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1. Introduction



Liouville’s theorem for a harmonic function

Theorem 1 (Liouville, 1879)

If uis a smooth solution to the Laplace equation:

Au=0 on R",
satisfying the ‘boundary condition’ at infinity:

u(x) =0 as |x| = 4o0,

then u = 0.

@ Similar Liouville type theorems also hold for many other
“elliptic type” equations.

@ More general version: “A harmonic function in R"” with
sublinear growth growth at ininity is a constant.”



@ | Proof for n = 1‘

o If v =0, then u(x) = ax + b.
e The decay condition impliesa=b=0. &

° ’ Proof for n > 2 by the maximum principle(I\/IP)‘

o If u(xg) > 0 for some xg € R", then for sufficiently large
R > 0, u has a (positive) interior maximum in B(0, R), which
is prohibited by MP.

o Similarly, there exists no x; € R” such that u(x;) < 0. Hence
u=0inR". W



@ Similar Liouville type theorems also hold for many other PDEs.
° viscous vector Burgers’ equations for
U(X) = (ula T ,Un),X € R".
u-Vu=Au, with u(x)—=0 as |x|— +occ.

e The maximum principle applied to each component u;,
j=1,---,n, implies u = 0.



Liouville type problems in the Navier-Stokes equations

o Let u= (u1, w2, u3) = u(x) be a vector field, and p = p(x) is
a scalar function.

@ Suppose the pair (u, p) be a smooth solution to the steady
Navier-Stokes equations in R3.

— Au+ (u-V)u=-Vp,

(NS) V.-u=0,
(BC): lim u(x)=0.

|x]—00

’Question: u =0 is the only sqution?‘

@ The question is an outstanding open problem.

o If we replace the domain R3 — R3\ {0}, then the answer is
negative with a nontrivial solution u(x) = x/|x/|3.



Reduced Liouville type problem

@ Since the above question appears to be too difficult, we
usually consider the following reduced problem.

QUESTION: If we impose additionally / |Vul?dx < oo, then u = 07?
R3

@ The question was written explicitly in the book by Galdi(1994)
@ The complete answer is still wide open.

e Many authors assume various (extra) sufficient conditions to
prove the triviality of solution: “triviality criterion”
< “regularity criterion” for the time dependent (NS).



Galdi's L%2 condition

The first “triviality criterion” result appeared in Galdi's
book(1994):

Theorem 2 (Galdi)

If ue L%(R3) is a smooth solution to (NS), then u = 0.

Proof :
@ Let 1 < r < +o0 be arbitrarily chosen.

o Let n € C>°(IR3) be a cut off function, which is radially
non-increasing with 7 = 1 on B(r) and = 0 on R3\ B(2r)
satisfying |D*n| < cr=k.

o We multiply (NS) by un? integrate over B(2r) and apply
integration by parts.



This yields

1

/ |Vul?dx < / |\u|>An? dx+
2 JB(2r)

B(r)

—1—1/ ]u!zu‘Vnzdx—i-/ pu - Vndx
2 /B2r)\B(r) B(2r)\B(r)

< d r2/ lulPdx |+ ¢ rl/ lul3dx
B(2r)\B(r) B(2r)

I N
B(2r)

=1+11+1ll.




By Holder's inequality we have, as r — 400,

1 9 g
I < Cr3</ u2dx> -0,
R3

/I§c</ \u\gdx>3—>0,
B(2r)\B(r)

9
wee( [ ) ([ i)’
R3 B(2r)\B(r
4 2
9 9 9
S (/ |U|2dX> </ ‘U‘2dX>
R3 B(2r)\B(r)

— 0,

where in /Il we used the Calderon-Zygmund inequality:
IpllLe < cllull?s,1 < g < +00.) O



Remarks on the case with R”, n # 3

@ Note that to control the nonlinear term( and the pressure
term) we need to have estimate |v|?v € L1 (R"),
n 3n
( pv € L7=1(R"), ) which implies v € L»-1(R").

@ This can be obtained for n > 4 if v € L%(R”) (note

% < %) which is implies by the condition

Jgn [V v[2dx < 400. and the Sobolev inequality.

@ In the case we recall the vorticity equation,
V'VW—ALOZO, w:81V2—82V1.

