�)x,

therefore the above equality is equivalent to

�(E1�
p
�1JE1)=2^:::^(En�2�

p
�1JEn�2)=2 
M = !KI;[f ];x �

p
�1!KK;[f ];x;

i.e. a 1-fold C-VCP on f� (TM) = (T� + JT�) jx which is T[f ];xK̂�M . Since this
1-fold C-VCP gives a hyperkähler structure on T[f ];xK̂�M , IK[f ] and KK

[f ] satisfy
the Hamilton relation at x in �. That is�

IK[f ];x

�2
= �Id and

�
KK
[f ];x

�2
= �Id:

Therefore we have
�
IK
�2
= �Id and

�
KK�2 = �Id. Hence the result.

Remark 18 In String theory we need to compactify a ten dimensional space-
time on a Calabi-Yau threefold. WhenM is a Calabi-Yau threefold, then � is an
one dimensional circle and therefore b1 (�) is nonzero. In general, as discussed
in [3] and [6], the symplectic quotient construction forMap (�;M) ==Diff (�; �)
can be modi�ed to obtain a symplectic structure on a rank b1 (�) torus bundle
over the space of isotropic submanifolds in M . Roughly speaking this torus bun-
dle is the space of isotropic submanifolds coupled with �at rank one line bundles
(or gerbes) in M . In the Calabi-Yau threefold case, every circle � in M is auto-
matically isotropic. Therefore K̂�M is the space of loops (or string) coupled with
�at line bundles in M , up to deformations of strings along their complexi�ed
tangent directions. We wonder whether this in�nite dimensional holomorphic
symplectic manifold K̂�M has any natural physical interpretations.
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6 Complex Lagrangians in Isotropic Knot Spaces

In this subsection we relate the geometry of C-VCP of a Calabi-Yau manifold
M to the holomorphic symplectic geometry of its isotropic knot space K̂�M .
For example both N-branes (i.e. complex hypersurfaces) and D-branes (i.e.
special Lagrangian submanifold with phase ��=2) in M correspond to complex
Lagrangian submanifold in K̂�M , but for di¤erent almost complex structures
in the twistor family. First we discuss the correspondence for instantons.
In the following proposition, we use ei�
M instead of 
M to get a 1-fold

C-VCP on K̂�M , and also Re
�
ei�
M

�
gives another symplectic form !KI;� and

corresponding Hermitian almost complex structure JK� on K̂�M de�ned as JK� =
cos �IK + cos �KK.

Proposition 19 Suppose that M is a Calabi-Yau n-fold. Let D be a normal
disk in ��1 (0) with an n-dimensional submanifold A de�ned as A = D ~�� ,
and assume A ! D is a Riemannian submersion. We denote the reduction of
D in K̂�M as D̂.
Then D̂ is an instanton i.e. a JK� -holomorphic curve in K̂�M if and only if

A is an instanton i.e. a special Lagrangian with phase � in M .

Proof. In the proposition 11, VCP form � plays a role of calibrating
form rather than that of a VCP form. So by replacing � by Re

�
ei�
M

�
in

proposition 11, readers can see this theorem can be proved in essentially the
same manner. But since proposition 11 is given for the parametrized knot
space and this theorem is given by a reduction, we need to check D̂ is a disk
in K̂�M . Let f be the center of disk D: Since D is a normal disk, a tan-
gent vector v at f along D � ��1 (0) is in �

�
�; N�=M

�
. And since f is

isotropic, Jv is also in �
�
�; N�=M

�
equivalently v is in �

�
�; NJ�=M

�
. So v

2 � (�; f� (TM) = (T� + JT�)). This implies Tf D can be identi�ed with T[f ]D̂,
i.e. D̂ is a disk in K̂�M .

Next we are going to relate N- and D-branes in Calabi-Yau manifolds M to
complex Lagrangian submanifolds in K̂�M .

De�nition 20 For any submanifold C in a Calabi-Yau manifold M , we de�ne
a subspace K̂�C in K̂�M = ��1 (0) = hDi as follow: The equivalent relation hDi
on ��1 (0) restrict to one on Map (�; C) \ ��1 (0) and we de�ne

K̂�C =
�
Map (�; C) \ ��1 (0)

	
= hDi .

