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Abstract

It is well-known that del Pezzo surfaces of degree 9 − n are in one-to-one

correspondence to flat En bundles over elliptic curves which are anti-canonical

curves of such surfaces. In my thesis, we study a broader class of rational surfaces

which are called ADE surfaces. We construct Lie algebra bundles of any type

on these surfaces, and extend the above correspondence to flat G bundles over

elliptic curves, where G is a simple, compact and simply-connected Lie group of

any type. Concretely, we establish a natural identification between the following

two very different moduli spaces for a Lie group G of any type: the moduli space

of rational surfaces with G-configurations and the moduli space of flat G-bundles

over a fixed elliptic curve.
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Chapter 1

Introduction

Let S be a smooth rational surfaces. If the anti-canonical line bundle −KS is

ample, then S is called a del Pezzo surface. It is well-known that a del Pezzo

surface can be classified as a blow-up of CP
2 at n(n ≤ 8) points in general position

or CP
1 × CP

1. When these blown-up points are in almost general position, such

a surface is called a generalized del Pezzo surface, according to Demazure [7]. It

is also well-known that the sub-lattice K⊥
S of Pic(S) is a root lattice of type En.

For more results on (generalized) del Pezzo surfaces one can see [7] and [24]. Thus

there is a natural Lie algebra bundle of type En over S. By restriction to a fixed

smooth anti-canonical curve Σ, one obtains a flat En bundle over Σ. Moreover,

Donagi [8] [9] and Friedman-Morgan-Witten [13] [14] prove that the moduli space

of del Pezzo surfaces with fixed anti-canonical curve Σ can be identified with the

moduli space of flat En bundles over the elliptic curve Σ.

In this thesis, we will extend this correspondence to all compact, simple, and

simply connected Lie groups and to a broader class of rational surfaces, which

are called ADE surfaces. Next we sketch the contents briefly.

In Chapter 2, we first analyze the structure of the Picard lattice of a rational

surface which is a blow-up of P2, P1 × P1 or the Hirzebruch surface F1 at some

6
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points. We shall see that there is a canonical sub-lattice of the Picard lattice

which is a root lattice of ADE-type. Next we generalize the definition of del

Pezzo surfaces to that of ADE surfaces, where an En surface is just a del Pezzo

surface of degree 9−n. Roughly speaking, an ADE surface S is a rational surface

with a smooth rational curve C on S such that the sub-lattice 〈KS, C〉⊥ of Pic(S)

is an irreducible root lattice (see Definition 2.5). The condition in Definition 2.5

implies that C2 = −1, 0 or 1, and that the sub-lattice 〈KS, C〉⊥ is a root lattice

of type En, Dn, or An respectively (Proposition 2.6). Therefore such a surface is

called a rational surface of En-type, Dn-type, or An-type accordingly.

Note that the definition of an En surface implies that after blowing down the

(−1) curve C, the anti-canonical line bundle −K will be ample. So the resulting

surface is just a del Pezzo surface. Thus the definition of ADE surfaces naturally

generalizes that of del Pezzo surfaces.

After this, we prove that an ADE surface is nothing but a blow-up of P2,

P1 × P1 or F1 at some points in general position. This gives us an explicit con-

struction for any ADE surface.

In Section 2, we construct Lie algebra bundles of ADE-type, and their nat-

ural representation bundles over those surfaces discussed in Section 1. By a Lie

algebra bundle over a surface S, we mean a vector bundle which has a fiberwise

Lie algebra structure, and this structure is compatible with any trivialization.

Similarly, by a representation bundle, we mean a vector bundle which is a fiber-

wise representation of a Lie algebra bundle, and this fiberwise representation is

compatible with any trivialization.

More precisely, let S be an ADE surface. Since the sub-lattice 〈KS, C〉⊥ of

Pic(S) is a root lattice, we can explicitly construct a natural Lie algebra bundle

of corresponding type over S, using the root system of the root lattice 〈KS, C〉⊥.

Using the lines and rulings on S, we can also construct natural fundamental rep-
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resentation bundles over S.

In Chapter 3, we relate the above Lie algebra bundles of ADE-type over

ADE rational surfaces to flat G bundles over an elliptic curve Σ, where G is a

compact Lie group of corresponding type. If an ADE rational surface S contains

a fixed smooth elliptic curve Σ as an anti-canonical curve, then by restriction,

one obtains flat ADE-bundles over Σ.

Given Σ, the embedding of Σ as an anti-canonical curve is the following. We

first embed Σ into P2 as an anti-canonical curve, using the projective embedding

φ determined by the linear system |3(0)| where (0) is the divisor of the identity

element of Σ, and assume that all these blown up points xi ∈ Σ for i = 1, · · · , n,

and that 0, x1, · · · , xn are in general position. Moreover, we blow up P
2 at 0

to obtain the embedding of Σ into F1 as an anti-canonical curve, and take the

exceptional curve l0 as the section s for the ruled surface F1.

We can prove this restriction identifies the moduli space of flat ADE bundles

over Σ and the moduli space of the pairs (S, Σ ∈ | − KS|) with extra structure

ζG which is called a G-configuration (Definition 3.4). One of the main results in

this paper is the following theorem.

Theorem 1.1 Let Σ be a fixed elliptic curve, and let G be a simple, compact,

simply laced and simply connected Lie group. Denote S(Σ, G) the moduli space of

the pairs (S, Σ), where S is an ADE rational surface with Σ ∈ | − KS|. Denote

MG
Σ the moduli space of flat G-bundles over Σ. Then by restriction, we have

(i) S(Σ, G) can be embedded into MG
Σ as an open dense subset.

(ii) There exists a natural and explicit compactification for S(Σ, G), denoted

by S(Σ, G), such that this embedding can be extended to an isomorphism from

S(Σ, G) onto MG
Σ.

(iii) Any surface corresponding to a boundary point in S(Σ, G) \S(Σ, G) is

equip-ped with a G-configuration, and on such a surface, any smooth rational
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curve has a self-intersection number at least −2. Furthermore, in En case, all

(−2) curves form chains of ADE-type, and the anti-canonical model of such a

surface admits at worst ADE-singularities.

In Chapter 4, based on the result in simply laced cases, we construct Lie(G)

bundles for non-simply laced Lie group G over G-surfaces, and extend the above

identification to non-simply laced cases. Therefore we establish a one-to-one

correspondence between flat G bundles over a fixed elliptic curve Σ and rational

surfaces with Σ as an anti-canonical curve for simple Lie groups of all types.

A non-simply laced Lie group G is uniquely determined by a simply laced

Lie group G′ and its outer automorphism group. Hence it is natural to apply

the previous results for the simply laced cases to the non-simply laced situation.

Similar to simply-laced cases, we can define G-surfaces and rational surfaces with

G-configurations (see Definition 4.11, 4.17, 4.24, 4.32). Our main result in this

case is the following theorem.

Theorem 1.2 Let Σ be a fixed elliptic curve with identity 0 ∈ Σ, G be any simple,

compact, simply connected and non-simply laced Lie group. Denote S(Σ, G) the

moduli space of the pairs (S, Σ), where S is a G-surface such that Σ ∈ | − KS|.

Denote MG
Σ the moduli space of flat G-bundles over Σ. Then we have

(i) S(Σ, G) can be embedded into MG
Σ as an open dense subset.

(ii) This embedding can be extended to an isomorphism from S(Σ, G) onto

MG
Σ by including all rational surfaces with G-configurations, and this gives us a

natural and explicit compactification S(Σ, G) of S(Σ, G).

In the following, we illustrate briefly via pictures what G-configurations and

G-surfaces are in each case and compare it with the corresponding case that G′

is simply-laced.
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1.1 Bn-configurations and Dn+1-configurations

In these cases we consider rational surfaces with fibration structure and a fixed

smooth anti-canonical curve Σ. A Bn-configuration comes from a Dn+1-configuration.

Roughly speaking, by saying that a rational surface S has a Dn+1-configuration

(l1, · · · , ln+1), we mean that S can be considered as a blow-up of F1 (a Hirzebruch

surface) at n+1 points on Σ ∈ |−KF1
|, such that l1, · · · , ln+1 are the correspond-

ing exceptional classes (Chapter 3, Definition 3.4). When these blown up points

are in general position, S is called a G = Dn+1-surface. See the following picture

for a surface with a Dn+1-configuration.

f l1
· · ·

l
n+1

0

f − l1 f − l2

· · ·

x1

−x1 Σ

l2

x2

−x2

S

P
1

SO(2n + 2)

Figure 1. A surface with a Dn+1-configuration (l1, · · · , ln+1).

Given a surface S with a Dn+1-configuration ζ = (l1, · · · , ln+1), if it satisfies the

condition x1 = l1 ∩ Σ is the identity element 0 of the elliptic curve Σ, then ζ

is a Bn-configuration on S (Definition 4.11). If all blown up points but x1 are

in general position, S is called a Bn-surface. See Figure 2 for a surface with a

Bn-configuration.
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f
l1

l2

· · ·
ln+1

0 x1

x2

−x2

f − l1 f − l2

S

P
1

Σ

SO(2n + 1)

Figure 2. A surface with a Bn-configuration (l1, l2, · · · , ln+1),

where x1 = l1 ∩ Σ = 0.

1.2 Cn-configurations and A2n−1-configurations

In these cases, we consider rational surfaces with fibration and section structure

and a fixed smooth anti-canonical curve Σ.

A Cn-configuration comes from an A2n−1-configuration. By saying a rational

surface S has an A2n−1-configuration (l1, · · · , l2n), we mean that S can be con-

sidered as a blow-up of F1 at 2n points on Σ ∈ | − KF1
| which sum to zero, such

that l1, · · · , l2n are the corresponding exceptional classes (see Chapter 3). When

these blown up points are in general position, S is called an A2n−1-surface. See

the following picture for a surface with an A2n−1-configuration.
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s

f l1

· · · · · ·

ln ln+1 l2n

0

x1

−x1

Σ

S

P
1

s

SU(2n)

Figure 3. A surface with an A2n−1-configuration (l1, · · · , l2n).

Given a surface S with an A2n−1-configuration ζ = (l1, · · · , l2n), if it satisfies

the condition xi = −x2n+1−i with xi = li ∩ Σ, for i = 1, · · · , n, then ζ is called a

Cn-configuration on S (Definition 4.17). If all blown up points are in general po-

sition, S is called a Cn-surface. See Figure 4 for a surface with a Cn-configuration.

f

0

S

P
1

s

s

l1

· · ·

ln

l−1 l−
n

−x1 −xn

x1 xn Σ

Sp(n)

Figure 4. A surface with a Cn-configuration (l1, · · · , ln, l−
n

, · · · , l−1 ).

1.3 G2-configurations and D4-configurations

In these cases we still consider rational surfaces with fibration structure and a

fixed smooth anti-canonical curve Σ.
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A G2-configuration comes from a D4-configuration. We have seen what a

D4-configuration is from Subsection 0.1. Roughly speaking, by saying a rational

surface S has a D4-configuration (l1, · · · , l4), we mean that S can be considered

as a blow-up of F1 at 4 points on Σ ∈ | − KF1
|, such that l1, · · · , l4 are the cor-

responding exceptional classes (Chapter 3). When these blown up points are in

general position, S is called a G = D4-surface. See Figure 5 for a surface with a

D4-configuration.

f l4

0

−x4

x4

l2 l3
l1

x1

−x1

Σ

S

P
1

SO(8)

Figure 5. A surface with a D4-configuration (l1, · · · , l4).

Given a surface S with a D4-configuration ζ = (l1, · · · , l4), if it satisfies these

two conditions x1 = 0 and x4 = x2 + x3, where xi = li ∩ Σ, then ζ is called

a G2-configuration on S (Definition 4.24). If all blown up points but x1 are in

general position, S is called a G2-surface. See Figure 6 for a surface with a G2-

configuration.
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f
l1

l2 l3 l4

0 x1

x2 x3
x4

S

P
1

Σ

G2

Figure 6. A surface with a G2-configuration (l1, l2, l3, l4),

where x1 = 0 and x4 = x2 + x3 with xi = li ∩ Σ.

1.4 F4-configurations and E6-configurations

In these cases we consider rational surfaces which are blow-ups of the projective

plane P2 at 6 points in almost general position, and which contain a fixed smooth

anti-canonical curve Σ (Chapter 3).

An F4-configuration comes from an E6-configuration. Recall that by saying

a rational surface S has an E6-configuration (l1, · · · , l6), we mean that S can be

considered as a blow-up of P2 at 6 points on Σ ∈ | − KP2|, such that l1, · · · , l6

are the corresponding exceptional classes. When these blown up points are in

general position, S is called an E6-surface, which is in fact a cubic surface. See

Figure 7 for a surface with an E6-configuration.
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0

l1 l2 l3 l6l5l4S

Σ

E6

Figure 7. A surface with an E6-configuration (l1, · · · , l6),

Given a surface S with an E6-configuration ζ = (l1, · · · , l6), if it satisfies the

condition x1 + x6 = x2 + x5 = x3 + x4, where xi = li ∩ Σ, then ζ is called an

F4-configuration on S (Definition 4.32). If all blown up points are in general posi-

tion, S is called an F4-surface. See Figure 8 for a surface with an F4-configuration.

0

l1
l6

l2

l5

l3

l4

L16 L25

L34

p

S

Σ

F4

Figure 8. A surface with an F4-configuration (l1, · · · , l6),

where three lines L16, L25, L34 meet at p ∈ Σ, or equivalently,

x1 + x6 = x2 + x5 = x3 + x4 with xi = li ∩ Σ.

Moreover, we can construct G= Lie(G) bundles over S with a G-configuration.

By restriction, we obtain Lie(G) bundles over Σ. And we can also constructed

some natural fundamental representation bundles over Σ which have interesting

geometric meanings, such that the Lie algebra bundles are the automorphism

bundles of these representation bundles preserving certain algebraic structures.
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Physically, when G = En is a simple subgroup of E8×E8, these G bundles are

related to the duality between F -theory and string theory. Among other things,

this duality predicts the moduli of flat En bundles over a fixed elliptic curve Σ

can be identified with the moduli of del Pezzo surfaces with fixed anti-canonical

curve Σ. For details, one can consult [8] [9] [13] and [14].

Notation 1.3 In this thesis, we will fix some standard notations from Lie theory.

Let G be a compact, simple and simply-connected Lie group. We denote

r(G): the rank of G;

R(G): the root system;

Rc(G): the coroot system;

W (G): the Weyl group;

Λ(G): the root lattice;

Λc(G): the coroot lattice;

Λw(G): the weight lattice;

T (G): a maximal torus;

ad(G): the adjoint group of G, i.e. G/C(G) where C(G) is the center of G;

∆(G): a simple root system of G.