@ The maximum principle implies w = 0 if it decays to 0 at
infinity.

@ Hence, the Liouville problem is open only for n = 3.



Results around Galdi's one

@ Although Galdi's result has a very simple proof, it looks
difficult to improve it substantially.

o In order to consider space near L92 we recall Lorentz space
LPE(Q):

o0 . \}
( / A‘—lm(A)pdA> if < 4oo
0

sup)\m()\)% if £ = +oo0,
A>0

£l Lpe) ==

where m(\) = [{x € Q||f(x)| > A}| is the distribution
function of f.



Theorem 3 (Kozono, Terasawa, Wakasugi, '16)

Let u be a smooth solution to (NS) with bounded pressure. Then,

1

3
(/ |vu|2dx> < Cllull 3....
R3

Therefore, if there exists small constant 6 > 0 such that

3
lull o .. <6 |Vu|2dx
5100 3

Then, u = 0.




3
o Below we denote M, 4 ((R) := R" 7 |[ul| o.0(8,\5,)-
2

Theorem 4 (Seregin-Wang, '19)
Let u be a smooth solution to (NS).
(i) For g > 3,3 < ¢ < 00, assume liminfr_,o M%,q,e(R) < 00.
Then,

3

1
3
< L |Vu|2dx) < clim Ri—nLo M: . ,(R).
(i) Therefore if there exists a ‘small constant’ § > 0 such that

1
3
_ 2
lim Rl—n>]:>o I\/I%’M(R) <4 (/R3 |V ul dx>

Then u = 0.




@ Notice that

Mz s s(R) = [|ull g

2
3

Bg)

and
Mz s (R)=llull 5.

o If ue L2(R3), then

[im inf M

R—o00

(R) = I|mR|nf HuHL2 Be\6) =0.

299
37272
Therefore (i) implies [5s [Vu[?dx = 0, and thus u = 0.
Hence, the above theorem (i) implies Galdi's result.

@ On the other hand, for the choice of ¢ = 9/2,/ = 400, since
Mz = HuH 9.+ We find Theorem 7 reduces to Theorem 6.

3,2, 1007



Logarithmic improvement of L2 result

@ The following is another result improving Galdi's result
logarithmically.

Theorem 5 (DC, Wolf, '16)
Let u be a smooth solution to (NS) such that

—il
9 1
|u|2 {Iog T4 — } dx < +o00.
]R/3 ( |u|>

Then u = 0.

@ The proof uses Caccioppoli’s inequality obtained directly from
the stationary NS.



On ||Aul|e/s condition and its refinement

Theorem 6 (DC, '14)

Let u is a smooth solution to (NS) such that [ps ]Au!gdx < 400,
and u — 0 at infinity, then u = 0.

@ Observing the Sobolev inequality in R3,
IVulls < el g,

we see that the condition above has the same scaling as the
Dirichlet integral condition.

o Since [[ul;s < c[|Aul| ¢, we find that u- Au € L1(R3).



Refinement of ||Aul|, ¢ condition

Theorem 7 (DC, '20)

Let u is a smooth solution to (NS) such that [ps [Vul?dx < +o0
and u — 0 at infinity. Suppose furthermore if at least one of the
following belongs to L!(IR3), then u = 0.

u-Au, A|u|2, AQ, u-VQ

where Q = 1|ul? + p.

Outline of the proof: | STEP 1| We note from the vector calculus

2
A'L; —u-Au=|Vu]? € [}R?),

2
u
AQ — A‘ ‘ —Zajukakuj' € Ll(R3).
.i7l<

AQ —u-VQ = |w]? € LY(R?),



o Therefore, if one of the four belongs to L*(R3), then all of the
others belong to L!(R3).

STEP 2] (Show [,; AQdx = 0) Using the previous cut-off

¢ = (,, we find by DCT that

AQdx = |im AQC,dX— I|m / QA dx =0,
R3 r——+o00 R3

where we used the fact

1
§</ |Q|3dx>3—>0 as r — 400,
B(2r)\B(r)

< c||[Vul2,, by the Calderon-Zygmund

QA dx
R3

since || Q|13 < cllullZs
inequality.



