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Uniqueness Theorem of the Mean Curvature Flow

Abstract

Mean curvature flow evolves isometrically immersed base Riemannian manifolds
M in the direction of their mean curvature in an ambient manifold M. We
consider the classical solutions to the mean curvature flow. If the base manifold
M is compact, the short time existence and uniqueness of the mean curvature flow
are well-known. For complete noncompact isometrically immersed hypersurfaces
M (uniformly local lipschitz) in Euclidean space, the short time existence was
established by Ecker and Huisken in [10]. The short time existence and the
uniqueness of the solutions to the mean curvature flow of complete isometrically
immersed manifolds of arbitrary codimensions in the Euclidean space are still
open questions. In this thesis, we solve the uniqueness problem affirmatively for
the mean curvature flow of general codimensions and general ambient manifolds.
More precisely, let (M, g) be a complete Riemannian manifold of dimension 7
such that the curvature and its covariant derivatives up to order 2 are bounded
and the injectivity radius is bounded from below by a positive constant, we prove
that the solution of the mean curvature flow with bounded second fundamental
form on an isometrically immersed manifold M (may be of high codimension) is
unique. In the second part of the thesis, inspired by the Ricci flow, we prove the
pseudolocality theorem of mean curvature flow. As a consequence, we obtain the
strong uniqueness theorem, which removes the boundedness assumption of the
second fundamental form of the solution in the uniqueness theorem (only assume

the second fundamental form of the initial submanifold is bounded).
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Chapter 1

Introduction

Let (M™, §) be a complete Riemannian (compact or noncompact) manifold, and
Xo @ (M™, g) — M™ be an isometrically immersed Riemannian manifold. For
any fixed point zp € M", X,Y € T, ,M", the second fundamental form /I at
10 is defined by II(X,Y) = ViV — VY = (VYY) where M" is regarded
as a submanifold of M locally by the immersion X, V and V are the covariant
derivatives of g and g respectively, X,Y are any smooth extensions of X and YV

on M™. In a local coordinate system {z!, 22, --- 2"} on M", denote the second

fundamental form by h;; = I1(3%, 52%) and the mean curvature by H = g"h;;.

17 a J
The mean curvature flow is a deformation X; : M™ — M™ of X, in the direction
of the mean curvature H:

0
aX(x t) = H(x,t), forz € M™ and t > 0, (1.1)

with X (z,0) = Xo(z), where M™ is equipped with the induced metric from
X(-,t) : M™ — M™ and H(z,t) is the corresponding mean curvature. We can

write (1.1) in another form

0
aX(x,t) = AX(x,t), for x € M™ and t > 0, (1.2)
where AX%(z,t) = ¢"(x, t)(aajfg; — T (t ) +ng%%) is the harmonic map

Laplacian from the manifold (M", gi;(+,t)) to (M™,g), and g;;(-,t) is the induced

5
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metric from the inclusion map X (-, ).

Various weak solutions to the mean curvature flow have been studied in the
past 30 years by many mathematicians with different approaches, e.g. Brakke
solutions[1], the level set solutions (see Ref. [18]), etc. The existence, uniqueness
and non-uniqueness of weak solutions for Euclidean (non)smooth hypersurface
have been extensively studied ([6],[13],[14],[15],[16]).

For classical solutions to the mean curvature flow, some remarkable geometric
results are obtained. The famous Huisken’s theorem[21] states that if the initial
hypersurface M™(n > 2) is compact and uniformly convex in Euclidean space,
then under the mean curvature flow it shrinks to a point in finite time and the
normalized flow (area is fixed) converges to a round sphere (also see Huisken[22]
for some generalizations) . If the initial hypersurface is a Lipschitz entire graph,
Ecker and Huisken prove that the mean curvature flow has a long time graph
solution. The corresponding one dimensional version (i.e., the curve shortening
flow) of the above Huisken’s Theorem was proved by Gage and Hamilton[17].
Moreover, Grayson[19] proved that the curve shortening flow starting at any
closed embedded curve becomes convex before it develops singularities.

For higher codimension case, little is known since it is not so easy to control
the multi-component mean curvature vector. In [32] Wang Mu-Tao considered
the mean curvature flow of the graph of a map between two compact constant
curvature Riemannian manifolds. Under suitable conditions on the curvature of
these two manifolds and the differential of the initial map, he proved the flow
exists smoothly for all time and converges to a constant map as time approaches
infinity. As an application, Tsui Mao-Pei and Wang Mu-Tao [30] proved that any
area-decreasing map from S"(n > 2) to S” is homotopically trivial.

In this thesis, motivated by geometric applications, we consider the classical
solutions of arbitrary codimension in general ambient Riemannian manifolds.

When M™ is compact, the mean curvature flow (1.1) has a unique short time
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solution, since (1.2) is a quasi-linear parabolic equation. When M" is noncom-
pact, in codimesion 1 case, Ecker and Huisken in [10] established the short time
existence for complete noncompact isometrically immersed hypersurfaces (uni-
formly local lipschitz) in Euclidean space. For submanifolds of arbitrary codi-
mensions in a general ambient Riemannian manifold, the short time existence
and the uniqueness of (1.1) have not been established in the literature. In this
thesis, we deal with the problem of uniqueness and derive the pseudolocality
estimate of the mean curvature flow (1.1).

The first theorem of this thesis is the following

Theorem 1.1 Let (M",g) be a complete Riemannian manifold of dimension i
such that the curvature and its covariant derivatives up to order 2 are bounded
and the injectivity radius is bounded from below by a positive constant, i.e. there

are constants C' and § such that

|Rm| + [VRm| + |V*Rm|(z) < C, inj(M",z) > 6 >0,

for all € M™. Let Xy : M™ — M™ be an isometrically immersed Riemannian
manifold with bounded second fundamental form in M™. Suppose X;(x,t) and
Xs(x,t) are two solutions to the mean curvature flow (1.1) on M™ x [0, T| with the
same X as initial data and with bounded second fundamental forms on [0, T].

Then X;(x,t) = Xs(x,t) for all (z,t) € M™ x [0,T].

We remark that the uniqueness of the Ricci flow has been established by Chen
and Zhu in [5]. More precisely, it was proved that the solutions of the Ricci flow
in the class of bounded curvature with the same initial data are unique:
Uniqueness of Ricci Flow ([5]) Let (M",g;;(z)) be a complete noncompact
Riemannian manifold of dimension n with bounded curvature. Let g;;(x,t) and
Gij(z,t) be two solutions to the Ricci low on M™ x [0,T] with the same g;;(x)
as initial data and with bounded curvatures. Then g;;(z,t) = g;j(x,t) for all

(x,t) € M™ x [0,T].
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One can find that in order to prevent the surgery times from accumulation in
the theory of the Ricci flow with surgery in dimension three [27][2] and four[4], it
is crucial to employ the uniqueness theorem [5]. The uniqueness theorem of mean
curvature flow will also play important role in the theory of the mean curvature
flow with surgery. Let us briefly describe the necessity of the theory of the mean
curvature flow with surgery comparing with the full developed theory of the
weak solutions. This is motivated by the theory of the Ricci flow with surgery.
Recall in [1], Brakke defined a canonical weak solution to (1.1) by geometric
measure theory, the so-called Brakke solution. The Brakke solution may loss
area instantaneously at countably times in a finite time interval. It seems that
it is hard to study the geometry and the topology of the initial manifold from
the Brakke solution. This suggests that we should construct a kind of ”"weak”
solution in a controlled way, that is to say, the mean curvature flow with surgery.

The solution of the mean curvature flow with surgery is constructed as follows.
Consider the mean curvature flow on a compact manifold, the mean curvature
flow may develop singularities in finite time, after carefully detecting the structure
of the singularities, one will eliminate the singularities by performing a surgery
by cutting off the high curvature part and gluing back other standard pieces
(e.g. the standard cap ), then continue to run the mean curvature flow and
do the same procedure again. One of the crucial questions in this theory is to
control the geometry of the glued piece after surgery. This is an important step in
preventing the surgery times from accumulation. The uniqueness theorem of the
mean curvature flow insures that the solutions on the glued pieces are sufficiently
close to a (complete noncompact) standard solution, which is the evolution of
the complete noncompact standard piece (e.g. capped round cylinder). So we
can appeal to the estimates of standard solutions. In the whole procedure, the
employment of the uniqueness theorem is essential. So even if we consider the

mean curvature flow on compact manifolds, we still have to encounter the problem
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of the uniqueness on noncompact manifolds.

Since the mean curvature flow is degenerate in tangent directions, it is not a
strictly parabolic system. In order to apply the standard theory of strict parabolic
equations, we use the De Turck trick [8]. The idea is to pull back the mean
curvature flow through a family of diffeomorphisms of the base manifold M™
generated by solving a harmonic map flow coupled with the mean curvature flow;
this gives us the so-called mean curvature flow in harmonic map gauge, which is
a strict parabolic system. Then we apply the uniqueness of the strict parabolic
system. The issue is not quite straight forward as it seems. Because before
applying the uniqueness theorem of a strict parabolic system on a noncompact
manifold, we encounter two analytic difficulties. The first one is that we need
to establish a short time existence for the harmonic map flow between complete
manifolds. The second one is to get a priori estimates for the harmonic map
flow so that after pulling back, the solutions to the strictly parabolic system still
satisfy suitable growth conditions.

In the classical theory of the harmonic map flow, people usually would like
to impose certain convexity conditions to ensure the existence (e.g. the negative
curvature condition [12] or convex condition [9]). We observed that the condition
of injectivity radius bounded from below by a positive constant ensures certain
uniform (local) convexity and this is sufficient to give the short time existence and
a priori estimates for the harmonic map flow. Note that the mean curvature flow
is a kind of harmonic map flow with varying base metrics. In order to deal with
the a priori estimates for mean curvature flow and harmonic map flow coupled
with mean curvature flow, we have to consider the general harmonic map flow.
These estimates have been dealt with systematically in this thesis(Sections 2.1,
2.2 and 2.3).

The difference of Theorem 1.1 with [5] is between the extrinsic and intrinsic

geometries. In the present case, instead of the metric as in the Ricci flow, we
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consider the equation of the position function.

As a direct consequence of Theorem 1.1, we have

Corollary 1.2 Let (M™,g) be a complete Riemannian manifold of dimension n
such that the curvature and its covariant derivatives up to order 2 are bounded
and the injectivity radius is bounded from below by a positive constant, i.e. there

are constants C' and § such that

|Rm| + |VRm| + |V2Rm|(z) < C, inj(M™ z) > § >0,

for all v € M"™. Let Xy : (M",g) — (M",§) be an isometrically immersed
complete Riemannian manifold with bounded second fundamental form in M™.
Suppose X; : M™ — M™ is a solution to the mean curvature flow (1.1) on
M™ x [0, T] with X, as initial data and with bounded second fundamental forms
on [0,T]. Let & be an isometry of (M™",g) such that there is an isometry o of
(M™, g) to itself satisfying

(00 Xo)(x) = (Xgoo)(z) (1.3)
for all x € M™. Then we have
(6d0Xy)(x) = (Xio0)(z) (1.4)

for all (z,t) € M"x[0,T). In particular, the isometry subgroup of (M™, g) induced
by an isometry subgroup of (M™,§) at initial time by (1.3) remains to be an
isometry subgroup of (M™, g;) for any t € [0, T].

From the PDE point of view, it is a natural condition in Theorem 1.1 of as-
suming that the second fundamental form of the solution is bounded. In Chapter
3 of the thesis, we try to remove this condition. We remark that in [7], Chou
and Zhu have obtained the strong uniqueness of the curve shortening flow for

the locally Lipschitz continuous properly embedded curve whose two ends are
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presentable as graphs over semi-infinite line. Our strong uniqueness theorem is

the following

Theorem 1.3 Let M be an n-dimensional complete Riemannian manifold sat-
isfying 23: |ViRm| < ¢ and inj(M) > iy > 0. Let Xo : M — M be an n-
dimensjlozgal isometrically properly embedded submanifold with bounded second
fundamental form in M. We assume Xo(M) is uniform graphic with some ra-
dius r > 0. Suppose X(z,t) and Xs(z,t) are two smooth solutions to the mean
curvature flow (1.1) on M x [0, Tp] properly embedded in M with the same X
as initial data. Then there is 0 < Ty < Tj such that X;(x,t) = Xs(z,t) for all

(z,t) € M x [0, T1].