Out(G): the outer automorphism group of G, which is defined as the quotient

of the automorphism group of G by its inner automorphism group. It is well-

known that Out(G) is isomorphic to the diagram automorphism group of the

Dynkin diagram of G.

When there is no confusion, we just ignore the letter G.



Chapter 2

Rational Surfaces and Lie

Algebra Bundles

2.1 Rational Surfaces of ADE-type

Before defining what ADE surfaces are, we first give their explicit constructions.

2.1.1 En Sublattices

First consider the En case, that is, the case of del Pezzo surfaces. We start with a

complex projective plane P2 and n points x1, · · · , xn on P2 with n ≤ 8. Note that

x2, · · · , xn may be infinitely near points. For example, we say that x2 is infinitely

near x1 if x2 lies on the exceptional curve obtained by blowing up x1. Blowing up

P2 at these points in turn, we obtain a rational surface, denoted Xn(x1, · · · , xn)

or Xn for brevity.

These points are said to be in general position if they satisfy the following

conditions:

(i) They are distinct points;

(ii) No three of them are collinear;

17
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(iii) No six of them lie on a common conic curve;

(iv) No cubics pass through 8 points with one of them a double point.

The following result is well-known (see [7] and [24]).

Lemma 2.1 Let xi ∈ P2, i = 1, · · · , n, n ≤ 8. Then the following conditions are

equivalent:

(i) These points are in general position.

(ii) The self-intersection number of any rational curve on Xn is bigger than or

equal to −1.

(iii) The anti-canonical class −KXn
is ample. �

A surface Xn is called a del Pezzo surface if it satisfies one of the above equiv-

alent conditions.

We say that xi ∈ P
2, i = 1, · · · , n with n ≤ 8 are in almost general position if

any smooth rational curve on Xn has a self-intersection number at least −2, and

such a surface is called a generalized del Pezzo surface (see [7]).

Let h be the class of lines in P
2 and li be the exceptional divisor corresponding

to the blow-up at xi ∈ P2, i = 1, · · · , n. Denote Pic(Xn) the Picard group of

Xn, which is isomorphic to H2(Xn, Z). Then Pic(Xn) is a lattice with basis

h, l1, · · · , ln, of signature (1, n). Let K = −3h + l1 + · · · + ln be the canonical

class. We extend the definition of the (real) Lie algebras En, n = 6, 7, 8 to all n

with 0 ≤ n ≤ 8 by setting E0 = 0, E1 = R, E2 = A1 × R, E3 = A1 × A2, E4 = A4

and E5 = D5.
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Denote

Pn = {x ∈ H2(Xn, Z) | x · K = 0},

Rn = {x ∈ H2(Xn, Z) | x · K = 0, x2 = −2} ⊂ Pn,

In = {x ∈ H2(Xn, Z) | x2 = −1 = x · K}, and

Cn = {ζn = (e1, · · · , en) | ei ∈ In, ei · ej = 0, i 6= j}.

An element of In is called an exceptional divisor, and an element ζn ∈ Cn is

called an exceptional system (of divisors) (see [7] and [24]).

Lemma 2.2 (i) Rn is a root system of type En with a system of simple roots

α1 = l1 − l2, α2 = l2 − l3, α3 = h− l1 − l2 − l3, α4 = l3 − l4, · · · , αn = ln−1 − ln.

Its root lattice is just Pn, and its weight lattice is Qn = H2(Xn, Z)/ZK. Let

l ∈ In, then Rn ∩ l⊥ is a root system of type En−1, and Pn ∩ l⊥ is its root lattice.

(ii) The Weyl group W (En) acts on Cn simply transitively.

Proof. (i) For the proof that Rn is a root system of type En with given simple

roots, see Manin’s book [24]. H2(Xn, Z) is a lattice with Z-basis h, l1, · · · , ln.

Obviously, {e0 = l1, e1 = α1, · · · , en = αn} forms another Z-basis. Take any

x ∈ Pn ⊂ H2(Xn, Z). Let x =
∑

ai · ei. Then x · K = 0 implies a0 = 0. So Pn is

the root lattice of Rn.

The natural pairing Pn ⊗ H2(Xn, Z) → Z induces a perfect pairing

Pn ⊗ (H2(Xn, Z)/ZK) → Z.

So the weight lattice is just H2(Xn, Z)/ZK.

For the last assertion, we can assume l = l8, then it is true obviously.

(ii) See [24]. �

The Dynkin diagram is the following
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α1 α2

α3

α4 α5 αn

Figure 1. The root system En.

2.1.2 Dn Sublattices

Next we consider the Dn case. Let Y = F1 be a Hirzebruch surface, and fix the

ruling f and the section s, where s2 = −1. In fact F1 is the blow-up of P2 at one

point x0. Thus f = h − l0, s = l0 where h is the class of lines on P
2 and l0 is

the exceptional curve. Blowing up Y at n points x1, · · · , xn we obtain Yn. The

Picard group of Yn is H2(Yn, Z), which is a lattice with basis s, f, l1, · · · , ln. The

canonical class K = −(2s + 3f −
n∑

i=1

li).

Denote

Pn = {x ∈ H2(Yn, Z) | x · K = 0 = x · f},

Rn = {x ∈ H2(Yn, Z) | x · K = 0 = x · f, x2 = −2},

In = {x ∈ H2(Yn, Z) | x2 = −1 = x · K, x · f = 0},

Cn = {ζn = (e1, · · · , en) | ei ∈ In, ei · ej = 0, i 6= j,
∑

ei · s ≡ 0 mod 2}.

Similarly as before, an element ζn ∈ Cn is called an exceptional system (of

divisors).

Lemma 2.3 (i) Rn is a root system of type Dn with a system of simple roots

α1 = f − l1 − l2, α2 = l1 − l2, · · · , αn = ln−1 − ln. Its root lattice is just Pn and its

weight lattice is Qn = H2(Yn, Z)/Z〈f, K〉.

(ii) The Weyl group W (Dn) acts on Cn simply transitively.
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Proof. (i) H2(Yn, Z) is a lattice with Z-basis s, f, li, i = 1, · · · , n. Let x =

as + bf +
∑

cili ∈ Rn where a, b, ci ∈ Z. Then we have a system of linear

equations 



x2 = −2,

x · K = 0 = x · f.

Solving this, we obtain 



a = 0,
∑

c2
i = 2,

2b = −
∑

ci.

So, x = ±(li − lj), i 6= j or x = ±(f − li − lj), i 6= j. That is Rn = {±(li −

lj),±(f − li − lj)| i 6= j}. This implies that Rn is a root system of Dn-type with

indicated simple roots.

Obviously, {e1 = s, e2 = l1, ei+2 = αi, i = 1, · · · , n} forms another Z-basis.

Take any x ∈ Pn ⊂ H2(Yn, Z). Let x =
∑

ai · ei. Then x · K = 0 = x · f implies

a1 = a2 = 0. So Pn is the root lattice of Rn.

The natural pairing Pn ⊗ H2(Yn, Z) → Z has kernel Z〈f,−2s +
∑

li〉 =

Z〈f, K〉. So the pairing induces a perfect pairing Pn ⊗ (H2(Yn, Z)/Z〈f, K〉) → Z.

Hence the weight lattice is just H2(Yn, Z)/Z〈f, K〉.

(ii) A simple computation shows that

In = {li, f − li|i = 1, · · · , n}.

Thus all the elements of Cn are of the form ζn = (u1, · · · , un) where the number

of ui’s, such that ui = f−lk for some k, is even. Then by the structure of W (Dn),

the result is clear. �

The Dynkin diagram is the following
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α1

α2 α3 α4 αn

Figure 2. The root system Dn.

2.1.3 An Sublattices

In the following we consider the An−1 case. For this, let Zn be just the same as

Yn.

Denote

Pn−1 = {x ∈ H2(Zn, Z) | x · K = x · f = x · s = 0},

Rn−1 = {x ∈ H2(Zn, Z) | x · K = x · f = x · s = 0, x2 = −2},

In−1 = {x ∈ H2(Zn, Z) | x2 = −1 = x · K, x · f = 0 = x · s},

Cn−1 = {ζn = (e1, · · · , en) | ei ∈ In−1, ei · ej = 0, i 6= j}.

As before, an element of ζn ∈ Cn−1 is called an exceptional system (of divisors).

Lemma 2.4 (i) Rn−1 is a root system of type An−1 with a system of simple roots

α1 = l1 − l2, · · · , αn−1 = ln−1 − ln. Its root lattice is just Pn−1 and its weight

lattice is H2(Zn, Z)/Z〈f, s, K〉.

(ii) The Weyl group W (An−1) acts on Cn−1 simply transitively. In fact,

W (An−1) acts as the permutation group of l1, · · · , ln.

(iii) Let e be a (−1) curve which does not meet s. Then there exist i, j with

i 6= j such that e = s + f − li − lj, and when n ≥ 4, 〈K, s, f, e〉⊥ is a reducible

root lattice of type A1×An−3; when n = 3, 〈K, s, f, e〉⊥ is not a root lattice; when

n = 2, 〈K, s, f, e〉⊥ is the same as P1, which is of type A1.

(iv) Let ei, 1 ≤ i ≤ k, k ≥ 2 be (−1) curves such that s, ei, 1 ≤ i ≤ k are

disjoint pairwise. Then when k 6= 3, 〈K, s, f, ei, 1 ≤ i ≤ k〉⊥ is not a root lattice.
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When k = 3, (a) if e1 = s+f−li2−li3 , e2 = s+f−li1−li3 , e3 = s+f−li1−li2 then

〈K, s, f, e1, e2, e3〉⊥ is a root lattice of A-type; (b) otherwise, 〈K, s, f, e1, e2, e3〉⊥

is not a root lattice.

Proof. (i) H2(Zn, Z) is a lattice with Z-basis s, f, li, i = 1, · · · , n. A simple

computation shows that

Rn−1 = {li − lj | i 6= j}.

Then it is obviously a root system of type An−1 with given simple roots.

Obviously, {e1 = s, e2 = f, e3 = l1, ei+3 = αi, i = 1, · · · , n} forms another

Z-basis. Take any x ∈ Pn−1 ⊂ H2(Zn, Z). Let x =
∑

ai · ei. Then x ·K = x · f =

x · s = 0 implies a1 = a2 = a3 = 0. So Pn−1 is the root lattice of Rn−1.

The natural pairing

Pn−1 ⊗ H2(Zn, Z) → Z

has a kernel

Z〈f, s,
∑

li〉 = Z〈f, s, K〉.

So the pairing induces a perfect pairing

Pn−1 ⊗ (H2(Zn, Z)/Z〈f, s, K〉) → Z.

Hence the weight lattice is just H2(Zn, Z)/Z〈f, s, K〉.

(ii) In fact In−1 = {l1, · · · , ln}. So an element of Cn−1 is just a permutation

of l1, · · · , ln.

(iii) Let e = as+ bf +
∑

cili, then e is a (−1) curve and e · s = 0 imply that e

must be of the form s+f−li−lj , i 6= j. Without loss of generality, we can assume

that e = s + f − l1 − l2. Then the result follows from a simple computation.

(iv) First let k = 2. From the proof of (iii), we know both e1 and e2

are the form s + f − li − lj , i 6= j. Since e1 · e2 = 0, we can assume e1 =

s + f − l1 − l2 and e2 = s + f − l1 − l3. Then the result follows easily. For
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k = 3, if e1 = s + f − li2 − li3 , e2 = s + f − li1 − li3 , e3 = s + f − li1 − li2 then

〈K, s, f, e1, e2, e3〉⊥ = 〈K, s, f, li1, li2, li3〉
⊥. We can assume that li1 = l1, li2 = l2,

and li3 = l3. Then 〈K, s, f, l1, l2, l3〉⊥ is a root lattice of A-type. Other cases are

similar. �

The Dynkin diagram is the following

α1 α2 α3 αn−1

Figure 3. The root system An−1.

Note that Lemma 2.3 and Lemma 2.4 (i) (ii) are still true if we replace F1 by

any Hirzebruch surface Fk(k ≥ 0).

2.1.4 ADE Surfaces

Now we show that in a suitable sense, the converse of the above lemmas is also

true. As promised in the introduction, we will see that the following definition

generalizes that of del Pezzo surfaces.

Definition 2.5 Let (S, C) be a pair consisting of a smooth rational surface S

and a smooth rational curve C ⊂ S with C2 6= 4. The pair (S, C) is called of

ADE-type (or an ADE surface) if it satisfies the following two conditions:

(i) Any (smooth) rational curve on S has a self-intersection number at least

−1;

(ii) The sub-lattice 〈KS, C〉⊥ of Pic(S) is an irreducible root lattice of rank

equal to rank(Pic(S)) − 2.

The following proposition shows that such surfaces can be classified into three

types.
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Proposition 2.6 Let (S, C) be a rational surface of ADE-type. And let n =

rank(Pic(S)) − 2. Then C2 ∈ {−1, 0, 1} and

(i) when C2 = −1, 〈KS, C〉⊥ is of En-type, where 4 ≤ n ≤ 8;

(ii) when C2 = 0, 〈KS, C〉⊥ is of Dn-type, where n ≥ 3;

(iii) when C2 = 1, 〈KS, C〉⊥ is of An-type.

Proof. By the first condition in Definition 2.5, C2 ≥ −1. Therefore there are

the following four cases.

Firstly, suppose C2 = −1. Then we can contract C to obtain a smooth surface

S̃. Let π : S → S̃ be the blow-down. Then the projection

Pic(S) = Pic(S̃) ⊕ Z〈C〉 → Pic(S̃)

induces an isomorphism 〈KS, C〉⊥ ∼= 〈KeS〉⊥. But the latter is an irreducible root

system if and only if S̃ is a blow-up of CP
2 at n(4 ≤ n ≤ 8) points. At this time

〈KeS〉⊥ is a root system of En-type. Thus S is a blow-up of CP
2 at n+1(4 ≤ n ≤ 8)

points.

Secondly, suppose C2 = 0. Then by Riemann-Roch theorem, the linear system

|C| defines a ruling over P1 with fiber C. Contract all (−1) curves in fiber, we

obtain a relatively minimal model (not unique), which is P
1×P

1 or the Hirzebruch

surface F1. So, S is a blow-up of P1 × P1 or F1 at n points. And the lattice

〈KS, C〉⊥ must be of Dn-type by Lemma 2.3.

Thirdly, suppose C2 = 1. Then blow up one point p0 ∈ C, we obtain S̃ which

is a ruling over P
1 with fiber C̃ = C−E and section E where E is the exceptional

curve associated to this blow-up. Contracting all (−1) curves in fiber which do

not intersect with E, we will obtain F1. Thus S̃ is a blow-up of F1 at n points.

And we have 〈KS, C〉⊥ ∼= 〈KeS, C̃, E〉⊥. Therefore the lattice is a root lattice of

An-type by Lemma 2.4.

