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Aim of My Talk

Minimal submanifolds in Riemann manifold

Σk ⊂ Mn

Simplest case:

k = 1, n = 2

Σk : minimal sub-manifolds arising from Allen-Cahn



1. Introduction: The Allen-Cahn equation

−∆u = u − u3 in RN , |u| < 1.



Double-well Potential

I Energy functional

J (u) =
∫ [

1

2
|∇u|2 + 1

4

(
1− u2

)2]
dx .

I Function W (u) = 1
4 (1− u2)2 has two minima (u = ±1) of

equal depth (J(±1) = 0) (double well potential).

I Most of the results are true for any double-well W (u); but
some double-well is better than others.
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ε version

−ε∆uε =
1

ε
(uε − u3ε ) in Ω.

Deep connections with minimal surface theory.

I uε local minimizer, then the interface {uε = 0} → minimal
hypersurfaces.
Modica-Mortola (Γ-Convergence), Kohn-Sternberg,
Caffarelli-Cordoba (C 1,α estimates), Hutchison-Tonegawa
(Quantization), Tonegawa-Wickramasekera (C 1,α estimates
for stable solutions), Wang-Wei (C 2,α estimates)

I Recently there is a renewed interest in building min-max
theory of Allen-Cahn and the corresponding in minimal
surfaces



I Chodosh-Mantoulidis (Annals Math 2019): Using Allen-Cahn
to prove Multiplicity One Conjecture of Minimal Surfaces by
Marques-Neves in R3.

I Dey (2022): Equivalence of Almgren-Pitts theory of min-max
embedded minimal surfaces theory of Marques-Neves (2015)
and Ljusternik-Schnirlman min-max theory of Allen-Cahn

I Chodosh-Mantoulidis (Publ.IHES 2023): Using Allen-Cahn to
compute the p−width of S2 (ωp(S2)).

ωp(M) = lim
ε→0

cε
p = lim

ε→0
inf

γ(A)≥p
max
A

[
∫
M
[
ε

2
|∇u|2 + 1

4ε
W (u)]]



Hutchinson-Tonegawa’s Quantitization Result

General Theory: Let uε be a sequence of Allen-Cahn equation

ε∆uε +
1

ε
(1− u2ε )uε = 0 on (MN , g)

with bounded energy

Eε(uε) =
∫

ε|∇uε|2 +
1

4ε
(1− u2ε )

2 . 1.

Then the following holds (Hutchinson-Tonegawa (2000)): for the
nodal sets {uε = 0} there is a naturally associated limiting
stationary (N − 1)−varifold V with integer density mV .
Roughly speaking, one can define generalized mean curvature HV

and stationary varifold implies

HV = 0



I In two dimensions Tonegawa (2014)): V is smooth geodesics
away from isolated points.

I For stable solutions, Tonegawa-Wickramasekera (2017): V is
stable and a smooth stable minimal hypersurface (outside of a
codimension 7 singular set).

In general stationary varifolds can be very complicated, even on
surfaces.
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Chodosh-Mantoulidis Result
Theorem (Chodosh-Mantoulidis (preprint 2021,Pub.IHES 2023)):
Let (M2, g) be a closed Riemann 2-manifold. Fix the Sine-Gordon
double-well potential

W (u) =
1 + cos πu

π2

Let uε be a sequence of solutions to the sine-Gordon equation

ε2∆uε + sin πuε = 0 on (M2, g)

with bounded Morse index and energy

m(uε) + Eε(uε) . C

Then along a subsequence the ”εi -phase transition 1-varifolds
V [uε] converge to a stationary integral 1-varifold V such that

V =
N

∑
j=1

v(σj , 1σj )

for σ1, ..., σN (possibly repeated) are primitive closed geodesics in
(M; g).





Consequences of Chodosh-Mantoulidis’ Theorem
The stationary 1d varifold arising from sine-Gordon double-well
potential can only have two possibilities
1) Geodesics Networks (Crossing)

2) Higher multiplicities (Collapsing)





Proof of Chodosh-Mantoulidis Theorem
Geodesics nets



Geodesics Nets
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Classification of Finite Morse index Solutions in R2

(AC) ∆u + u − u3 = 0 in R2

Finite Morse Index: there exists a compact set K such that∫
|∇φ|2 + (3u2 − 1)φ2 ≥ 0, ∀φ ∈ C∞

0 (R2\K )

Wang-Wei (2019): Finite Morse Index←→ Finite Ends
The set of 2n−-ended solutions is called M2n.



Question: Complete Classification of M2n?

I connected?

I dimension?

I Morse index?

All these questions are completely open for Allen-Cahn equation.
(Gui (2009),del Pino-Kowalczyk-Pacard-Wei (2010), del
Pino-Kowalczyk-Pacard (2012), Kowalczyk-Liu-Pacard (2014),
Gui-Liu-Wei (2017),... for M4.)
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A Complete Classification of M2n?

