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Turbulence, K’41

ϵ = −⟨dE
dt

⟩

From unforced NSE:
ϵ = ν⟨|∇u|2⟩.

zeroth law (Sreeni)
ϵ > 0.

two thirds law:
⟨|u(x + ℓ)− u(x)|2⟩ ∼ (ϵ|ℓ|) 2

3

inertial range: |ℓ| ≥ ℓd , ℓd =
(
ν3

ϵ

) 1
4
= k−1

d

Kolmogorov spectrum:

E(k) = Cϵ
2
3 k− 5

3 , in inertial range: k ≤ kd .

Four-fifths law: homogeneous and isotropic turbulence, third order
longitudinal moment: ⟨((u(x + ℓ)− u(x)) · ℓ

|ℓ| ))
3⟩ = − 4

5ϵ|ℓ|.
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Intermittency
Exceedingly high gradients of velocity are distributed sparsely in
space and time.

Structure functions:

⟨|u(x + ℓ)− u(x)|p⟩ ∼ (ϵ|ℓ|)
p
3

(
|ℓ|
L

)−αp

= CUp
(
|ℓ|
L

)ζp

with ζp = p
3 for K’41. Nonzero αp = intermittency corrections.

ϵ =
U3

L
,

behavior holds for large time,

|ℓ| ≥ ℓd

and Reynolds number to infinity

Re =
UL
ν
.
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Mathematical considerations
What are ⟨· · · ⟩?

Theoretically, they should be expected values with
respect to a robust measure in path space, supported on solutions of
fluid equations, in permanent state, in the limit of infinite Reynolds
number.
▶ Long time averages of functionals of solutions of the

Navier-Stokes equation
▶ Followed by limit of Reynolds to infinity

Now, ”robust” means stable, ”permanent” means time invariant, and
”infinite Reynolds number” means viscosity sent to zero (fixing all
else).
▶ Infinite time and infinite Reynolds number limits do not commute.
▶ Unstable laminar steady states give ”wrong” Nusselt vs. Rayleigh

Forced NSE equations, smooth regime. Long time averages

−
 

dE(t)
dt

dt = ν

 
∥∇u(x , t)∥2

L2dt −
 

(f (t) · u(t))L2dt

What should ϵ be? Normally, with ν = 0, E(t) is unbounded. If E(t) is
bounded then the ϵ defined as the difference in the RHS, is zero.
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Multiscale solutions

Theorem
Let Ω be an open set in R3. For any α ∈ (1,3), there exist families of
smooth stationary solutions of the forced Navier-Stokes equations

u · ∇u +∇p = ν∆u + F , ∇ · u = 0,

with u ∈ C∞
0 (Ω), ∇p ∈ C∞

0 (Ω), and such that ν∥∇u∥2
L2(Ω) is bounded

below, independently of ν as ν → 0. There is an inertial range of
wave numbers k ∈ [k0, kd ] such that the dissipation wave number
kd ∼ ν−

1
3−α diverges with ν → 0 and the energy spectrum E(k) obeys

E(k) ∼ k−α (1)

in the inertial range. α = 5
3 , i.e. K41 is singled out as having the only

scale independent prefactor. The force F is smooth, compactly
supported, and bounded in Lp(Ω) for p ∈ [1, 6

2+α ), 1 ≤ α ≤ 2 (and
p ∈ [1, 6

8−α ], when α ∈ [2,3]).



Compactly supported steady Euler solutions
Axisymmetric, steady, with swirl, compactly supported solutions found
by Gavrilov. Constructed using the Grad-Shafranov equation by La,
Vicol, -C:

u =
∂zψ

r
er −

∂rψ

r
ez +

F
r

eϕ

with ψ = ψ(r , z) and F = F (ψ), F arbitrary. Then P = P(ψ) arbitrary,
and ψ solves

∆∗ψ + FF ′ +
P ′

r2 = 0

where ′ = d
dψ and the Grad-Shafranov operator is

∆∗ψ = ∂2
r ψ − ∂rψ

r
+ ∂2

zψ.

This set-up leads to steady solutions of the Euler equations with

P + p +
|u|2

2
= constant .

Localizable, if and only if u · ∇p = 0, i.e. if and only if

u · ∇|u|2 = 0.



Construction of multiscale solns NSE

uB(x) · ∇uB(x) +∇pB(x) = 0, ∇ · uB = 0
in the unit hollow annulus A = {x = (r , z) | 1

2 < |r − 1|2 + |z|2 < 1}
with

uB ∈ (C∞
0 (A))3, ∇pB ∈ C∞

0 (A)
(constructed in La-Vicol-C after Gavrilov).
Take Ω ⊂ R3, a sequence of points xj ∈ Ω, rotations Rj ∈ O(3), and
numbers L > 0, T > 0, ℓ > 0 τ > 0, with associated length scales
and time scales

ℓj = L2−ℓj , τj = T 2−τ j ,

for j = 1,2, . . . , such that functions

uj(x) =
L
T

2(τ−ℓ)jRjuB

(
2ℓj

R∗
j (x − xj)

L

)
have disjoint supports in dilated, translated and tilted hollow annuli ( a
string of lifesavers, linked or not)

Aj = xj + ℓjRj(A) ⊂ Ω

Remark: choice of τj totally free, in particular they could be chosen
differently and change sign with j .