Finally, suppose C2 ≥ 2. Note that since we assume C2 6= 4, the situation

of Lemma 2.4 (iv) (a) can not happen. So we only need to discuss the case
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where C2 = 2, because the discussion on general cases is similar. Blowing up S

at two points p, q ∈ C, p 6= q, we obtain S̃ with exceptional curves Ep, Eq. Let

C̃ = C−Ep −Eq be the strict transform of C, then |C̃| defines a ruling with fiber

C̃ and section s = Ep (fixed). Similarly as before, contracting all (−1) curves

E in fiber which satisfy E · C̃ = 0 = E · s, we will obtain F1. Then S̃ can be

considered as a blow-up of F1 at n points. Note that 〈KS, C〉⊥ ∼= 〈KeS, C̃, s, Eq〉⊥.

We know that 〈KeS, C̃, s〉⊥ is a root lattice of An-type from Lemma 2.4. Then the

result follows also from Lemma 2.4. �

Remark 2.7 We extend the definition of En surfaces to all n with 0 ≤ n ≤ 8,

by defining En(n ≤ 3) surfaces to be del Pezzo surfaces of degree 9 − n.

Corollary 2.8 On an ADE surface, any exceptional divisor perpendicular to C

is represented by an irreducible curve. Therefore, any exceptional system consists

of exceptional curves.

Proof. In En case, the result follows from Proposition 2.6 and Lemma 2.1. In

Dn and An cases, according to Proposition 2.6, the result is obvious. �

In the following we generalize the definition for n ≤ 8 points being in general

position to any n ≥ 0. Denote S = P2 (or P1 × P1 or F1). Denote Sn(x1, · · · , xn)

(or Sn for brevity) the blow-up of S at n points x1, · · · , xn. We say that x1, · · · , xn

are in general position if any smooth rational curve on Sn has a self-intersection

number at least −1. And we say that x1, · · · , xn are in almost general position if

any smooth rational curve on Sn has a self-intersection number at least −2.

Corollary 2.9 Let (S, C) be an ADE surface.

(i) In En case, blowing down the (−1) curve C, we obtain a del Pezzo surface

of degree 9 − n.

(ii) In Dn case, S is just a blow-up of P1 × P1 or F1 at n points in general

position with C as the natural ruling.
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(iii) In An case, let S̃ be the blow-up of S at a point on C, with the exceptional

curve E, then S̃ is a blow-up of F1 at n + 1 points, and the strict transform C̃ of

C defines a ruling with E as the section of F1. �

2.2 Lie Algebra Bundles over Rational Surfaces

of ADE-type and Their Representation Bun-

dles

When G is of ADE-type, to each ADE surface S, we can construct a natural

G = Lie(G) bundle and natural fundamental representation bundles over S, which

are determined by the lines (or exceptional divisors in general) and rulings on S.

Definition 2.10 By a Lie algebra G = Lie(G) bundle, we mean a vector bun-

dle which fiberwise carries a Lie algebra structure of G-type, and this Lie algebra

structure is compatible with trivialization of this bundle. By a representation bundle

of a G bundle, we mean a vector bundle V which fiberwise is a representation of

G, and the action of G on V is compatible with trivialization of them.

We describe these bundles in the following, and give the detailed arguments

just in En case.

2.2.1 En Bundles over En Surfaces

Let (S, C) be an En surface. Recall that S = Xn+1(x1, · · · , xn+1) where C

be the exceptional divisor associated to the blow-up at xn+1. Denote S̃ =

Xn(x1, · · · , xn). Since 〈KS, C〉⊥ ∼= K⊥eS , we can just consider the surface S̃ =

Xn(x1, · · · , xn).

Since we have a root system of En-type attached to Xn, we can construct a
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Lie algebra bundle over Xn as follows:

En = O⊕n
⊕

D∈Rn

O(D).

The fiberwise Lie algebra structure of En is defined as the following. Fix the

system of simple roots of Rn as

∆(En) = {α1 = l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, · · · , αn = ln−1 − ln},

and take a trivialization of En. Then over a trivializing open subset U , En|U ∼=

U × (C⊕n
⊕

α∈Rn
Cα). Take a Chevalley basis {xU

α , α ∈ Rn; hi, 1 ≤ i ≤ n} for

En|U and define the Lie algebra structure by the following four relations, namely,

Serre’s relations on Chevalley basis (see [16], p147):

(a) [hihj ] = 0, 1 ≤ i, j ≤ n.

(b) [hix
U
α ] = 〈α, αi〉xU

α , 1 ≤ i ≤ n, α ∈ Rn.

(c) [xU
α xU

−α] = hα is a Z-linear combination of h1, · · · , hn.

(d) If α, β are independent roots, and β − rα, · · · , β + qα are the α-string

through β, then [xU
αxU

β ] = 0 if q = 0, while [xU
α xU

β ] = ±(r + 1)xU
α+β if α + β ∈ Rn.

Note that hi, 1 ≤ i ≤ n are independent of any trivialization, so the relation

(a) is always invariant under different trivializations. If En|V ∼= V ×(C⊕n
⊕

α∈Rn
)

is another trivialization, and fUV
α is the transition function for the line bundle

O(α)(α ∈ Rn), that is, xU
α = fUV

α xV
α , then the relation (b) is

[hi(f
UV
α xV

α )] = 〈α, αi〉f
UV
α xV

α ,

that is,

[hix
V
α ] = 〈α, αi〉x

V
α .

So (b) is also invariant. (c) is also invariant since (fUV
α )−1 is the transition function

for O(−α)(α ∈ Rn). Finally, (d) is invariant since fUV
α fUV

β is the transition

function for O(α + β)(α, β ∈ Rn).
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Therefore, the Lie algebra structure is compatible with the trivialization.

Hence it is well-defined. In other words, we can construct globally a Lie al-

gebra bundle over a surface once we are given a root system consisting of divisors

on this surface.

The following relations are intricate. One is the relation between In (the set

of all exceptional divisors) and the fundamental representation associated to the

highest weight λn which is dual to the simple root αn (see Figure 1). Another

one is the relation between the set of rulings and the fundamental representation

associated to the highest weight λ1 which is dual to the simple root α1 (Figure

1). We explain the relations in the following.

Let Ln be the fundamental representation with the highest weight λn. Then

we have:

n 1 2 3 4 5 6 7 8

dim Ln 1 3 6 10 16 27 56 248

|In| 1 3 6 10 16 27 56 240

Denotes Run the set of all rulings on Xn. Let Rn be the fundamental repre-

sentation with the highest weight λ1. Then we have:

n 1 2 3 4 5 6 7 8

dim Rn 1 2 3 5 10 27 133 3875

|Run| 1 2 3 5 10 27 126 2120

Inspired by these, we can construct a fundamental representation bundle Ln

(respectively Rn) using the exceptional divisors (respectively the rulings) on Xn

as follows.
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Ln =
⊕

l∈In

O(l) when n ≤ 7,

L8 =
⊕

l∈I8

O(l) ⊕O(−K)⊕8.

Respectively,

Rn =
⊕

R∈Run

O(R) when n ≤ 6,

R7 =
⊕

R∈Ru7

O(R) ⊕O(−K)⊕7.

The fiberwise action is defined naturally, which is in fact compatible with any

trivialization.

For example we consider the bundle Ln and suppose n ≤ 7. Take U, V as

before, and suppose they also trivialize Ln, that is Ln|U ∼= U × (
⊕
l∈In

Cl) and

Ln|V ∼= V × (
⊕
l∈In

Cl). Take eU
l (resp. eV

l = gV UeU
l ) to be the basis of Cl over U

(resp. V ). Then define xU
α .eU

l to be equal to eU
l′ if l′ = α + l ∈ In and be equal to

0 otherwise. And define hα.eU
l = (α · l)eU

l .

Note that the situation here is slightly different from some standard usage,

for example [3] [16], since the self-intersection number of an element of Rn or

In is negative. But this does not matter if we take the simple root system to

be {−α1, · · · ,−αn}, and take the pairing to be (x, y) := −(x · y). Firstly since

λn(−αi) = (−αi, ln) = αi · ln = δin, we have λn
∼= (·, ln). Secondly the action is

irreducible since the Weyl group acts on In transitively. Lastly eU
ln

is the maximal

vector of weight λn. Therefore this fiberwise action does define the highest weight

module with the highest weight λn (see [16]).

Obviously, this fiberwise Lie algebra action is compatible with the trivializa-

tion.

For L8, note that the bijection I8 → R8 given by l 7→ l + K induces an
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isomorphism

E8
∼= L8 ⊗O(K).

This implies L8 is just the adjoint representation bundle.

Similarly, Rn is the fundamental representation bundle with the highest weight

λ1
∼= (·, h − l1) and the maximal vector eU

h−l1
, where the simple root system and

the pairing are defined as above. We also have that R7 ⊗ O(K) ∼= E7 is the

adjoint representation bundle.

Example 2.11 Let us look at the sl(2) sub-bundle

O ⊕O(α) ⊕ (−α),

where α = l1 − l2. Then the bundle O(l1) ⊕O(l2) is the standard representation

bundle. And the line bundle O(h − l1 − l2) is a trivial representation.

In fact, the Lie algebra bundle En is uniquely determined by its representation

bundles Ln and Rn, according to [1]. Concretely (see [20] for more details),

(i) E4 is the automorphism bundle of R4 preserving ∧5R4
∼= O(−2K).

(ii) E5 is the automorphism bundle of R5 preserving q5 : R5⊗R5 → O(−K),

where q5 is defined by O(R′) ⊗ O(R′′) → O(−K) if R′ + R′′ = −K, and 0

otherwise.

(iii) E6 is the automorphism bundle of R6 and L6 preserving





c6 : L6 ⊗ L6 → R6, and

c∗6 : R6 ⊗ R6 → L6 ⊗O(−K),

where c6 is defined by the map (li, lj) 7→ 2h −
∑

k 6=i,j

lk and c∗6 is defined by the

map (h − li, h − lj) 7→ h − li − lj .

(iv) E7 is the automorphism bundle of L7 preserving

f7 : L7 ⊗ L7 ⊗ L7 ⊗ L7 → O(−2K),
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where f7 is defined by the map (C1, C2, C3, C4) 7→ −2K if C1 + C2 + C3 + C4 =

−2K, 0 otherwise.

(v) E8 is the automorphism bundle of L8 preserving

L8 ∧ L8 → L8 ⊗O(−K).

For X6, the bijection Ru6 → I6 defined by R 7→ −(R+K) induces an isomor-

phism R6
∼= L ∗

6 ⊗O(−K), which is consistent with the duality between L6 and

R6 for the Lie group E6.

2.2.2 Dn Bundles over Rational Ruled Surfaces

Let (S, C) be a Dn surface. By Proposition 2.6, S dominates F1 or F0(= P1×P1)

with ruling C. We can suppose that S dominates F1 since for another case the

arguments is the same. Thus S = Yn(x1, · · · , xn) is the blow-up of F1 at n points

xi, i = 1, · · · , n, where for any i, xi does not lie on the section s.

Since Rn is a root system of type Dn, the Lie algebra bundle can be constructed

as follows.

Dn = O⊕n
⊕

D∈Rn

O(D).

Recall that in Dn case,

In = {C| C2 = C · K = −1, C · f = 0}

= {li, f − li | i = 1, · · · , n}.

The fundamental representation with the highest weight λn, where λn is the

fundamental weight corresponding to αn = ln−1 − ln, is

Wn =
⊕

C∈In

O(C).

In fact, Wn is the standard representation bundle of Dn.
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Note that there are n singular fibers, and each singular fiber is of the form

li + l′i where l′i = f − li, i = 1, · · · , n. The relation

O(li) ⊗O(l′i) = O(f)

implies we can define a non-degenerated fiberwise quadratic form

qn : Wn ⊗ Wn → O(f).

The two spinor bundles are defined as

S+
n =

⊕

S2=S·K=−1,S·f=1

O(S) and S−
n =

⊕

T 2=−2,T ·K=0,T ·f=1

O(T ).

Moreover, there are all kinds of structures on these representation bundles, for

example, the Clifford multiplication:

S+
n ⊗ W

∗
n → S−

n and S−
n ⊗ Wn → S+

n .

When n = 2m − 1 is odd, we have isomorphism

(S+
n )∗ ⊗OYn

((m − 4)f − K) ∼= S−
n .

When n = 2m is even, we have isomorphisms

(S+
n )∗ ⊗OYn

((m − 3)f − K) ∼= S+
n ,

(S−
n )∗ ⊗OYn

((m − 4)f − K) ∼= S−
n .

For more details, see [20].

2.2.3 An−1 Bundles and Their Representation Bundles

Let S be an An−1 surface. By Proposition 2.6, we can assume that S =

Zn(x1, · · · , xn) be the blow-up of F1 at n points xi, i = 1, · · · , n, where for any i,

xi does not lie on the section s. Recall that
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Rn−1 = {li − lj| i 6= j} and

In−1 = {l1, · · · , ln}.

Since Rn−1 is a root system of An−1-type, the Lie algebra bundle can be con-

structed as

An−1 = O⊕n−1
⊕

D∈Rn−1

O(D).

And the standard representation bundle is

Vn−1 =
⊕

C∈In−1

O(C) =
n⊕

i=1

O(li).

The kth fundamental representation bundle is just

∧k(Vn−1) ∼=
⊕

i1<···<ik

O(li1 + · · ·+ lik).

We also have An−1 = End0(Vn−1).

We summarize the content of this section as the following form.

Conclusion 2.12 For every ADE surface S, there is a natural Lie algebra bun-

dle of corresponding ADE-type over S. Furthermore, we can construct two nat-

ural fundamental representation bundles over S, using lines and rulings on S.

Moreover, the Lie algebra bundle can be considered as the automorphism (Lie

algebra) bundle of these fundamental representation bundles preserving natural

structures. �



Chapter 3

Flat G-bundles over Elliptic

Curves and Rational Surfaces:

Simply Laced Cases

In the following, we study the relation between ADE surfaces and flat G bundles

over elliptic curves, where G is compact, simple and simply connected Lie group

of ADE-type (the type is the same as that of the corresponding surface).

3.1 Flat G-bundles over Elliptic Curves

In this section we review some well-known results about flat G bundles over

elliptic curves.

Let Σ be an elliptic curve with identity element 0. The fundamental group

π1(Σ) = Z ⊕ Z. Let G be a compact, simple and simply connected Lie group of

rank r with root system R, coroot system Rc, Weyl group W (G), root lattice Λ,

coroot lattice Λc and maximal torus T . The dual lattice Λ∨
c of Λc is the weight

lattice. We denote the moduli space of flat G-bundles over Σ by MG
Σ. It is

35
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well-known that we have the following isomorphisms.

MG
Σ
∼= Hom(π1(Σ), G)/ad(G)

∼= Hom(π1(Σ), T )/W

∼= T × T/W

∼= Σ ⊗Z Λc/W.