But for elliptic sine-Gordon equation all these questions are
completely answered.
Using the fact that finite Morse index implies finite ends, and also
”integrable system theory”, we can explicitly write down all the
solutions of multiple-ended solutions to another double-well
potential—the elliptic Sine-Gordon equation

−∆u = sin(πu), |u| < 1 in R2

double-well potential W (u) =
1 + cos(πu)

π2

4−ended saddle-solution:

4arctan(
cosh( y√

2
)

cosh( x√
2
)
)− 1



2m−ended Solutions

Let pj , qj , j = 1, ..., n, be real numbers satisfying p2j + q2j = 1.

α (j , k) :=
(pj − pk)

2 + (qj − qk)
2

(pj + pk)
2 + (qj + qk)

2
.

a (j1, ..., jn) := 1, if n = 0,1,

a (j1, ..., jn) := ∏
k<l≤m

α (jk , jl ) , if n ≥ 2.

ηj = pjx + qjy + η0
j



Then Un := 4 arctan gn
fn
− π where

fn =
bn/2c

∑
k=0

(
∑
{n,2k}

[a (j1, ..., j2k) exp (ηj1 + ... + ηj2k )]

)
,

gn =
b(n−1)/2c

∑
k=0

(
∑

{n,2k+1}

[
a (j1, ..., j2k+1) exp

(
ηj1 + ... + ηj2k+1

)])
.

is a 2n−ended solution. Conversely,



A Complete Classification of M2n

Theorem [Y. Liu-J.Wei (2021, 79 pages)] Suppose φ is a 2n-end
solution of the equation −∆φ = sin φ. Then there exist parameters
pj , qj , η0

j , j = 1, ..., n, such that φ = Un, where Un is defined
before. As a consequence

I M2n is a 2n−dimensional smooth connected manifold;

I Each solution in M2n is nondegenerate, i.e. the bounded
kernel is 2n−dimensional;

I Each solution in M2n has exactly Morse index n(n−1)
2 .

Main idea: Inverse Scattering transform.
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Asymptotic behavior at ∞

The 2n ends are given by half lines:

(x , y) · e⊥j = rj .

The direction of the j-th line is the unit vector ej .

A consequence of the explicit formula of all solutions in M2n is the
following: up to relabelling, the ends satisfy

e2k+1 = −e2k

From this fact, Chodosh-Mantoulidis (Pub.IHES 2023) proved
geodesic net theorem.



Questions

I 1. Existence of bounded Morse index solution on geodesic
networks

I 2. Morse index of solutions on geodesic networks
Conjecture of Chodosh-Mantoulidis

I 3. Existence of bounded Morse index solutions on geodesics
with higher multiplicities

I 4. Morse index of solutions on geodesics with higher
multiplicities

I 5. Computation of p−width of Riemann surfaces ωp(M, g)
Chodosh-Mantoulidis (Publ.IHES 2023): computation of
ωp(S2, g0) (p−width of S2).
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2.Geodesic Networks



Construction and Morse Index of solutions on Geodesic
Networks

ε2∆u + sin(πu) = 0 on (M2, g)

Theorem
(Liu-Pacard-Wei (2022)) Let L1, ..., Ln be a geodesic net, with
each geodesic being embedded and nondegenerate. Suppose they
intersect at k distinct points, and at each intersection points ki
lines intersect. Then for each ε > 0 small enough, there exists a
solution uε to the elliptic sine-Gordon equation

ε2∆uε + sin(πuε) = 0 on (M2, g)

whose zero set is close to L1 ∪ ...∪ Ln. Moreover, the Morse index
of uε is equal to

k

∑
i=1

ki (ki − 1)

2
+

n

∑
j=1

Ind (Lj ).

Conjecture of Chodosh-Mantoulidis



Construction

WLOG, ki = 2, i = 1, ..., k .
The construction relies on two steps. In the first step, we construct
an approximate solution, by putting four-end solutions around
each intersection point.
In the second step, we perturb the approximate solution into a true
one. Here we need to translate and rotate the four-end solutions
near each intersection point. By adjusting these parameters, we
should be able to define the adjusted approximate solution. This
relies on the nondegeneracy of the geodesic net.



Compute the Morse index–From eigenfunction of linearized
AC operator to eigenfunction of the Jacobi operator

Let g = gε be a sequence of eigenfunctions of the operator L with
negative eigenvalue:

Lg = −ε2∆g − cos (uε) g = −β2g .

We analyze the asymptotic behavior of these functions.

Lemma
Assume β = βε → 0 as ε→ 0. There exists a constant C
independent of ε such that |β| ≤ C ε.

This provides an estimate of those negative eigenvalues close to 0.
They are expected to be related with the Jacobi operator.