In the following theorem, we see that C being a N -brane in M corresponds
to K̂�C being a JK-complex Lagrangian in K̂�M which means that K̂�C is
both maximally self !KI -perpendicular and maximally self !

K
K-perpendicular in

K̂�M .

Theorem 21 Let C be a connected analytic submanifold in a Calabi-Yau man-
ifold M . Then the following two statements are equivalent:
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(i) C is an N -brane (i.e. a complex hypersurface) in M ;
(ii) K̂�C is a JK-complex Lagrangian submanifold in K̂�M .

Proof: For the if part, we assume that K̂�C is a JK-complex Lagrangian in
K̂�M . First we need to show that the dimension of C is at least 2n� 2 where
n is the complex dimension of M .
Before proving this claim for the general case, let us discuss a simpli�ed linear

setting where some of the key arguments become more transparent. Suppose
that M is a linear Calabi-Yau manifold, that is M �= Cn with the standard
Kähler structure and 
M = dz1^dz2^� � �^dzn. Let � be a (n� 2)-dimensional
isotropic linear subspace inM lying inside another linear subspace C inM . For
simplicity we assume that � is the linear span of x1; x2; :::; xn�2. Of course
M=�� J� �= C2 is a linear holomorphic symplectic manifold withZ

�


M = dzn�1 ^ dzn;

which is the standard holomorphic symplectic form on C2. Suppose that

C= (�� J�) \ C �M=�� J�

is a complex Lagrangian subspace. Then there is a vector in C perpendicular to
both � and J�, say xn�1. If we denote the linear span of x2; :::; xn�2; xn�1 as
�0, then �0 is another (n� 2)-dimensional isotropic linear subspace in M lying
inside C. Furthermore x1 is a normal vector in C perpendicular to �0 � J�0.
This implies that y1 = Jx1 also lie in C. This is because C= (�0 � J�0) \ C �
M=�0 � J�0 being a complex Lagrangian subspace implies that it is invariant
under the complex structure on M=�0 � J�0 induced by J on M . By the same
reasoning, yj also lie in C for j = 1; 2; :::; n � 2. That is C contains the linear
span of

�
xj ; yj

	n�2
j=1

. On the other hand it also contain xn�1 and yn�1 and
therefore dimC � 2n� 2.
We come back to the general situation where K̂�C is a JK-complex Lagrangian in

K̂�M . One di¢ culty is to rotate the isotropic submanifold � to �0 inside M .
We observe that the tangent space to K̂�C at any point [f ] is given by

T[f ]

�
K̂�C

�
= �

�
�;

f�TC
T� � JT� \ f�TC

�
.

Since any JK-complex Lagrangian submanifold is indeed an integrable com-

plex submanifold, T[f ]
�
K̂�C

�
is preserved by JK. This implies that the com-

plex structure on TM induces a complex structure on the quotient bundle

f�TC= [T� � JT� \ f�TC ]. For any � 2 T[f ]
�
K̂�C

�
we can regard it as a sec-

tion of f�TC over �, perpendicular to T� and JT� \ f�TC . In particular Jv is
also such a section.
We need the following lemma which will be proven later.

Lemma 22 In the above situation, we have JT� � f�TC .
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This lemma implies that the restriction of TC on � contains the linear span
of T�, JT�, � and J� , which has rank 2n� 2. (More precisely we consider the
restriction to the complement of the zero set of � in �.) Therefore dimC �
2n� 2.
On the other hand, if dimC > 2n � 2, then by using localizing method as

in lemma 8, K̂�C would be too large to be a complex Lagrangian submanifold
in K̂�M . That is dimC = 2n� 2.
In particular, this implies that f�TC is isomorphic to the linear span of T�,

JT�, � and J� outside the zero set of �. Therefore TC is preserved by the
complex structure of M along �. By varying the isotropic submanifold � in
C, we can cover an open neighborhood of � in C (for example using the gluing
arguments as in the proof of the above lemma). This implies that an open
neighborhood of � in C is a complex submanifold in M . By the analyticity of
C, the submanifold C is a complex hypersurface in M .
For the only if part, we suppose C is complex hypersurface in M , then

it is clear that !KI and !KK vanish along K̂�C since 
M vanishes along C.
Using similar arguments as in the proof of proposition 10, it is not di¢ cult to
verify that K̂�C is maximally self !KI -perpendicular and maximally self !