The second isomorphism is because of Borel’s theorem [5] which says that a

commuting pair of elements in G can be diagonalized simultaneously. The last

isomorphism comes from

Hom(π1(Σ), T ) = Hom(π1(Σ), U(1) ⊗Z Λc) ∼= Hom(π1(Σ), U(1)) ⊗Z Λc

and

Hom(π1(Σ), U(1)) ∼= Pic0(Σ) ∼= Σ.

A famous theorem [21][22] of Looijenga’s says that

Σ ⊗Z Λc/W ∼= WP
r
s0=1,s1,··· ,sr

,

where the latter is the weighted projective space with weights si’s, and s1, · · · , sr

are the coefficients of the highest coroot of Rc.

One element of Hom(Λ, Σ)/W can only determine a flat ad(G) = G/C(G)

bundle in general. For the adjoint group ad(G), the moduli space of flat ad(G)

bundles Mad(G)
Σ contains Hom(Λ, Σ)/W as a connected component (see [13]). On

the other hand, we have the following short exact sequences:

0 → Λ → Λ∨
c → Γ → 0

and

0 → Hom(Γ, Σ) → Hom(Λ∨
c , Σ) → Hom(Λ, Σ) → 0.

Here Γ is a finite abelian group. The second sequence is exact since Σ is a divisible

abelian group. It follows that Hom(Λ, Σ) and Σ ⊗Z Λc are isogenous as abelian
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varieties. Let d be the exponent of the finite group Γ. If we fix a dth root of

Σ ∼= Jac(Σ) then we can extend uniquely a homomorphism f0 ∈ Hom(Λ, Σ) to a

homomorphism f ∈ Hom(Λ∨
c , Σ). Hence when we fix a dth root of Σ, we obtain

the following isomorphism

MG
Σ
∼= Hom(Λ, Σ)/W.

When G is of ADE-type, the root lattice and the coroot lattice coincide, hence

the weight lattice is just the dual lattice of the root lattice.

Remark 3.1 We have constructed ADE (Lie algebra) bundles over ADE ratio-

nal surfaces. For such a bundle, taking the compact form of its automorphism

bundle, we obtain the adjoint Lie group bundle P . When the surface S has a

smooth anti-canonical curve Σ, restricting P to Σ (fixing the identity element

0 ∈ E), we shall obtain a flat ad(G) bundle of ADE-type over Σ. We can also

first restrict the Lie algebra bundles to Σ, and then take the compact form. We

still obtain the same flat ad(G) bundle over Σ. To obtain a simple Lie group En

(resp. Dn), we need to assume that 4 ≤ n ≤ 8 (resp. n ≥ 3).

3.2 The Identification of Moduli Spaces in ADE

Cases

From this section on, we fix our ADE surface S to be the rational surface

Xn(x1, · · · , xn), Yn(x1, · · · , xn), or Zn(x1, · · · , xn). For Xn, we assume n ≤ 8.

In last section, we saw that once we are given a root system of type En (re-

spectively Dn, An−1) in the Picard lattice of Xn (respectively Yn, Zn), we can

construct a Lie algebra bundle of that type and its natural fundamental repre-

sentation bundles over this surface. Furthermore, we can construct an adjoint

compact Lie group bundle over this surface. To obtain the corresponding Lie

group bundle over the fixed elliptic curve Σ by restriction, we need to assume



38

that Σ is an anti-canonical curve of our rational surfaces. That is, we first embed

Σ into P2 as an anti-canonical curve, using the projective embedding φ deter-

mined by the linear system |3(0)| where (0) is the divisor of the identity element

of Σ, and assume that all these blown up points xi ∈ Σ for i = 1, · · · , n, and

that 0, x1, · · · , xn are in general position. Moreover, we blow up P2 at 0 to obtain

the embedding of Σ into F1 as an anti-canonical curve, and take the exceptional

curve l0 as the section s for the ruled surface F1.

Convention 3.2 In Zn case, it is well-known that in order to obtain a flat

SU(n)-bundle over Σ we need one more assumption:

∑
xi = 0 in Σ.

We explain how the moduli space MG
Σ is related to the moduli space of rational

surfaces of the above types. Denote S(Σ, G) the moduli space of the pairs (S, Σ),

where S is an ADE rational surface of type the same as that of G and Σ ∈ |−KS|.

Proposition 3.3 There exists a well-defined map

φ : S(Σ, G) → Hom(Λ, Σ)/W,

where Λ is the lattice Pn or Pn−1 defined in Section 1.

Proof. First we consider the case where S = Xn is a Del Pezzo surface, that

is, all blown up points are in general position. Suppose we are given the pair

(Xn, Σ ∈ | − KXn
| ). For each element y ∈ Pn, y stands for a holomorphic line

bundle over S. Restricting y to Σ, we obtain a holomorphic line bundle over Σ,

denoted by Ly. The degree of Ly is

deg(Ly) = y · (−K) = 0.

So Ly is an element of the Jacobian of Σ, which is canonically isomorphic to

Σ since the identity element of Σ is given. Thus we obtain a map from Pn to
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Σ : y 7→ Ly, which is obviously a homomorphism of abelian groups. But for one

pair (Xn, Σ), we can have different choices of simple roots in order to identify Pn

with the root lattice of En, and all choices are only differed by the action of the

Weyl group W (En). So finally we obtain a well-defined map from the moduli space

S(Σ, En) of such pairs (Xn, Σ) to the projective variety Hom(Pn, Σ)/W (En).

The other two cases are similar. Roughly speaking, given a pair (Yn, Σ) (resp.

(Zn, Σ)), we obtain an element in

Hom(Pn, Σ)/W (Dn) ( resp. Hom(Pn−1, Σ)/W (An−1)). �

In fact we can prove a theorem of Torelli type for the above correspondings.

Roughly speaking, the moduli space of the pairs (S, Σ) is isomorphic to

Hom(Λ, Σ)/W,

where Λ is our root lattice.

Definition 3.4 Let S = Xn, Yn, or Zn. An exceptional system ζn = (e1, · · · , en) ∈

Cn on Xn (resp. Yn, Zn) is called a G-configuration for G = En (resp. Dn,

An−1) if en is a (−1) curve, and after blowing down en, en−1 is a (−1) curve. And

this process can be proceeded successively until after blowing down e1, we obtain

P2 (resp. F1) for G = En (resp. Dn and An−1). Denote ζG a G-configuration.

When S is equipped with a G-configuration ζG, and S has Σ as an anti-canonical

curve, we call S a rational surface with G-configuration and denote it by a

pair (S, G).

Equivalently, a G-configuration ζEn
(resp. ζDn

or ζAn−1
) on S = Xn (resp. Yn,

Zn), means that S could be considered as the blow-up of P
2 (resp. F1, F1) at n

(maybe not distinct) points y1, · · · , yn ∈ S successively, such that e1, · · · , en are

the corresponding exceptional divisors.
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Lemma 3.5 Let S be a surface with G-configuration. Then any smooth rational

curve on S has a self-intersection number at least −2. Furthermore, in En case,

all these (−2) curves form chains of ADE-type.

Proof. Let L be a smooth rational curve on S. Then L · Σ ≥ 0. By adjoint

formula, we have −2 = L2 + L · KS. Since Σ is linearly equivalent to −KS, we

have L2 ≥ −2. For the last assertion, see [7]. �

On an ADE surface, by Corollary 2.8, any exceptional system is an ADE-

configuration. Thus, we can restate the result of Lemma 2.2 (ii), Lemma 2.3 (ii)

and Lemma 2.4 (ii) as follows.

Proposition 3.6 For an ADE surface, W (G) acts on the set of all G-configurations

simply transitively. �

This proposition implies that a G-configuration determines exactly an isomor-

phism from Pn (or Pn−1 for An−1) to the corresponding root lattice Λ(G).

An An−1-configuration on Zn is illustrated in the following figure

f l1
ln

0

· · ·

· · ·
x1

−x1

xn

−xn

Σ

f − l1 f − ln

Zn

P
1

s
s

Figure 4. A surface with an An−1-configuration (l1, · · · , ln).

SU(n)
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A Dn-configuration on Yn is illustrated in the following figure

f l1
· · ·

ln

0

f − l1

· · ·

f − ln

x1

xn

−x1
−xn

Σ

Yn

P
1

Figure 5. A surface with a Dn-configuration (l1, · · · , ln).

SO(2n)

And an En-configuration on Xn is illustrated in the following figure

0

l1 ln

x1
xn

· · ·

S

Σ

En

Figure 6. A surface with an En-configuration (l1, · · · , ln),

Recall the definition ζDn
= (e1, · · · , en) where ei ·KYn

= −1, ei ·f = 0, ei ·ej =

δij and
∑

ei ·s ≡ 0 mod 2. Next we explain geometrically why we need to assume

that
∑

ei · s ≡ 0 mod 2.

Definition 3.7 Let C ⊂ P
2 be a curve of degree d. A point P ∈ C is called a

ordinary k-fold point of C if P is a k-fold singular point and C has k distinct

tangent directions at P .
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Lemma 3.8 Let C be a plane curve of degree d with an ordinary (d − 1)-fold

point P . Then

(i) P is the only singular point of C.

(ii) The normalization of C is a smooth rational curve.

(iii) Fix a point P ∈ P2. Then the variety of all plane curves of degree d with

P as an ordinary (d − 1)-fold point is of dimension 2d.

(iv) Given P and other 2d generic points, there exists a unique curve C ⊂ P2

of degree d, such that C has P as an ordinary (d−1)-fold point and passes through

these 2d generic points.

Proof. (i) Apply Bezout’s theorem. (ii) Apply the genus formula. (iii) Let [x, y, z]

be the homogenous coordinates of P
2, and P = [1, 0, 0]. Then C is defined by the

polynomial

f(x, y, z) = g(y, z) +
d−1∏

i=1

(aiy − biz)x,

where deg(g) = d. Therefore, the dimension is 2d. �

Proposition 3.9 Let Σ be embedded into F1 (with section s) as a smooth anti-

canonical curve and x1, · · · , xn are distinct points of Σ. Blowing up F1 at xi’s we

obtain Yn with corresponding exceptional curves li, i = 1, · · · , n.

(i) When n = 2k, if x1, · · · , xn are in general position, then after contracting

f − l1, · · · , f − ln, we still obtain the surface F1. In other words, we obtain the

same surface Y2k by blowing up either {x1, · · · , xn}, or {−x1, · · · ,−xn}.

(ii) When n = 2k + 1, if x1, · · · , xn are in general position, then after con-

tracting f − l1, · · · , f − ln, the resulting surface is P1 × P1, but not F1.

Proof. Let C be a negative rational curve in Yn which doesn’t intersect f−li, i =

1, · · · , n. Then C satisfies the following equations




C · C = −m, m > 0;

C · K = m − 2;

C · (f − li) = 0, i = 1, · · · , n.
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Since C is a rational curve and Σ ∈ | − K|, C · (−K) ≥ 0. So m ≤ 2. Then

m = 1 or 2. Considering F1 as the blow-up of P2 at 0 ∈ Σ with exceptional curve

s, we can assume C = a · h − b · s −
∑

ci · li, a ≥ 0, b ≥ 0, ci ≥ 0. Solving the

system of equations, we obtain





m = 1 or 2,

b = a − 1,

ci = 1, i = 1, · · · , n,

a = (n − 1 + m)/2.

For m = 1, n = 2a is even. The class

C = ah − (a − 1)s −
n=2a∑

i=1

li = af + s −
2a∑

i=1

li.

This means that all of the points 0, x1, · · · , xn lie on the curve π(C), where

π : Yn → P
2 is the blow-up of P

2 successively at 0, x1, · · · , xn. There exists

exactly one such curve C for generic x1, · · · , xn, and it is smooth, by Lemma 3.8.

Hence, after contracting f − l1, · · · , f − l2a, we still obtain F1.

For m = 2, n = 2a + 1 is odd. The class

C = ah − (a − 1)s −
n=2a+1∑

i=1

li = af + s −
2a+1∑

i=1

li.

This means that all of the points 0, x1, · · · , xn lie on the curve π(C), where

π : Yn → P2 is the blow-up of P2 successively at 0, x1, · · · , xn. There exists

no such curves for generic x1, · · · , xn, by Lemma 3.8. Hence, after contracting

f − l1, · · · , f − l2a+1, no rational curves with negative self-intersection number

can survive. Therefore the resulting surface is P1 × P1, but not F1. �

Example 3.10 Blowing up F1 at 2 points x1, x2 we obtain Y2. Contracting

f − l1 and f − l2, or contracting l1 and l2, we always obtain the surface F1. But

contracting f − l1 and l2, we just obtain the surface P
1 × P

1 , not F1!
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Remark 3.11 (i) Lemma 3.8 has a corresponding version for P1 × P1.

(ii) A G-configuration ζG = (e1, · · · , en) for S = Xn (resp. Yn, Zn) just means

that after blowing down en, en−1, · · · , e1 successively, we still obtain P2 (resp. F1,

F1).

Let S be an ADE surface equipped with a G-configuration ζG. we denote the

moduli space of the pairs (S, Σ) by S(Σ, G), where two pairs (S, Σ) and (S
′

, Σ
′

)

are equivalent if and only if there is an isomorphism π from S to S ′ such that π|Σ

is also an isomorphism from Σ to Σ′.

We show that S(Σ, G) is isomorphic to an open dense subset U of the variety

Hom(Λ, Σ)/W . In fact, for any element θ ∈ (Hom(Λ, Σ)/W )\U , the boundary

component, we can find possibly non-equivalent pairs (S, Σ) such that θ comes

from the restriction. Thus, we can complete S(Σ, G) by adding these pairs and

identifying them as one point. Denote the completion by S(Σ, G). Then we

can identify S(Σ, G) with the projective variety Hom(Λ, Σ)/W . This provides a

natural compactification for the moduli space S(Σ, G).

More precisely, let S = Xn (respectively, Yn, Zn) be an ADE surface and Λ

be the root lattice of En (respectively, Dn, An−1) with corresponding Weyl group

W . And we fix a 3rd (respectively, 2nd, nth) root of Σ in En (respectively, Dn,

An−1) case. Then we have

Theorem 3.12 (i) There is an injective map φ from the moduli space S(Σ, G)

onto an open dense subset of Hom(Λ, Σ)/W .

(ii) φ can be extended to a bijective map from the completion S(Σ, G) onto

Hom(Λ, Σ)/W .

