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In this talk, I shall discuss the content of my recent monograph

The Shock Development Problem (EMS Monographs in Mathemat-

ics, EMS Publishing House, 2019), which addresses the problem of

the development of shocks in a compressible fluid past the point of

their formation. This problem is formulated in the framework of the

Eulerian equations of a compressible perfect fluid as completed by

the laws of thermodynamics. These equations express the differential

conservation laws of mass, momentum and energy and constitute a

quasilinear hyperbolic 1st order system for the physical variables, that

is the fluid velocity and the two positive quantities corresponding to

a local thermodynamic equilibrium state. Smooth initial data for this

system of equations leads to the formation of a surface in spacetime

where the derivatives of the physical quantities with respect to the

standard rectangular coordinates blow up.
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Now, there is a mathematical notion of maximal development of initial

data. As was first shown in my previous monograph on the topic

of shocks in compressible fluids, the monograph The Formation of

Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics,

EMS Publishing House, 2007, this maximal development ends at a

future boundary which consists of a regular part C and a singular part

B with a common past boundary ∂−B, the surface just mentioned. A

solution of the Eulerian equations in a given spacetime domain defines

a cone field on this domain, the sound cones. This defines a causal

structure on the spacetime domain, equivalent to a conformal class of

Lorentzian metrics, the acoustical causal structure. Relative to this

structure ∂−B is a spacelike surface, while C is a null hypersurface.
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Also B is in this sense a null hypersurface, however being singular,

while its intrinsic geometry is that of a null hypersurface, its extrin-

sic geometry is that of a spacelike hypersurface, for, the past null

geodesic cone in the spacetime manifold of a point on B does not

intersect B. The character of B and the behavior of the the solution

at B were described in detail in the 2007 monograph by means of the

introduction of a class of coordinates such that the rectangular coor-

dinates as well as the physical variables are smooth functions of the

new coordinates up to B, but the Jacobian of the transformation to

the new coordinates, while strictly negative in the past of B, vanishes

at B itself, a fact which characterizes B. Now, the mathematical no-

tion of maximal development of initial data, while physically correct

up to C
⋃
∂−B is not physically correct up to B.
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The problem of the physical continuation of the solution is the shock
development problem. In this problem one is required to construct a
hypersurface of discontinuity K , the shock hypersurface, lying in the
past of B but having the same past boundary as the latter, namely
∂−B, and a solution of the Eulerian equations in the spacetime domain
bounded in the past by C

⋃
K, agreeing on C with the data induced

by the maximal development, while having jumps across K relative
to the data induced on K by the maximal development, these jumps
satisfying the jump conditions which follow from the integral form
of the mass, momentum and energy conservation laws. Moreover, K
is required to be a spacelike hypersurface relative to the acoustical
structure corresponding to the prior solution and a timelike hyper-
surface relative to the acoustical structure corresponding to the new
solution. Thus, the singular surface ∂−B is the cause generating the
shock hypersurface K [Figure].
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The 2007 monograph actually considered the extension of the Eule-
rian equations to the framework of special relativity. In this frame-
work the underlying geometric structure of the spacetime manifold
is that of the Minkowski spacetime. On the other hand, the un-
derlying spacetime structure of the original Eulerian equations, as of
all of classical mechanics, is that of the Galilean spacetime. The
monograph in collaboration with Miao Compressible Flow and Euler’s
Equations, Surveys of Modern Mathematics 9, International Press &
Higher Education Press, 2014, treated the same topics as the earlier
monograph in the non-relativistic setting reaching similar results in
a considerably simpler self-contained manner. The 2019 monograph
treats the shock development problem in the non-relativistic as well
as in the relativistic setting, showing how results in the former are
deduced as limits of results in the latter. In this lecture I shall confine
myself to the non-relativistic theory.
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The Galilean structure has a distinguished family of hyperplanes, those

of absolute simultaneity. By rectangular coordinates in the Galilean

framework we mean a Galilei frame together with rectangular coor-

dinates in Euclidean space and two such systems of coordinates are

related by the Galilei group, which extends the Euclidean group. To

achieve a fuller understanding of the mathematical structure we con-

sider any number d of spatial dimensions greater than or equal to

2, the physical case being of course d = 3. We denote by Gd the

corresponding Galilean spacetime.
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The Lorentzian metric g on Gd given in rectangular coordinates by:

g = −η2dt⊗dt+
d∑

i=1

(dxi−vidt)⊗(dxi−vidt) :=
d∑

µ,ν=0

gµνdx
µ⊗dxν (x0 = t)

(1)

is the simplest representative in the conformal class corresponding to

the sound cone field. Here η is the sound speed, a thermodynamic

function, and vi : i = 1, ..., d are the components of the fluid velocity.

We call g the acoustical metric.
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From the mathematical point of view the shock development prob-

lem is a free boundary problem, with nonlinear conditions at the free

boundary K, for a quasilinear hyperbolic 1st order system, with char-

acteristic initial data on C which are singular, in a prescribed manner,

at ∂−B, the past boundary of C. It is shown that the singularity per-

sists, not only as a discontinuity in the physical variables across K,

but also as a milder singularity propagating along C. While the phys-

ical variables and their 1st derivatives extend continuously across C,

the 1st derivatives are only C0,1/2 at C from the point of view of the

future solution.
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What the 2019 monograph solves is not the general shock devel-

opment problem but what we call the restricted shock development

problem. One of the jump conditions, the Hugoniot relation, is a

relation between thermodynamic quantities on the two sides of K.