K
K-

perpendicular in K̂�M . That is K̂�C is a JK-complex Lagrangian submanifold
in K̂�M . Hence the theorem. �

We suspect that the analyticity assumption on C is unnecessary. All we need
is to deform the isotropic submanifold � of M inside C to cover every point in
C.

Proof of lemma: For any tangent vector u of � at a point p, i.e. u 2
Tp� � TpC, we need to show that Ju 2 TpC. We can assume that � (p) has
unit length. First we choose local holomorphic coordinate z1; z2; :::; zn near p
satisfying the following properties at p:

zi (p) = 0 for all i = 1; :::; n;


M (p) = dz
1 ^ dz2 ^ � � � ^ dzn;

Tp� is spanned by
@

@x1
;
@

@x2
; :::;

@

@xn�2
;

� (p) =
@

@xn�1
and u =

@

@x1
.

where zj = xj + iyj for each j. We could use x1; :::; xn�2 to parametrize � near
p.
Recall that

� 2 T[f ]
�
K̂�C

�
= �

�
�;

f�TC
T� � JT� \ f�TC

�
.

For any smooth function �
�
x1; :::; xn�2

�
on �, �� is again a tangent vector to

K̂�C at [f ]. We are going to construct a particular � supported on a small
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neighborhood of p in � satisfying

@�

@x1
(0) =1;

@�

@xj
(0) = 0, for j = 2; :::; n� 2.

For simplicity we assume that this small neighborhood contain the unit ball in
�. To construct �, we �x a smooth even cuto¤ function � : R ! [0; 1] with
supp (�) 2 (�1; 1), � (0) = 1 and �0 (0) = 0. We de�ne � : �! R as follow:

�
�
x1; x2; :::; xn�2

�
=
�
x1
�1=3 � � �x1� � � �Pn�2

j=2

�
xj
�2�

.

For any small real number ", we write

�" = "�� 2 T[f ]
�
K̂�C

�
and we denote the corresponding family of isotropic submanifolds of M in C
by f" : �" ! M . From � (0) = 0, there is a family of points p" 2 �" with the
property that

jp" � pj = O
�
"2
�
.

Using the property @�=@x1 (0) =1, we can �nd a family of normal vectors
at p";

u" 2 N�"=C ;

with the property ����u" � @

@x1

���� = O �"2� .
Since T[f"]

�
K̂�C

�
is preserved by JK, f�" TC= [T�" � JT�" \ f�" TC ] is pre-

served by J , we have Ju" 2 Tp"C. By letting " goes to zero, we have Ju 2 TpC.
Hence the lemma. �

In the following theorem, we see that relationship between a D-brane L in
M with respect to ei�
M and a JK�+�

2
complex Lagrangian K̂�L in K̂�M , i.e.

it is maximally self !KI;�-perpendicular and maximally self !
K-perpendicular:

Theorem 23 Let L be a connected analytic submanifold of a Calabi-Yau man-
ifold M , then the following two statements are equivalent:
(i) L is a D-brane with phase �;(i.e. a special Lagrangian with phase �� �

2 );
(ii) K̂�L is a JK�+�

2
-complex Lagrangian submanifold in K̂�M .