(iii) Moreover, the completion is obtained by including all rational surfaces

with G-configurations to S(Σ, G). Any smooth rational curve on a surface corre-

sponding to a boundary point has a self-intersection number at least −2, and in

En case these (−2) curves form chains of ADE-type.
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Proof. First we suppose S = Xn. We have constructed the map φ in Proposi-

tion 3.3. We prove the injectivity. Fix a G-configuration ζG = (l1, · · · , ln) on Xn,

and a simple root system α1 = l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, α4 =

l3 − l4, · · · , αn = ln−1 − ln. Blowing down ln, ln−1, · · · , l1 successively, we obtain

P2 with Σ as an anti-canonical curve. For all i = 1, · · · , n, let xi ∈ Xn be the

unique intersection points of li and Σ. Then Xn can be considered as a blow-up of

P2 at these n points xi ∈ Σ, i = 1, · · · , n with exceptional curves li, i = 1, · · · , n.

According to previous arguments, we have a homomorphism g ∈ Hom(Λ, Σ).

Let g(αi) = pi ∈ Σ, then we have the following equations by the group law of Σ

as an abelian group




x1 − x2 = p1,

x2 − x3 = p2,

−x1 − x2 − x3 = p3,

xk−1 − xk = pk, k = 4, · · · , n.

The determinant of the coefficient matrix of this system of linear equations is ±3.

So it has unique solution (if we fix a 3rd root of Σ). That is, xi’s are uniquely

determined by g up to Weyl group actions. The Weyl group actions just lead

to choices of other G-configurations. By Proposition 3.6, this doesn’t change the

pair (Xn, Σ). Hence, φ is injective. These points xi’s are not ′′in general position′′

if and only if pi’s will satisfy some (finitely many) equations. That means the

image of φ must be open dense in Hom(Λ, Σ)/W . The extendability of φ is also

because of the existence and uniqueness of the solution of the above equations.

For the cases of Yn and Zn, the arguments is similar. It is easy to see that the

map φ is well defined in both cases. For Yn, the system of linear equations is




−x1 − x2 = p1,

xk−1 − xk = pk, k = 2, · · · , n.

The determinant is ±2. So the solution is uniquely determined (if we fix a 2nd

root of Σ). The remained arguments is just like the first case. At last, for the
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case of Zn, the system of equations is





∑
xi = 0,

xk−1 − xk = pk−1, k = 2, · · · , n.

The determinant is ±n. Then the solution is uniquely determined (if we fix

an nth root of Σ). The remaining arguments are just the same as that in the En

case. These prove (i) and (ii).

As for (iii), the result follows from Lemma 3.5. �

In ADE case, when the finite group Λ∨
c /Λ (the fundamental group of the Lie

group ad(G)) is non-trivial, and of exponent d, a homomorphism φ0 from Λ to Σ

would determine only an ad(G) bundle. For a given pair (S, Σ), suppose we are

given a distinguished dth root of Σ ∼= Jac(Σ). Then there is a homomorphism

φ from the weight lattice to Σ, which extending and determined uniquely by

φ0. And φ will determine a G bundle on Σ. Thus we can still identify the

moduli space of pairs and the moduli space of flat G bundles. Precisely, the

construction is as following. In En case, we fix a dth(d = 9 − n) root of Σ and

take the dth root N0 of the line bundle OΣ(−K) and define the homomorphism

by µ ∈ Hom(Λ∨
c , Σ) : y 7→ Ly ⊗ N y·K

0 . In Dn case, when n is even, we fix a

2nd root of Σ, and take the 2nd root N0 of the line bundle OΣ(f) and a 2nd root

N1 of the line bundle OΣ(K + (4 − n/2)f), and define the homomorphism by

µ ∈ Hom(Λ∨
c , Σ) : y 7→ Ly ⊗N y·K

0 ⊗N y·f
1 ; when n is odd, we fix a 4th root of Σ,

and take the 2nd root N0 of the line bundle OΣ(f) and a 4th root N1 of the line

bundle OΣ(2K + (8− n)f), and define the homomorphism by µ ∈ Hom(Λ∨
c , Σ) :

y 7→ Ly ⊗N y·K
0 ⊗N y·f

1 . In An−1 case, we fix an nth root of Jac(Σ) = Σ and take

the nth root N0 of the line bundle OΣ(K +2s+2f) and define the homomorphism

by µ ∈ Hom(Λ∨
c , Σ) : y 7→ Ly ⊗ N y(K+2f+2s)

0 ⊗ O(−s)y·f ⊗ O(−f)y·s. To apply

Theorem 3.12, we need to fix an eth root of Σ where e = LCM(3, d). Then we

obtain the following identification.
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Theorem 3.13 Under the above construction, we have a bijection

S(Σ, G)
∼

−→ Hom(Λ∨
c , Σ)/W ∼= (Λc ⊗ Σ)/W ∼= MG

Σ.

Proof. We just prove it for Dn (n is odd) case. For other cases, the proof is

similar. Since the exponent of Γ is d = 4, we fix a 4th root of Jac(Σ). Since the

degree of OΣ(f) is f ·(−K) = 2, there is a point 0 ∈ Σ determined uniquely by the

4th root of Jac(Σ), such that OΣ(f) = OΣ(2(0)) = OΣ((0))2. Take N0 = OΣ((0)).

Since the degree of the bundle OΣ(2K + (8 − n)f) is 2(n − 8) + 2(8 − n) = 0, it

is an element of Jac(Σ) ∼= Σ. Of course OΣ(2K + (8 − n)f) is 4-divisible. The

degree of µ(y) is 0, so µ is a homomorphism from Λ∨
c to Jac(Σ) ∼= Σ induced by

the homomorphism µ0(y) = Ly. And µ is uniquely determined by µ0. �

Remark 3.14 [29][13][14]. The moduli space of flat An bundles over Σ is exactly

the ordinary projective space CP
n. This can be described as follows: a flat

SU(n+1) bundle is determined uniquely by n+1 points on Σ with sum equal to

0, up to isomorphism. And n+1 points on Σ with sum equal to 0 are determined

uniquely by a global section H0(Σ,OΣ(n(0))) up to scalar, where (0) is the divisor

of the identity element 0. So the moduli space of flat SU(n + 1) bundles is

isomorphic to P(H0(Σ,OΣ((n + 1)P ))) = Pn. From this we see that the moduli

space of pairs (S, Σ) is just the ordinary complex projective space P
n.

Example 3.15 Let us look at what the pre-image of a trivial G-bundle is. For ex-

ample, in E8 case, the trivial bundle means the element 0 ∈ Hom(Λ(E8), Σ)/W (G).

By the above correspondence, all xi = 0 in Σ. This means that we can blow up

P
2 at the identity element 0 (an inflection point) eight times to obtain the surface

represented by this pre-image, which is a boundary point in the moduli space

S(Σ, G). Blowing up once more, we obtain an elliptic fibration with a singular

fiber of Ẽ8-type [4].



Chapter 4

Flat G-bundles over Elliptic

Curves and Rational Surfaces:

Non-simply Laced Cases

In previous chapters, we constructed ADE bundles over ADE-surfaces, and es-

tablished a identification for the moduli space of flat G bundles over a fixed elliptic

curve Σ and the moduli space of the pairs (S, Σ) with Σ ∈ |−KS |, where G is any

simply laced (that is, of ADE-type), simple, compact and simply connected Lie

group, and S is an ADE-surface with Σ as a smooth anti-canonical curve. This

identification generalized the one for the moduli space of flat En bundles over Σ

and the moduli space of del Pezzo surfaces of degree 9 − n which contain Σ as

an anti-canonical curve. In the remaining part, we construct Lie(G) bundles for

non-simply laced Lie group G over G-surfaces, and extend the above identification

to non-simply laced cases. Therefore we establish a one-to-one correspondence

between flat G bundles over a fixed elliptic curve Σ and rational surfaces with Σ

as an anti-canonical curve for simple Lie groups of all types.

48
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4.1 Reductions of Non-simply Laced Cases to

Simply Laced Cases

From now on, we always assume that G is a compact, simple, simply-connected

Lie group of non-simply laced type, that is, of type Bn, Cn, F4, G2. There are two

natural approaches to reduce situations to simply laced cases. One is embedding

G into a simply laced Lie group G′ such that G is the subgroup fixed by the outer

automorphism group of G′. Another is taking the simply laced subgroup G′′ of

maximal rank.

In the following we explain the first reduction. The following result is well-

known.

Proposition 4.1 Let G be a compact, non-simply laced, simple, and simply con-

nected Lie group. There exists a simple, simply connected and simply laced Lie

group G′, s.t. G ⊂ G′ and G = (G′)ρ, where ρ is an outer automorphism of G′

of order 3 for G′ = D4, and of order 2 otherwise.

Proof. By the functorial property, we just need to prove it in the Lie algebra level.

For the construction of G = Lie(G) and G′ = Lie(G′), one can see [18] for the

details, where the construction of Lie algebras is determined by the construction

of root systems. �

Remark 4.2 For later use, we list the construction of non-simply laced root

systems via simply laced root systems.

1. G = Cn = Sp(n), G′ = A2n−1 = SU(2n).

∆(G′) = {αi, i = 1, · · · , 2n − 1}.

Out(G′) = {1, ρ} ∼= Z2, where ρ(αi) = α2n−i, i = 1, · · · , n − 1, and

ρ(αn) = αn.

∆(G) = {βi = 1
2
(αi + α2n−i), i = 1, · · · , n − 1, βn = αn}.
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2. G = Bn = Spin(2n + 1), G′ = Dn+1 = Spin(2n + 2).

∆(G′) = {αi, i = 1, · · · , n + 1}.

Out(G′) = {1, ρ} ∼= Z2, where ρ(αi) = αi, i = 3, · · · , n + 1, ρ(α1) = α2,

ρ(α2) = α1.

∆(G) = {β1 = 1
2
(α1 + α2), βi = αi+1, i = 2, · · · , n}.

3. G = F4, G′ = E6.

∆(G′) = {αi, i = 1, · · · , 6}.

Out(G′) = {1, ρ} ∼= Z2, where ρ(αi) = α6−i, i = 1, · · · , 5, and

ρ(α6) = α6.

∆(G) = {β1 = 1
2
(α1 + α5), β2 = 1

2
(α2 + α4), β3 = α3, β4 = α6}.

4. G = G2, G′ = D4 = Spin(8).

∆(G′) = {αi, i = 1, · · · , 4}.

Out(G′) = 〈ρ1, ρ2〉 ∼= S3, where ρ1 interchanges α1 and α2, and ρ2 inter-

changes α1 and α4.

∆(G) = {β1 = 1
3
(α1 + α2 + α4), β2 = α3}.

The Dynkin diagrams of G and G′ are as the following:
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<

G G′

Cn A2n−1

β1 β2 βn−1 βn
α1 α2 αn α2n−2 α2n−1

>Bn Dn+1

βn βn−1 β2 β1
αn+1 αn α3

α2

α1

<F4 E6

β1 β2 β3 β4 α1 α2 α3 α4 α5

α6

<G2 D4

β1 β2 α1 α2 α3

α4

Figure 9. Non-simply laced G reduced to simply laced G′.

Remark 4.3 Note that W (G) is the subgroup of W (G′) fixing the root system

R(G), and also the subgroup pointwise fixed by Out(G′). For a root α, let

Sα ∈ W (G) be the reflection with respect to α, that is, Sα(x) = x+(x, α)α. Thus

as a subgroup of W (A2n−1), W (Cn) is generated by Sαi
◦Sα2n−i

for i = 1, · · · , n−1

and Sαn
. As a subgroup of W (Dn+1), W (Bn) is generated by Sα1

◦ Sα2
and

Sαi
for i = 3, · · · , n + 1. As a subgroup of W (E6), W (F4) is generated by

Sα1
◦ Sα5

, Sα2
◦ Sα4

, Sα3
and Sα6

. As a subgroup of W (D4), W (G2) is generated

by Sα1
◦ Sα2

◦ Sα4
and Sα3

.

In the following we let Σ be a fixed elliptic curve with identity element 0, and

we fix a primitive dth root of Σ ∼= Jac(Σ), where d = 2 for Dn case, d = 9 − n

for En case, and d = n + 1 for An case, respectively (see Chapter 3). Recall that

for any compact, simple and simply-connected Lie group H , the moduli space of

flat H bundles over Σ is

MH
Σ
∼= (Λc(H) ⊗ Σ)/W (H).
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For G′, the group Out(G′) acts on

(Λc(G
′) ⊗ Σ)/W (G′)

naturally.

Let χ be the natural map from (Λc(G) ⊗ Σ)/W (G) to the fixed part

((Λc(G
′) ⊗ Σ)/W (G′))Out(G′).

The image of χ is contained in a connected component of the fixed part.

Lemma 4.4 The map

χ : (Λc(G) ⊗ Σ)/W (G) → ((Λc(G
′) ⊗ Σ)/W (G′))Out(G′)

is injective.

Proof. It suffices to prove that for any x, y ∈ Λ(G) ⊗ Σ, if ∃ w′ ∈ W (G′), such

that w′(x) = y, then ∃ w ∈ W (G), such that w(x) = y. For An and Dn cases,

this is obvious if we check the root lattices. For E6 case, we can also check it

directly with the help of computer. Of course we can also check this case by hand

following the discussion in Section 2.4.1. �

Corollary 4.5 (i) The fixed part ((Λc(G
′) ⊗ Σ)/W (G′))Out(G′) is determined by

the condition ρ(x) = x, up to W (G′)-action, where x ∈ Λc(G
′) ⊗ Σ, and ρ is a

generator of Out(G′), of order 3 for G′ = D4 and order 2 for G′ = An, En.

(ii) The moduli space MG
Σ
∼= (Λc(G)⊗Σ)/W (G) is a connected component of

the fixed part

(MG′

Σ )Out(G′) ∼= ((Λc(G
′) ⊗ Σ)/W (G′))Out(G′)

containing the trivial G′ bundle.

Proof. (i) For any x ∈ Λc(G
′) ⊗ Σ, denote x̄ the class in (Λc(G

′) ⊗ Σ)/W (G′).

Then ρ(x̄) = x̄ if and only if there exists w ∈ W (G′), such that ρ(x) = w(x).
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Thus w−1ρ(x) = x. But w−1ρ ∈ Out(G′) since Out(G′) = Aut(G′)/W (G′). Thus

we can take a new simple root system such that w−1ρ is the generator of the

diagram automorphism (the automorphism of order 3 for D4).

(ii) By (i), (Λc(G) ⊗ Σ)/W (G) and (MG′

Σ )Out(G′) are both orbifolds with the

same dimension. Thus the result follows from Lemma 4.4. �

If we express the moduli space of flat G bundles over Σ as (T × T )/W (G),

where T is a maximal torus of G, then we have the following corollary.

Corollary 4.6 If two elements of T × T are conjugate under W (G′), then they

are also conjugate under W (G). �

Another method is to reduce G to its simply-laced subgroup G′′ of maximal

rank, and apply the results for simply laced cases to current situation. In another

occasion we will discuss our moduli space of G-bundles from this aspect in detail.