Properties and choices
Supports of gradients of pressures ∇pj also disjoint. Therefore, for
any N ≥ 1,

u(x) =
N∑

j=1

uj(x).

solves the steady incompressible Euler equation. Note u ∈ C∞
0 (Ω)3.

Fix τ = aℓ with a ∈ ( 3
2 ,

5
2 ). Keep L,T , ℓ free. Range of a: energy

bounded, enstrophy diverging as N → ∞.

k = L−12ℓj ,

The energy spectrum E(k) is by definition the contribution of the
kinetic energy at scale k , per unit mass and per scale:

E(k) = L−3k−1∥uj∥2
L2(Ω)

It follows that

E(k) =
L3

T 2 (kL)−α, α = 6 − 2a ∈ (1,3).



Forced Navier-Stokes

ν =
L2

T
2−(3−α)Nℓ

ϵ = νL−3∥∇u∥2
L2(Ω) =

L2

T 3 C1.

E(k) = C− 2
3

1 L
5
3 ϵ

2
3 (kL)−α

K41: α = 5
3 ∈ (1,3). (a = 13

6 ).

E(k) = CK ϵ
2
3 k− 5

3

Only spectrum independent of L. The smallest scale ℓd = L2−Nℓ in
terms of ϵ, ν:

ℓ−1
d = kd = C

− 1
3(3−α)

1 L
4

3(3−α)−1ϵ
1

3(3−α) ν−
1

3−α

K41: α = 5
3 and familiar expression, independent of L:

k−1
d = ℓd = C ν

3
4 ϵ−

1
4 .



Incompressible Fluid Pressure

Momentum equation in homogeneous (constant density)
incompressible Newtonian fluids

∂tu + u · ∇u − ν∆u = −∇p

with incompressibility constraint

∇ · u = 0

Gradient of pressure is the driver.

Pressure equation

−∆p = ∇ · (u · ∇u)

In the absence of pressure: max principle, no NS singularity.
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Intermittency and regularity
Known high derivatives a priori estimates:

ˆ T

0
∥u(t)∥

2
2m−1
Hm dt <∞, m ≥ 1 (Foias-Guillope-Temam ’80)

with consequences
ˆ T

0
∥u(t)∥L∞dt <∞, (Tartar ’80)

ˆ T

0
∥∇u∥

1
2
L∞dt <∞ (C′90).

By a different method, using vorticity:
ˆ T

0
∥∆(u(t))∥

4
3

L
4
3 ,q

dt <∞ (C ’90, Lions ’96, Vasseur ’10, Vasseur-Yang ’21)

All the above estimates are quantitative.
Grujic and collaborators: assuming sparse upper level sets of high
derivatives, the gap between the known a priori estimates and
conditions for global regularity vanishes asymptotically, as the
number of derivatives tends to infinity. Cheskidov and Shvykoy:
conditions based on Littlewood-Paley components: if intermittency
”dimension” < 3/2.
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Sufficient conditions for regularity, Navier-Stokes
Ladyzhenskaya-Prodi-Serrin:
u ∈ Lp(dt ;Lq(dx)), 2

p + 3
q = 1, q > 3. In particular,

ˆ T

0
∥u∥2

L∞dt <∞ ⇒ u ∈ C∞.

q = 3 :
sup
t≤T

∥u∥L3 <∞ ⇒ u ∈ C∞

(Escauriaza-Seregin-Sverak).
In terms of the pressure:

ˆ T

0
∥p∥2

L3dt <∞ ⇒ u ∈ C∞

(Berselli, Galdi).
inf
x,t

p > −∞ ⇒ u ∈ C∞

(Seregin, Sverak).



Quantitative LPS

Theorem
Let 3 < q ≤ ∞. If

ˆ T

0
∥u(t)∥

2q
q−3
Lq dt ≤ Mq <∞,

then

∥u(t)∥2
Ḣ1 ≤ ∥u(0)∥2

Ḣ1 exp

[
Cν−

q+3
q−3

ˆ t

0
∥u(s)∥

2q
q−3
Lq ds

]
.

for 0 ≤ t ≤ T . Accessible.

Strong solutions: Given u(T0) ∈ V where V is the closure of C∞
0

divergence-free fields in H1, there exists a unique

u ∈ L∞(T0,T0 + τ ;V ) ∩ L2(T0,T0 + τ ;H2 ∩ V ).