Here roughly speaking, uniform graphic with radius » > 0 means that for
any xg € Xo(M), Xo(M) N By(zo,r) is a graph. We say a submanifold M C
M is properly embedded in a ball By (xg, 7o) if either M is closed or OM has
distance > 7 from . A submanifold M C M is said to be properly embedded
in (complete manifold) M if either M is closed or there is an 2o € M such that
M is properly embedded in Bjy;(z,70) for any ro > 0.

The strong uniqueness theorem was proved as a consequence of Theorem 1.1
and pseudolocality theorem.

The pseudolocality theorem says that the behavior of the solution at a point
can be controlled by the initial data at nearby points, whatever how the solution
or initial data outside the neighborhood behaves like. Precisely the following

theorem is proved in the thesis:

Theorem 1.4 Let M be an fi-dimensional manifold satisfying Z |ViRm| < 2
and inj(M) > iy > 0. Then for every a > 0 there exist ¢ > 0, 5 > 0 depending
only on the constants n, ¢y and iy with the following property. Suppose we have
a smooth solution to the mean curvature flow M, C M properly embedded in

Bt (zo,m0) for t € [0,T], where 0 < T < £?r?, and assume that at time zero, M
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is a local 0-Lipschitz graph of radius ry at o € M with ry < % Then we have

an estimate of the second fundamental form

Al 6 < T+ (er) 2

on By (xg,ero) N My, for any t € [0,T).

We refer the reader to see the precise definition of §-Lipschitz graph in Chapter
3. The third covariant derivative of the curvature is a technical assumption which
could be improved, we assume it only for simplicity. For most of interesting cases,
we have all covariant derivative bounds.

We remark that for codimension one uniformly local Lipschitz hypersurface
in Euclidean space, the estimate was firstly derived by Ecker and Huisken [10].
For higher codimension case, under an additional condition which assumes that
the submanifold is compact, the estimate was proved by Wang Mu-Tao[31]. In
codimension one case [10], the constant 0 in Theorem 1.4 does not need to be
small; however, in higher codimension case, as noted by [31], the smallness as-
sumption is necessary in view of the example of Lawson and Osserman [24]. The
strategy of the proofs of [10] [31] is to find a suitable gradient function. The
philosophy is that this gradient function will serve as the lower order quantity
as in the Bernstein trick, and the second fundamental form is the higher order
quantity, then apply the maximum principle.

Our approach is completely different. This approach can be regarded as an
integral version of Bernstein trick. It is a mean curvature flow analogue of the
corresponding estimate in Ricci flow given by Perelman [26].

As a nontrivial corollary of Theorem 1.4, we have

12

_ 3. _
Corollary 1.5 Let M be an n-dimensional complete manifold satisfying > |V'Rm)|
i=0

< 2 and inj(M) >io > 0. Let Xo: M — M be an n-dimensional isometrically
properly embedded submanifold with bounded second fundamental form |A| < ¢

in M. We assume My = Xo(M) is uniform graphic with some radius r > 0. Sup-
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pose X (x,t) is a smooth solution to the mean curvature flow (1.1) on M x [0, Tj]
properly embedded in M with X, as initial data. Then there is 0 < T} < Ty

depending upon cy, ig,r and the dimension n such that
| Al(z, 1) < 2c

forallz € M, 0 <t <Tj.

This thesis is organized as follows. Theorem 1.1 and Corollary 1.2 are proved
in Chapter 2. Explicitly, in section 2.1 we derive the injectivity radius estimate
of an immersed manifold and some preliminary estimates for a general harmonic
map flow. In section 2.2, the higher derivative estimates for the mean curvature
flow are derived. In Section 2.3, we study the harmonic map flow coupled with
the mean curvature flow. In Section 2.4, we deal with the uniqueness theorem
of the mean curvature flow in harmonic map gauge. In section 2.5, we prove
the uniqueness Theorem 1.1 and Corollary 1.2. In Chapter 3, we establish the
pseudolocality theorems 1.4, 1.5 of the mean curvature flow and prove the strong

uniqueness theorem 1.3.



Chapter 2

Uniqueness Theorem

In this chapter, we prove Theorem 1.1 and Corollary 1.2. We divide the whole

proof into five sections.

2.1 Preliminary estimates

In the first part of this section, we will derive the injectivity radius estimate for any
complete isometrically immersed manifold M"™ with bounded second fundamental
form in a complete manifold whose curvature is bounded and the injectivity radius
is bounded from blow by a positive constant. The following is a basic lemma we

will use.

Klingenberg’s Lemma (see for example, Corollary 5.7 in Cheeger & Ebin [3])
Let M be a complete Riemannian manifold and let p € M. Let ly;(p) denote the
minimal length of a nontrivial geodesic loop starting and ending at p (maybe not

smooth at p). Then the injectivity radius of M at p satisfies

T 1

\% Kmaz’ 5

where K., is the supermum of the sectional curvature on M and we understand

inj(M,p) > min{ Iu(p)}

™

T to be positive infinity if K., < 0. O

14
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Theorem 2.1.1 Let (M",g) be a complete Riemannian manifold of dimension
n with bounded curvature and the injectivity radius is bounded from below by a

positive constant, i.e. there are constants C' and & such that
|Rm|(z) < C  and inj(M",z) >8>0, forallze M" (2.1.1)

Let X : M™ — M™ be a complete isometrically immersed manifold with bounded
second fundamental form |hg;| < C in M™, then there is a positive constant

§ =6(C,6,C,n) such that the injectivity radius of M™ satisfies
inj(M",z) > >0, foralxeM" (2.1.2)

Proof. Fix zo € M", let {y*,y? -+ ,y"} and {z!, 22, --- 2"} be any two local
coordinates of M™ and M™ at yo(= X(x¢)) and x, respectively, recall that the

second fundamental form can be written in these local coordinates in the following

form
0%y~ oy~ oy’ oy’
he = —2  _TkZ_ 4 T2
R ey L R S e 013
OyP Oy -
= ViVi(y )+rﬁwaiz aif for a=1,2,---,7,

where V,;V;(y®) is the Hessian of y®, which is viewed as a function of M™ near
zo. In the following argument, we denote by C; various constants depending only
on C, C and 0.

Define f(z) = d*(yo, X(z)) on M™ N X~Y(B(yy, C})) for some C; < 6, then
V,f = %% and the Hessian of f with respect to the metric ¢ on M™ N

X~Y(B(yo,C1)) can be computed as follows

V.V,f = a 57 Vi if —TEVLf
L 0Pf _ Of Oyoy® of 0%y~ L Oy” oy’ oy
- (ayaayﬁ ~Las 8y7> Oxi dxt | Oy~ (8xif)x] B Fwa T o' 8xﬂ)
= o 5 0y* OyP
_ 3279 a
= VaVpd' - +2dV od - hS,

(2.1.4)
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Using Hessian comparison theorem on M™ and choosing C; suitable small so that
d is suitable small, we get

1

on M™ N X Y B(yo,C1)). Now we claim that any closed geodesic starting and
ending at xy on (M", g) must have length > 2C.

We argue by contradiction. Indeed, suppose we have a closed geodesic v :
[0, L] — M™ of length L < 2C}, X o~ must be contained in B(yo, C}), then by
(2.1.5), we have

: se0,L)]. (2.1.6)

DN | —

d? o
T3l e(s) =V i(3:9) =
s
By the maximum principle, we have

sup fo~(s) < fov(0),
s€[0,L]

this implies that v is just a point v(0). The contradiction proves the claim.

On the other hand, by the Gauss equation,
Riiw = Rijin + (SRS — hShY Vgas(-, 0)
ijkl ijkl kY51 il" kg Jap\H V),
we see that
|Rm| < C + 2C°. (2.1.7)
Finally, by Klingenberg Lemma, the injectivity radius of (M™,g) at x is given
by
inj(M", g,29) = min{the conjugate radius at z,

1
2 the length of the shortest closed geodesic at g}

> min{

Lc‘f}
N

The proof of the theorem is completed. O
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Let N be a Riemanian manifold, the distance function d(yi,ys) can be re-
garded as a function on N x N. In the next theorem, we will estimate the Hession
of the distance function viewed as the function of two variables. The crucial

computation of the Hessian was carried out in [29)].

Theorem 2.1.2 Let N™ be a complete Riemannian manifold of dimension n with
bounded curvature, and the injectivity radius is bounded from below by a positive
constant,

|Rm| < K, inj(N™) >ig > 0. (2.1.8)
Let d(y1,y2) be the distance function regarded as a function on N x N, then there

is a positive constant C(Ky,ip) depending only on Ky and ig such that when

d(y1,12) < min{%, 4\/1K—0}, we have

()| V2d?|(y1, y2) < C(Ko,io),

(11)(V2d*) (X, X) > 2| Xy — P X,? — C (Ko, io)| X [°d® for all X € T(y, 4y N" x N™,
(2.1.9)

where X = X1 + Xy, X1 € T, N", Xy € T,,N", V s the covariant derivative

of N x N, 7 is the unique geodesic connecting y, and yo in N", and P, is the

parallel translation of N™ along .

Proof. Set ¥(y1,y2) = d%n(y1,y2). Then v is a smooth function of (y;,y2) when

d(y1,v2) < min{%, —=}. Recall the computation of Hess(+) in [29]. For any

4vKo
(u,v) € D = {(u,v) : (u,v) € N" x N" dyn(u,v) < min{%, 4\;?0}} \ {(u,u) :

u € N}, let 7, be the minimal geodesic from u to v and e; € T,N™ be the
tangent vector to 7,, at u. Then e;(u, v) defines a smooth vector field on D. Let
{e;} be an orthonormal basis for T,, N™ which depends on u smoothly. By parallel
translation of {e;} along ~, we define {€;} an orthonormal basis for T, N". Thus
{e1,---en,€1,---€,} is alocal frame on D. Then for any X = X; + X, € T(y,) D

with
X, = Zfiei and X, = Zméi,
i=1 i=1
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by the formula (16) in [29],

n

FHess )X X) =2 (6 =+ [ (VYT + [ Hvar L)

i=1 0

- [ urevive) - [ rEvve)
(2.1.10)

where V' is a Jacobi field on geodesic o (connecting (v, v) to (u,v)) and & (con-
necting (u,u) to (u,v) of length r = /1) with X as the boundary values, where

X is extended to be a local vector field by letting its coefficients with respect to

{e1,+-en, €1, €,} be constant(see [29]). By the Jacobi equation, we have the
estimates
|V| < O(K07Z.0)|X|7 T|V61V| < C(KO’i0>|X|’ T|V€1V| < O(K07Z.0)|X|

under the assumption d(yi, y») < min{%, 4\/170}. Thus by (2.1.10) we have

|Hess ()| < C(Ko, o),

this proves (i). Similarly, when d(y;,y2) < min{%o, ﬁKT)}’ by (2.1.10), we have

n

SHess)XX) = Y-~ [ e ViV - [ whE@vIve)

=1

n

> ) (& —m)® = C(Ko,io)| X[,

i=1

This proves (ii). The Theorem is proved. O

For future applications, in the next part of this section, we will calculate the
equations of derivatives of general harmonic map flow. Since the mean curvature
flow is a kind of harmonic map flow with varying base metrics evolved by mean
curvature flow, the formulas computed here is important in deriving the higher
derivatives estimates in section 2.2 and 2.3. The formulas are of interest in their

own rights. First we fix some notations.
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Let F' be a map from a Riemannian manifold (M, g;;) to another Riemannian
manifold (N, gas), let F7'TN be the pull back of the tangent bundle of N, we
equip the bundle (T*M)®P @ F~'T' N the connection and metric induced from the
connections and metrics of M and N. Let u be a section of (T*M)®P~Vg F~ITN.
In local coordinates {z'} and {y®} of M and N with y = F(z), we have |u|*> =
ug"m,,,ipflufljz_,_jp_lg“jl <. g'r=1r=1g,5. The coefficients of the covariant derivative
Vu can be computed by the formula

(Vu); _ Dbzt o po OF7 5

il’izmip_lip axip ipij i1i2-~~’ij,1lij+1“~ip_1 B'y axip uilig---’ipfl’

where I' and I are connection coefficients of M and N respectively. We can define

the Laplacian of u by Au = tr,V?u = ¢"(V?u)...;. Recall the Ricci identity

a a a D, aFB aF’y —
(v2u)~~~ij - (Vzu)mﬁ = _Rijimlu~~~im_1kzim+1~~~gkl + Rﬁ'ﬁ(% ot g "l (2.1.11)

Note that the derivative VF (V;F* = 9£2) is a section of the bundle T*M ®

F~ITN, the higher derivative VPF is a section of (T*M)®? @ F~I1TN.