STEP 3] (Show [p; u- VQdx = 0) Applying the maximum

principle to
AQ—u-VQ=|w?>0,

we have Q < 0 on R3, and no local maximum for Q in R3, which
implies {@ < A} /' R3as A\ 0. Hence, by DCT

/ u-Vdeinm/ u-VQdx =0,
R3 A0 J{Q<A}

where we used the fact that for each A < 0,

/ u-Vde—/ u-vQdS
{Q<A} {Q=X}

—/\/ u-de—/\/ V - udx = 0.
{Q=X} {Q<A}

@ We have shown

0= Ade—/ u-Vde—/ w|?dx. W
R3 R3

R3

step2 step3



On the head pressure conditions

Theorem 8 (DC, Wolf, '16)

Let (v, p) be a smooth solution to (NS) and Q = |u|? + p. We
set ||Q|[r= = M. Then, we have the following inequality.

|VQ|? eM\ ¢t 1 2
log — dx < — dx V 0.
/R3 Q og‘Q’ X_a R3|w[ x Va >

If the the following holds,

’vQP ﬂ —a—1 3 1
/R3 Te] Iog|Q‘ dx =o0 5 as a —0,

then u = 0.




Generalizations of Theorem 10

@ We introduce the following notations for iterated
exponential /logarithmic functions.
@ For k € N let us define

k—times

expy(x) = exp(exp(- - - (expx) - -),

k—times
logy(x) = log(log(- - - (log x) - - )
and set exp, (1) := ek, ep(x) = logy(x) :=1 for all x € R.




Refinement/generalizations of Theorem 10

@ We can prove for the asymptotic limit for the integrals inside
the level sets defined by Q.

Theorem 9 (DC,'19)

Let (u, p) be a smooth solution of (NS), and Q = 1|u|? + p such
that [o; [Vul?dx < +00. We set inf,cgs Q(x) = m. Then, for all
k € NU {0} we have

. —il vor = ’
/\||m0(|ogk+1(1/)‘)) K &|m| HE YA
N {1QI>A Q[T T/=o 'Ogj( [ ) “
Therefore, if there exists k € NU {0} such that
VQJ?
/ k ’ ‘ ex|m| dx =0 (Ing—l-l(]‘//\))
{Ie>2 | Q| T 'ng( Q] )

as A\, 0, then [ps |w[?dx =0, and thus u =0 on R>.




For simplicity we consider the case k = 0.

Corollary 1
Under the assumptions of Theorem 8 it holds

| » voP / )
li (log(1/) /{W} lw[2dx,

and therefore, if

/ IVOP 4 — o (log(1/0) .
o>y 19

as A — 0, then v = 0 on R3.

@ The corollary implies that

2
If / Vel dx < +oo, then u=0
r |Q

2
o Note that the integral fR3 ‘V‘Tﬂldx has the same scaling as the

Dirichlet integral.



Oscillation growth conditions for the potential functions

@ We say a matrix valued function V is potential function for
vector field v if V-V = u.

@ The usual stream function 1 such that V x ¢ = u is the case
where V = (V};), Vjj = —€jiktpk with € being the standard
skew-symmetric tensor.

@ Note that for V- V = u we have
V € BMO(R®) < u € BMO'(R?)

@ Seregin firstly used sufficient conditions on potential function
to obtain Liouville type result:

Theorem 10 (Seregin, '16)

If ue L°(R3) is a smooth solution to (NS), and there exists a
potential function V € BMO(RR3), then u = 0.




@ In his later work Seregin removed L% condition, and
substantially improved the above result.

Theorem 11 (Seregin, Analysis & Algebra, '18)

Let 3 < s < oo. If uis a smooth solution to (NS) such that there
exists a vector field V with u =V x V satisfying

1

<][ = vB(,)|de> < Cr*9 V1< < too,
B(r)

where a(s) < 6(5;_31), then u = 0.

@ In the above we used the notation

1
fq = ][fdx = / fdx.
Q Q[ Ja



@ The above theorem, on the other hand, has been improved
later as follows:

Theorem 12 (DC-Wolf, Cal. Var. PDE, '19)

Let 3 < s < co. Let u be a smooth solution to (NS) and there
exists a potential function V with such that

<][ V- Vg, yde> < P V1 < r < oo,
B(r)

where 3(s) := min{*3> ,6} Then, u=0.