Here we just mention the following well-known fact from Lie theory.

Proposition 4.7 There exists canonically a simply laced Lie subgroup G′′ of G,

which is of maximal rank, that is, G′′ and G share a common maximal torus.

And there is a short exact sequence

1 → W (G′′) → W (G) → Out(G′′) → 1,

where Out(G′′) is the outer automorphism group of G′′. Thus, if we write the

moduli space as MG
Σ = (T × T )/W , then

MG
Σ = MG′′

Σ /Out(G′′). �

Remark 4.8 We give this construction of G′′ in each case.

(1) For G = Sp(n), G′′ = SU(2)n. Out(G′′) is the group Sn of permutations of

the n copies of SU(2) in G′′.
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(2) For G = G2, G′′ = SU(3). Out(G′′) is the group Z2 that exchanges the

3-dimensional representation of SU(3) with its dual.

(3) For G = Spin(2n + 1), G′′ = Spin(2n). Out(G′′) is the group Z2 that

exchanges the two spin representations of Spin(2n).

(4) For G = F4, G′′ = Spin(8). Out(G′′) is the triality group S3 that permutes

the three 8-dimensional representations of Spin(8).

4.2 The Identification of Moduli Spaces in Non-

simply Laced Cases

In this section, we study case by case the G bundles over elliptic curves and

rational surfaces for a non-simply laced Lie group G.

4.2.1 The Bn(n ≥ 2) Bundles

According to the arguments of last section, for G = Spin(2n + 1) we can take

G′ = Spin(2n + 2), such that G = (G′)Out(G′).

Let S = Yn+1 be a rational surface with a Dn+1-configuration which contains

Σ as a smooth anti-canonical curve. Recall that Yn+1 is a blow-up of F1 at n + 1

points x1, · · · , xn+1 on Σ, with corresponding exceptional classes l1, · · · , ln+1. Let

f be the class of fibers in F1, and s be the section such that 0 = s ∩ Σ is the

identity element of Σ. The Picard group of Yn+1 is H2(Yn+1, Z), which is a lattice

with basis s, f, l1, · · · , ln+1. The canonical line bundle K = −(2s + 3f −
n+1∑
i=1

li).

We know from Chapter 2 that

Pn+1 := {x ∈ H2(Yn+1, Z) | x · K = x · f = 0}

is a root lattice of Dn+1 type. We take a simple root system of G′ as

∆(Dn+1) = {α1 = l1 − l2, α2 = f − l1 − l2, α3 = l2 − l3, · · · , αn+1 = ln − ln+1}.
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Let ρ be the generator of Out(G′) ∼= Z2, such that ρ(α1) = α2, ρ(α2) = α1 and

ρ(αi) = αi for i = 3, · · · , n + 1.

From Chapter 3 we know that the pair (S, Σ) determines a homomorphism

u ∈ Hom(Λ(G′), Σ)

which is given by the restriction map:

u(α) = O(α)|Σ.

Lemma 4.9 Let u ∈ Hom(Λ(G′), Σ) correspond to a pair (S, Σ), where S is a

surface with a Dn+1-configuration. Then ρ · u = u if and only if 2x1 = 0.

Proof. Since u is the restriction map: αi 7→ O(αi)|Σ, u(α1) = O(l1 − l2)|Σ =

x1 − x2, and u(α2) = O(f − l1 − l2)|Σ = −x1 − x2. Hence ρ · u = u ⇔ u(α1) =

u(α2) ⇔ x1 − x2 = −x1 − x2 ⇔ 2x1 = 0 ⇔ x1 is one of the 4 points of order 2 on

the elliptic curve Σ. �

As in Chapter 3, we denote S(Σ, G′) the moduli space of G′ = Dn+1-surfaces

with a fixed anti-canonical curve Σ, and S(Σ, G′) the natural compactification

by including all rational surfaces with Dn+1-configurations (Figure 1). We know

that φ : S(Σ, G′)
∼

−→ MG′

Σ is an isomorphism.

Corollary 4.10 For u ∈ MG
Σ →֒ (MG′

Σ )Out(G′), φ−1(u) ∈ S(Σ, G′) represents a

class of surfaces Yn+1(x1, · · · , xn+1) with x1 = 0, and such a surface corresponds

to a boundary point in the moduli space, that is, φ−1(u) ∈ S(Σ, G′)\S(Σ, G′).

Proof. By Lemma 4.9, u ∈ (MG′

Σ )Out(G′) if and only if 2x1 = 0. There are 4

connected components corresponding to 4 points of order 2 on Σ. Since MG
Σ is

the component containing the trivial G′ bundle, we have x1 = 0. Recall that

Yn+1(x1, · · · , xn+1) ∈ S(Σ, G′) if and only if 0, x1, · · · , xn+1 are in general posi-

tion, which implies in particular x1 6= 0. Hence φ−1(u) corresponds to a boundary
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point. �

Denote S = Y ′
n+1(x1 = 0, x2, · · · , xn+1) (or Y ′

n+1 for brevity) the blow-up of F1

at n+1 points x1 = 0, x2, · · · , xn+1 on Σ, with exceptional divisors l1, l2, · · · , ln+1,

where Σ ∈ | − KS|. Similar to the simply laced cases, we give the following

definition.

Definition 4.11 A Bn-exceptional system on S is an n-tuple (e1, e2, · · · , en+1)

where ei’s are exceptional divisors such that ei · ej = 0 = ei · f, i 6= j and

y1 = e1 ∩Σ = 0 is the identity of Σ. A Bn-configuration on S is a Bn-exceptional

system ζBn
= (e1, e2, · · · , en+1) such that we can consider S as a blow-up of F1

at n + 1 points y1 = 0, y2, · · · , yn+1 on Σ, that is S = Y ′
n+1(y1 = 0, y2, · · · , yn+1),

with corresponding exceptional divisors e1, e2, · · · , en+1. When S has a Bn-

configuration, we call S a (rational) surface with a Bn-configuration (see Figure

2).

When x2, · · · , xn+1 ∈ Σ with xi 6= 0 for all i are in general position, any Bn-

exceptional system on S consists of exceptional curves. Such a surface is called a

Bn-surface. So a Bn-surface must have a Bn-configuration.

Lemma 4.12 (i) Let S be a rational surface with a Bn-configuration. Then the

Weyl group W (Bn) acts on all Bn-exceptional systems on S simply transitively.

(ii) Let S be a Bn-surface. Then the Weyl group W (Bn) acts on all Bn-

configurations simply transitively.

Proof. It suffices to prove (i). Let (e1, e2, · · · , en+1) be a Bn-exceptional system

on S. By Definition 4.11, ei = lσ(i) or f−lσ(i) for i 6= 1, where σ is a permutation of

{2, · · · , n+1}. Note that according to Remark 4.3, the Weyl group W (Bn) acts as

the group generated by permutations of the n pairs {(li, f − li) | i = 2, · · · , n+1}

and interchanging of li and f − li in each pair (li, f − li)i≥2. Then the result
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follows. �

Let S(Σ, Bn) be the moduli space of pairs (S, Σ) where S is a Bn-surface

(so the blown-up points x1 = 0, x2, · · · , xn+1 are in general position), and Σ ∈

|−KS|. Denote MBn

Σ the moduli space of flat Bn bundles over Σ. Then applying

Corollary 4.10 we have the following identification.

Proposition 4.13 (i) S(Σ, Bn) is embedded into MBn

Σ as an open dense subset.

(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, Bn) ∼= MBn

Σ ,

by including all rational surfaces with Bn-configurations.

Proof. The proof is similar to that in ADE cases. Firstly, we have MBn

Σ
∼=

Λc(Bn)⊗Z Σ/W (Bn), and Λc(Bn)⊗Z Σ/W (Bn) ∼= Hom(Λ(Bn), Σ)/W (Bn) when

we fixed the square root of unity of Jac(Σ) ∼= Σ.

Secondly, the restriction from S to Σ induces a map (again denoted by φ)

φ : S(Σ, Bn) → Hom(Λ(Bn), Σ)/W (Bn).

This map is well-defined, since by Lemma 4.12, choosing and fixing a Bn-configuration

on S is equivalent to choosing and fixing a system of simple roots ∆(Bn).

Thirdly, the map φ is injective. For this, we take a simple root system of Bn

as

β1 = f − 2 l2 and βk = 2 αk+1 for 2 ≤ k ≤ n.

Then the restriction induces an element u ∈ Hom(Λ(Bn), Σ), which satisfies the

following system of linear equations





−2 x2 = p1,

2(xk − xk+1) = pk, k = 2, · · · , n.
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where pi = u(βi). Obviously, the solution of this system of linear equations exists

uniquely for given pi with 1 ≤ i ≤ n.

Finally, the statement (ii) comes from Corollary 4.10 and the existence of the

solutions to the above system of linear equations. �

Remark 4.14 The situation here is very similar to that in the compactification

theory of the moduli space of (projective) K3 surfaces. A natural question there

is how to extend the global Torelli theorem to the boundary components of a

compactification [10][19][26][6]. If we consider the map φ : S(Σ, G) → MG
Σ [?]

for G = An, Dn or En as a type of period map, then the main result of Chapter

3 is a type of global Torelli theorem. And Proposition 4.13 implies that we can

extend the theorem of Torelli type in Dn+1 case to a boundary component of the

natural compactification.

In the following, we let S = Yn+1(x1, · · · , xn+1) be the blow-up of F1 at n + 1

points. We can construct a Lie algebra bundle on S. Here we don’t need the

existence of the anti-canonical curve Σ. According to Section 2, we have a root

system of Bn type consisting of divisors on S:

R(Bn) , {±(f − 2 li), 2(li − lj),±2(f − li − lj) | i 6= j, 2 ≤ i, j ≤ n + 1}.

Thus we can construct a Lie algebra bundle of Bn-type over S:

Bn , O
L

n
⊕

D∈R(Bn)

O(D).

The fiberwise Lie algebra structure of Bn is defined as follows (the argument here

is the same as that in Chapter 3.

Fix the system of simple roots of Rn as

∆(Bn) = {α1 = f − 2l2, α2 = 2(l2 − l3), · · · , αn = 2(ln − ln+1)},

and take a trivialization of Bn. Then over a trivializing open subset U , Bn|U ∼=

U × (C⊕n
⊕

α∈Rn
Cα). Take a Chevalley basis {xU

α , α ∈ Rn; hi, 1 ≤ i ≤ n} for
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Bn|U and define the Lie algebra structure by the following four relations, namely,

Serre’s relations on Chevalley basis (see [16], p147):

(a) [hihj] = 0, 1 ≤ i, j ≤ n.

(b) [hix
U
α ] = 〈α, αi〉x

U
α , 1 ≤ i ≤ n, α ∈ Rn.

(c) [xU
α xU

−α] = hα is a Z-linearly combination of h1, · · · , hn.

(d) If α, β are independent roots, and β−rα, · · · , β+qα are the α-string through

β, then [xU
αxU

β ] = 0 if q = 0, while [xU
αxU

β ] = ±(r + 1)xU
α+β if α + β ∈ Rn.

Note that hi, 1 ≤ i ≤ n are independent of any trivialization, so the relation

(a) is always invariant under different trivializations. If Bn|V ∼= V ×(C⊕n
⊕

α∈Rn
)

is another trivialization, and fUV
α is the transition function for the line bundle

O(α)(α ∈ Rn), that is, xU
α = fUV

α xV
α , then the relation (b) is

[hi(f
UV
α xV

α )] = 〈α, αi〉f
UV
α xV

α ,

that is,

[hix
V
α ] = 〈α, αi〉x

V
α .

So (b) is also invariant. (c) is also invariant since (fUV
α )−1 is the transition function

for O(−α)(α ∈ Rn). Finally, (d) is invariant since fUV
α fUV

β is the transition

function for O(α + β)(α, β ∈ Rn).

Therefore, the Lie algebra structure is compatible with the trivialization.

Hence it is well-defined.

When the surface S contains Σ as an anti-canonical curve, restricting the

above bundle to this anti-canonical curve Σ, we obtain a Lie algebra bundle of

Bn-type over Σ, which determines uniquely a flat Bn bundle over Σ. On the other

hand, when x1 = 0, we can identify these two line bundles OΣ(l1) and OΣ(f − l1)
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when restricting them to Σ. Recall the spinor bundles S+
n+1 and S−

n+1 of Dn+1 are

defined as follows[20] (here we omit the subscription n + 1 for brevity)

S+ =
⊕

D2=D·K=−1,D·f=1

O(D) and

S− =
⊕

T 2=−2,T ·K=0,T ·f=1

O(T ).

The identification of OΣ(l1) ∼= OΣ(f − l1) induces an identification of these

two spinor bundles S+ and S−, which is given by (of course, when restricted to

Σ)

S+ ⊗O(−l1) ∼= S−.

From representation theory, we know this determines a flat Bn bundle over Σ.

Conversely, if S+|Σ ∼= S−|Σ, then we must have x1 = 0 (up to renumbering).

For example, we consider the n = 2 case. Note that

S+|Σ ⊗ O(−(0)) = O ⊕O((−x1 − x2) − (0)) ⊕O((−x1 − x3) − (0))

⊕O((−x2 − x3) − (0)),

S−|Σ = O((0) − (x1)) ⊕O((0) − (x2)) ⊕O((0) − (x3))

⊕O(3(0) − (x1) − (x2) − (x3)).

Where for a point x ∈ Σ, (x) means the divisor of degree one, and O((x)) means

the line bundle determined by this divisor. Thus, S+
Σ ⊗O(−(0)) = S−

Σ implies that

x1 = 0 (up to renumbering). The general case follows from similar arguments.

4.2.2 The Cn Bundles

We take G = Cn ⊂ G′ = A2n−1, where Cn = Sp(n) and A2n−1 = SU(2n). They

satisfy the relation G = (G′)Out(G′).

Let S = Z2n be a rational surface with an A2n−1-configuration (see Figure

3) which contains Σ as a smooth anti-canonical curve. Recall that Z2n is a

(successive) blow-up of F1 at 2n points x1, · · · , x2n on Σ, with corresponding
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exceptional classes l1, · · · , l2n. Let f be the class of fibers in F1, and s be the

section such that 0 = s ∩ Σ is the identity element of Σ. The Picard group of

Z2n is H2(Z2n, Z), which is a lattice with basis s, f, l1, · · · , l2n. The canonical line

bundle K = −(2s + 3f −
2n∑
i=1

li).

Recall

P2n−1 := {x ∈ H2(Z2n, Z) | x · K = x · f = x · s = 0}

is a root lattice of A2n−1 type. And we can take a simple root system of A2n−1 as

∆(A2n−1) = {αi = li − li+1 | 1 ≤ i ≤ 2n − 1}.

Note that we have used the convention that
2n∑
i=1

xi = 0.