Strong solutions are C∞ smooth (unless boundary conditions or
forcing obstruct).
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Criterion in terms of pressure

Theorem
There exists an absolute constant C, such that, if p = RiRj(uiuj)
satisfies the finite uniform integrability condition

∃δ > 0,∀t ,∀A |A| ≤ δ ⇒
ˆ

A
|p(x , t)| 3

2 dx ≤
( ν

C

)3

for all t ∈ [0,T ], then u ∈ L∞(0,T ;L3(R3)).

Moreover for r ≥ 4,

∥u(·, t)∥Lr ≤ ∥u0∥Lr exp

(
Ct∥u0∥2

L2

νδ

)
.

Accessible.
Condition is weaker than uniform integrability, because ν

C is fixed. It
leads to explicit quantitative bounds on the enstrophy.
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Ladyzhenskaya- Prodi-Serrin for Pressure

Theorem
Let p = RiRj(uiuj). Assume that there exists q > 3

2 such that

ˆ T

0
∥p(t)∥

2q
2q−3

Lq(R3)
dt <∞

Then u ∈ L∞(0,T ;L3(R3)) and u is smooth on [0,T ].

Note that q = ∞ is allowed and the condition is

ˆ T

0
∥p(t)∥L∞dt <∞.



Ladyzhenskaya- Prodi-Serrin for Pressure

Theorem
Let p = RiRj(uiuj). Assume that there exists q > 3

2 such that

ˆ T

0
∥p(t)∥

2q
2q−3

Lq(R3)
dt <∞

Then u ∈ L∞(0,T ;L3(R3)) and u is smooth on [0,T ].

Note that q = ∞ is allowed and the condition is

ˆ T

0
∥p(t)∥L∞dt <∞.



Structure function and regularity
Let

S2(x , t)(r) =
ˆ
|y|≤2r

|u(x + y)− u(x)|2

|y |3
dy

Theorem
There exists an absolute constant C such that if

∃δ > 0, ∃r(t),
´ T

0 r−4(t)dt <∞,

|A| ≤ δ ⇒
´

A (S2(x , t)(r))
3
2 dx ≤

(
ν
C

)3

holds for on [0,T ], then the solution of the Navier-Stokes
equation is smooth on [0,T ].

Moreover, Accessible: for q ≥ 4

∥u(·, t)∥Lq ≤ ∥u0∥Lq exp

(
Ct∥u0∥2

L2

νδ
+ ν−

3
2 ∥u0∥2

L2Γ(t)

)

where

Γ(t) =

√ˆ t

0
r−4(s)ds.
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Nearly selfsimilar example
Let

u(x , t) = V + smooth
where the profile V satisfies

∥V (z + ·)− V (·)∥L3 ≤ UL
(
|z|
L

)s

for some s > 0. Let us note that this condition is satisfied by many
functions with slow decay which are not in L3 or even in L2, such as
V (y) = (1 + |y |)−β , β > 0. Of course, the condition is also satisfied
on Bs

3,∞(R3).
We have ˆ

A
S2(x , r)

3
2 dx ≤ Cs(UL)3

( r
L

)3s

We take
UL
ν

= Re(V ) ≤ R

and see, by taking
( r

L

)3s ≤ C−1
s (2CR)−3

ˆ T

0
L−4dt <∞, Re(V ) ≤ R ⇒ Regularity



A Dini condition

Theorem
Assume that u satisfies

∥δy u∥L3 ≤ m(|y |)

where δy u(x , t) = u(x + y , t)− u(x , t), and where 0 ≤ m is a
time independent function satisfying

ˆ 1

0
m2(ρ)

dρ
ρ
<∞.

Then u is smooth on [0,T ]

Clearly m(r) ∼ log−α(r−1) with α > 1
2 is enough.



An Lq Dini Condition

Theorem
Let 3 < q ≤ ∞. Assume that u satisfies

∥δy u∥Lq ≤ m(|y |, t)

where δy u(x , t) = u(x + y , t)− u(x , t), and where 0 ≤ m is a
time dependent function satisfying

ˆ T

0

[ˆ 1

0
m2(ρ, t)

dρ
ρ

] q
q−3

dt <∞.

Then u is smooth on [0,T ]

The case q = ∞ is allowed, and, in that case it is required that

ˆ T

0

ˆ 1

0
m2(ρ, t)

dρ
ρ

dt <∞



Time dependent regions of interest

Theorem
Let U(t), G(t) and r(t) be positive numbers such that

ˆ T

0
(r(t)−4 + U(t)2 + G(t))dt <∞.

Consider the set

B(t) = {x | |u(x , t)| ≥ U and |∇u(x , t)| ≥ G}.