Sketch of the proof
Assume to the contrary that there was a sequence β such that
ε−1β tends to infinity.
Away from the intersection point pi ,j , the projection η of the
function g onto H ′ (t) satisfies approximately

−∆Lη − Ric (ν, ν) η = ε−2β2η.

This implies that away from the intersection point, the function η

essentially behaves like e±ε−1βt . This together with the assumption
that the L∞ norm of the sequence of eigenfunctions g is uniformly
bounded imply that there exist intersection point pj , constants m
and c , such that

‖g‖L∞(Bmε(pj ))
≥ c > 0.

Then as ε tends to 0, the function g (εz) converges to a bounded
function η0 of the equation

−∆η0 − cos (Uα) η0 = 0 in R2.



Hence η0 = c1∂xUα + c2∂yUα for some constants c1, c2, where Uα

denotes the four-end solutions.
The spectrum of the Jacobi operator Ji on H1 (Li ) has the form
µ1 < µ2 ≤ µ3 ≤ ... Let k1 be the eigenfunction corresponding to
µ1, normalized such that ‖k1‖L∞ = 1. We can assume k1 is always
positive.
The operator L has an eigenfunction w1 which is close in the local
Fermi coordinate to the function k1 (s)Ui ,j

(
ε−1t

)
with eigenvalue

µ̄1ε2, where µ̄1 − µ1 = O (ε):

−ε2∆w1 − cos (u)w1 = µ̄1ε2w1.



Rescaling the functions by setting

W (s, t) = w1 (εs, εt) , and G (s, t) = g (εs, εt) ,

we get

−∆W − cos(U)W = µ̄1ε2W ,

−∆G − cos(U)G = −β2G .

Let Ω be the ball of radius ε−1r0 centered at the intersection point
in the rescaled domain, where r0 is a fixed small constant.(

β2 + µ̄2ε2
) ∫

Ω
(GW ) =

∫
∂Ω

(∂νWG − ∂νGW ) .

Estimating the boundary integral appeared in the right hand side,
we get the desired estimate of β.



Fix a large constant m. Let (s, t) be the local Fermi coordinate
around pj . Define the projection of g onto H ′ as

q (s) :=
∫ δ

−δ
g (s, t)H ′

(
ε−1t

)
dt.

For s < −mε, the solution u is close to H
(
ε−1t

)
. Write

g (s, t) = q (s)H ′
(
ε−1t

)
+ φ.

Using the exponential decay of φ, we deduce

−∆Lq − Ric (ν, ν) q = ε−2β2q +O (ε) , if s < −10ε| ln ε|.



Introduce function γ (s) , which depends on ε and solves{
−∆Lγ− Ric (ν, ν) γ = ε−2β2γ, s > −δ.
γ (δ) = q (δ) , γ′ (δ) = q′ (δ) .

Construct an eigenfunction ξ of the linearized Allen-Cahn operator
of the form ξ = γ̃ (s)Ui ,j + ψ in the region where s ∈ (−2δ, 2δ) ,
with

‖γ̃− γ‖L∞([−δ,δ]) = O (ε) , and |ψ| ≤ Ce−δε−1|s |,

and ξ satisfying
−ε2∆ξ − cos (u) ξ = β2ξ.

There holds ∫
∂Ω

(∂νξg − ∂νgξ) = 0.

This implies that approximately, g is a multiple of ξ.



Repeat this argument and do the analysis across all the
intersection point on the geodesic Lj .
In particular, in the region where s ∈ [−10δ,−δ] , q is
approximately a multiple of γ.
This together with q is continuous imply that as ε tends to 0, γ
will converge to an eigenfunction of the Jacobi operator, defined
on the closed geodesic Lj .
Hence this type of eigenvalues correspond to that of the Jacobi
operator.



3. Multiplicity two interfaces





Interaction between different interfaces has the form

4Γfk + (|A|2 + Ric)fk =
A

ε

[
e−

√
2

ε (fk,ε−fk−1,ε) − e−
√
2

ε (fk+1,ε−fk,ε)
]
+ h.o.t.

Jacobi-Toda Systems

del Pino-Kowalczyk-Wei-Yang (GAFA 2012): If |A|2 + Ric > 0,
then there are multiplicity two solutions; however the Morse index
of such solution goes to +∞

Question: are there multiplicity two solutions with bounded Morse
index?
n ≥ 3, Chodosh-Mantoulidis (Annals Math 2019): No
What about n = 2?
A major consequence of the existence of multiplicity two interfaces
with bounded Morse index is the existence of bouncing Jacobi
fields.
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Bouncing Jacobi fields

Let R = Ric(ν, ν)(= Kg ) be the Gaussian curvature along the
geodesic L in the normal direction. The Jacobi operator J has the
form

u → u′′ + Ru.