If we have a family of metrics g;;(-,t) on M and a family of maps F'(-,¢) from
M to N, then for each time ¢, we can still define the bundle (T*M)®? @ F~'TN

and define the covariant derivative V. It is a useful observation that the natural

time derivative 2 is not covariant. We define a covariant time derivative D, as

ot
follows. For any section u?llp of (T*M)®? @ F~'TN, we define

0 _ QF"
«@ o « o Y
Dtuil"'ip - 8tui1"'ip + FﬂW ot uil"‘ip'

It is a routine computation which shows that the operator D, is covariant.

Proposition 2.1.3 Let M be a manifold with a family of metrics g;;(x,t), (N, g)
a Riemannian manifold. Let F(-,t) be a solution to the harmonic map flow with

respect to the evolving metrics g; and g

0

aF(ac,t) = AF(z,t), forxz e M™ and t >0, (2.1.12)
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where AF (z,t) is the harmonic map Laplacian of F defined by metrics g;;(z,t)

and g. Then we have

(Dy = A)WFF =Y V' [(Ry+ g2+ Ry x (VF) g g )]« VE'F
(2.1.13)
— dg k—1
-1 1~J - F
+ ; g *xV 5 x V !

where V(A * B) represents the linear combinations of V'Ax B)V!I"1Ax VB, ---,

A x V'B with universal coefficients.
Proof. For k = 1, by direct computation and Ricci identity, we have
%%F“ +T5,FP(AF)" = V,AF®
= AV;F* — RN\ F* + R}, NV F NV FOV F g,

For k > 2, we prove by induction. Since

9 0 0 k1 oy
F = F F
at(v )Zl lk 6.213”6 at(v )’Ll Zk 1 Zkll at(v )11"'1)"'% 1
+T5 F) a(vk LEy? + (g~ Lov g 1Py
1kat i1 T—1 8 (SRR A%
8 —T9 (AFYF} (V1R pa O po VIR
a 5 57( ) ( )11 g1 + ﬁ7§ lk< )11 g1
we have
0
(VkF)’Ll Zk = axzk <vk 1F)Zl ’Lk 1 ka”Dt(vk 1F)'Ll"'p"'7/k 1

+ (gt x va * VFLR)2

8
+F5’YF Dt(vk 1F)z1 -1 ot i1k

+ifgv(AF)5FfZ(V’“ 'F)] +fﬂ7§Fﬁ(vk 'F)]

ay5 i1 ig—1 ot % i1 rig—1
0 = OFF _, Fs .
_ax’bk[ /8'7 at (V 1F)11 ’Lk 1] + kallrﬁ’y at (V lF)ll-np-nzk 1
= OF° _ . OFf
o 16 k—1 k
—I4 T3 F! -V F)  +T% — 5 (V)
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Since
0 o OFF 0 o 0P i
Ok [Fﬁfy ot (V 1 )11 U 1] = aygrdw ik ot (v 1 )11 g1
na a 8F k—1
+F5’Yaxzk ot (V F)Zl -1
__OF” OF”
+F a (ka)zl Tk + kazlrﬁ'y a (vk IF) i1t

&) Fﬂaa (VF RS

i1 lg—1?

we have

+ (g~ Lev99 heip

Dy(VFF)¢ = [VD,(V* 1R 5 )8 i

’Ll Zk ’Ll Zk

+RS (AF)YF) (VM) L,
Combining with Ricci identity
VAV IE = AVFF 4+ V[(Ry g2+ Ry * (VE)? xg g ')« VF L F]

and induction on k, we have
(Dy — A)VFF) = g% v% * VFIF + Ry« VE« V2F V- Fx gt x gt
+V[(Dy — A)YVF LR
+V[(Ry*g 2+ Ry * (VF)? % gt xg )« VI F]
= V[(D, — AV

+V[(Rar %972 + Ry + (VF)? 5 g7 x g71) x VETLF]

+g7 1 V% * VF1F

k-1
= Z VI(Ry*g 2+ Ry + (VF)? gl xg )]« VIF
1=0

k—1

_ dg _

1 l k—1
— F.

+ZE:19 *V 5t *V
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We finish the proof of the proposition. O

Corollary 2.1.4 Let F(-,t) be assumed as in proposition 2.1.3. Then we have

k—1
(% = A)VFFP < =2V FP + () AV [(Rarg™* + R+ (VE) g7t g )

vty vkt Ry 4 g 0 (R g

ot ot
(2.1.14)
Proof. Since |[VEF|2 = (VEF) |, (VEF)) . ghdt- .. gitingog, and
9 k2 a k k 111 Ik G
§|v Fl = 8 (v F)zl zk(v F)jl Jkg g Gop
99 [38F k k j 8
o e )8 g L o kdk —(k+1) k )2
1] 7 89 _
= 2D(VFF)E . (VEF)] g™t ghivg s + g~ FD & 5 % (VEF)2 % g
then (2.1.14) follows from Proposition 2.1.3. O

2.2 Higher derivative estimates for the mean
curvature flow

Now we come back to the mean curvature flow, suppose X (-, %) is a solution to
the mean curvature flow equation (1.2), g(-, ) is the family of the induced metrics

on M™ from (M™, g) by X(-,t), then

agw = —2H" hljgoéﬁ (221)

Note that % = (V2X)?xg* g~ and Ry = Ry *(VX)?+(V2X)?+g. Combining

with corollary 2.1.4, we have

Proposition 2.2.1 Let (M", §) be a Riemannian manifold of dimension n. Let

Xo : M™ — M™ be an isometrically immersed manifold in M™. Suppose X (z,t)

*g
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is a solution to the mean curvature flow (1.1) on M™ x [0, T] with X, as initial
data. Then

o = _
(E — A)VEXP < 2VFIXP 4+ (O VI(VPX)? 5 gx g% + Ry (VX) g2
=0

[y

x g g Y x VX, VEX) + g7 5 52 5 (V2X)2 % (VEX)2.

(2.2.2)

Now we are ready to derive the higher derivatives estimates of the second
fundamental form of the mean curvature flow provided that we have bounded the
second fundamental form. Before the deriving of the higher derivatives estimates,
we need to construct a family of cut-off functions &, which are used also in the
next section. For each integer k > 0, let & be a smooth non-increasing function
from (—o0,400) to [0,1] so that &(s) =1 for s € (—o0, 3 + 5], and &(s) =0
for s € [3 + 2%, +00); moreover for any € > 0 there exists a universal C > 0

such that
[6(5)] + 1€ ()] < Chci(s)' ™" (2.2.3)

Theorem 2.2.2 (local estimates) Let (M™, g) be a complete Riemannian mani-
fold of dimension n. Let Xy : M™ — M™ be an isometrically immersed complete
manifold in M™. Suppose X (x,t) is a solution to the mean curvature flow (1.1)
on M"x [0, T] with Xy as initial data and with bounded second fundamental forms
|hg] < C on [0,T]. Then for any fived xo € M™ and any geodesic ball By(zo,a)
of radius a > 0 of initial metric g;;, for any k > 3, we have

IVEX|(z,t) < tf’g, for all (z,t) € By(xo, %) x [0, 7], (2.2.4)

2

where the constant Cj, depends on C, T, i, a and the bounds of the curvature
and its covariant derivatives up to order k — 1 of the ambient manifold M on its

geodesic ball By (Xo(z0),a + 1+ /nCT).

Proof. Since |%X| = |H| < /nC, it is not hard to see that under the evolution

of the mean curvature flow, at any time ¢ € [0,7], X;(Bo(xo,a)) is contained in
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By (Xo(z0),a+14+/nCT). For any fixed a > 0, k > 0, we denote by C}, various
constants depending only on a, C, T, n and the bounds of the curvature and its
covariant derivatives up to order k — 1 of the ambient manifold M on its ball
Bji(Xo(20),a + 1+ /nCT).

By Proposition 2.2.1, we have

(% — A)|VEX|* < =2|V3X > + Oy + G| VEX|
(2.2.5)

< —|VAX]2+ Oy

and

(% = Q)|[VEX[? < 2 VEX + G(IVEX P + [ VX2 4 [VPX] + [ VAX[[VPX])

< —|VAXP + G| VPX P + C.
(2.2.6)

Combining (2.2.5) and (2.2.6), for any constant A > 0 we have

)
(57 = DA+ [V2XP) VX)) <(=[VIXP + Cy) VX + 8| VX P VAX[[V2X|

+ [ VAX|? + Ca| VEX P 4 Cs](A + [V2X|?).

(2.2.7)

Since |V2X|? is bounded by assumption, by choosing A suitable large, let u =
(A +|V2X]?)|V3X|? and v = tu, we have

0
~ _ < a2
(at A)U —= 3U + C3
and
0 1 1

do(z,z0) )

"), where

Now we need a cut-off function technique as in [5]. Let £(z) = &(

&3 is the cut-off function satisfying (2.2.3) for £ = 3. Then the function £(z)
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satisfies 1 1
f(x) =1, for x € 30(5607 (5 + ﬁ)a)a

E(x) =0, for z € M\By(xg,a),
(2.2.9)

|V0£|2 S 0357

[ (V86)y = —Cs€2g(-,0),

where we used the Hessian comparison theorem. Since by Gauss equation, the
curvature of the initial metric is bounded from below by a constant, which de-
pends on C' and the curvature bound on the ball By (Xo(zo),a+ 1+ /nCT) of
the ambient manifold. The last formula holds in the sense of support functions.

Define ¢(z,t) = &(x)v(x,t). Then we have

(= —A)p < %(—CL&)Q — tvAE — 2tVE - Vo + C58). (2.2.10)
3

Suppose ¢(z,t) achieves its maximum value over M" x [0, 7] at some point

(z1,t1) € B(xg,a) x (0,7], i.e.

¢($1>t1) = MIE}%?(T] qb(:v,t).

Suppose the point x; does not lie in the cut-locus of xy, then

%(%tl) >0, Vo(z,t) = —%v, Ag(x1,t1) <0. (2.2.11)

By (2.2.10) and (2.2.11), at (xy,t;) we have

[V¢P?
S

Note that the second fundamental form is bounded in M"™ x [0, 7], the metrics

0< —Cigzﬂ — tvAE + 2t v+ Cs¢. (2.2.12)
3

gi;(+,t) are equivalent. Since

0 _ dg 9 _
aFi.fj:(g 1*Va)fj:g 2xgx VX x V23X,
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we have

t1
(T5 (21, t1) — Toli(21)| < C(ﬁ)C/ V3 X |dt
0

N

< C(ﬁ)c/ol(§> (21, £)dt

¢(x17 tl)%
E(1)2

where we used the fact that ¢ achieves its maximum at (z1,¢;). Thus at (z1,11),

< (4

Y

we have
A= g1V,
=— g7 (Vo; Vo€ + (Dol — I'f) Vi)

¢($17 tl)%

E(r1)?

Substituting into (2.2.12), multiplying by &(x1) and combining with (2.2.9), we

<Cs5 + (4 V&,

have at (x1,t)

V€]

&2

Yev + 2@@ + C4€?

1 1
0 < —5527)2 + (C3 4+ C3¢(21,t1)?
3

1 3
< ——¢" + C502 + C3¢ + Cs.
Cs

This implies
¢($1,t1) S C’37

hence we have
vix| <&
t2
on By(zo, (3 + 57)a) x [0, T]. If 2 lies on the cut locus of o, then by applying a
standard support function technique as in [28], the same estimate is still valid.