Let ρ be the generator of Out(G′) ∼= Z2, such that ρ(αi) = α2n−i for i =

1, · · · , 2n − 1.

When the above simple root system is chosen, the pair (S, Σ) determines a

homomorphism u ∈ Hom(Λ(G′), Σ) which is given by the restriction map

u(α) = O(α)|Σ.

Lemma 4.15 Let u ∈ Hom(Λ(G′), Σ) be an element corresponding to a pair

(S, Σ), where S is a surface with an A2n−1-configuration. Then ρ · u = u if and

only if n(xi + x2n+1−i) = 0 for i = 1, · · · , n.

Proof. Since u is the restriction map: αi 7→ O(αi)|Σ, u(αi) = O(li − li+1)|Σ =

xi−xi+1 for i = 1, · · · , 2n−1. Hence ρ ·u = u ⇔ u(αi) = u(α2n−i) ⇔ xi−xi+1 =

x2n−i − x2n−i+1 ⇔ n(xi + x2n−i+1) = 0 since
2n∑
i=1

xi = 0. �

As in Chapter 3, we denote S(Σ, G′) the moduli space of G′ = A2n−1-surfaces

with a fixed anti-canonical curve Σ, and S(Σ, G′) the natural compactification by

including all rational surfaces with A2n−1-configurations. We know that there is

an isomorphism φ : S(Σ, G′)
∼

−→ MG′

Σ .
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Corollary 4.16 For u ∈ MG
Σ →֒ (MG′

Σ )Out(G′), φ−1(u) ∈ S(Σ, G′) represents a

class of surfaces Z2n(x1, · · · , x2n) with xi +x2n+1−i = 0 for i = 1, · · · , n, and such

a surface corresponds to a boundary point in the moduli space, that is, φ−1(u) ∈

S(Σ, G′)\S(Σ, G′).

Proof. By Lemma 4.15, u ∈ (MG′

Σ )Out(G′) if and only if n(xi + x2n+1−i) = 0 for

i = 1, · · · , n. There are n2 connected components corresponding to n2 points of

order n on Σ. Since MG
Σ is the component containing the trivial G′ bundle, we

have xi + x2n+1−i = 0 for i = 1, · · · , n. Recall that Z2n(x1, · · · , x2n) ∈ S(Σ, G′)

if and only if 0, x1, · · · , x2n are in general position, which implies in particular

xi 6= −x2n+1−i. Hence φ−1(u) corresponds to a boundary point. �

Denote S = Z ′
2n(±x1, · · · ,±xn) the blow-up of F1 at n pairs of points (x1,−x1),

· · · , (xn,−xn) on Σ, with n pairs of corresponding exceptional divisors (l1, l
−
1 ),

· · · , (ln, l−n ), where li (resp. l−i ) is the exceptional divisor corresponding to the

blowing up at xi (resp. −xi). Similar to the other cases, we give the following

definitions.

Definition 4.17 A Cn-exceptional system on S is an n-tuple of pairs

((e1, e
−
1 ), · · · , (en, e−n ))

where (ei, e
−
i ) = (lσ(i), l

−
σ(i)) or (l−

σ(i), lσ(i)), i = 1, · · · , n, with σ is a permuta-

tion of 1, · · · , n. A Cn-configuration on S is a Cn-exceptional system ζCn
=

((e1, e
−
1 ), · · · , (en, e−n )) such that we can blow down successively e−1 ,· · · ,e−n , en,· · · ,e1

such that the resulting surface is F1 (see Figure 4).

We say that x1, x2, · · · , xn ∈ Σ ⊂ F1 are n points in general position, if they

satisfy

(i) they are distinct points, and

(ii) for any i, j, xi + xj 6= 0.
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Equivalently, x1, x2, · · · , xn ∈ Σ ⊂ F1 are in general position if and only if any

Cn-exceptional system on S = Z ′
2n(±x1, · · · ,±xn) consists of smooth exceptional

curves. Such a surface is called a Cn-surface. Thus a Cn-surface must have a

Cn-configuration.

Lemma 4.18 (i) Let S be a surface with a Cn-configuration. Then the Weyl

group W (Cn) acts on all Cn-exceptional systems on S simply transitively.

(ii) Let S be a Cn-surface. Then the Weyl group W (Cn) acts on all Cn-

configurations on S simply transitively.

Proof. It suffices to prove (i). According to Remark 4.3, the Weyl group W (Cn)

acts as the group generated by permutations of the n pairs {(li, l
−
i ) | i = 1, · · · , n}

and interchanging of li and l−i for each i. From this, we see that W (Cn) acts on

all G-configurations simply transitively. �

Denote S(Σ, Cn) the moduli space of pairs (Z ′
2n, Σ), where Z ′

2n is a Cn-surface,

that is, the blow-up of F1 at 2n points ±x1, · · · ,±xn such that x1, · · · , xn are in

general position. Denote MCn

Σ the moduli space of flat Cn bundles over Σ. By

Corollary 4.16 we have the following identification.

Proposition 4.19 (i) S(Σ, Cn) is embedded into MCn

Σ as an open dense subset.

(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, Cn) ∼= MCn

Σ ,

by including all rational surfaces with Cn-configurations.

Proof. The proof is basically the same as that in Bn case. We only need to

replace the corresponding parts by the following two things. Firstly, according to

Section 2, we can take a simple root system as

∆(Cn) = {βk = εk − εk+1, 1 ≤ k ≤ n − 1, βn = 2εn},
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where εk = lk − l−k , 1 ≤ k ≤ n.

Secondly, the restriction map gives us the following system of linear equations:




4xn = pn,

2(xk − xk+1) = pk, k = 1, · · · , n − 1.

The solution of this system exists uniquely. �

Remark 4.20 As in Bn case (Remark 4.14), the above proposition is also similar

to extending the Torelli theorem to a certain boundary component.

Remark 4.21 Obviously, this description in Proposition 4.19 coincides with the

well-known description of flat Cn bundles over elliptic curves [13]. A flat Cn =

Sp(n) bundle over Σ corresponds to n pairs (unordered) of points (xi,−xi), i =

1, · · · , n on Σ, uniquely up to isomorphism. And one pair (xi,−xi) will determine

exactly one point on CP
1, since the rational map determined by the linear system

|2(0)| induces a double covering from Σ onto CP
1. So the moduli space of flat Cn

bundles over Σ is just isomorphic to Sn(CP
1) = CP

n, the ordinary projective n

space.

As in Bn case, we construct a Lie algebra bundle of Cn type over Z ′
2n:

Cn = O
L

n
⊕

D∈R(Cn)

O(D),

where R(Cn) is the root system of Cn according to Section 2:

R(Cn) = {±2(li − l−i ),±((li − l−i ) ± (lj − l−j )) | i 6= j, 1 ≤ i, j ≤ n}.

Recall the first fundamental representation bundle of A2n−1 is

V2n−1 =
2n⊕

i=1

O(li).

The condition that xi +x2n+1−i = 0, 1 ≤ i ≤ n is equivalent to an identification of

the following two fundamental representation bundles ∧i(V2n−1) and ∧2n−i(V2n−1)

with i = 1, · · · , n − 1, which is given by (of course, when restricted to Σ)

(∧i(V2n−1))
∗ ⊗ det(V2n−1) ∼= ∧2n−i(V2n−1).
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Note that when restricted to Σ, the line bundle det(V2n−1) = O(l1 + · · · l2n) is

isomorphic to O(nf)|Σ = OΣ(2n(0)), by our assumption that
∑

xi = 0. This

identification determines uniquely a flat Cn bundle over Σ.

4.2.3 The G2 Bundles

For G = G2, we take G′ = D4 = Spin(8) such that G = (G′)Out(G′).

Let S = Y4 be a rational surface with a D4-configuration which contains Σ as

a smooth anti-canonical curve. Recall (Figure 5) that Y4 is a (successive) blow-up

of F1 at 4 points x1, · · · , x4 on Σ, with corresponding exceptional classes l1, · · · , l4.

Let f be the class of fibers in F1, and s be the section such that 0 = s ∩ Σ is

the identity element of Σ. The Picard group of Y4 is H2(Y4, Z), which is a lattice

with basis s, f, l1, · · · , l4. The canonical line bundle K = −(2s + 3f −
4∑

i=1

li).

Recall

P4 := {x ∈ H2(Y4, Z) | x · K = x · f = 0}

is a root lattice of D4-type. And we can take a simple root system of D4 as

∆(D4) = {α1 = l1 − l2, α2 = f − l1 − l2, α3 = l2 − l3, α4 = l3 − l4}.

Let ρ ∈ Out(G′) ∼= S3 (the permutation group of 3 letters ) be the triality

automorphism of order 3, such that ρ(α1) = α2, ρ(α2) = α4, ρ(α4) = α1, and

ρ(α3) = α3.

When the above simple root system is chosen, the pair (S, Σ) determines a

homomorphism u ∈ Hom(Λ(G′), Σ) which is given by the restriction map

u(α) = O(α)|Σ.

Lemma 4.22 Let u ∈ Hom(Λ(G′), Σ) correspond to the pair (S, Σ), where S is

a surface with a D4-configuration. Then ρ · u = u if and only if 2x1 = 0 and

x1 + x4 = x2 + x3.
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Proof. Since u is the restriction map: αi 7→ O(αi)|Σ, u(α1) = O(l1 − l2)|Σ =

x1 −x2, u(α2) = −x1 −x2, u(α4) = x3 −x4, and u(α3) = x2 −x3. Hence ρ ·u = u

⇔ u(α1) = u(α2) = u(α4) ⇔ x1 − x2 = −x1 − x2 = x3 − x4 ⇔ 2x1 = 0 and

x1 + x4 = x2 + x3. �

Denote S(Σ, G′) the moduli space of G′ = D4-surfaces with a fixed anti-

canonical curve Σ, and S(Σ, G′) the natural compactification by including all

rational surfaces with D4-configurations. We know that S(Σ, G′)
∼

−→ MG′

Σ . Let

φ be the isomorphism.

Corollary 4.23 For u ∈ MG
Σ →֒ (MG′

Σ )Out(G′), φ−1(u) ∈ S(Σ, G′) represents

a class of surfaces Y4(x1, · · · , x4) with x1 = 0 and x4 = x2 + x3, and such a

surface corresponds to a boundary point in the moduli space, that is, φ−1(u) ∈

S(Σ, G′)\S(Σ, G′).

Proof. By Lemma 4.22, u ∈ (MG′

Σ )Out(G′) if and only if 2x1 = 0 and x1 + x4 =

x2 + x3. There are 4 connected components corresponding to 4 points of order

2 on Σ. Since MG
Σ is the component containing the trivial G′ bundle, we have

x1 = 0 and x4 = x2 + x3. Recall that Y4(x1, · · · , x4) ∈ S(Σ, G′) if and only if

0, x1, · · · , x4 are in general position, which implies in particular x1 6= 0. Hence

φ−1(u) corresponds to a boundary point. �

Denote S = Y ′
4(x1, · · · , x4) the blow-up of F1 at 4 points x1, · · · , x4 on Σ,

with x1 = 0 and x4 = x2 + x3. Let l1, · · · , l4 be the corresponding exceptional

classes. We give the following definition.

Definition 4.24 A G2-exceptional system on S is an ordered triple (e1, e2, e3, e4)

of exceptional divisors such that ei · ej = 0 = ei · f, i 6= j and y1 = 0, y4 = y2 + y3

where yi = ei · Σ. A G2-configuration on S is a G2-exceptional system ζG2
=

(e1, e2, e3, e4) such that we can consider S as a blow-up of F1 at these 4 points y1 =
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0, y2, y3, y4 on Σ, that is S = Y ′
4(y1 = 0, y2, y3, y4), with corresponding exceptional

divisors e1, e2, e3, e4. When S has a G2-configuration (of course Σ ∈ | −KS|), we

call S a (rational) surface with a G2-configuration. For S = Y ′
4(x1, · · · , x4) with

x1 = 0 and x4 = x2+x3, when x1,±x2,±x3,±x4 are distinct points on Σ, any G2-

exceptional system on S consists of exceptional curves. Such a surface is called

a G2-surface. So a G2-surface must have a G2-configuration. These four points

x1, x2, x3, x4 ∈ Σ are said to be in general position.

A G2-configuration is illustrated in Figure 6.

Lemma 4.25 (i) Let S = Y ′
4(x1, · · · , x4) with x1 = 0 and x4 = x2 + x3 be a

surface with a G2-configuration. Then the Weyl group W (G2) acts on all G2-

exceptional systems on S simply transitively.

(ii) Let S be a G2-surface. Then the Weyl group W (G2) acts on all G2-config-

urations on S simply transitively.

Proof. It suffices to prove (i). By an explicit computation, there are 12 G2-

configurations: (l1, l2, l3, l4), (f − l1, f − l2, f − l3, f − l4), (f − l1, f − l2, l4, l3),

(f − l1, l4, f − l2, l3), and so on. The rule is keeping the relation x2 +x3 = x4 fixed.

The Weyl group W (G2) is the automorphism group of the sub-root system A2

with simple roots {3(l2− l3), 3(l3−(f − l4))}, so W (G2) ∼= Z2 ⋊W (A2) = Z2 ⋊S3.

We can also consider W (G2) as the subgroup of W (D4) generated by two elements

Sα1
Sα2

Sα4
and Sα3

, where Sα means the reflection with respect to a root α of

D4, according to Remark 4.3. Thus we can directly check that W (G2) acts on all

G2-exceptional systems simply transitively. �

Proposition 4.26 Let S(Σ, G2) be the moduli space of pairs (Y ′
4 , Σ) where Y ′

4 is

a G2-surface, and MG2

Σ be the moduli space of flat G2 bundles over Σ. Then we

have

(i) S(Σ, G2) is embedded into MG2

Σ as an open dense subset.
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(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, G2) ∼= MG2

Σ ,

by including all rational surfaces with G2-configurations.

Proof. We just note that only the following two things are different from their

counterparts of the proofs in Bn, Cn cases.

(i) Take a simple root system of G2 as (Remark 4.2)

∆(G2) = {β1 = f − 2l2 + l3 − l4, β2 = 3(l2 − l3)}.

(ii) Then the restriction to Σ gives us the following system of linear equations:





3x2 = −p1,

3(x2 − x3) = p2.
�

As before, we construct a Lie algebra bundle of G2-type over S = Y ′
4 . For

brevity, denote ε1 = l2, ε2 = l3, and ε3 = f − l4. Then

G2 = O
L

2
⊕

D∈R(G2)

O(D),

where R(G2) is the root system of G2:

R(G2) = {±3(εi − εj),±(2εi − εj − εk) | i 6= j 6= k, 1 ≤ i, j, k ≤ 3},

according to Remark 4.2.