Definition
A continuous function φ defined on the geodesic L is called a
bouncing Jacobi field with k minimums of the Jacobi operator J, if
φ satisfies the following conditions: There exist k distinct points
p1, ..., pk ∈ L, such that
(A1) Jφ = 0, in L\ {p1, ..., pk} .
(A2) φ (pi ) = 1, for i = 1, ..., k .
(A3) φ′− (pi ) = −φ′+ (pi ) 6= 0, for i = 1, ..., k.
(A4) φ (s) ≥ 1, for all s ∈ L.



Bouncing Jacobi Field



Necessary condition for multiplicity two: bouncing Jacobi
field

Theorem
(Liu-Pacard-Wei-Ye (2022)) Let uε be a sequence of multiplicity
two solutions of the Allen-Cahn equation with uniformly bounded
Morse index. Suppose the upper part of the nodal set of uε is
represented by the graph of fε defined on the geodesic L. Assume L
is nondegenerated. Then as ε→ 0, the function fε

‖fε‖L∞
tends to

aφ, where a > 0 is constant and φ is a bouncing Jacobi field of L.

The case with higher multiplicity is more delicate, which in
principle could lead to combination of geodesic network and more
complicated bouncing solutions.



Sketch of the proof

Suppose the lower and upper part of the nodal set of uε is
represented by the graph of fε,1, fε,2. By arguments of
Chodosh-Mantoulidis, the function φε =

fε,2−fε,1
‖fε,2−fε,1‖L∞

converges,

away from finitely many points p1, ..., pk to solution of the
equation Jφ = 0, in L̃ := L\ {p1, ..., pk} .

Case 1. infs∈L̃ φ (s) > 0.

In this case, if
‖fε,1−fε,2‖L∞

ε|ln ε| ≤ C < +∞, then near the point pi , the

function gε,i := ε−1fε,i and gε = gε,2 − gε,1 satisfies

g ′′ε,2 + Rgε,2 − c̄ε−2e−gε,2+gε,1 ∼ 0.

g ′′ε,1 + Rgε,1 + c̄ε−2e−gε,2+gε,1 ∼ 0.

g ′′ε + Rgε − 2c̄ε−2e−gε ∼ 0.



Using |g ′ε | < C |ln ε| in L\ {p1, ..., pk} , we get

min
s

gε (s) > 2 |ln ε| − 2 ln |ln ε| −O (1) .

It follows that g ′′ε + Rgε − 2c̄ε−2e−gε = O (εσ) for some σ > 0.
This regime is exactly what have been analyzed in the construction
step. Around pi , gε is essentially governed by the Toda equation.
The function φ is then continuous and the function
ξε := gε,1 + gε,2 satisfies

ξ ′′ε + Rξε = O (εσ) .

Nondegeneracy of the geodesic L implies ξε → 0, leading to
φ′+ (pi ) = −φ′− (pi ) . This means that φ is a bouncing Jacobi field.



If
‖fε,1−fε,2‖L∞

ε|ln ε| → +∞, then mins gε(s) > 3 |ln ε| for ε large. That

is, the distance between two layers is large.
This implies φε converges to a smooth kernel of the Jacobi
operator, contrary to the nondegeneracy of L.

Case 2. infs∈L φ (s) = 0.
Assume φε (p)→ 0 for some p ∈ L.
Similar arguments as before tells us that at the point p,

φ′+ (p) = −φ′− (p) .

Hence φ and −φ patch together to form a nontrivial kernel of the
Jacobi operator, contrary to the nondegeneracy of L again.



Existence of solutions for the Allen-Cahn equation with
multiplicity two

Theorem
(Liu-Pacard-Wei (2022)) Let L be a geodesic with total length 2π
embedded in the two dimensional surface M. Let n ≥ 1 be a fixed
integer. Suppose L has a bouncing Jacobi field φ with n minimums
and with index k. Then for each ε small, the Allen-Cahn equation
has a solution uε with energy close to 4πe and Morse index n+ k,
provided that φ is nondegenerated in the sense described below.
Here e is the energy of the heteroclinic solution of the Allen-Cahn
equation. Moreover, the transition layer of uε has multiplicity two.

Remark: Under suitable conditions, we can show the existence of
bouncing Jacobi fields with some additional information on their
Morse index(this is not the index of L). In particular, we can prove
the existence of Morse index 2n solutions for the AC equation.
We can also show the existence with higher multiplicity under
certain assumptions.



Existence of bouncing Jacobi fields

Lemma
Assume R > 0. For each n ∈N satisfying

n > 2
√
‖R‖L∞ , (1)

there exists at least one bouncing Jacobi fields with exactly n
minimums. Moreover, if 2

√
‖R‖L∞ < 1, there are at least two

distinct bouncing solutions with one local minimum.

The existence follows from the method used by Qian-Torres-(SIMA
2005), using the Poincare-Birkhoff theorem about the existence of
fixed points for area preserving maps.
We provided a variational proof, which also captures more
information about the Morse index of the bouncing solutions.
If R changes sign, bouncing Jacobi fields may still exist.
Intuitively, this result tells us that there is some relation between n
and the index of the geodesic.