According to this relation 4s = O((4p)3), 4s being the jump in en-

tropy (per unit mass) and 4p the jump in pressure. The restricted

problem results if we neglect 4s. This simplification retains an essen-

tial difficulty of the general problem, namely the singular behavior as

we approach ∂−B. The treatment is based on the spacetime 1-form

β, defined by:

β =
(
h+

1

2
|v|2

)
dt−

d∑
i=1

vidxi :=
d∑

µ=0

βµdx
µ (2)

where h is the enthalpy per unit mass.
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In the general case this 1-form is not closed, but the 2-form ω = −dβ,

the spacetime vorticity 2-form, satisfies the equation

iuω = θds (3)

where

u =
∂

∂t
+

d∑
i=1

vi
∂

∂xi
:=

d∑
µ=0

uµ
∂

∂xµ
(4)

is the spacetime fluid velocity and θ is the temperature. Equation 3 in

fact expresses the whole content of the differential energy-momentum

conservation laws.
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It is complemented by the equation:

d∑
µ=0

∂µ(ρuµ) = 0 (5)

which expresses the differential mass conservation law, ρ being the
mass density. Taking h and s as our basic thermodynamic variables,
the pressure p is expressed as a function of h and s, this expression
constituting the equation of state encoding the mechanical properties
of the fluid, and ρ and θ are defined by:

dp = ρ(dh− θds) (6)

while the sound speed η is given by:

η2 =

(
dp

dρ

)
s

(7)
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As a consequence of equation 3 ω satisfies the transport equation:

Luω = dθ ∧ ds (8)

where the right hand side, like ω itself, is of differential order 1, the

physical variables themselves being of differential order 0. In the

general case the vectorfield u defines a characteristic field comple-

menting the sound cone field. The hypersurface generated by the

integral curves of u initiating at ∂−B divides the domain of the new

solution into two subdomains, that bounded by C and the hypersur-

face in question and that between the hypersurface and K. In the

former domain the equations coincide with those of the restricted

problem, while in the latter domain the spacetime vorticity 2-form ω

does not vanish being determined by 4s and 8.
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I shall now outline the mathematical methods of the 2019 monograph.

A central role is played by the reformulation of the Eulerian equations

in the domain N of the new solution. First a homeomorphism is

defined of this domain onto

Rδ,δ = Rδ,δ × Sd−1 (9)

d being the spatial dimension and:

Rδ,δ = {(u, u) ∈ R2 : 0 ≤ u ≤ u ≤ δ} (10)

being a domain in R2, which represents the range in N of two func-

tions u and u the level sets of which are transversal acoustically null

hypersurfaces denoted by Cu and Cu respectively, with C0 = C.
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In this representation the shock hypersurface boundary of N is:

Kδ = {(τ, τ) : τ ∈ [0, δ]} × Sd−1 (11)

and ∂−B is:

∂−B = (0,0)× Sd−1 = S0,0 (12)

We denote by Su,u the surfaces:

Su,u = Cu
⋂
Cu = (u, u)× Sd−1 (13)

In the following we use the summation convention according to which

repeated upper and lower indices are understood to be summed over

their range.
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In the reformulation of the Eulerian equations the unknowns consti-

tute a triplet ((xµ : µ = 0, ..., d), b , (βµ : µ = 0, ..., d)), where the (xµ :

µ = 0, ..., d) are functions on Rδ,δ × Sd−1 representing rectangular co-

ordinates in the corresponding domain in Gd, and the (βµ : µ = 0, ..., d)

are also functions on Rδ,δ × Sd−1 and represent the rectangular com-

ponents of the 1-form β. The unknown b is a mapping of Rδ,δ into the

space of vectorfields on Sd−1. The pair ((xµ : µ = 0, ..., d), b) satisfies

the characteristic system, a 1st order system of partial differential

equations which for d ≥ 2 is fully nonlinear. The (βµ : µ = 0, ..., d)

satisfy the wave system, a quasilinear 1st order system of partial

differential equations. The two systems are coupled through the

(gµν : µ, ν = 0, ..., d), which represent the rectangular components

of the acoustical metric and depend on the (βµ : µ = 0, ..., d).
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More precisely, denoting by d/f the differential of a function f on

the Su,u, the coupling is through the functions Nµ : µ = 0, ..., d and

Nµ : µ = 0, ..., d defined in terms of the d/xµ : µ = 0, ..., d pointwise by

the conditions:

gµνN
µd/xν = 0, gµνN

µNν = 0, N0 = 1 (14)

and similarly for the Nµ. By reason of the quadratic nature of the 2nd

of these conditions a unique pair (Nµ : µ = 0, ..., d), (Nµ : µ = 0, ..., d))

up to exchange is pointwise defined by (gµν : µ, ν = 0, ..., d) and (d/xµ :

µ = 0, ..., d). The vectorfields N , N with rectangular components

(Nµ : µ = 0, ..., d), (Nµ : µ = 0, ..., d) are then null normal fields,

relative to the acoustical metric g, to the surfaces Su,u. The exchange

ambiguity is removed by requiring N to be tangential to the Cu, N to

be tangential to the Cu.
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The function

c = −
1

2
gµνN

µNν (15)

is then bounded from below by a positive constant. Defining:

L =
∂

∂u
− b, L =

∂

∂u
+ b (16)

and:

ρ = Lt, ρ = Lt (17)

the characteristic system is simply:

Lxµ = ρNµ, Lxµ = ρNµ : µ = 0, ..., d (18)
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What is achieved by the reformulation just described is a regularization

of the problem. That is, we are now seeking smooth functions on

Rδ,δ × Sd−1 satisfying the coupled system, the initial data themselves

being represented by smooth functions on C0. The Jacobian of the

transformation representing the mapping ((u, u), ϑ) 7→ (xµ((u, u), ϑ) :

µ = 0, ..., d), ϑ ∈ Sd−1, is of the form:

∂(x0, x1, ..., xd)

∂(u, u, ϑ1, ..., ϑd−1)
= ρρe (19)

(ϑA : A = 1, ..., d− 1) being local coordinates on Sd−1.
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Here ρ, ρ, defined by 17, are non-negative functions, the inverse tem-

poral density of the foliation of spacetime by the Cu as measured

along the generators of the Cu, the inverse temporal density of the

foliation of spacetime by the Cu as measured along the generators

of the Cu, respectively, and e is a function bounded from above by

a negative constant. As a consequence, the Jacobian 19 vanishes

where and only where one of ρ, ρ vanishes.
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The function ρ is given on C0 by the initial data and while positive

on C0 \ S0,0, vanishes to 1st order at S0,0, the last being a mani-

festation of the singular nature of the surface ∂−B. The function ρ

on C0 represents 1st derived data on C0 and vanishes there to 0th

order. It turns out that these are the only places where ρ, ρ vanish in

Rδ,δ×Sd−1. A smooth solution of the coupled characteristic and wave

systems once obtained then represents a solution of the original Eu-

lerian equations in standard rectangular coordinates which is smooth

in N \ C but singular at C with the transversal derivatives of the βµ

being only Hölder continuous of exponent 1/2 at C and, in addition,

a stronger singularity at ∂−B, namely the blow up of the derivatives

of the βµ at ∂−B in the direction tangential to C but transversal to

∂−B.
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In particular, the new solution is smooth at the shock hypersurface K
except at its past boundary ∂−B, as is the prior solution which holds

in the other side of K, the past side, as K \ ∂−B lies in the interior of

the domain of the maximal development.

The wave system consists of the equations

dxµ ∧ dβµ = 0, g−1(dxµ, dβµ) = 0 (20)

expressed in terms of the representation on the domain 9.
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The characteristic system for the pair ((xµ : µ = 0, ..., d), b) together

with the (gµν : µ, ν = 0, ..., d) which enter this system through the

(Nµ : µ = 0, ..., d) and the (Nµ : µ = 0, ..., d), manifest a new kind

of differential geometric structure which involves the interaction of

two geometric structures on the same underlying manifold, the first

of these structures being the background Galilean structure and the

other being the Lorentzian geometry deriving from the acoustical

metric. As for the (βµ : µ = 0, ..., d) of the wave system, this is the

set of functions obtained by evaluating the 1-form β on the set of

translation fields (∂/∂xµ : µ = 0, ..., d) of the background structure.
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If X is a vectorfield generating isometries of the background structure

then:

�g̃β(X) = 0 (21)

where

g̃ = Ωg, Ω =

(
ρ

η

)2/(d−1)

(22)

is a metric in the conformal class of the acoustical metric g. This

fact, with a translation field substituted for X, plays a central role.
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The derivatives of ((xµ : µ = 0, ..., d), b) are controlled through the

acoustical structure equations. These are differential consequences

of the characteristic system, bringing out more fully the interaction

of the two geometric structures. We have the induced metric g/ on

the surfaces Su,u and the functions:

λ = cρ, λ = cρ (23)

(see 17). While g/ refers only to the acoustical structure, the functions

λ, λ, involve the interaction of the two geometric structures. These

are acoustical quantities of 0th order. The quantities χ, χ, the two

2nd fundamental forms of Su,u, give L/Lg/, L/Lg/. The torsion forms η,

η represent the connection in the normal bundle of Su,u in terms of

the vectorfields L, L which along Su,u constitute basis sections of this

bundle.
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The commutator:

[L,L] = L/T b, T = L+ L =
∂

∂u
+

∂

∂u
(24)

(see 16) is expressed in terms of η, η. While the quantities χ, χ,

η, η refer only to the acoustical structure, the structure equations

assume a non-singular form only in terms of the quantities χ̃, χ̃,

η̃, η̃ which involve both structures. The former are related to the

latter as follows: up to order 1 remainders depending only on the

dβµ : µ = 0, ..., d, χ is equal to ρχ̃, χ is equal to ρχ̃, η is equal to ρη̃, η

is equal to ρη̃. Moreover η̃, η̃, are expressed in terms of d/λ, d/λ. Thus

λ, λ, χ̃, χ̃ are the primary acoustical quantities, the first two being of

0th order, the second two of 1st order.
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We come to the boundary conditions on K. The jump 4βµ is a

function on K, which at a given point on K represents the difference

of βµ, defined by the new solution which holds in the future of K, at

the point, from the corresponding quantity for the prior solution which

holds in the past of K, at the same point in the background Galilean

spacetime. These jumps across K are subject to two conditions, one

of which is linear and the other nonlinear. The linear jump condition

decomposes into the two conditions:

d/xµ 4βµ = 0, Tµ4βµ = 0 (25)

As a consequence of the 1st of 25 4βµ can be expressed as a linear

combination of the components:

ε = Nµ4βµ, ε = Nµ4βµ (26)
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We denote by r the ratio:

r = −
ε

ε
(27)

In reference to the 2nd of 25, Tµ = Txµ are the rectangular compo-

nents of the vectorfield T and are given, in view of 18, 24 by:

Tµ = ρNµ + ρNµ (28)

Then in view of 23 the 2nd of 25 is equivalent to the following bound-

ary condition for λ:

rλ = λ : on K (29)
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Part of the acoustical structure equations are propagation equations

along the integral curves of L and L. The propagation equations for

λ and for χ̃ are supplemented by initial conditions on C0, while the

propagation equations for λ and for χ̃ are supplemented by boundary

conditions on K. The boundary condition for χ̃ takes the form of a

relation between rχ̃ and χ̃ on K analogous to 29. The nonlinear jump

condition takes the form of a relation between ε and ε which, in the

setting of the shock development problem, is shown to be equivalent

to:

ε = −j(ε)ε2, or r = j(ε)ε (30)

where j is a certain smooth function.
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Let now X, Y be arbitrary vectorfields on N . We define the bi-

variational stress associated to the 1-form β and to the pair X, Y , to

be the T1
1 type tensorfield:

Ṫ = g̃−1 · Ṫ[ (31)

where Ṫ[ is the symmetric 2-covariant tensorfield:

Ṫ[ =
1

2
(dβ(X)⊗ dβ(Y ) + dβ(Y )⊗ dβ(X)− (dβ(X), dβ(Y ))gg) (32)

which depends only on the conformal class of g. We then have the

identity:

divg̃Ṫ =
1

2

(
�g̃β(X)

)
dβ(Y ) +

1

2

(
�g̃β(Y )

)
dβ(X) (33)
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In particular, if X, Y generate isometries of the background structure,

then by 21:

divg̃Ṫ = 0 (34)

Setting X, Y to be the translation fields:

X =
∂

∂xµ
, Y =

∂

∂xν

we have:

β(X) = βµ, β(Y ) = βν

and we denote the corresponding bi-variational stress by Ṫµν. The

identity 33 takes in this case the form:

divg̃Ṫµν =
1

2
(�g̃βµ)dβν +

1

2
(�g̃βν)dβµ (35)
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The usefulness of the concept of bi-variational stress in the context

of a free boundary problem is in conjunction with the concept of

variation fields. A variation field is here simply a vectorfield V on N
which along K is tangential to K. This can be expanded in terms of

the translation fields ∂/∂xµ : µ = 0, ..., d:

V = V µ
∂

∂xµ
(36)

The coefficients V µ : µ = 0, ..., d of the expansion are simply the

rectangular components of V . To the variation field V we associate

the column of 1-forms:

(V )θµ = dV µ : µ = 0, ..., d (37)

which we call structure form of V . Note that this depends on the

background structure.
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To a variation field V and to the row of functions (βµ : µ = 0, ..., d)

we associate the 1-form:

(V )ξ = V µdβµ (38)

To the variation field V is associated the T1
1 type tensorfield:

(V )S = V µV νṪµν (39)

In view of 31, 32, 38, we have:

(V )S = g̃−1 · (V )S[ (40)

where (V )S[ is the symmetric 2-covariant tensorfield:

(V )S[ = (V )ξ ⊗ (V )ξ −
1

2
( (V )ξ, (V )ξ)gg (41)

which depends only on the conformal class of g.
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The identity 35 together with the definition 37 implies the identity:

divg̃
(V )S = ( (V )ξ, (V )θµ)g̃dβµ − ( (V )ξ, dβµ)g̃

(V )θµ

+( (V )θµ, dβµ)g̃
(V )ξ + V µ(�g̃βµ) (V )ξ (42)

A basic requirement on the set of variation fields V is that they span

the tangent space to K at each point. The simplest way to achieve

this is to choose one of the variation fields, which we denote by Y ,

to be at each point of N in the linear span of N and N and along K
colinear to T , and to choose the other variation fields so that at each

point of N they span the tangent space to the surface Su,u though

that point.
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We thus set:

Y = γN + γN (43)

In view of 29, the requirement that Y is along K colinear to T reduces
to:

γ = rγ : along K (44)

The optimal choice is to set:

γ = 1 (45)

in which case 44 reduces to:

γ = r : along K (46)

and to extend γ to N by the requirement that it be constant along
the integral curves of L:

Lγ = 0 (47)
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In 2 spatial dimensions there is an obvious choice of a variation field

to complement Y , namely E, the unit tangent field of the curves

Su,u (with the counterclockwise orientation). In higher dimensions,

we complement Y with the (E(µ) : µ = 0, ..., d) which are the g-

orthogonal projections to the surfaces Su,u of the translation fields

(∂/∂xµ : µ = 0, ..., d) of the background structure. These are given

by:

E(µ) = gµν(d/xν)] (48)
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We come to the fundamental energy identities. Given a vectorfield

X, which we call multiplier field, we consider the vectorfield (V )P

associated to X and to a given variation field V through (V )S, defined

by:

(V )P = − (V )S ·X (49)

We call (V )P the energy current associated to X and to V . Let us

denote by (V )Q the divergence of (V )P with respect to the conformal

acoustical metric g̃ = Ωg:

divg̃
(V )P = (V )Q (50)

We have:

(V )Q = (V )Q1 + (V )Q2 + (V )Q3 (51)
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where:

(V )Q1 = −
1

2
(V )S] · (X)π̃ (52)

(V )Q2 = −( (V )ξ, (V )θµ)g̃Xβµ + ( (V )ξ, dβµ)g̃
(V )θµ(X)

−( (V )θµ, dβµ)g̃
(V )ξ(X) (53)

(V )Q3 = − (V )ξ(X)V µ�g̃βµ (54)

In 52 (V )S] is the symmetric 2-contravariant tensorfield correspond-
ing to (V )S:

(V )S] = (V )S · g̃−1 (55)

and
(X)π̃ = LX g̃ (56)

is the deformation tensor of X, the rate of change of the conformal
acoustical metric with respect to the flow generated by X.
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Integrating 50 on a domain in Rδ,δ of the form:

Ru1,u1 = Ru1,u1 × S
d−1 =

⋃
(u,u)∈Ru1,u1

Su,u (57)

where, with (u1, u1) ∈ Rδ,δ we denote:

Ru1,u1 = {(u, u) : u ∈ [u, u1], u ∈ [0, u1]} (58)

we obtain the fundamental energy identity corresponding to the vari-

ation field V and to the multiplier field X:

(V )Eu1(u1) + (V )Eu1(u1) + (V )Fu1 − (V )Eu1(0) = (V )Gu1,u1 (59)
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Here, (V )Eu1(u1) and (V )Eu1(u1) are the energies:

(V )Eu1(u1) =
∫
C
u1
u1

Ω(d−1)/2 (V )S[(X,L)

(V )Eu1(u1) =
∫
C
u1
u1

Ω(d−1)/2 (V )S[(X,L) (60)

and (V )Fu1 is the flux:

(V )Fu1 =
∫
Ku1

Ω(d−1)/2 (V )S[(X,M) (61)

where

M = L− L (62)

is a normal to K pointing to the interior relative to N or future of K.

In 60 we denote by C
u1
u1 the part of Cu1 corresponding to u ≤ u1 and

by C
u1
u1 the part of Cu1 corresponding to u ≤ u1.
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The right hand side of 59 is the error integral:

(V )Gu1,u1 =
∫
Ru1,u1

2aΩ(d+1)/2 (V )Q (63)

which decomposes into:

(V )Gu1,u1 = (V )Gu1,u1
1 + (V )Gu1,u1

2 + (V )Gu1,u1
3 (64)

according to the decomposition 51 of (V )Q.

The energies are positive semi-definite if the multiplier field X acous-

tically timelike future-directed. The conditions on X are found which

make the flux coercive when (V )ξ satisfies on K the boundary con-

dition which results by applying the variation field V to the nonlinear

jump condition.
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This boundary condition takes the form:

(V )ξ+(A+) = (V )ξ−(A−) (65)

where the subscripts + and − denote the future and past sides of K
respectively and A± are the vectorfields:

A± =
4I
δ
−K± (66)

Here I is the mass current

I = ρu (67)

The function δ is defined as follows. Let ζ to be the covectorfield
along K such that at each p ∈ K the null space of ζp is TpK, ζp(U) > 0
if the vector U points to the interior of N , ζ being normalized by
the condition that ζ, the restriction of ζ to the hyperplanes of abso-
lute simultaneity, is of unit magnitude with respect to the Euclidean
metric.
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The nonlinear jump condition can then be stated in the form:

ζ · 4I = 0 (68)

that is, the vectorfield 4I along K is tangential to K, while the linear

jump conditions 25 take the form:

4β = δζ (69)

for some function δ on K. This clarifies the meaning of the 1st term

on the right in 66. As for the 2nd term, K± is a normal, relative

to the acoustical metric, vectorfield along the future and past sides

of K respectively. The 1st term on the right in 66, a vectorfield

along K tangential to K, is timelike future-directed with respect to

the acoustical metric defined by the future solution. This fact plays

a central role in the analysis of the coercivity of the flux integrant.
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We show that under the boundary condition 65 the flux integrant

in 61 is a coercive quadratic form in (V )ξ at a point of K if and

only if the multiplier field X at the point belongs to the interior of

a spheroidal cone contained in the positive outer half sound cone at

the point corresponding to the future solution.

We then show that a suitable choice for the multiplier field is:

X = 3L+ L : on N (70)

With this choice there is a constant C′ such that

(V )F ′u1 = (V )Fu1 + 2C′
∫
Ku1

Ω(d−1)/2( (V )b)2 (71)

is positive-definite. Here (V )b is defined by the prior solution on the

past side of K.
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Adding the 2nd term on the right in 71 to both sides of the energy

identity 59, the last takes the form:

(V )Eu1(u1) + (V )Eu1(u1) + (V )F ′u1

= (V )Eu1(0) + (V )Gu1,u1 + 2C′
∫
Ku1

Ω(d−1)/2( (V )b)2

(72)

The commutation fields which are used to control the higher order

analogues of the functions βµ : µ = 0, ...., d are then defined.
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Denoting (see 11), for σ ∈ [0, δ],

Kδσ = {(τ, σ + τ) : τ ∈ [0, δ − σ]} × Sd−1 (73)