For higher derivatives, we prove by induction. Fix xq € M™, a > 0, suppose

C
IVEX| < tk_;k"’ k=3,.,m—1, (2.2.13)
2
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on By(zo, (5 + zrrr)a) x [0, T]. Now we prove the estimate for k = m.

By induction hypothesis and Proposition 2.2.1, we have

8 m—1 ~
(E —A)|V"X]2 < 2]V™HX |2+ <Z VUVPX)2 % g g2+ Ry * (VX) % g2
=0

xGxg ']k VTTIX, VX)) 4 g7 w5 (V2X)? % (VX))

m—1
< _2|Vm+1X|2 + Cm Z{ Z |v2+l1X||v2+lzX|
=0 [l1+l2=l

+ D [VETXVERX VR VX VX9

ly+-+Hlg=l1

< 2VTHLX P 4 C[|[VTX||I VX | + (VX 4+ D[V X2

m—2

+t V"X

Cr -
< —|VHIX2 4 t—llvaF Ot T |V X
2

(2.2.14)
and
d m—1v-(2 my (2 Cr m—1v-2 —m=3 —m—1
(5 = DIVTTX < = VX[ 4 S VX 4 Gt VX
Cr_
m v |2 m—1
S_|v X| +tmf3+%

(2.2.15)

on By(zo, (3 + 55)a) x [0,T7].

2m

Define
() = (A+ "2 VmLX P VX P
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for A to be determined later. Combining (2.2.14) and (2.2.15), we have for

suitable large A as before

0 2m —5 Con_
_ A tm—3 WLX th—Q _ mX 2 m—1
(G~ AW < T VX P R+ )

Cm _m=2
+tme(A+tm73|vmle|2>(_|vm+1X|2+t_l‘va‘Q_i_Cmt 5 ’va’)
+8t2m75|vmle’|va|2‘Vm+1X‘

2 1 @l .
< 22— VX 4 SR O] 4 e VX P
<1[—i¢2+0 ¥+ o]

1 1
< —[-=v*+Cp
< g+ Ol

(2.2.16)

on By(zo, (3 + 5=)a) x [0,T]. To apply the cut-off function technique to (2.2.16)

as before, we note that by the estimate for £ = 3, we know that

T T
W—M§C@E/]WM&§@/-Lﬁ§@.

0

()

By calculating the equation of &, ¥ using (2.2.16), and repeating the same

procedure of applying maximum principle as before, we can prove that

d .
6Py 20 on Bow,a) x 0,71,
a
which implies
\VALD'¢ < Cm for all B ! T
| |([E,t) = tm2_2 ) or a (ZE,t) S 0(x07 (5 + 2m+1)a) X [07 ]
We complete the induction step and the theorem is proved. O

Corollary 2.2.3 Let (M™,§) be a complete Riemannian manifold of dimension
n with bounded curvature and its derivatives up to order 2, i.e. there is a constant
C such that

IVERm|(-) < C, for k<2
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Let Xo : M™ — M" be an isometrically immersed complete manifold in M™.
Suppose X (-, t) is a solution to the mean curvature flow (1.1) on M™ x [0, T] with
Xo as initial data and with bounded second fundamental forms |hg;| < C on [0,T].
Then there is a constant Cy depending only on C, i and T such that

|\VRm|(x,t) < %, for all (z,t) € M™ x [0,T]. (2.2.17)

M

Moreover, for any fized xog € M™ and any ball By(xo,a) of radius a > 0 of initial
metric gi;, for any k > 2, there is a constant Cj, depending only on a, C, n,
T and the bounds of the curvature and its derivatives up to order k + 1 of the
ambient manifold on its geodesic ball By (Xo(xg),a + 1+ /nCT), such that

IVERm|(z,t) < gkk, for all (z,t) € By(xo, g) x [0, 7. (2.2.18)
5

2

Proof. This follows from Gauss equation and Theorem 2.2.2. O

2.3 Harmonic map flow coupled with mean cur-
vature flow

Let X, be the solution to the mean curvature flow as in Theorem 1.1. Let g;;(x, )
be the induced metrics with g;;(z) as initial data, let f : M™ — N™ be a map
from M™ to a fixed Riemanian manifold (N™, §,3). Then the harmonic map flow

coupled with mean curvature flow is the following evolution equation of the maps

0
g (x,t) = Af(x,t), forxe M" t>0,

f(z,0) = f(z), for x € M",

where the Harmonic map Laplacian A is defined by using the metric g;;(z,t) and

Jap(y), ie.
Afa(x7 t) = gij<x> t)vivjfa(xa t)?
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and

ol IO e, 01°OF
ViVl = pgigar 1 aur T pat a7

Here we use {z'} and {y*} to denote the local coordinates of M™ and N™ respec-

tively, Ffj and f‘% the corresponding Christoffel symbols of g;; and gus.

Now we fix a metric § = ¢(-,7") on M", let (N™,§) = (M",g). Since the
ambient manifold (M,g) in Theorem 1.1 satisfies the assumption of Corollary
2.2.3, by Corollary 2.2.3 and Theorem 2.1.1, we know that there are positive
constants C’l, B depending only on C, T 7 and 6 such that

|Ry|+ |VRy| < Cy,
(2.3.1)
inj(N,g) >0 > 0.
Moreover, by (2.2.18) of Corollary 2.2.3, for any fixed yo € N, for any k >
2, there is a constant Ch depending only on C, n, T and the bounds of the
curvature and its derivatives up to order k+ 1 of the ambient manifold on its ball

B (Xo(yo), 2eV"*T 41 4 /nCT), such that
IVERN|(y) < Cy,  forall y € B(yp,1). (2.3.2)

In this section, We will establish the existence theorem for the above harmonic

map flow coupled with mean curvature flow. More precisely, we will prove

Theorem 2.3.1 There exists 0 < Ty, < T, depending only on C,T,n,d, such

that the harmonic map flow coupled with mean curvature flow

%F(z,t) = AF(z,t), xz€ M"t>0,
(2.3.3)

F(-,0) = Identity, x e M"
has a solution on M™ x [0,Ty] such that the follwing estimates hold. There is a

constant Cy depending only on C, 6, 7 and T such that

|VF| 4 |V2F| < Cs. (2.3.4)
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For any k > 3, By(xy,1) C M™, there is a constant Cy depending only on C6,
T, n and z1 such that

IVEF| < Cut™ "2, on Bo(x1,1) x [0, Tp). (2.3.5)

We will adapt the strategy of [5] by solving the corresponding initial-boundary
value problem on a sequence of exhausted bounded domains Dy C Dy C --- with

smooth boundaries and D; O By(zo,j + 1),

(0 _. ,
2 i — AFY
atF (x,t) = AF/(z,t)

F/(z,0)=2 forall x € D;, (2.3.6)

Fi(z,t) =z for all x € 0D;,

\
and taking a convergent subsequence of F7 as j — oo, where z is a fixed point
in M".

First we need the zero order estimate for the Dirichlet problem (2.3.6).

Lemma 2.3.2 There exist positive constants Ty > 0 and C' > 0 such that for

any j, if F7 solves problem(2.5.6) on D; x [0,T]] with T} < Ty, then we have
d(z, Fi(z,1)) < CVt

for any (x,t) € D; x [0,T7], where d is the distance with respect to the metric §.

Proof. For simplicity, we drop the superscript j. In the following argument, we
denote by C various positive constants depending only on the constants C, §, T,
and 7 in Theorem 1.1. Note that J(yl, y2) is the distance function on the target
(M™,g), which can be regarded as a function on M™ x M™ with the product



Uniqueness Theorem of the Mean Curvature Flow 32

metric. Let p(y1,y2) = %ap(yl,yz) and p(z,t) = p(z, F(z,t)). We compute

0 ~ od D% . O , 01d> 01d"
— —A)p= F ———AIld*) — ¢g"{———— - (T ;01 . .
(875 )p =d(z, F(z,1))( Dy d*) — {8y1‘18yf ( ap © d) oyl oz O

0% OId™ 8Fﬁ Op . OF“OF"

-9 1] l] I“'Y F ; .

g Yoyl Ox Ori { 0‘8 5~ (Tag© )ay; Ox' O’

- Ja—ciA]d“ — g7 Hess()(Vi, V),
g

where

old* 0 n oF* 0

ort Jye  Oxt Jys

By Theorem 2.2.2, there is a constant C' depending only on C, T and 7 such that

V. =

y | <C|IVPX| < % (2.3.7)

Since

Ald=g '« (Told=T)=g '« (T(-,T) =T(-,t))
then by (2.3.7) we have |Ald| < C, this implies

0 A .
(5; = B)p = Cd—gYHess(p)(Vi, V).

By (2.3.1), the curvature of § is bounded by some constant K, the injectivity
radius of § have a uniform positive lower bound 8. We claim that if d(z, F(x, t)) <

min{6/2,1/4V K}, then
) 1
g Hess(p)(Vi,V;) = §|VF!2 -

Firstly, by Theorem 2.1.2 (i), we have |Hess(y)| < C under the assumption
of the claim. On the other hand, the Hessian comparison theorem at those points

not lying on the cut locus shows that

0 0 T
17,0 F) 2% > ~§as,
Dys s ~ Wag o B 7 2 Jdos
D . dp _ w
—(I7,0ld)== > —q,
dydy’ (e )ayY = 390
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Combining the above inequalities, we have
g7 Hess(p)(Vi, V;) —|VF|2 CIVF| -
1
> |VF|” —
>0 V)

which proves the claim. Hence when d(z, F(x,t)) < min{g, #\/_}, we have
VS

%) -1
(E—AMSCW—§WFF+G (2.3.8)

By maximum principle we have

d(z, F(x,t)) < CVt  whenever d(z, F(z,t)) < mm{

24VP

Therefore there exists T} < 02 min? \/—} such that
d(z, F(z,t)) < CVt, fort <TI(<TY),
we have proved the lemma. 0O

After proving the above lemma, we can apply the standard parabolic equation
theory to get a local existence for the initial-boundary value problem (2.3.6) as

follows. This is similar to [5], we include the proof here for completeness.

Lemma 2.3.3 There exists a positive constant To(< Ty) depending only on the
dimension n, the constants Ty and C obtained in the previous lemma such that
for each j, the initial-boundary value problem (2.5.6) has a smooth solution F’

on Dj X [O,TQ]

Proof. For an arbitrarily fixed point Z in M™, we consider the normal coordi-
nates {z'} and {y®} of the metric go;; and the metric g4 respectively around z.

Locally the equation (2.3.6) is written as a system of equations

dy” — Ji(g @2 “ K 6y n y” oy’

(2.3.9)
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Note that fgw(f) = 0. Since by (2.3.1) the curvature of metric ¢ and it’s first
covariant derivative are bounded on the whole target manifold, by applying a
result of Hamilton (Corollary 4.11 in [20]), we know that there is some uniform
constant C' such that if d(y,z) < %, then |fg7(y)| < Cd(y, ). (This fact is
proved essentially in [20], although it is not explicitly stated.) By Lemma 2.3.2,
c;l(x, F(z,t)) < Cy/t, we conclude that the coefficients of the quadratic terms on
the RHS of (2.3.9) can be as small as we like provided 75 > 0 sufficiently small
(independent of z and j).

Now for fixed j, we consider the corresponding parabolic system of the differ-
ence of the map F” and the identity map. Clearly the coefficients of the quadratic
terms of the gradients are also very small. Thus, whenever (2.3.9) has a solution
on a time interval [0, 73] with T < Tb, we can argue exactly as in the proof of
Theorem 6.1 in Chapter VII of the book [25] to bound the norm of VF? on the
time interval [0, 73] by a positive constant depending only on go;;, and g,z over
the domain D1, the L bound of F7 obtained in the previous lemma, and the
boundary dD;. Hence by the same argument as in the proof of Theorem 7.1 in
Chapter VII of the book [25], we deduce that the initial-boundary value problem
(2.3.9) has a smooth solution F7 on D; x [0, Tb). O

To get a convergent sequence of F7, we need the following uniform estimates.

Lemma 2.3.4 There exists a positive constant T3, 0 < Ty < T5, independent of

4, such that if F7 solves

%Fj(:v,t):AFj(:v,t) on D; x [0, T3],

Fi(z,0) =z on D;.