Proof : By replacing the holomorphic volume form onM from 
M to ei�
M
if necessary, we can assume that � is zero.
For the only if part, we assume that L is a special Lagrangian subman-

ifold in M with phase ��=2. Because the Kähler form ! and Re
M of M
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vanish along L, it is clear that !K and !KI;0 vanishes along K̂�L. Notice that
L being a Lagrangian submanifold in M implies that any submanifold in L
is automatically isotropic in M , and moreover the equivalent relation hDi on
��1 (0) restricted to Map (�; L) is trivial locally. That is K̂�L is the same as
K�L =Map (�; L) =Diff (�) at least locally.
We claim that K̂�L is maximally self !K-perpendicular in K̂�M . Otherwise

there is normal vector �eld � 2 �
�
�; N�=M

�
not lying in �

�
�; N�=L

�
such that

! (�; u) = 0 for any u 2 � (�; f�TL). Suppose that � (p) =2 N�=L;p, then this
implies that ! vanishes on the linear span of TpL and � (p) inside TpM . This is
impossible because the dimension of the linear span is bigger than n.
Similarly K̂�L is maximally self !KI;0-perpendicular in K̂�M . Otherwise

Re
M vanishes on the linear span of TpL and � (p) inside TpM . This is again
impossible because 
M;p is a complex volume form on TpM �= Cn and therefore
can not vanish on any co-isotropic subspaces other than Lagrangians. Hence
K̂�L is a JK�=2-complex Lagrangian in K̂�M .

For the if part, we assume that K̂�L is a KK-complex Lagrangian subman-
ifold in K̂�M . For any [f ] 2 K̂�L, the tangent space of K̂�L (resp. K̂�M) at [f ]
is the section of the bundle f�TL=T��JT�\f�TL (resp. f� (TM ) = (T� + JT�))
over �. Let v 2 T[f ]

�
K̂�L

�
, we can regard v as a section of f�TL over �, or-

thogonal to T� � JT� \ f�TL.
Since f� (TM ) = (T� + JT�) is a rank four bundle and K̂�L is a Lagrangian

in K̂�M , this implies that f�TL=T� � JT� \ f�TL must be a rank two bundle
over �. Therefore

dimL � n;

with the equality sign holds if and only if JT� \ f�TL is trivial. Suppose that
� is a tangent vector of K̂�L at f
Assume that JT� \ f�TL is not trivial, we can �nd a tangent vector u to

f (�) at a point p such that Ju 2 TpL. For simplicity we assume that � has
unit length at the point p.
As in the proof of the previous theorem, we can choose local holomorphic

coordinates zj�s of M around p such that

zi (p) = 0 for all i = 1; :::; n;


M (p) = dz
1 ^ dz2 ^ � � � ^ dzn;

Tp� is spanned by
@

@x1
;
@

@x2
; :::;

@

@xn�2
,

v (p) =
@

@xn�1
, u =

@

@x1
and Ju =

@

@y1
.

We choose a function � (x) as in the proof of the previous theorem, write

�" = "�� 2 T[f ]
�
K̂�L

�
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for any small real number ", and we denote the corresponding family of isotropic
submanifolds of M in L by f" : �" ! M as before. From � (0) = 0, there is a
family of points p" 2 �" with the property that

jp" � pj = O
�
"2
�
.

Using the property @�=@x1 (0) = 1, we can �nd two family of normal
vectors at p";

u"; w" 2 N�"=L;
with the property����u" � @

@x1

���� = O �"2� and ����w" � @

@y1

���� = O �"2� .
However, using localization arguments as before, K̂�L being an !K-Lagrangian

submanifold in K̂�M implies that ! (u"; w") = 0. By letting " goes to zero, we
have 0 = !

�
@=@x1; @=@y1

�
= �1, a contradiction. Hence JT� \ f�TL is trivial

and dimL = n.

Since � (�; f�TL=T� � JT� \ f�TL) is preserved by KK, we have KK� (p) 2
f�TL. Note that KK� (p) is the tangent vector of M which is the metric dual
of the one form,

�y!KK (p) =
�
@

@x1
^ @

@x2
^ � � � ^ @

@xn�2
^ �
�
y Im
M (p)

= �dyn,

since � (p) = @=@xn�1. This implies that TpL is spanned by @=@xj�s for j =
1; 2; :::; n� 1 and @=@yn, that is a special Lagrangian subspace of phase ��=2.
As in the proof of the previous theorem, by deforming the isotropic sub-

manifold � in L and using the fact that L is an analytic submanifold of M , we
conclude that L is a special Lagrangian submanifold in M with zero phase.
Hence the theorem. �
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