Recall [20] the 3 fundamental representation bundles of rank 8 of D4 are

defined as:





W4 =
⊕

C2=C·K=−1,C·f=0

O(C),

S+
4 =

⊕
D2=D·K=−1,D·f=1

O(D),

S−
4 =

⊕
T 2=−2,T ·K=0,T ·f=1

O(T ).
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These conditions x1 = 0, x4 = x2 + x3 enable us to identify S+
4 , S−

4 and W4

when restricted to Σ, by

S+
4 ⊗O(−l1) ∼= S−

4 and S+
4
∼= W4 ⊗O(s).

And these identifications determine uniquely a flat G2 bundle over Σ. Conversely,

the identification of these three bundles restricted to Σ implies the conditions

x1 = 0 and x4 = x2 + x3 (up to renumbering). Note that

W4|Σ =
⊕

OΣ(li)
⊕

OΣ(f − li) =
⊕

O((xi))
⊕

O((−xi)),

S−
4 |Σ =

⊕

i

O((0) − (xi))
⊕

j

O(3(0) −
∑

i6=j

(xi)), and

S+
4 |Σ = O((0))

⊕

i6=j

O((−xi − xj))
⊕

O((−
∑

xi)).

So W4|Σ = S−
4 implies x1 = 0, and W4|Σ = S+

4 implies x4 = x2 + x3.

4.2.4 The F4 Bundles

First we recall some fundamental facts on E6 root systems and cubic surfaces,

which are of independent interest.

The Root System of E6, Revisited

The relation between the root system of E6-type and smooth cubic surfaces in

CP
3 has been studied for a very long time [15][7][24]. There are 27 lines on such

a cubic surface S (a curve on S is a line if and only if it is an exceptional curve).

And every E6-exceptional system on S is an ordered 6-tuples of lines (e1, · · · , e6)

which are pairwise disjoint. The Weyl group W (E6) is the symmetry group of all

E6-exceptional systems, that is, W (E6) acts simply transitively on the set of all

E6-exceptional systems. Now we consider the unordered 6-tuple L = {e1, · · · , e6}.
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There are 72 such 6-tuples. This corresponds to 36 Schläfli’s double-sixes {L; L′}

[15]. In the following we consider a cubic surface S as the blow-up of P2 at 6 points

x1, · · · , x6 in general position, that is S = X6(x1, · · · , x6), with corresponding

exceptional curves l1, · · · , l6. Fix a simple root system of E6 as

∆(E6) = {α1, · · · , α6},

where α1 = l1 − l2, α2 = l2 − l3, α3 = h − l1 − l2 − l3, and αi = li−1 − li, for

i = 4, 5, 6.

Lemma 4.27 One double-six {L; L′} corresponds to exactly one positive root of

E6.

Proof. First take L0 = {l1, · · · , l6}, then L′
0 = {l′1, · · · , l′6} = sα0

(L0) where

α0 = 2h −
∑

li is a positive root and l′i = sα0
(li) = 2h −

∑
j 6=i lj . {L0; L

′
0} forms

a double-six and α0(≻ 0) is uniquely determined by {L0; L
′
0}, since W (E6) acts

simply and transitively. If L = g(L0) with g ∈ W (E6), then {g(L0); g(L′
0)} is also

a double-six. Let g(L′
0) = Sα(g(L0)), then L′

0 = (g−1Sαg)(L0). So g−1Sαg = Sα0
.

Then Sα = gSα0
g−1 = Sg(α0). This implies α = ±g(α0). Take α ≻ 0. Now if

α = α0, then by a result in page 44 of [17], g ∈ S6, that is, g is a permutation of

the six lines li’s. Thus {L; L′} and {L0; L
′
0} are the same one. �

Remark 4.28 Let ρ be an outer automorphism of E6 of order 2, such that

ρ(α1) = α6, ρ(α2) = α5 and ρ fixes other simple roots. Consider F4 as the fixed

part of E6 by ρ. Then the coroot lattice Λc(F4) of F4 is

Λc(F4) = Λc(E6)
ρ

= Λ(E6)
ρ

= {ah +
∑

aili | a1 + a6 = a2 + a5 = a3 + a4 = −a}

= Z〈h − l1 − l2 − l3, l1 − l6, l2 − l5, l3 − l4〉

= Λ(D4).
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And the Weyl group of F4 is

W (F4) = {w ∈ W (E6) | w preserves Λc(F4) = Λ(D4)}

= Aut(Λ(D4))

= S3 ⋊ W (D4).

Remark 4.29 If 3 lines e1, e2, e3 pairwise intersect, we say that they form a tri-

angle. Denote by ∆ = {e1, e2, e3} a (unordered) triangle, and by
−→
∆ = (e1, e2, e3)

an ordered triangle. Every line belongs to 5 triangles, so there are 27 · 5/3 = 45

triangles. And if {e1, e2, e3} is a triangle, then −K = e1 + e2 + e3. W (E6) acts

on all these 45 triangles transitively, and W (F4) is the isotropy subgroup of the

triangle ∆0 = {h− l1− l6, h− l2− l5, h− l3− l4}. Moreover W (D4) is the isotropy

subgroup of the ordered triangle
−→
∆0 = (h − l1 − l6, h − l2 − l5, h − l3 − l4). The

reason is the following:

Let ∆ = {e1, e2, e3} and ∆′ = {f1, f2, f3} be any two triangles. Since K2 = 3,

the position of these two triangles must be one of the following two cases. (1)

They have a common edge and other edges don’t intersect. (2) Each edge of ∆

intersects with exactly one edge of ∆′. So we just check two special triangles in

above cases. what remains to do is a direct checking.

From above we can easily write down the 45 (left or right) cosets of W (F4) in

W (E6).

F4 Bundles and Rational Surfaces

For G = F4 we take G′ = E6, such that F4 = (E6)
Out(E6).

Let S = X6(x1, · · · , x6) be a surface with an E6-configuration (Figure 7), that

is, S is a blow-up of P2 at 6 points x1, · · · , x6 ∈ Σ, where Σ ∈ | − KS|. Take the

simple root system ∆(E6) and ρ ∈ Out(E6) just as in Section 2.4.1.

Once a simple root system is fixed, the restriction from S to Σ induces a

homomorphism u ∈ Hom(Λ(E6), Σ).



72

Lemma 4.30 Let u ∈ Hom(Λ(E6), Σ) be an element corresponding to a pair

(S, Σ), where S is a surface with an E6-configuration. Then ρ · u = u if and only

if x1 + x6 = x2 + x5 = x3 + x4.

Proof. Since u is induced by the restriction to Σ, u(α1) = O(l1− l2)|Σ = x1 −x2,

u(α2) = x2 − x3, u(α5) = x4 − x5, u(α6) = x5 − x6. Therefore ρ · u = u ⇔

u(α1) = u(α6), u(α2) = u(α5) ⇔ x1 + x6 = x2 + x5 = x3 + x4. �

Denote S(Σ, E6) the moduli space of G′ = E6-surfaces with a fixed anti-

canonical curve Σ, and S(Σ, E6) the natural compactification by including all

rational surfaces with E6-configurations. From Chapter 3 we know that there is

an isomorphism φ : S(Σ, E6)
∼

−→ ME6

Σ . Thus we have

Corollary 4.31 For u ∈ MF4

Σ ⊂ (ME6

Σ )Out(E6), φ−1(u) ∈ S(Σ, E6) represents a

class of surfaces X6(x1, · · · , x6) with x1 + x6 = x2 + x5 = x3 + x4. �

Denote S = X ′
6(x1, · · · , x6) the blow-up of P2 at 6 points x1, · · · , x6 on Σ

which satisfies the condition x1 + x6 = x2 + x5 = x3 + x4, with corresponding

exceptional classes l1, · · · , l6. The condition x1 + x6 = x2 + x5 = x3 + x4 := p

implies that the three lines L16, L25 and L34 in P
2 intersect at one points −p ∈ Σ,

where Lij means the line in P2 passing through these two points xi and xj . So

after blowing up P2 at xi ∈ Σ, 1 ≤ i ≤ 6, the three (−1) curves h−l1−l6, h−l2−l5

and h − l3 − l4 intersect at one points −p ∈ Σ. So they form a special triangle

(see Section 2.4.1). As before, we give the following definition.

Definition 4.32 An F4-exceptional system on S = X ′
6 is a 6-tuple (e1, · · · , e6)

consisting of 6 exceptional divisors which are pairwise disjoint, such that y1+y6 =

y2 + y5 = y3 + y4, where OΣ(yi) = O(ei)|Σ. And an F4-configuration ζF4
=

(e1, · · · , e6) just means an F4-exceptional system on S such that we can consider

S as a blow-up of P2 at 6 points y1, · · · , y6 with corresponding exceptional divisors
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e1, · · · , e6. For S = X ′
6(x1, · · · , x6), when x1, · · · , x6 are in general position, any

F4-exceptional system on S consists of exceptional curves. Such a surface is called

an F4-surface.

So an F4-surface is automatically an E6-surface (namely, a del Pezzo surface

of degree 3). And any F4-exceptional system on an F4-surface is always an F4-

configuration. See Figure 8 for an F4-configuration.

According to the discussions in Section 2.4.1, the Weyl group W (F4) is the

automorphism group of the sub-root system of type D4 with simple roots {l1 −

l6, l2 − l5, l3 − l4, h − l1 − l2 − l3}, and W (F4) ∼= S3 ⋊ W (D4). Therefore we have

Lemma 4.33 (i) Let S = X ′
6 be a surface with an F4-configuration. Then the

Weyl group W (F4) acts on all F4-exceptional systems on S simply transitively.

(ii) Moreover, if S is an F4-surface, then the Weyl group W (F4) acts on all

F4-configurations on S simply transitively. �

Proposition 4.34 Let S(Σ, F4) be the moduli space of pairs (X ′
6, Σ) where X ′

6 is

an F4-surface containing Σ as an anti-canonical curve, and MF4

Σ be the moduli

space of flat F4 bundles over Σ. Then we have

(i) S(Σ, F4) is embedded into MF4

Σ as an open dense subset.

(ii) Moreover, this embedding can be extended naturally to an isomorphism

S(Σ, F4) ∼= MF4

Σ ,

by including all rational surfaces with F4-configurations.

Proof. Firstly, we can take the simple root system of F4 as

∆(F4) = {β1, β2, β3, β4},

where β1 = l1 − l2 + l5 − l6, β2 = l2 − l3 + l4 − l5, β3 = 2(h − l1 − l2 − l3), and

β4 = 2(l3 − l4), according to Remark 4.2.
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Secondly, the restriction to Σ induces the following system of linear equations:




x1 − x2 + x5 − x6 = p1,

x2 − x3 + x4 − x5 = p2,

2(−x1 − x2 − x3) = p3,

2(x3 − x4) = p4,

x1 + x6 = x2 + x5 = x3 + x4.

Since the determinant is non-zero, the result follows by the same argument as in

Bn case. �

The Lie algebra bundle of type F4 over X ′
6 can be constructed as (for brevity,

we denote ε1 = l2− l3 + l4− l5, ε2 = l2 + l3 − l4− l5, ε3 = 2h−2l1 − l2 − l3− l4 − l5,

and ε4 = 2h − 2l6 − l2 − l3 − l4 − l5)

F4 = O
L

4
⊕

D∈R(F4)

O(D),

where R(F4) is the root system of F4:

R(F4) = {±εi, ±(εi ± εj), ±
1

2
(ε1 ± ε2 ± ε3 ± ε4) | i 6= j}.

Remark 4.35 The 27 lines determine the 27-dimensional fundamental represen-

tation of E6. Restricted to Σ, they give us a representation bundle of rank 27

(of F4) over Σ. The weights associated to the 3 special lines h − l1 − l6, h −

l2 − l5, h − l3 − l4 restrict to zero and these 3 weights add to zero before restric-

tion (since (h − l1 − l6) + (h − l2 − l5) + (h − l3 − l4) = −K). The remain-

ing 24 weights associated to other 24 lines restrict to the 24 short roots of F4.

The 24 lines and a rank 2 bundle V determine the 26-dimensional irreducible

fundamental representation U of F4. Here V is determined as follows. Since

OΣ(h− l1 − l6) = OΣ(h− l2 − l5) = OΣ(h− l3 − l4) = OΣ((−p)), taking the trace,

we have the following exact sequence:

0 → ker(tr) → OΣ((−p))
L

3 → OΣ((−p)) → 0.
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Then we take V = ker(tr).

For more details on the 26-dimensional fundamental representation of F4, one

can consult [1].

4.3 Conclusion

Let G be any simple, compact and simply connected Lie group. Then G is

classified into the following 7 types according to its Lie algebra.

(1) An-type, G = SU(n + 1);

(2) Bn-type, G = Spin(2n + 1);

(3) Cn-type, G = Sp(n);

(4) Dn-type, G = Spin(2n);

(5) En-type, n = 6, 7, 8;

(6) F4-type;

(7) G2-type.

Among these, An, Dn and En are called of simply laced type, while Bn, Cn, F4

and G2 are called of non-simply laced type. And An, Bn, Cn, Dn are called classic

Lie groups, while En, F4 and G2 are called exceptional Lie groups.

We summarize our results in this thesis as follows. Let Σ be a fixed elliptic

curve with identity 0 ∈ Σ. Let G be any compact, simple and simply connected

Lie groups, simply laced or not. Denote S(Σ, G) the moduli space of G-surfaces

containing a fixed anti-canonical curve Σ. Denote MG
Σ the moduli space of flat

G bundles over Σ. Then we have

Theorem 4.36 (i) We can construct Lie algebra Lie(G)-bundles over each G-

surface.

(ii) The restriction of these Lie algebra bundles to the anti-canonical curve Σ

induces an embedding of S(Σ, G) into MG
Σ as an open dense subset.
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(iii) This embedding can be extended to an isomorphism from S(Σ, G) onto

MG
Σ, where S(Σ, G) is a natural and explicit compactification of S(Σ, G), by

including all rational surfaces with G-configurations. �

Remark 4.37 (i) The result is known for G = En case (see [8][9][11][13]).

(ii) We have mentioned in the beginning of § 1 that there is another reduction

of the non-simply laced cases to simply laced cases. In fact, using this reduction,

we will obtain the same result, just following the steps as above.

According to Looijenga’s theorem [21][22], the moduli space S(Σ, G) is a

weighted projective space. Thus the compactification S(Σ, G) is a weighted

projective space. Conversely, we believe that the above identification between

S(Σ, G) and S(Σ, G) will give us another proof for Looijenga’s theorem. This is

already done in En case by [8][9][11][13] and so on.
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[28] I.I. Pjateckĭi-Šapiro, I.R. Šafarecič, Torelli’s theorem for algebraic surfaces

of type K3, Izv. Akad. Nauk SSSR ser. Mat., 35 (1971), 530–572.

[29] L. Tu, Semistable bundles over an elliptic curve, Adv. Math., 98(1993), 1–26.