Then for any By(z1,1) C D, there is a positive constant C' = C(C,8,n,T) such
that
V| 4 |V2Fi| < C
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on By(x1, %)x [0, T3], and for any k > 3 there exist constants Cy, = C(k,C, 6, T, 7, x1)
satisfying
IVFEFI| < Ot~

on By(z1,35) x [0, T3].
Proof. We drop the superscript j. We denote by C' various constants depending

only on C, §, T, in. We first estimate |VF|. By Corollary 2.1.4, we have

0 .
(E —A)VF)? < 2IV?FP +{(([Ry*g 2+ Ry * (VF)? x g7t % g7

. 0g 50y
Ty = F.VF 222 F)?x3.
tg kg )x VEVE) + g7« (VE) x g
Note that & = (V2X)2% g* g%, Ry = Ry * (VX)? + (V2X)? % g, the second
fundamental form V2X and curvature Ry; are bounded by assumption, we know

that |2| and |Ry| are bounded. The above formula gives
9]
a|VF|2 < A|VF|? - 2|V?F]? + C|VF|> + C|VF|" (2.3.10)
On the other hand, we know from (2.3.8) that
9, 1
—p<Ap—<|VFP+C
5P < Bp = 5IVE"+C,

where p(z,t) = %cp(m, F(x,t)). For any a > 0 to be determined later, we compute

0
prilChs P)IVF["] <Al(a+ p)|VF[*] = 2Vp - VIVF]?

—2(a+p)|V?F*+ C(a+ p)|VE?+C(a+ p)|VF*
1 4 2
— SIVE[ + CIVEP.
Since
—2Vp - V|VF]? < Cd(|VF| + |[VF]?)|V2F| < C([VF|? + |VE[Yd 4 Cd|V*F|?
and d(-, F(-,t)) < Cy/1, by taking a = <& and Tj suitable small, we have

a 2 2 1 271712 1 4
_ < - _Z
—l(a+ PIVFP) Al(a+ )|V - <o IV2FIE = [Vt +C
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for t < T3. Let u = (a+ p)|VF? then

ou 1
—— < Au— —u? 2.3.11
5 = U Cu +C (2.3.11)

for t < T3. Let {(z) = & (do(x1,x)) be a cut-off function, where & is the non-

increasing smooth function in (2.2.3) supported in [0,1) and equal to 1 in [0, 3],

Note that at ¢ = 0, u = ag”(-,0)g;;(-,T) < C. Then by computing the equation

of £u and applying the maximum principle as before, we have
Eu(z,t) < C on M" x |0, T3],

this implies

3
|VF’ <C on BQ(ZL’l, Z__L) X [O,Tg]

We now estimate |V?F|. By Corollary 2.1.4 again

1
(0 M)VEP < VP + (ST (Rarv g™+ oy (V) #9707
=0

+g % vl%} « VIR V2F) + g<3>% « (V2F)% % g,

and by (2.2.4),(2.2.17),(2.3.1), we know VI|VZ| + VI|VRy| + |VRy| < C, and

0

C
—|V?F]? < A|V?F)? = 2|VPF|* + C|V*F)? + —=|V*F 2.3.12
51 VIS AVEFR =2V 4 CIVAFP + | V2] (2:3.12)
on By(z1,3) x [0,73]. This implies
2yv2F| < AIV?F| + C|V?F| + < (2.3.13)
o < NG 3.

By (2.3.10) we have
a 2 2 2 2
a|VF| < AIVF)? = 2|V2F)? + C.

Let
u=|V?F|+ |VF|? = 20Vt + 2CVT,
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then

%u <Au—-u*+C on Bz, Z) x [0, T3]. (2.3.14)

Define the cutoff function &(x) = &(do(x1,2)). Note that at t = 0, |[V2F| =
Ty —T'| < C, then u |;—¢< C. Using the similar maximum principle argument as
before we get

1 1
cu<C on By(x1, 5 + ﬁ) x [0, T3],

which implies

1 1
]VZF\ SC on Bo($1,§+§) X [O,Tg]

To derive the higher derivative estimates we prove by induction on k. We
denote by C} various constants depending only on C, T, §, i and the bounds of
the curvature and its covariant derivatives up to order k of the ambient manifold
M on its ball By (Xo(x1),C) for suitable C.

Now suppose we have proved

C
IVIF| < té, 1=2,,.. k-1 (2.3.15)
2

on By(z1, (3 + 5)) % [0,73]. By Corollary 2.1.4, Theorem 2.2.2, Corollary 2.2.3

and using (2.3.15), we get

d C
a|v’*?F|2 < AIVFF)? = 2|VFH R 4 O VFF)? + 2 VR F, (2.3.16)
t 2
which implies
) C
awkm < A|IVFF| + G| VFF| + % (2.3.17)
2
We also have
d k—1 172 k—1 172 k2 Cr-1
Z|VEIF? < AIVFLRE — 2| VER2 4 2E2L (2.3.18)

ot

=
th—3

Let
w=1t"7 |VF| + -3 VLR
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By combining (2.3.17) and (2.3.18), we obtain

0 1
—_u << — (2
8tu < Au : (u® 4+ Cy) (2.3.19)

on By(z1, (3+55)) % [0, T3]. Using the cutoff function &(z) = &,(do(z1,2)), (2.3.19)

and applying maximum principle as before, we conclude with

Ck 1
’ka’ < t% on Bo<$1,(§+ﬁ)) X [O,Tg]
Therefore we complete the proof of Lemma 2.3.4. O

Proof of Theorem 2.3.1
Now we combine the above three lemmas to prove Theorem 2.3.1. We have

known that there is a T3 > 0 such that for each j, the equation
(

o0 _. .
—F = AF’
CFi(n,t) = AF(z,1)

F/(z,0) =z forall x € D;,

Fi(x,t)=x for all z € 0D;

has a smooth solution F7 on D; x [0,T3]. Since D; D Boy(zo,j + 1), by choosing

any x1 € By(zg,7) in Lemma 2.3.4 we have
V| 4+ |V*Fi| < C

on By(xg,j) x [0,T3], where C' depends only on C, 7, §, T. Moreover for any
71 € By(z0,7), k > 3, there is a Cj, depending on C, §, T, 7 and x; such that

IVFEFI|(2,8) < Cpt ™2

Then we can take a convergent subsequence of F7 (as j — o00) to get the desired

F with the desired estimates. So the proof of Theorem 2.3.1 is completed. O

For later pupose, now we derive some estimate of g;;(x,t) with respect to F*g.

Let gi; = (F79)i;-
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Proposition 2.3.5 Under the assumption of Theorem 2.5.1, there exist 0 < T <
Ts and C > 0 depending only on C, 7, § and T such that for all (z,t) € M™ x
[0,T4], we have

1 ~ A
59@(% t) < gij(z,t) < Cgij(a,t). (2.3.20)

Proof. Note that |VF|* = g;;¢ < C, which implies g;;(x,t) < Cg;;(z,t). For
the reverse inequality, since the curvature of g;;(-,t) is bounded, we compute the
equation of g;;(z,t) on the domain,

(3 N N a N a ~ > a ~ a
o0 =Agi; = RiF{ F} Gasg™ — RinFy F Gapg™ + 2Rapms FYFYF] 0™ — 2005 B Fj g™
>Agij — Rixgng™ — Rijrgug™ — C|VF[*g;; — 2|V*F g

>Agi; — Cgij.

(2.3.21)

Note that for suitable large constant C, we have

0
and g;; > %gij at time 0. Thus for ¢t < 1/C3, we have
d o 2 1 2 2 1
(E — A)(gi; + (C7t — E)Qij) >[-C+C* 4+ C(C*t - 5)]9@‘
(2.3.22)
>0.
Note that

. 1
(9ij + (C*t — 6)‘%) li=0> 0.

Since |V2X|++/#|V3X| < C and the curvature is bounded, then there is a smooth
proper function ¢ with ¢(z) > 1+ do(zo, 1), [Vy| + |V3p| < C. So Hamilton’s

maximum principle for tensors on complete manifolds is applicable, we get

1
i+ (C = B2 0 o 1< minfT,07)
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which implies
gij < 2C Gy

for t < Ty = min{T3,1/2C3}.

The proof of the proposition is completed. O

As a consequence, we know that the solution of the harmonic map flow coupled

with mean curvature flow is a family of diffeomorphisms.

Corollary 2.3.6 Let F(x,t) be assumed as in the previouse proposition. Then

F(-,t) are diffeomorphisms from M to N for all t € [0,T}].

Proof. Note that (2.3.20) implies that I are local diffeomorphisms. For any
x1 # o, we claim that F'(zq,t) # F(xo,t) for all ¢ € [0,T4]. Suppose not, then
there is the first time ¢y > 0 such that F(x,ty) = F(x9,%y). Choose small ¢ > 0
so that there exist a neighborhood O of F(x1,t) and a neighborhood O of x4
such that F~'(-,¢) is a diffeomorphism from O to O for each t € [ty—0, to], and let
4 be a shortest geodesic( parametrized by arc length) on the target (with respect
to the metric §) with 4(0) = F(zy,t), 4(I) = F(x3,t) and 4 € O. We compute

A

S(F(1,), F(2,6) = (V(F(22,0),7 (D) = (V(F(1,0), 70, (23.23)

where V(F(x,t)) = gF(x, t). Now we pull back everything by F~! to O,

t

A

i UF (w1, ), F(wa,1)) = (P5V = V,4'(0))r

> — sup |@V|<J],t)CZ(F(ZL’1,t),F(l’Q,t)),

zeF—14
where P; is the parallel translation along F~'4 using the connection defined by
F*g. Since
oz

ViVli= vV, Ve—,
oy®
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where V.V is the covariant derivative of the section V' of the bundle F~!TN.
Thus by (2.3.20) in proposition 2.3.5, we have

TV = (VAo PgasaME < CVPE| < &

X

where the constant C' depends on the z; and x5 and is independent of ¢ by (2.3.5)

of Theorem 2.3.1. Therefore, for ¢t € [ty — 0, to], we have

~

d(F (21,1), F(23,1)) < e“VOVOIJ(F (21, t0), F (w2, 9)) = 0,

which contradicts with the choice of ¢t3. The corollary is proved. O

2.4 Mean curvature flow in harmonic map gauge

From the previous section, we know that the harmonic map flow coupled with
mean curvature flow with identity as initial data has a short time solution F'(z,t)
which maintains being a diffeomorphism with good estimates. Let X = X o F~!
be a family of maps defined from (M™", §,5) to M™, then X satisfies the following

mean curvature flow in harmonic map gauge

%)‘( — ¢*’V,V3X forye N, (2.4.1)

where g* is the inverse matrix of gos(-,t) = ((F~1)*g(-,1))as and V is the co-
variant derivative with respect to g.3. We denote the local coordinates of M by

{z*}. Tt is not hard to see

oxt 0x7 0X%9XP 9xt Hx7  9XT 9XO

(2.4.2)

this implies that the metric g,s5(y, t) is just the induced metric from the ambient
space by the map X. Since

., 0x' Ox

. s 97
FosW) = Tos(y,t) = (V2F); Dy 0P
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we have

1. n
Ega,@(y) < gaﬁ<y7t) < Cga,@(y)a
(2.4.3)

T7,(9) — 00, 1) < C.
by Theorem 2.3.1 and Proposition 2.3.5.