(note that Kδ0 = Kδ) we require that at each point q ∈ N , q ∈ Kδσ, the
set of commutation fields C to span TqKδσ. As first of the commutation
fields we take the vectorfield T . The remaining commutation fields
are then required to span the tangent space to the Su,u at each
point. In d = 2 spatial dimensions we choose E to complement T

as a commutation field. For d > 2 we choose the E(µ) : µ = 0, ..., d
(see 48) to complement T . Thus E for d = 2 and the E(µ) for
d > 2 play a dual role being commutation fields as well as variation
fields. However, what characterizes the action of a variation field V is
the corresponding structure form (V )θ, what characterizes the action
of a commutation field C is the corresponding deformation tensor
(C)π̃ = LC g̃.
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The commutation fields generate higher order analogues of the func-
tions βµ : µ = 0, ..., d. In the following it is to be understood that in
the case d = 2 the set of vectorfields (E(µ) : µ = 0, ..., d) is replaced
by the single vectorfield E. At order m+ l we have:

(m,ν1...νl)βµ = E(νl)
...E(ν1)T

mβµ (74)

To these and to the variation field V there correspond higher order
analogues of the 1-form (V )ξ, namely:

(V ;m,ν1...νl)ξ = V µd (m,ν1...νl)βµ (75)

The preceding identities 35, 42, 49 - 54, 59, 64 which refer to βµ
and to (V )ξ all hold with these higher order analogues in the role of
βµ and (V )ξ respectively. However while for the original βµ we have
�g̃βµ = 0, hence the error term (V )Q3 (see 54) vanishes, this is no
longer true for the higher order analogues.
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Instead we have:

Ωa�g̃
(m,ν1...νl)βµ = (m,ν1...νl)ρ̃µ (76)

where

a = −
1

2
g(L,L) = cρρ (77)

(see 15, 18). The (m,ν1...νl)ρ̃µ, which we call source functions, obey
certain recursion formulas which determine them for all m and l.
The error terms at order m + l which contain the acoustical quan-
tities of highest order, m + l + 1, are contained in the error integral
(V ;m,ν1...νl)Gu1,u1

3 , which by 63 and 54 is given by:

(V ;m,ν1...νl)Gu1,u1
3 = −

∫
Ru1,u1

2Ω(d−1)/2 (V ;m,ν1...νl)ξ(X)V µ (m,ν1...νl)ρ̃µ

(78)
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The leading terms in (m,ν1...νl)ρ̃ involving the acoustical quantities of

highest order are:

for m = 0:
1

2
ρ(Lβµ)E(νl)

...E(ν1)trχ̃+
1

2
ρ(Lβµ)E(νl)

...E(ν1)trχ̃ (79)

for m ≥ 1: ρ(Lβµ)E(νl)
...E(ν1)T

m−14/ λ+ ρ(Lβµ)E(νl)
...E(ν1)T

m−14/ λ
(80)

We now come to the main analytic method introduced in the 2019

monograph. To motivate the introduction of this method, we need

to first discuss the difficulties encountered.
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The difficulties arise in estimating the contribution of the terms in-
volving the top order m+l+1 = n+1 acoustical quantities to the error
integral (V ;m,ν1...νl)Gu1,u1

3 . In regard to 79 we must derive appropriate
estimates for

d/(E(νl−1)...E(ν1)trχ̃), d/(E(νl−1)...E(ν1)trχ̃) : ν1, ..., νl−1 = 0, ..., d (81)

In regard to 80 we must derive appropriate estimates for

E(νl)
...E(ν1)T

m−14/ λ, E(νl)
...Eν1)T

m−14/ λ : ν1, ..., νl = 0, ..., d. (82)

Expressions for Ltrχ̃ and Ltrχ̃ are derived in terms of 2nd order quan-
tities with vanishing 2nd order acoustical part. To be able to estimate
trχ̃, trχ̃ in terms of 1st order quantities, so that we can estimate 81
in terms of quantities of the top order l+ 1 = n+ 1, we must express
the principal part of these expressions in the form −Lf̂ and −Lf̂ re-
spectively, up to lower order terms, with f̂ and f̂ being quantities of
1st order.
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That this is possible follows from the fact that the quantities:

M =
1

2
β2
N(a4/H − L(LH)), M =

1

2
β2
N(a4/H − L(LH)) (83)

where a is defined by 77, are actually 1st order quantities. Here H a
function of the βµ : µ = 0, ..., d. This fact is a direct consequence of
the equation �g̃βµ = 0. The functions f̂ , f̂ each contain a singular
term with coefficient λ−1, λ−1 respectively. The functions f = λf̂ ,
f = λf̂ are then regular, and transferring the corresponding terms to
the left hand side, we obtain propagation equations for the quantities:

θ = λtrχ̃+ f, θ = λtrχ̃+ f (84)

of the form:

Lθ = R, Lθ = R (85)

where R, R are again quantities of order 1.
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To estimate 81 we introduce the quantities, of order l + 1 = n+ 1,

(ν1...νl−1)θl = λd/
(
E(νl−1)...E(ν1)trχ̃

)
+ d/

(
E(νl−1)...E(ν1)f

)
(ν1...νl−1)θl = λd/

(
E(νl−1)...E(ν1)trχ̃

)
+ d/

(
E(νl−1)...E(ν1)f

)
(86)

and deduce from 85 the corresponding propagation equations. An

analogous structure is found for 4/ λ and 4/ λ, which allows us to esti-

mate 82.
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The point is now that the optimal estimate for (ν1...νl−1)θl is a bound

of ‖ (ν1...νl−1)θl‖L2(C
u1
u1)

by:

C
∑
νl

u
−3/2
1

{∫ u1

0

(Y ;0,ν1...νl−1νl)Eu1(u)du
}1/2

(87)

This only allows the contribution of the 1st of 81 to the error integral
(Y ;0,ν1...νl)Gu1,u1

3 to be bounded by:

C
∑
µ

∫ u1

0

(
(Y ;0,ν1...νl)Eu1(u)

)1/2
{

1

u

∫ u
0

(Y ;0,ν1...νl−1µ)Eu1(u′)du′
}1/2

du

u

(88)

a singular integral.
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The greater difficulty is however that the optimal estimate for (ν1...νl−1)θl
is a bound of ‖u2 (ν1...νl−1)θl‖L2(C

u1
u1 )

the leading contribution to which

is in terms of:

C
∑
νl

{∫ u1

0

(Y ;0,ν1...νl−1νl)Eu1(u)
du

u3

}1/2

(89)

a severely singular integral. Moreover, this only bounds

‖u2 (ν1...νl−1)θl‖L2(C
u1
u1 )

rather than ‖ (ν1...νl−1)θl‖L2(C
u1
u1 )

. The more se-

vere singularity in connection with (ν1...νl−1)θl is due to the fact that

the underlined quantities satisfy boundary conditions on K which are

singular at ∂−K = ∂−B due to the vanishing there of the factor r

(see 29 and the text which follows). Nevertheless, from the point of

view of scaling the two contributions to the error integrals are both

borderline.
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Similar results are obtained in regard to the error integral (V ;m,ν1...νl)Gu1,u1
3

for m ≥ 1, with E(νl)
...E(ν1)T

m−14/ λ, E(νl)
...E(ν1)T

m−14/ λ playing the
roles of d/(E(νl−1)...E(ν1)trχ̃), d/(E(νl−1)...E(ν1)trχ̃) respectively, and
(Y ;m,ν1...νl)Eu1(u) playing the role of (Y ;0,ν1...νl)Eu1(u). (Compare 80

with 79.)

The new analytic method is designed to overcome the difficulties due
to the appearance of the singular integrals. The starting point is the
observation that, in view of the fact that these integrals are borderline
from the point of view of scaling, they would become regular border-
line integrals if the energies (V ;m,ν1....νl)Eu(u), (V ;m,ν1...νl)Eu(u) had
a growth from the singularities at u = 0 (C0) and u = 0 (S0,0) like
u2au2b for some sufficiently large exponents a and b, and, moreover,
the flux (V ;m,ν1...νl)F ′τ had a growth from the singularity at τ = 0
(S0,0) on K like τ2c, where c = a+ b.
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This observation seems at first sight irrelevant since the required
growth properties cannot hold for these quantities. However, given
that the initial data of the problem are expressed as smooth functions
of (u, ϑ), the derived data, that is the T derivatives on C0 of up to
any desired order N of the unknowns ((xµ : µ = 0, ..., n), b , (βµ :
µ = 0, ..., n)) in the characteristic and wave systems, are determined
as smooth functions of (u, ϑ). Therefore we can define the Nth
approximants ((xµN : µ = 0, ..., n), bN , (βµ,N : µ = 0, ..., n)) as the
corresponding Nth degree polynomials in τ = u with coefficients which
are known smooth functions of (σ = u−u, ϑ). If the Nth approximants,
so defined, are inserted into the equations of the characteristic and
wave systems, these equations fail to be satisfied by errors which are
known smooth functions of (u, u, ϑ) and whose derivatives up to order
n are bounded by a known constant times τN−n+k where k is a fixed
integer depending on which equation we are considering.
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Similarly, inserting the Nth approximants into the boundary condi-

tions, these fail to be satisfied by errors which are known smooth

functions of (τ, ϑ) and whose derivatives up to order n are likewise

bounded by a known constant times τN−n+k where k is a fixed integer

depending on which equation we are considering. Moreover, in con-

nection with the equation �g̃βµ = 0 satisfied by an actual solution, the

corresponding Nth approximant quantity �g̃Nβµ,N is a known smooth

function of (u, u, ϑ) and whose derivatives up to order n are bounded

by a known constant times τN−n+k where k is a fixed integer. For

briefness, we shall confine the discussion to the case d = 2.
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Note that in the above construction we have, in terms of (τ = u, σ =
u− u, ϑ) coordinates:

TN =
∂

∂τ
= T, ΩN =

∂

∂ϑ
= Ω (90)

independently of the approximation. On the other hand, LN , LN , EN
depend on the approximation, the first two through bN , and the last
through g/N , where:

g/N = gµν,N(ΩxµN)(ΩxνN) (91)

We then define the difference quantities:

(m,l)β̌µ = ElTmβµ − ElNT
mβµ,N (92)

(V ;m,l)ξ̌ = V µd (m,l)β̌µ (93)
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We also define (V ;m,l)Š as in 40, 41 with (V ;m,l)ξ̌ in the role of (V )ξ.

Defining then (V ;m,l)P̌ in analogy with 49, we have:

divg̃
(V ;m,l)P̌ = (V ;m,l)Q̌ (94)

where (V ;m,l)Q̌ decomposes like 51 with the (V ;m,l)Q̌i : i = 1,2,3

given by formulas analogous to 52 - 54 with (m,l)β̌µ, (V ;m,l)ξ̌ and
(V ;m,l)Š in the roles of βµ, (V )ξ and (V )S respectively. Then a (m, l)

difference energy identity follows, similar to 72, with the (m, l) differ-

ence quantities (V ;m,l)Ěu1(u1), (V ;m,l)Ěu1(u1), (V ;m,l)F̌ ′u1, (V ;m,l)Ǧu1,u1

and (V ;m,l)b̌ in the role of the corresponding original quantities in 72.