Sketch of the proof

First consider the case of n ≥ 2 bouncing points.
For each pair s1, s2 ∈ [0, 2π] with s1 < s2, identified as two
distinct points on L, define

H (s1, s2) := inf
φ−1∈H1

0 ([s1,s2])

∫ s2

s1

(
φ′2 − Rφ2

)
ds.

If H (s1, s2) > −∞, then the infimum is achieved at some function
φ∗, and φ∗′′ + Rφ∗ = 0. Since R is positive, there holds
H (s1, s2) = 2φ∗′ (s2)− 2φ∗′ (s1) < 0, and

φ∗ (s) > 1, for s ∈ (s1, s2) .

Also define

H (s2, s1) := inf
φ−1∈H1

0 ([s2,s1+2π])

∫ s1+2π

s2

(
φ′2 − Rφ2

)
ds.



Let
Ω0 := {(s1, ..., sn) : 0 < s1 < ... < sn ≤ 2π} .

Let sn+1 := s1 + 2π and define

H (s1, ..., sn) =
n

∑
i=1

H (si , si+1) .

A critical point of H corresponds to a bouncing Jacobi field.
H ≤ 0. To find a maximum for H, consider

Ω1 := {(s1, ..., sn) ∈ Ω0 : H (si , si+1) > −∞ for i = 1, ..., n} .

The assumption n > 2
√
‖R‖L∞ ensures that this set is nonempty.

Indeed, the n-tuple (s̄1, ..., s̄n) with s̄j =
2jπ
n is in this set:

H (s̄i , s̄i+1) = inf
φ∈H1

0 (s̄i ,s̄i+1)

∫ s̄i+1

s̄i

[
φ′2 − R (φ + 1)2

]
ds

≥ inf
φ∈H1

0 (s̄i ,s̄i+1)

∫ s̄i+1

s̄i

[(
n2

4
− R

)
φ2 − 2Rφ− R

]
ds

> −∞.



Define
M := sup

z∈Ω1

H (z) .

Then M is achieved in the interior of Ω1. Indeed, if for a pair
0 < s < t ≤ 2π, H (s, t) > −∞, then we have

H (s, t) < H

(
s,

s + t

2

)
+H

(
s + t

2
, t

)
.

This implies that for a sequence {zk} with zk → ∂Ω1 as k → +∞,
there holds

lim sup
k→+∞

H (zk) <M.

In the case of n = 1, consider the function

H (s) := H (s, s + 2π) , for s ∈ [0, 2π] .

It is defined on L and satisfies H ≤ 0. Under the assumption that
2
√
‖R‖L∞ < 1, the function H is also bounded from below.



Nondegeneracy of bouncing Jacobi field

Definition
A bouncing Jacobi field φ with k minimums is nondegenerate, if
the following problem only has the trivial solution η = 0 :

Jη = 0, in L\ {p1, ..., pk} ,
η+ (pi ) + η− (pi ) = 0, i = 1, ..., k ,

η′+ (pi ) + η′− (pi ) = −
2R(pi )φ(pi )η+(pi )

φ′+(pi )
, i = 1, ..., k .

(2)

This definition can be derived from the second variation of the
energy functional ∫ 2π

0

(
Φ′2 − RΦ2

)
ds.

where Φ (qi ) = 1, for some qi close to pi , i = 1, ..., k .



From bouncing Jacobi field to solutions of Jacobi-Toda
equation

We would like to construct 2π-periodic solutions for the following
Jacobi-Toda equation

u′′ + Ru − c̄ε−2e−u = 0, s ∈ [0, 2π] ,

where c̄ is a positive constant. This equation is closely related to
AC equation.

Lemma
Suppose φ is a nondegenerate bouncing Jacobi field. Then for
ε > 0 small enough, the above Jacobi-Toda equation has a positive
C 2 solution uε defined on L, with ‖u‖L∞ = O (|ln ε|).



Sketch of the proof

First step. Construct solutions away from the bouncing points:
Assume the bouncing Jacobi field φ only has two minimums, at
p1, p2, with 0 < p1 < p2 ≤ 2π.

Let δ1, δ2 > 0 be sufficiently small, with δi = O
(
ln|ln ε|
|ln ε|

)
.

Assume p∗1 , p∗2 are close to p1, p2, to be determined later on. Let
M := 2 |ln ε|+ 2 ln |ln ε| .
Consider the following boundary value problems:{

u′′ + Ru− c̄ε−2e−u = 0, in (p∗2 + δ2, p∗1 − δ1 + 2π) ,
u (p∗2 + δ2) = u (p∗1 − δ1 + 2π) = M,

and {
v′′ + Rv− c̄ε−2e−v = 0, in (p∗1 + δ1, p∗2 − δ2) ,
v (p∗1 + δ1) = v (p∗2 − δ2) = M.