Let X; and X5 be two solutions to the mean curvature flow (1.1) with bounded
second fundamental form and with the same initial value X, assumed as in the
Theorem 1.1, and g;;(z,t) and g7;(z,t) are the corresponding induced metrics.
As in section 2.3, we solve the harmonic map flows coupled with mean curvature

flow with the same target (M™, §os) (where § = g*(T)) respectively

(0
aFl = Agl’gFl
(2.4.4)
\ F |i=o = Identity = on M",
and
(0
&FQ = AgZ,gFQ
(2.4.5)
\ Fy |i—o = Identity  on M",
where Ak ; is the harmonic map Laplacian defined by the metric gfj(x,t) and

Jap for k = 1,2 respectively. By section 2.3, we obtain two solutions Fi(z,1)
and Fy(x,t) such that Theorem 2.3.1 holds with F' = F} and F = F;. Corollary
2.3.6 says that Fi(x,t) and Fy(z,t) are diffeomorphisms for any ¢ € [0, 7y]. Let
GrasW: 1) = (F7)*g as(y,t) and gang(y,t) = ((F5')*9%)ap(y,t). Then Xy =
X o Ffl and Xy = X5 0 F2_1 are two solutions to the mean curvature flow in

harmonic map gauge (5.1) with the same initial value X,

o _ L
— X, = g‘f‘BVanXl, on M™ x [0,T}],

ot (2.4.6)
X1 |t:0 = Xo, on M",
0 o ape o < .
EX2 =g vaVﬁXQ, on M" x [0,T4],
(2.4.7)

X2 |t:0 = X(), on Mn,
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where by (2.4.2) giap and g¢anp are the corresponding induced metrics from the

target (M™, g,3) by the maps X; and X.

Proposition 2.4.1 Under the assumptions of Theorem 1.1, there is some T5 > 0

depending only on C, 6, T and 7 such that
X1<y7 t) = XQ(yu t) on M"™ X [O’T5]

for the two solutions of mean curvature flow in harmonic map gauge constructed

above.

Proof. Let (%, %) = d2,(21, 22) be the square of the distance function on M
which is viewed as a function of (21, zp) € M X M. Set u(y,t) = d2, (X1 (y, 1), Xa(y, 1)).

Let Ay, = g?ﬁﬁaﬁﬁ for £ = 1,2. By direct computation, we have

0 _ - .0d _F _ - . 0d
—u(y,t) = QdM(XlaXQ)Tﬁle +2dM(X17X2)—A2X27
ot 8211£ 822
aﬁ 2 I ad g 8d —E a,@
g1 Vocvﬁu(yvt) = 2dM(X17X2)[£A1X 9z EAlXQ] + Hess(w)(zaa Zﬁ)gl 3
16 2
where Z, = gj 885 + 252% € T(Xl,XQ)M x M, for « = 1,2--- ,n are vector

fields on M x M. Combining these two formulas, we have

0 od o
(590" VaValuly,t) = =2 (X1, Xo) 2 ((A1=02)Xa)* ~ Hess(4) (Za, Z5)g7"
29
(2.4.8)
Note that
(A1 — Ag) Xy = ¢V Vs Xy — 657V VX,
= 9?7955(9257 - 9157)@04@5)_(2, (2.4.9)

VaVsXy = V2aVasXa + (I' = Ty) * VXy,
where ['s and V, are the christoffel symbol and the covariant derivative of the

metric ga,5(y,t).
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For each y € M™ and t € [0,T], if X;(y,t) # Xa(y,t), denote the minimal
geodesic on M from X;(y,t) to Xs(y,t) by o, and denote the parallel translation
of M along o by P,, then we have

152 018) = 925, 001) = (K05 Ko = (X (), X
— (Ru,5): %o — (P (Raelo), P Ry
— (i) — P (e () Ko
(P (R o)) Kanl ) = P (Rl
(2.4.10)

If Xi(y,t) = Xa(y,t), P, = Identity, the above formula still holds.
In the following argument, we compute norms by using the metrics g; and g.

For example
’f - FZ‘Q = (f - F2>Z¢ﬁ<f - FZ)g’/ﬁ,ng,glaa’glﬁg'
and
IV3Xo|? = Qg{g?algfﬁlvzavzﬁ)_(gvza/Vm/)_(g-
We denote by C various constants depending only on the constants C', T 7 and
§ in the main theorem 1.1. Then by (2.4.3), we have

T —Ty <C,
IV2X,| < OT = Ty| + C|V3X,| < C, (2.4.11)

2] + 1oz ' < €,
where |V2X,| is just the norm of the second fundamental form of Xy : M™ — M™

which is bounded by C. Combining (2.4.9) (2.4.10) and (2.4.11), we have
_ v, o 0 1,e 0 ~ 0 1, , 0
(A1 = 22) X|” < 0917<X1*(a—y(;) - F 1<X2*(8_y5>>’X1*(8_y7) - F; 1(X2*(a—y7))>;7-

(2.4.12)
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By choosing an orthonormal frame at y so that gi,5 = dag, then we have
Hess(V)(Z, Z5) g ZHess N(Zw, Zs).
Note that

Lo = Zo1 + Zao, for a=1,2,---,n

R < 0XS 0 _ v (.0
where Zal = Woléaj_f — Xl*(aya) and ZOtZ 8y2 9z ( = XQ*(W)
Recall that by Theorem 2.1.2 (ii), there is a constant C' such that if dy;(z1, Z3) <

min{ 7=, 31, we have

(V2d*)(Z,Z) > 2|2y — P ZoP — C|Z)Pd? for all Z € Tiz, 5y M™ x M",

where Z = Z\+Zy, 71 € Tsy M™, Zy € Ts, M™. Hence if d; (X1, X») < mm{éh%, g},
then
S Hess(6)(Zau Z0) > 32X (5m) = Py Ko S0 = Cly (Ko, Xo)?
- Yy~ 7 Yy~

a=1

(2.4.13)
since |Z,| < C.

Combining (2.4.8), (2.4.12) and (2.4.13), if u2 < min{ﬁ, g}, then we have

_ _ n _ a . a
977V aVa)u(y, t) < C'dM(Xl,Xg)ZQ\Xl*(a—ya) — P; 1X2*(a—ya)\

a=1

e
o _
- QZ X5 1X2*(aya)|2 + Cd3; (Xy, Xs)

< Cu.
(2.4.14)

Now we show that u2 < min{—= V(oL 2} on some time interval [0, 75].
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For any (y,t) € M x [0, Ty], we have

N

uz (y,t) <dy(Xi o0 Fy ' (y,t), X1 0 FiH(y,0)) + dy (X1 0 Fy ' (y,0), Xa 0 Fy ' (y,0))

+ dM(XZ o F2_1(y7 t)a X2 o F2_1<ya 0))

A1+ I, + Is.
(2.4.15)

By the mean curvature flow equation (1.1), we know

I < dM<X1(y7t)7X1(y70)) + dM(X2<y7t)7X2<y7 0)) < 2\/56%

By (2.3.4) (2.3.23), for any 1,25 € M™, we get

0
ad(Fl(xbt)aFl(xQ?t)) > _07

this implies

dA(Z’l,.iL'Q) S Li(Fl(.’L'l,t), Fl(l'Q,t)) + Ct. (2416)
By (2.4.16) and Lemma 2.3.2, it follows

Il :dM(Xl o Fl_l(y7t)v Xl o Fl_l(yv O))
<d(argr ) (Fy (1), )
<Cd(F(y,t).y)

<Ct + Cd(y, Fi(y,1))

<CWt.

The estimate of I3 is similar. Therefore, we have

D=

u

(y,t) < CVt (2.4.17)

for some constant C' depending only on C, §, T and 7.
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Although gf‘ﬁ VAa@ﬂ is not the standard Laplacian, the maximum principle is
still applicable. For completeness, we include the proof in the following.
Since the curvature of (M, g) is bounded, it is well-known that there is a

function ¢ such that

0+ dan,)) < pl0) < OO+ dafuo )

IVl + |V2g| < C.

Note g; is equivalent to §g. For any small ¢ > 0 and big A > 0, we have

0 N A

(57— 9"VaVs) (e uly. 1) — 2e™p) < == < 0.

Then the classical maximum principle implies that for any fixed ¢y the maximal
value of (e Cu(y,t) — eettyp) on M x [0,t] can not be achieved for any point
(y,t) with 0 < t < to. Hence e Ctu(y,t) — et < 0 for any t € [0, T3] for some
Ts > 0. Let ¢ — 0, we conclude that u = 0 on [0, T5]. This implies X; = X5, on

M x [0,T5]. We complete the proof of Proposition 2.4.1. O

2.5 Proof of the uniqueness theorem 1.1

Now we are ready to prove Theorem 1.1. Let X (z,t) and Xs(z,t) be two solutions
to the mean curvature flow with bounded second fundamental form and with the
same initial data. We solve the corresponding harmonic map flow (2.4.4) (2.4.5)
(with the same target (M, g)) respectively to obtained two solutions Fi(x,t) and
Fy(x,t) on some common time interval. Then X; = X;0 F; ' and Xy = Xy0 F,*
are two solutions to the mean curvature flow in harmonic map gauge with the
same initial value. By Proposition 2.4.1 we know X; = X, on [0,73]. So in order
to prove Xi(x,t) = Xo(x,t), we only need to show F} = F,.
We know

AFY = g1, —T%,) 0 F,

APy = gi(I5, —T5s,) 0 Fo.
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Since X; = Xy, we know ¢145(y,t) = gaas(y,t) on [0,Ts], and the vector fields
Vi = V5 on the target, where

‘/’104 = glﬁfy(rg'y_r(llﬁ'y)’

‘/’204 = 9257( g'y - gﬁ'y)'
Therefore, the two families of maps F; and Fy satisfy the same ODE with the

same initial value: C 9
—F =VoF
gt Vo

| F1(+,0) = Identity,

and
(0
EF2 = VOF2

| F2(+,0) = Identity.
So for any x € M™, letting v be a shortest geodesic( parametrized by arc length)
on the target with y(0) = Fy(z,t) and y(I) = Fy(z,t), we have

~

%d(m(x, t), a(z,t)) = (V.o (1)) = (V,7(0))

(Py'V = V.4(0))

S sup |@V|(y7 t)CZ(Fl(xv t)7 FQ(xa t))a

yey
where PV is the parallel transport of V(Fy(x,t),t) along the geodesic v back
to the tangent space of the point Fj(x,t). We have seen in the proof of Corollary
2.3.6 that sup |@V|(y, t) < % for some C' depending on z but independent of ¢.

yeY

Since d(F,(z,0), Fy(z,0)) = 0, we conclude that
Fi(x,t) = Fy(z,t).

So we have proved X (z,t) = Xs(x,t), for all x € M and ¢ € [0,T5]. Clearly, we
can extend the interval [0, T5] to the whole [0, T] by applying the same argument
on [T5, T]
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The proof of Theorem 1.1 is completed. O

Corollary 1.2 is a direct consequence of Theorem 1.1. Indeed, let ¢ and o
be two isometries of (M",g) and (M", g) respectively such that (6 o Xy)(z) =
(Xpoo)(z) for any x € M™. Simple computation shows that 6o X; and X;o0 are
two solutions to the mean curvature flow (1.1) with bounded second fundamental
form on M™ x [0,7] and with the same initial value, then by Theorem 1.1, we

have

(6 o0Xy)(x) = (X;00)(2)

for any x € M™ and t € [0, T]. The proof of the Corollary 1.2 is completed. O



Chapter 3

Pseudolocality Theorem

In this chapter, we establish the pseudolcality theorems 1.4, 1.5 for the mean
curvature flow. As an application, the strong uniqueness theorem 1.3 of the
mean curvature flow is proved.

We begin with a few terminologies for the sake of convenience. An n-dimensional
submanifold M C M is said to be a local 6- Lipschitz graph of radius r, at
P € M, if there is a normal coordinate system (y*---y") of M around P with
TpM :span{aiyl,~~ ,%}, a vector valued function F' : {y/ = (y',---,9y") |
()2 + -+ (y")? < 12} — R™™ with F(0) = 0, |[DF|(0) = 0 such that
M{ly| < ro} = {(y,FW)) | /| < ro} and |[DFP(Y) = ¥, , 22950 < 62,
The submanifold Mj is said to be graphic in the ball Bj;(xg, 1), if the above
holds for § = oco.

We say a submanifold M C M is properly embedded in a ball B (zo,70)
if either M is closed or OM has distance > ry from xy. We say a submanifold
M C M is properly embedded in M if either M is closed or there is an zq € M
such that M is properly embedded in Bj;(xg,ro) for any ro > 0. It is clear that
if M is complete and M is properly embedded in M, then M is complete. A
properly embedded submanifold M is said to be uniform graphic with radius r

if for any zo € M it is graphic in the ball By;(zg,70).

50
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The following lemma says that if the second fundamental form is controlled,

then (a piece of) the sub-manifold is a local §-Lipschitz graph of suitable radius.