Now, from the definition 92 and the preceding discussion it follows

that for any solution of the problem the functions (m,l)β̌µ vanish on

C0 with all their T derivatives up to order n if we choose N ≥ n.
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We then have:

(V ;m,l)Ěu1(0) = 0 : for all m = 0, ..., n (95)

As a consequence, the (m, l) difference energy identity reads:

(V ;m,l)Ěu1(u1) + (V ;m,l)Ěu1(u1) + (V ;m,l)F̌ ′u1

= (V ;m,l)Ǧu1,u1 + 2C′
∫
Ku1

Ω1/2( (V ;m,l)b̌)2

(96)

Expecting that the growth of (V ;m,l)Ěu(u), (V ;m,l)Ěu(u) is like u2au2b

and that the growth of (V ;m,l)F̌ ′τ is like τ2c, we define the weighted

quantities:
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(V ;m,l)B(u1, u1) = sup
(u,u)∈Ru1,u1

u−2au−2b (V ;m,l)Ěu(u) (97)

(V ;m,l)B(u1, u1) = sup
(u,u)∈Ru1,u1

u−2au−2b (V ;m,l)Ěu(u) (98)

and:

(V ;m,l)A(τ1) = sup
τ∈[0,τ1]

τ−2(a+b) (V ;m,l)F̌ ′τ (99)

the exponents a, b being non-negative real numbers. Of course the

above definitions do not make sense unless we already know that the

quantities (V ;m,l)Ěu(u), (V ;m,l)Ěu(u), (V ;m,l)F̌ ′τ have the appropriate

growth properties. Making this assumption would introduce a vicious

circle into the argument, so this is not what we do.
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What we actually do is to first regularize the problem by giving initial
data not on C0 but on Cτ0 for τ0 > 0 but not exceeding a certain
fixed positive number which is much smaller than δ. The initial data
on Cτ0 is modeled after the restriction to Cτ0 of the Nth approximate
solution, the difference being bounded by a fixed constant times τN−1

0 .
Similarly considering the mth derived data on Cτ0, m = 1, ..., n+ 1 we
show that the difference from the corresponding Nth approximants
on Cτ0 is bounded by a fixed constant times τN−1−m

0 . The (m, l)
difference energy identity now refers to the domain Ru1,u1,τ0 in N
which corresponds to the domain:

Ru1,u1,τ0 = {(u, u) : u ∈ [u, u1], u ∈ [τ0, u1]} (100)

in R2, so there is a 1st term on the right in this identity, which is:

(V ;m,l)Ěu1(τ0) ≤ Cτ2(N−1−m)
0 (101)
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Replacing the supremum over Ru1,u1, the supremum over [0, τ1], by
the supremum over Ru1,u1,τ0, the supremum over [τ0, τ1], respectively,
in the definitions 97 - 99, and taking N ≥ m+ 1 + c, everything now
makes sense. In fact, we take N > m + 5

2 + c, in which case the
modifications in the resulting estimates for the quantities 97 - 99,
tend to 0 as τ0 → 0.

The argument relies on the derivation of energy estimates of the top
order m+ l = n only. We derive estimates for the top order acoustical
difference quantities corresponding to 86

(ν1,...,νl−1)θ̌l = (ν1...νl−1)θl − (ν1...νl−1)θl,N
(ν1,...,νl−1)θ̌l = (ν1...νl−1)θl − (ν1...νl−1)θl,N (102)

and to the quantities associated to 4/ λ, 4/ λ, ignoring at first all but
the top order terms.
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We then derive the top order energy estimates, again ignoring all

but the top order terms. The above estimates require taking the

exponents a, b, c to be suitably large. This is in accordance with our

preceding heuristic discussion. Moreover the estimates require that δ

does not exceed a positive constant which is independent of m and

n.

The preceding concern only the treatment of the principal terms, and

these are estimated using only the fundamental bootstrap assump-

tions. The full treatment, which includes all the lower order terms,

uses the complete set of bootstrap assumptions. Eventually, point-

wise estimates are deduced and the bootstrap assumptions are recov-

ered as strict inequalities. This recovery however requires a further

smallness condition on δ.
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There is a n0 depending only on d, such that this further condition is

associated to n = n0. Given then any n > n0, the nonlinear argument

having closed at order n0, the bootstrap assumptions are no longer

needed, therefore no new smallness conditions on δ are required to

proceed inductively to orders n0 + 1, ..., n.

As already discussed, we first regularize the problem by giving the

initial data on Cτ0. We establish the existence of a solution to this

regularized problem defined on the whole of Rδ,δ,τ0
by applying a

continuity argument. This argument relies at a local level on the work

of Majda and Thomann (Comm. in Partial Differential Equations

12(7), 777-828 (1987)) on the restricted local shock continuation

problem, namely the problem of continuing locally in time a solution

displaying a shock discontinuity initially.
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After obtaining a solution on Rδ,δ,τ0
satisfying the appropriate esti-

mates we take τ0 to be any member of a sequence (τ0,m : m =

M,M + 1,M + 2, . . .) converging to 0, and pass to the limit in a

subsequence to obtain the solution to our problem.
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