Write u = φ̄1 + η1 and v = φ̄2 + η2. Here φ̄1, φ̄2 satisfy{
φ̄′′1 + R φ̄1 = 0, in (p∗2 + δ2, p∗1 − δ1 + 2π)
φ̄1 (p∗2 + δ2) = φ̄1 (p∗1 − δ1 + 2π) = M,

and {
φ̄′′2 + R φ̄2 = 0, in (p∗1 + δ1, p∗2 − δ2) ,
φ̄2 (p∗1 + δ1) = φ̄2 (p∗2 − δ2) = M.

We are lead to{
η′′1 + Rη1 = c̄ε−2e−(φ̄1+η1), in (p∗2 + δ2, p∗1 − δ1 + 2π) ,
η1 (p∗2 + δ2) = η1 (p∗1 − δ1 + 2π) = 0.

c̄ε−2e−(2φ̄1+η1) can be regarded as a perturbation term. In the
interval [p∗2 + δ2, p∗1 − δ1 + 2π] , there holds

ε−2e−φ̄1 ≤ C |ln ε|−1 .

The existence of a solution η̄1 = o (1) follows from standard
perturbation argument. Similar approach yields the solution v.



For fixed δ1, δ2, positive and small, define the map

G : (p∗1 , p∗2)→
(u′ (p∗2 + δ2) + v′ (p∗2 − δ2) ,

u′ (p∗1 − δ1 + 2π) + v′ (p∗1 + δ1)).

Since φ is a nondegenerated bouncing Jacobi field, the
linearization of this map at the point (p1, p2) is invertible.
Applying the implicit function theorem, we obtain (p̄∗1 , p̄∗2),
depending on δ1, δ2, such that the corresponding solutions u, v
satisfy G (p̄∗1 , p̄∗2) = 0. That is, the slopes of u, v match with each
other.



Step 2. Adjust the parameters δ1 and δ2.
We assume that R is constant in a neighbourhood of pi . The
general case follows from a perturbation argument.
There exists a solution w ≤ M, solving{

w′′ + Rw− c̄ε−2e−w = 0, in (p̄∗1 − δ1, p̄∗1 + δ1) ,
w (p̄∗1 − δ1) = w (p̄∗1 + δ1) = M.

The relation between w′ (p̄∗1 − δ1) and δ1 is given by

δ1 =
ln |ln ε|

w′ (p̄∗1 − δ1)
(1 + o (1)) .

The slope of the solution u has the form

u′ (p̄∗1 − δ1) ∼ φ̄′1 ((p̄
∗
1 − δ1)) ∼ Mφ′ (p̄∗1 − δ1) .



We need to solve an equation for δ1 of the form:

δ1 ∼
ln |ln ε|

M |φ′− (p1)|
∼ ln |ln ε|

Mφ′ (p1)
.

Then we can find δ1 ∈
[

ln|ln ε|
3M|φ′−(p1)| ,

ln|ln ε|
M|φ′−(p1)|

]
such that

w′
(
p̄∗1 − δ̄1

)
= u′

(
p̄∗1 − δ̄1

)
.

Similar arguments apply to δ2. Patching these solutions together,
we then obtain a smooth solution u of the Jacobi-Toda equation.
From the construction, we see that the L∞ norm of u is of the
order O (|ln ε|) .



The Morse index of solutions to the Jacobi-Toda equation

The linearized Jacobi-Toda operator around the solution u is

J∗η := −η′′ − Rη − c̄ε−2e−uη, η ∈ H1,2 (L) .

Since c̄ε−2e−u > 0, the Morse index of the operator J∗ is bounded
from below by the Morse index of the geodesic L.

Lemma
Suppose that the bouncing Jabobi field φ is nondegenerated. Then
the spectrum of the operator J∗ is away from 0, uniformly in ε.



Sketch of the proof

Assume to the contrary that there was a sequence of
eigenfunctions ηε and eigenvalues λε, such that

J∗η = λεη

with λε → 0, ‖ηε‖L∞ = 1.
The solution u has local minimum at the points p̄∗j . There exists a
universal constant c > 0, such that for fixed small constant δ
independent of ε, we have the estimate

ε−2e−u ≤ εcδ, in L\ ∪j
(
p̄∗j − δ, p̄∗j + δ

)
.

It follows that away from these points p̄∗j , ηε converges to a
solution η∗ of Jη = 0, where J is the Jacobi operator of the
geodesic.