Lemma 3.1 Let M be an n—dimensional complete Riemannian manifold satis-

fying

|Rm| + |VRm|(z) < C, inj(M) > iy > 0.
There exists a constant Cy > 0 with the following property. Let {x!,--- 2"} be
normal coordinates of M of radius ro around x¢ with T,y M = span{%, s %},

where M is an n-dimensional submanifold properly embedded in Bj;(xg,19), o €
M, ro < C )
Fo{(zt, o) | @+ +am)e < Gt — R W1th F(0) =0, |[DF|(0)=0

and the second fundamental form |A| < --. Then there exists a map

such that the connected component containing xo of M N {(z",--- ,z™) | (#'* +
o an?)z < 20} can be written as a graph {(z', F(2')) | |2/| = (24 42"?)z <
&} and
N
DRI < P (31)

= (z')---  2") € Bra(0, 2

’96)’

where |DF|(2')2 = > >°" OFZ OFZ (o).

a=n+1 9z* Oz’
Proof. Let X = (X!,--- | X") = (2/, F(2')),2’ = (2',--- ,2"), be a graph repre-
sentation of the local isometric embedding of the connected component containing

zo of MN{(z", -+ ,a") | (z°+---+2"2)2 < r }(for some r; < 22) into M under

9
the exponential map.
Define
" OF° 9F . " OF® 9F°
2 ’L 2
VEP = Z Z dxi Ozl ? DF| Z Z oxt Ozt

3,j=1 a=n+1 i=1 a=n+1

By choosing ] large, we have
1 _ _ 1
édaﬂ S Jap S 250467 ‘Flﬁ| S 17 552] S Gij S 2(1 + ‘DF‘z)(SU

For a > n+1, 7,7 < n, recall the coefficients of the second fundamental form is
given by

X X XPoXxX7 XPox7
0 e, 0X’oxX7" _ve F“—i—Fﬁ 0XP o .
T Oxt Oz

o

o Y2k [
Yo Oxtoxd - Oxk oy oxt Oxd
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Note that
_ L 0XPOXY , - OXPOXY_, 0XPOXY , .. )
‘FBW oxt W’ T8 9 0xd P Ozk o 99" Joar < C(1),
VPFP= Y VEFUVLFSasg™g"
a,B8>n+1;i,5,k,l<n
< 4(|A] + C(n))
< dry?+C(n),
and
IVIVE|| < |V2F|.
This implies
IVE|(-) < 3rytdas(zo, ). (3.2)
Since g;; < 2(d;; + %JTT?%Z;) < 2(1+ |DF*)é;;, it follows that
1 |DF|?
VFPP>_-1"—""1
IVET 2 41+ |DF|?
and
4|V F|?
DF?< ——— 1 | 3.3
| "< 1 —4|VF|]? (3:3)

Combining (3.2)and (3.3), it follows that

_ T
[DF|() < 975 das(wo,-)  on Bas(o, 5).

Since dps (o, -) < 2dg;(xo, ) by (2.1.5), we have

IDF|(-) <185 sup (1+4|DF|)[z'| < 36ry" |2,
B (0,53)

and we conclude that

To

|IDF|(2") < 36ry'2’|,  whenever |2/| < %

The above argument shows that there is C; > 0 such that under the exponential

map, once the connected component of M can be expressed as a graph (2, F'(z'))

o2
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on Bgn(0,71), for ry < g2, then the estimate (3.1) holds. Hence the connected

component of M can be expressed as a graph on the ball B (0, 55 ). O

For future applications in pseudolocality theorem, we need a local graph rep-

resentation for mean curvature flow.

Lemma 3.2 Fixk > 1. Let M be an i—dimensional complete manifold satisfying

k+1

Y IVRm|(x) < C,  inj(M) > io > 0.
=0

There exists a constant Cy > 0 with the following property. Suppose M,
s € [—r¢,0] is a solution of MCF properly embedded in By (xg,10), To0 € Mo,

k . .
rg < C%, with > |ViA|ritt < 1 on By(wg,70). Denote by x5 € M, the or-
i=0 _
bit of xg. Let {x',--- 2™} be normal coordinates of M of radius ro around
xo with TpyMy = span{z2:, -+ ,3%}. Then there exist a family of smooth

maps F, : {(zt,---,a") | (22 + -+ 2")2 < &} — R with Fy(0) = 0,
|DoF'|(0) = 0, exp,,((0,F(0))) = xj such that the connected component of

M, {(zh - 2™ | (@ 4 42 < ¢} (under the exponential map ezp,,)
containing z§ can be written as a graph {(z', Fy(z/)) | |2/| = (#* + - +2™)2 <

k+2
0. i+1 i
C_l}’ moreover we have Z_Zl ro | D'Fs| < Ch.

Proof. Actually, by the mean curvature flow equation %X = AX, where
X = (2/,Fs(2')) is the graph representations on B(0,71) for some r < ¢, we
have information on |2 Fy|ry + [ DF,[r2 < C,. This gives |F,(0)] < Csry’
and |DF,|(0) < Csry?. Similarly, by integrating |V|VF|| < |V2F|, we know the

graph representation holds in a ball of uniform radius ¢ - The higher derivative

D'F can be estimated by )., |V’ F| by definitions. O

Now we state the pseudolocality theorem for the mean curvature flow.

Theorem 3.3 (Pseudolocality) Let M be an n-dimensional complete manifold

3 — . — _
satisfying > |V Rm| < ¢ and inj(M) > ig > 0. Then for every a > 0 there exist
i=0
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e >0, 6 > 0 with the following property. Suppose we have a smooth solution to
the mean curvature flow M; C M properly embedded in By;(xg,ro) for t € [0,T]
with 0 < T < &2, and assume that at time zero, My is a local -Lipschitz graph
of radius ry at xqg € My with ry < ’50 Then we have an estimate of the second

fundamental form

A, 8)? < T+ (ero) 2 (3.4)

on By (xg,ero) N My, for any t € [0,T].

Proof. We argue by contradiction. By scaling we may assume ro = 1. Suppose
there exist fixed ¢g > 0, 7o > 0, @ > 0, and a sequence of £, — 0 and smooth
solutions to the mean curvature flow M; C M for t € [0,7] C [0,£?] such that at
time zero, M is a local §- Lipschitz graph of radius 1 at xg € M. But there is

some (x1,t1) satisfying 0 < ¢; < T and x; € By;(xg,¢) such that
o
|A|(ZL‘1,t1)2 > t_ + 8_2.
1

Denote by E, the set of points (z,t) satisfying |A|(z,t)* > ¢. Now we use the
Perelman’s point-picking technique [26] to choose another point which controls

nearby points in its scale.

1

Toon, let My be assumed as in the

Lemma 3.4 For any K > 0 with Ke <
theorem, suppose |A|(z1,t1)* > o+ g2 for some (x1,t;) satisfying 0 < t; <
T < &* and v, € By(wg,€), then one can find (z,t) € E, with 0 < ¢t < T,

dyi(xo,7) < (2K + 1)e such that
|Al(z,t) <4Q (3.5)

whenever t — 3aQ ™% <t <1, dy(z,z) < KQ™', where Q = |A|(z,1).
Proof. Firstly, we claim that there exists (z,t) € E, with0 < ¢ < T, dj;(z0,Z) <
(2K + 1)e such that

Al(e,6) < 4]A](2,D)

whenever (z,t) € E,, 0 <t <t, dy(zo,z) < dj(zo, ) + K|A|(Z,1)7L.
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The argument is by contradiction. If (x1,¢;) can not be chosen for (7, 1), one
can find (xq,t2) € E, with 0 <ty < t1, dy;(wo, 22) < djr (0, 1) + K|A|(21,81) 71,
|A|(xq,ta) > 4] A|(z1,t1). Inductively, we have a sequence of (z,t;) € E, with
0 <ty < toer, dyg(wo, 2x) < dyp(wo, 2i—1) + KJA[(zp—1, teer) ™", [Al(zp, te) >

4| A|(zg—1,tk—1). Therefore we have
|A|(xk;7tk) > 4k_1|A|<m1’ t1> > 4k—1€_1

and dy;(zo, x1,) < dyr(zo, x1) + K Yoo (47 A| (21, 11)) ™! < (2K +1)e < 3. Since
the solution is smooth, we get a contradiction as k large enough.

For the chosen (z,1), if (z,t) ¢ E,, t — 3aQ™* <t <{, then

If (z,t) € E, and dy(z,z7) < K|A|(z,t)7!, by above claim we still have the
estimate. The lemma is proved. O
Continuing the proof of Theorem 3.3.
Choose K = \% Let (Z,t) be the point obtained in Lemma 3.4. Consider the
auxiliary functions
dy @, dy; (%, x)* + 3nt

o(z,t) = (dm(f — 1)) 2e WD 32 y(z 4) = (1— - )

on M x [0,], where p = min{3, ﬁ,io, Vve}. They are also functions on M by
composing the inclusion maps. We will compute their equations on M. Since the

sectional curvature of M satisfies —ci < sec < ¢, by comparison theorem and
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mean curvature flow equation, we have

a _
(55 T A)du(z, )? = 4dVdy - H +tr(Hess(dy(%,-)) [rm)
— COdM(jv )
> S —
> AdVdy - H o+ 200 0
_ 1
> 4dVdy - H +20(1 = S5 (.)),
6 _ 2 2 (=
(55 = A)dwm(2,)° = —tr(Hess(dy(Z,)) |ra)

> —2ncody; (T, - )eoth(cody (Z, 1)) > —3n

whenever dy;(z,-)? < min{ -, i3}, t € [0,#]. Hence we have
0

0

CRNTEL (3.6)
and
(% +A— |H)p =¢[2(tn_ i ! Zé(jt_)ﬂ (% + A)dy (2, )
A+t =D)du(@,)? (L4 (= 8)*|Vdg(z,)*f
GNP 16(7 — 1)2
%dM(f, -)2 n 9
“ag-n 2 A
L+2(t—1) - (1+ 2(t —1))dy(z,-)?
Sel—g gy duVeu - H - T=E
N (1+ 2(t = )?|Vdy(z,)*
16(7 — 1)2
[z — (1 + Z(t = O)ncgldp (7, ) 2
- 4({_ t) - |H’ ]
<-4 (o Loy AT
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whenever dy; (z,-) < p, t € [0,7]. We used 0 < 1+ 1(t —¢) < 1. In the above and
following argument, we regard the mean curvature flow M, is a smooth family of
Fy: M — M, (o) o F, is a C? function on M x [0, #] with compact support in M.
So fMt o = [,, evduv, is a C? function in ¢. Combining (3.6) and (3.7), we get

the monotonicity formula (which generalizes Huiken’s Monotonicity Formula[23])

R R (3.5)
on [0,¢]. This implies
JA B e e
’ t (3.9)
S/M ph — Mﬁww-

Since the solution is smooth and properly embedded, v is compactly supported,

we have lim,_,; fo oY = 6_2%{(1 — %{)3. Now we claim that there is § > 0 such

that as ,0 — 0, we have

/ o > (1+ Be 341 — 3—?) . (3.10)
M P

ff%aQ72

We still argue by contradiction. Suppose not, then there is a subsequence of

g,0 — 0 and

t @)V (@, )y
/t;aQ_Q[/ H+1+2 (t ) ST | ewdeldt < f— 0. (311)

Parabolic scaling the solution around (Z,t) with the factor @ and shifting the ¢

to 0 and T to the origin O, i.e. let (M, §) = (M, Q%j) be the new target manifold,
M, = M g2, —%a < s < 0 be the new family of submanifolds, which is still
solution of the mean curvature flow. By (3.5), the normalized second fundamental
form satisfies |A| < 4 on By (7, K), —3a < 5 < 0. By Theorem 2.2.2, we have
|VA| < Const. on By (Z, £), —2a < s < 0. Note that K — oo.

Now we are going to consider the convergence of the mean curvature flow
on changing target manifolds. We clarify the meaning of the convergence in the

following.
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Denote the orbit of Z under mean curvature flow by z° € M, such that
7% = Z. Note the injectivity radius of the new target (M,§) tends to infinity
as e — 0. Let {z!,---, 2"} be normal coordinates of M of radius > 1 around
with Ty My = span{%, e 6%}, and g,p be the metric coefficients of M in this
coordinates. By [20], we have |Jog —0as|(2) < CQ2|z|? and |0gag|+]0%Gas| < C.
By Arzela-Ascoli theorem, after taking a subsequence of ¢ — 0, g,g tends to s
in C?77 topology for any 0 < v < 1.