@ Since

a(s) < =3 < min {53_:’;} = A(s)

for all 3 < s < 400, our growth condition of oscillation is
more relaxed than that of Theorem 14.



Extension to MHD system

@ We first consider the stationary magnetohydrodynamics
system(MHD) in R3.

—Au+(v-V)u=-Vp+(B-V)B,
(MHD){ — AB + (u-V)B — (B-V)u =0,
V-u=V-B=0.

@ Schulze['18] generalized Seregin's earlier result on the
Navier-Stokes system to prove that
u, B € BMO~}(R3) N L%(R3) implies u = B = 0.

e Z. Li and X. Pan['19] showed that in the axisymmetric MHD
system in R? x T with zero swirl and vanishing boundary
condition with [ps(|Vu|? + [VB|?)dx < +oo implies
u=B=0.



@ The following is our improvement of Schulze's result

Theorem 13 (DC, Wolf, '19)

Let (u, B) be a smooth solution to (MHD). Suppose there exist

potential function ®, W for u, B respectively such that V- ® = y,
V-W =B, and

][ |® — ®pg,)|0dx +f W — Wg(,)[°dx < Cr V1< r< +o0.
B(r) B(r)

Then, u= B = 0.

@ The following is an immediate consequence of the above
theorem.

Let (u, B) be a smooth solution of (MHD) such that
u, B € BMO~Y(R3)(No need L°® condition), then u = B = 0.




Extension to the Hall-magnetohydrodynamic equations

@ We consider the Hall-MHD system in R3.
—Au+(uv-V)u=—-Vp+(B-V)B,
(HMHD) ¢ —AB+ (u-V)B—(B-V)u=V x ((V x B) x B),
V-u=V-B=0.

@ This equations govern the the dynamics plasma flows of
strong shear magnetic fields as in the solar flares, and there
are many studies in the astrophysics community.



@ The following is our Liouville type theorem for (HMHD).

Theorem 14 (DC, Wolf, JDE '19)
Let (u, B) be a smooth solution of (HMHD). Let us assume

r8 / |B — BB(,)lﬁdx —0 as r— +oo,
B(r)

and there exist ®, W € C>(R3; R3*3) such that

7[ b — ¢°B(,)‘6dx —i-][ W — WB(,)‘GdX <Cr V1<r<+oo.
B(r) B(r)

Then, u =B = 0.




Extension to non-Newtonian fluid equations

@ We consider the following generalized version of the stationary
Navier-Stokes equations in R3

(GNS) (u-V)u=-Vr in R
V u-O
where Ay(u) =V - (|D(u)|P~ 2D( ), l1<p<+4o0
with D(u) = D = 3(V u+(vu))

@ The system is a power law fluid model of non-Newtonian fluid.

@ For p = 2 it reduces to the usual stationary Navier-Stokes
equations. For 1 < p < 2 the fluid is called shear thinning,
while in case 2 < p < 400 the fluid is called shear thickening



@ The following is our Liouville type theorem for the above
non-Newtonian system.

Theorem 15 (DC, J. Wolf, J. Nonlinear Sci.'20)

(i) Let 3 < p < 2: We suppose (u, ) is a smooth solution of
(GNS). If

/\Vu\pdx < +oo, liminf|ugr)| =0
R—o0
R3

then u = 0.
(i) Let % < p < 3: Assume there exists a smooth V such that
V-V =u, and
][ IV = V(| P 3dx < Crs W1 < r < +oo.
B(r)

Then, u = 0.




o If we choose p = 2 in (ii) above, then we are reduced to the
previous result for the usual Navier-Stokes equations(the case
s =0).

Corollary 3

Let u be a smooth solution of the stationary Navier-Stokes
equations on R3. Suppose there exists V € C>(R3; R3*3) such
that V-V = u, and

][ |V — VB(,)|6dx <Cr Vi<r< +4oo.
B(r)

Then, u = 0.




One can also impose the relative decay rate condition between the
pressure and the head pressure to obtain a Liouville type theorem.