The behaviour of the solution near each p̄∗i is more delicate.
Let ξ1 be solution of the equation

γ′′ + c̄ε−2e−uγ = 0

with ξ1(0) = 0 and odd. Let ξ2 be the even solution of this
equation with ξ2(0) = 1. That is, kernels of the linearized Toda
equation. Then near each p̄∗i , η ∼ aξ1 + bξ2.
Since ‖η‖L∞ norm is assumed to be uniformly bounded with
respect to ε, we find that |a| is also uniformly bounded, and
|b| → 0 as ε→ 0. Since |η′ (p̄∗1 − δ1)| is also uniformly bounded,

|b| ln |ln ε| → 0, as ε→ 0.

This together with the fact that ξ1 is even then implies

η∗+ (pi ) = −η∗− (pi ) .



Next we would like to prove

η∗′+ (pi ) + η∗′− (pi ) = −
2R (pi ) φ (pi ) η∗+ (pi )

φ′+ (pi )
.

Fix an index i , and assume p̄∗i = 0. Consider the function

ω (s) := η (s)− η (−s) .

Since R is constant around 0, the function ω still satisfies the
linear equation J∗ω = 0 in this interval. Let q be the point close
p̄∗i where u = m ∼ 2| ln ε|. We fix any σ > 0 small. There holds

ω′ (q)−ω′ (p̄i − σ) =
∫ q

p̄i−σ
ω′′ (s) ds

=
∫ q

p̄i−σ

(
−Rω− c̄ε−2e−uω

)
ds.



At p̄∗1 − δ1, ε−2e−u = m >> R, and around p̄∗1 − δ1,

u ∼ m
[
1 + φ′ (pi ) (s − (p̄∗1 − δ1))

]
.

As a consequence,

ω′ (q)−ω′ (p̄i − σ) = −
∫ q

pi−σ
ε−2e−uωds +O (σ)

=
2R (pi ) φ (pi )ω− (pi )

φ′− (pi )
+O (σ) .

This implies

η∗′+ (pi ) + η∗′− (pi ) = −
2R (pi ) φ (pi ) η∗+ (pi )

φ′+ (pi )
.



Eigenvalue problem associated to bouncing Jacobi fields

Associated with the nondegenerated bouncing Jacobi field, we
have the following eigenvalue problem(EVP)

Jη = −λη, in L\ {p1, ..., pk} ,
η+ (pi ) = −η− (pi ) , i = 1, ..., k .

η′+ (pi ) + η′− (pi ) = −
2R(pi )φ(pi )η+(pi )

φ′+(pi )
, i = 1, ..., k .

Theorem
Let u be the solution of the Jacobi-Toda equation obtained from
bouncing Jacobi field with k minimums, which arises from
maximizing the functional H. Then the Morse index of the
operator J∗ is equal to 2k .



Sketch of the proof
Consider the sequence of eigenfunctions ηε such that

J∗η = −λεη,

with λε > 0. We normalize ηε such that ‖ηε‖L∞ = 1.

Case 1. λε

|ln ε|2
→ 0, as ε→ 0.

We first of all analyze solutions of the equation

−ξ ′′ − c̄ε−2e−uξ = −λξ. (3)

Define the rescaled the function µ = ξ
(

εe
α
2 s√
c̄

)
for suitable α. Let

Γ be the even solution of the standard Toda equation with
Γ(0) = 0. Then µ will satisfy the following normalized equation:

−µ′′ − e−Γµ = −λε2eα

c̄
µ.

By assumption, λε2eα → 0 as ε→ 0. Now the behaviour of η
around p̄∗i is essentially determined by (3) . Hence using the same
arguments as before, we find that ηε converge to an eigenfunction
of the problem (EVP).



Case 2. λε

|ln ε|2
> σ > 0, for some σ independent of ε.

In the interval L\ ∪ (pi − δi , pi + δi ) , the equation J∗η = 0 has
the form

−η′′ ∼ −O
(
|ln ε|2

)
η.

This implies that

|η| → 0, in L\ ∪ (pi − δi , pi + δi ) .

Hence the L∞ norm of η is achieved around pi . This implies that

λε2eα

c̄
→ λ∗,

where −λ∗ is the unique negative eigenvalue of the operator L :

φ→ −φ′′ − e−Γφ.

Moreover, the rescaled function µ converges to the eigenfunction
of the operator L.



Now we want to show the number of negative eigenvalues of the
problem (EVP) is equal to k . This corresponds to the fact that the
Morse index of the critical point (p1, ..., pk) of the function H is
equal to k .
We first claim that the Morse index of the eigenvalue problem
(EVP) is at most k . Suppose to the contrary that there were k + 1
negative eigenvalues of (EVP) with corresponding normalized
eigenfunctions γ1, ..., γk+1, with∫

L
(γiγj ) = δi ,j ,

where δij is the Kronecher symbol. We can find a linear
combination Γ := c1γ1 + ... + ck+1γk+1, with |ci | ≤ 1, such that
Γ equals zero at p1, ..., pk .



By the minimal property of each φi , for σ small,

I (φ + σΓ) ≥ 0.