By Lemma 3.2, there exist a family of maps F, : {(z},--- ,2") | (1 +--- +
")z < 1} — R™™ with Fy(0) = 0, |DFy|(0) = 0, such that the connected
component containing z* of M, N {(z',---,2™) | (#'* + -+ 4+ 2"%)2 < 1} can be
written as a graph {(z', F,(/)) | |2'] = (2** +--- +2"?)2 < 1}. Moreover, we can

show A
0" Z@F
Z|DF|+Z SaFl+ID'o-) <C,
i=1

where D and the norm are the natural differential and norm in Euclidean ordi-
nates of N C R™ and the garget R™. By Arzela-Ascoli theorem, F'(z', s) will con-
verge to F°(z/, s) in the topology of C2(B(0, 1) x [—32 0], R")NC3*(B(0, 3),R™).

2
If we set X = (2, F(z')) being the map from N := B(0,1) to M, then the
mean curvature flow equation can be written as

0X
— =AX
0s ’
where A is the harmonic Laplacian defined by using the induced metric X*g and
the target metric g. Since X*g is defined by DF' and g, after taking a subsequence

of e — 0, we know X*g converges in C*~7(B(0, 3) x [—32,0]) topology.

Denote by M, = M, Nexp,{|2/| < 1}, and M = Use[,%O]Ms. By summing
up the above discussion, the piece M of M containing (z,0) will converge to a
solution of the mean curvature flow (in the classical sense) which is embedded in

the Euclidean space R™ with |Ax|(0,0) = 1 and |Ay|(-,s) <4 on [— 5, 0].
d2. (Z,-)

On the other hand, let p = Q"¢ = (4n(—s)) 2¢ Q)= _i(f+Q72s),
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note that

vid - . do(z, \Vrd o (T, -
w(Z,) u(Z, )@Q 2 |H - (1+ s \dy(T )28 w (T )37

2(t—1)

“2d7(7,)? + 3nt + 3nQ
@ ulf) TINEIT

[H+(1+ - (t—ﬂ)

v=(1-

¢ — (4r(—s)) " 2e 1= and @dv = Gdo.
Since M, C M,, by passing (3.11) to limit, we have

0 J_ n |93|2
[ U Vi = G Ptn e =0
_ 0 S

where we denote the limit of MS by M 2, Hoo the mean curvature on the limit.

This implies

a
2 for s¢€[—=,0].
. or s €| 5 ]

The boundedness of the second fundamental form on Mg® implies 2+ = 0 on M°.
Since the second fundamental form and its twice covariant derivative of M are
bounded for s € [-%,0], M2 are C*~7 submanifolds for any v > 0. Moreover
by the higher derivative estimates in Theorem 2.2.2 (in Euclidean space), Mgo is
smooth.

Note 0 € Mg°, after a orthogonal transformation, we may assume Ty Mg =
{(x1, 29, ,2,,0,--+,0)}. Clearly we still have the condition - = 0 on Mé’o
We may write Mg° as a graph (at least locally near 0) (2, fi(a'), - - - , fa_n(2'))
where 2’ = (21, -+ ,2,). Now 2t = (2/, fi(2'), -, fa_n(2'))* = 0 implies i ggf;xp
= fi(z'). So f; is homogenous of degree 1. Since Df;(0) = 0, we concludep?i1 =0.

Hence we know M{fo is an n-dimensional linear subspace R™ of R™.
This contradicts |As|(O,0) = 1 and we complete the proof of (3.10).
Note that By (Z,p) C Byi(zo,p + (2K + 1)) C Bys(xo,4+/¢). Combining
(3.10) and monotonicity formula (3.8), we know
n £y 2y (50 ng,. 3t
(4nf) "B 0-DP gy > / PV |y 10g2> (1+B)e E(1-"0)%,
M, 2 P

/]WQQBAI(xOA\/E) (3 12)
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By assumption, there is a normal coordinate system (y!---y") of M around
xo with T,, My :span{a%l, e ’By”} and a vector valued function F : {y =

Wy L @)+ + (") < 1} — R with F(0) = 0, [DF|(0) = 0
IDFP(y) = 32, G5 Gy < 0% such that Mon{|y'| <1} = {(y/, F(y) | ly'] < 1}.

7,7y 8y’b ay'L

Let P : R"™ — R™ be the orthogonal projection into the first n-components. Let
expy, (¥) = T and ¢ = Py. For x € By;(xo,44/¢), let exp,,(y) = x and y' = Py.
Since the curvature of M is bounded by 2, by comparison theorem on the ball

By, yi(0,44/2), we have

sin(4c,
dy(7.2) > Aff SIn(0VE) s s (1= eyl = (1— 327 — ¢/l (3.13)

On the other hand, also by comparison theorem, the Riemannian volume element

dv of M, satisfies

sinh(cody; (2o, )
Codﬂy(xo,J

exp,, dv < | ]”dvexp% My < 1+ 16c§5]”dvexp;01 Mo (3.14)

whenever © € My N By (xg,44/2). By definition, it is clear that

A1 gy < (14 IDF|®)2dy" - dy™ < (14 6%)2dy" --- dy". (3.15)

€XPz

Combining (3.13),(3.14) and (3.15), we have

- d2 (%
dJW (z,x)

(4nl) e DM qy

/]WQQBM (20,4/%)

< (14032 (14 16c2)"(1 — )72 (1 — 3c2e)™"

‘51_91‘2

- 4t
A7t ]7%6 (1-e)(1-3c2¢)2 dyl e dy™

x [
/<y1|2+...+|yn2>%<4ﬁ (1 —e)(1 = 3cge)?

< (14 6%)2(1+16c2)"(1 — )72 (1 — 3c2e) ™.

By (3.12) and the fact ¢ < 2, we conclude that
(146%)2(1+16¢2)™(1 —e)~2(1 — 3c2e)™(1 — 3ne)%e? > (1+ ),

which is a contradiction as £, — 0. We complete the proof of the Theorem. O
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Theorem 3.5 Let M be an n-dimensional manifold satisfying 23: IViRm| <
c2 and inj(M) > ig > 0. Then there is ¢ > 0 with the fo]]ovxj'i:r?g property.
Suppose we have a smooth solution M, C M to the mean curvature flow properly
embedded in By;(zo,70) for t € [0,T] where 1o < 2,0 < T < *r§. We assume
that at time zero, xy € My, and the second fundamental form satisfies |Al(x) <
7o on My N By (z0,70) and assume My is graphic in the ball By;(zg,70). Then

we have

|Al(z,t) < (ero) ™ (3.16)
for any x € Byy(xg,ero) N M, t € [0, T].
Proof. By scaling we may assume 7y = 1. By Lemma 3.1, for any § > 0, there
is 0 < 75 < 1 such that the connected component of My N By (g, 55) containing
xo contains a J-Lipschitz graph of radius 2rs at xy. By our graphic assumption,
we conclude that My N By;(xg,rs) is a d-Lipschitz graph. So Theorem 3.3 is
applicable with radius rs.

Consequently, for any « > 0, there exists an €, > 0 such that
2 @ -2
Al )" <~ +¢ (3.17)

whenever & € M; N By (z0,24), t € [0,62]N[0,T]. Let a be a fixed small constant

to be determined later. It turns out that we only need to choose a@ = (¢, 7, n)
finally. Choose ¢ = min{y/ag,, 107'}. Then by (3.17) we have
Al 1 < 2 (3.18)
whenever x € M; N By (xo,€4), t € [0,2] N[0, T].
Claim |A|(z,t) < e~ holds on M; N By (o, €), t € [0,2] N[0, T].

Suppose |A|(z1,t1) > 7! holds for some point (z1,t;), x1 € My, N By (zo,¢),
t; € [0,e%] N [0,T]. We can choose another point (Z,%), € M; N By (xo,4¢),
t €[0,e2] N[0,T] such that Q = |A|(z,t) > e~ ! and

|Al(z,t) <40 (3.19)
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whenever x € M;, dy(7,7) < Q™1 0<t <t
Actually (7, ) can be constructed as the limit of a finite sequence (x;,t;) sat-
isfying 0 < ¢4 < ty1, dyz(20, 21) < dyg(zo, 1) +[Al(Tp1, th1) ™' [Al(2g, te) >

4| A|(zg—1,tg—1). Since
|A| (g, tr) > 4571 A|(21, 1) > 457

dir(zo, mp) < dyz(wo, 21) + 2oy (47 A|(21, 1)) ! < 3e < 3, and the solution is

smooth, the sequence must be finite and the last element fits.

2 —
d(Z,-)+3nt )3

Note that 3ntQ? < 6na < % by choosing o < -+ Let ¢ = (1-— 02 1

12n

then we have

0
(E—AWSO

whenever dy(z,-)? < min{=-, i}, t € [0,7]. On the other hand, by (2.2.2), the
0

second fundamental form satisfies

0

(5 = DIAP < ~|VAP + @A+ C)(1 + (AP + |A).
Hence
(5~ AYWIAP) < ~[VAPS + @A + C)(1+B)IAP + A + 4V A| Al
< O) A% + CR)(1L+ B) (AP + \A|>w+4'v;”'2|A\2

< C@)| Al + C(R)(1+ ) (AP + Al + 144Q2| APy
(3.20)
on [0,¢]. By (3.19)(3.20), we have

0

(57 = A@IAP) < CmQ* + C(n)(1 + )(Q + Q7).

From the maximum principle, it follows

(VAP ) max =t < 1+ C(R)Q' + C(R)(1 + c)(Q + Q)
<1+ 2aC()Q* + C(n)(1 + &) (V2at + 20).
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Note that
(WIAP max le=e> YIAP(,) > (1= 3nQ*)°Q* > (1 — 18na)Q”,
hence we have
(1 —18na)Q?* < 1+ 2aC(1)Q* + C(7)(1 + ¢2)(V2at + 2a).
This implies

1+ C(R)(1 + ) (V2a + 2a)
1 —(18n+2C(n))x

Choosing suitable small a = a(cg, 71, n), we have Q? < 2, which is a contradiction

Q* <

with Q? > £72. So the Claim is proved. O

Corollary 3.6 Let M be an n-dimensional complete manifold satisfying 23: |ViRm|
< 2 and inj(M) >ig > 0. Let Xo : M — M be an n-dimensional isonllzgricaﬂy
properly embedded submanifold with bounded second fundamental form |A] < ¢
in M. We assume My = Xo(M) is uniform graphic with some radius r > 0. Sup-
pose X (x,t) is a smooth solution to the mean curvature flow (1.1) on M x [0, Tp]

properly embedded in M with X, as initial data. Then there is 0 < Ty < T,

depending upon cy, ig, 7 and the dimension n such that
|Al(x,t) < 2¢q

forallz € M, 0 <t <Tj.

Proof. By Theorem 3.5, there is € > 0 such that for any zo € M, we have
Al (z,t) <€

on By (zo,¢€), t € [0,€2] N[0,T]. Let [0,7) C [0,€%] N[0,7] be the maximal time
interval so that the orbit of zg, 2 € Bjy;(xo,€) for ¢t € [0,7]. Then by the mean

curvature flow equation, we know

d _
%dM(xo,xf)) < Cet,
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for any t € [0,7]. This implies v > % for some C' = C'(n,n). Choosing £ = —=,

T = min{Ty,e*}, we conclude that the second fundamental forms are uniformly
bounded by the constant e~ on M x [0,7]. Once the second fundamental form
is bounded, since we assumed Z?:o |ViRm| < 3, we have gradient estimate
IVA| < %, and hence suitable linear growth function with bounded first and
second derivatives can be constructed. Therefore we can apply the maximum
principle to the equation of |A| to conclude a uniform estimate |A| < 2¢, for any

telo, m] Set 171 = min{7, ﬁ)cg} The proof is completed. O

Theorem 1.3 follows as a corollary of Theorem 1.1 and Corollary 3.6.
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