Theorem 16 (DC, JMFM '21)

Let (u, p) be a smooth decaying solution to (NS) having finite
Dirichlet integral, and Q = 3|u|?> + p be its head pressure. If either
sup ]u(x)|2 < +00
xer? [Q(x)] ’

or ()
p(x
sup < +00.
xER3 Q(X)
Then, u = 0.

@ We observe that the ratios in the above conditions are scaling
invariant.



Anisotropic conditions

@ Below we use the notation.

f1=(x,x3), % :=(x3,x1), X3:=(x1,%)

and for a domain Q C R? we denote

/fd)a:/ deQdX3,/fd)?2:/de3dX1,
Q Q Q Q
d

/fd)?3:/de1dX2.

Q Q

e Given 0 < r,s < 400, i € {1,2,3}, we write
fell L3 (RxR?)if

1
Iflleg s = {/ (/ ]f|sd>?,-)S dx,-} < 400
P R \JR2

for 0 < r,s < +00 with obvious extensions to the case
r = +00 or s = +00.

an



Then the following result holds.

Theorem 17 (DC, Appl. Math. Lett.'23)

Let v be a smooth solution to the stationary Navier-Stokes
equations. Suppose

v € L5(R?) N LI(R3),
and .
vi € LI LL (R xR?), Vi=1,2,3

with g, s satisfying

2 1

o

q S
Then, v = 0.

where 1<s<o0, 2<g<oo.

)

N =




@ In case is for s = g = 6 the above condition reduces to
3
vi € (L2 NLE)LE (R xR?) Vi=1,2,3,

@ This means that a mild decay in the planar direction (X;)
combined with the faster decay in the direction orthogonal to
the plane (x;), implies the triviality of the solution.



Outline of the Proof

@ Below we use the index sets

\71 = {273}a \72 = {173}a \73 = {172}7

@ Consider a smooth non-increasing real valued function
¥ 1 [0, +00) — [0, 1] defined by

(s) 1, if 0<s<1,
S) =

0, if s>4.
@ Given R > 0, we introduce cut-off functions

(i) - 1:(3)

JET:

and the "slab domain”

D= {% e R*||x| <2R, VjeJ}, ie{1,23}



e We multiply (NS) by vr, and integrate it over R3. Then,
after integration by part, we obtain

/ \Vvlzdxg/ or(X)|Vv|?dx
{Ix|<R} R3

1
:/ ]v|2Ag0Rdx+/ Qv - Vipgrdx
2 R3 R3
= /1 + /2, (1)

where Q = 1|v|?> + p is the head pressure.



We estimate /; and b as follows.

BN 2 ~ 2, XI-2
h= 22/{R<|X,‘|<2R} /D,- vI*¢ir {sz <R2)
R4 1//’ (;i) } d%:dx;
C < ) Y
R? ; </R<|Xi|<2R} /Di v dX) ( R<|x;|§2R} ./D,- ' dXidXi)

=

as R — 400

IN

IN

|V\6dX -0
R<|x,\<2R}



@ We use the anisotropic condition for the estimate of 5.
3

2
<D 5

- xi@i RQV; - V' (R2> dx

< (Holder's inequalities, Calderon-Zygmund inequality)

2
q—2

2(gs— q 2) 4 q
<CR / [v|9dx ) x
R3
3 - R
5(q—2) 9
X Z / (/ ‘V,"Sdf,) ? dX,'
i—1 {R<|xi|<2R} R2

@ Our assumption of the theorem implies that

@ Therefore, h - 0as R — +oco. W



Extension to the n-dimensional MHD

We consider again the stationary MHD equations in R”,

—Av+v-Vv+Vp=B- VB,
—AB+v-VB—-—B-Vv=0,
V-v=V-B=0,

equipped with the uniform decay condition at spatial infinity,

lv(x)| +|B(x)| =0 as |x|] — +o0.



Then we have the following extension of the previous result on the
Navier-Stokes equations.

Theorem 18 (DC, '23)
Let v be a smooth solution to the n-D MHD system. Suppose

v +1B| € L3 (R") N LI(R"),
and \
vi€ LIPLE(RxR™Y), Vi=1,---,n
with g, s satisfying

q
Then, v = 0.

2 1 _n-2
- > R where 1<s<oo0, 2<qg<oo.
s n-—




Thanks for your attention!
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