Here I is the energy functional
∫
L

(
Φ′2 − RΦ2

)
ds. On the other

hand, by the definition of negative eigenvalues and the
computation of the second variation of the energy functional, we
have I (φ + σΓ) < 0. This is a contradiction.
Hence the Morse index of the eigenvalue problem (EVP) is at most
k .
This also implies that the Morse index of J∗ is at most 2k .



Next we prove that the Morse index of the eigenvalue problem
(EVP) is at least k .
Since (p1, ..., pk) is a maximizer of H and is nondegenerated,

H (p1 + e1, ..., pk + ek)−H (p1, ..., pk) ≤ −σ
(
e21 + ... + e2k

)
.

Hence there are k linearly independent functions η1, ..., ηk such
that

I (φ + σv) ≤ 0,

for v ∈ Span {η1, ..., ηk} and |σ| small. This implies that the
Morse index of the eigenvalue problem (EVP) is at least k .
Then we can show that the corresponding solutions of the
Allen-Cahn equation has Morse index 2k.



Solutions with higher multiplicity

The Jacobi-Toda system with k(k > 2) components:

φ′′i + Rφi + c̄ε−2
(
eφi−φi+1 − eφi−1−φi

)
= 0, i = 1, ..., k , in L.

To find smooth solution to this system with bounded Morse
indices, we consider the corresponding Jacobi system

φ′′i + Rφi = 0, i = 1, ..., k . (4)

The notion of bouncing Jacobi fields discussed before can be
generalized to this system. The most general case is quite
complicated. Here we consider the simplest nontrivial case for this
system.



Multiple-component bouncing Jacobi fields

We are interested in multiple-component bouncing Jacobi fields of
this Jacobi system satisfying the following properties:
(B1) There exist points p2, ..., pk with pi 6= pi+1, such that φj is
smooth in L\ {pj , pj−1} for all j .
(B2) For j = 2, ..., k, φj is continuous and not of C 1 at pj , pj+1.
Moreover,

φ′j−1 (pj ,+) = φj (pj ,−) 6= 0, and φ′j−1 (pj ,−) = φ′j (pj ,+) 6= 0.

(B3) For j = 2, ...k − 1, φj − φj−1 ≥ 1, and

φj (pj )− φj−1 (pj ) = 1.



Existence of multiple-component bouncing Jacobi fields

Theorem
Suppose R > 0 and ‖R‖L∞ < 1

2k . Then the Jacobi system has a
multiple-component bouncing Jacobi field.

Each component has two bouncing points, except the first and last
components.
The proof of this result is a generalization in the case of one
equation, and is of variational nature.



Sketch of the proof
For any point pk ∈ L and h > 0, under the assumption that
‖R‖L∞ < 1

2k , the minimization problem

min
φ(pk )=h

∫
L

(
φ′2 − Rφ2

)
ds

has a unique solution φk . With φk at hand, we consider the initial
value problems:{

φ′′ + Rφ = 0, for s > pk ,
φ (pk) = h− 1, φ′ (pk) = φ′k (pk,−) .

This ODE has a unique solution φ+
k−1. Similarly, the problem{

φ′′ + Rφ = 0, for s < pk ,
φ (pk) = h− 1, φ′ (pk) = φ′k (pk,+)

has a unique solution φ−k−1. They can be regarded as functions
defined on L.



There is a point pk−1 ∈ L such that

φ+
k−1 (pk−1) = φ−k−1 (pk−1) .

The functions φ+
k−1 patches with φ−k−1 yielding a function φk−1

defined on L. We then consider the initial value problems{
φ′′ + Rφ = 0, for s > pk−1,
φ (pk−1) = φk−1 (pk−1)− 1, φ′ (pk−1) = φ′k−1 (pk−1,−) ,

and{
φ′′ + Rφ = 0, for s < pk−1,
φ (pk−1) = φk−1 (pk−1)− 1, φ′ (pk−1) = φ′k−1 (pk−1,+) .

We can again find pk−2 ∈ L such that solutions of these two
problems equal each other. Then these two solutions patch
together and yield a function φk−2 defined on L. Repeat this
procedure and obtain functions φj and points pj , with
j = k − 1, ..., 2. The assumption ‖R‖L∞ < 1

2k ensures that this
procedure is well defined.



Let φ1 be solution of the minimization problem

min
φ(p2)=φ2(p2)−1

∫
L

(
φ′2 − Rφ2

)
ds.

Define the energy functional

G (pk , h) =
k

∑
j=1

∫
L

(
φ′2j − Rφ2

j

)
ds.

If (pk , h) is a critical point of this function, then the corresponding
functions φ1, ..., φk is the desired solution. Let

t0 := sup
pk∈L,h∈R

G (pk , h) .

As |h| → +∞, G (pk , h)→ −∞. Hence t0 < +∞. It then follows
that t0 is the maximum of G and it is achieved.