There exists an absolute constant C such that, if

ˆ
|y|≤r(t)

(ˆ
B(t)

|δy u(x , t)|3dx

) 2
3 dy
|y |3

≤
( ν

C

)2

then the solution of Navier-Stokes equations is smooth and
obeys explicit a priori bounds.



Multifractal scenario

We assume that the velocity increments

s2(x , r) =
 
|y|=r

|u(x + y)− u(x)|2dS(y)

obey bounds

s2(x , r) ≤ G2
( r

L

)2α(x)
, S2(x , r0) ≤ CG2 1

α(x)

( r0

L

)2α(x)

a.e. in x ∈ B(t) with 0 < r < r0 < L.
In multifractal turbulent intermittent scenarios, it is assumed that there
is a spectrum of near-singularities of Hölder exponent h and that
these are achieved on sets Σh of dimension d(h) ≤ 3 which occur
randomly with probability dµ(h).



Implementation
A region Vh around Σh, partition it in small disjoint cubes of size ρ
with ρ ≤ r0. The multifractal assumption is that the number of such
cubes of Vh is of the order Nh(ρ) =

(
ρ
L

)−d(h). Assuming α(x) ≥ h to
hold on each such cube, we have

S2(x , r0) ≤ CG2h−1
( r0

L

)2h
.

It follows thatˆ
BU∩Vh

S2(x , r0)
3
2 dx ≤ C(GL)3h− 3

2

( r0

L

)3−d(h)+3h
.

Summing in h, remembering the frequency, we obtainˆ
BU∩(∪hVh)

S
3
2
2 (x , r0)dx ≤ C(GL)3

ˆ 1

0
h− 3

2

( r0

L

)3−d(h)+3h
dµ(h)

In the multifractal formalism, the structure function exponents are
defined by

ζp = inf
h
(3 − d(h) + ph).

ˆ
B∩(∪hVh)

S2(x , r0)
3
2 dx ≤ Cµ(GL)3

( r0

L

)ζ3



Euler equations
Notation:

a 7→ X (a, t), ∂tX (a, t) = u(X (a, t), t).

Dt = ∂t + u · ∇, (Dt f ) ◦ X = ∂t(f ◦ X ).

∇u = S + J, S =
1
2
(∇u + (∇u)T ), J =

1
2
(∇u − (∇u)T )

Jv = ω × v

Dtω = Sω, “vorticity equation”

DtS + S2 + J2 + P = 0, “S equation”

J2 = −|ω|2

4
(I − ξ ⊗ ξ)

P = ∇∇p, ξ =
ω

|ω|

Dt |ω| = α|ω|, α = PV
ˆ

D(ξ(x), ξ(x + y), y)|ω(y)||y |−3dy



Nonnegative Pressure Hessian blow up
If the matrix P = ∇∇p is nonnegative in a weak vorticity region
carried by the flow, then there is blow up.

Theorem
(C ’95). (A simplified version). Let a be a marked point and assume
that T > 0 is a (coherence) time with the properties that the vorticity
is bounded and the pressure Hessian is nonnegative on the trajectory
x = X (a, t), t ≤ T :

sup
0≤t≤T ,x=X(a,t)

|ω(x , t))| ≤ Ω,

P(x , t)v · v ≥ 0, ∀v ∈ R3, for x = X (a, t), t ≤ T .

Assume there exists a unit vector v0 ∈ S2 such that

σ0 := S(a,0)v0 · v0 < −Ω

2
.

Then blow up occurs if the coherence time is long enough

TΩ ≥ log

(
1 +

2Ω
2|σ0| − Ω

)
.
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Pressure Hessian component bound: no blow up

Theorem
(Chae-C, ’21) Let (u,p) ∈ C1(R3 × (0,T )) be a solution of the Euler
equation with u ∈ C([0,T );W 2,q(R3)), for some q > 3. If

ˆ T

0
exp

(ˆ t

0
ds

ˆ s

0
∥[ζ · Pξ]−(τ)∥L∞dτ

)
dt < +∞,

then lim supt→T ∥u(t)∥W 2,q < +∞.

In particular, if

lim sup
t→T

(T − t)2∥[ζ · Pξ]−(t)∥L∞ < 1

then lim supt→T ∥u(t)∥W 2,q < +∞.

Above: [x ]− = max{−x ,0},

ξ =
ω

|ω|
, ζ =

Sξ
|Sξ|

.
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Remarks

Because
[ζ · Pξ]− ≤ ∥P∥

we have in particular that if

ˆ T

0
exp

(ˆ t

0
ds

ˆ s

0
∥P(τ)∥L∞dτ

)
dt < +∞,

then lim supt→T ∥u(t)∥W 2,q < +∞.

In particular, if

lim sup
t→T

(T − t)2∥P(t)∥L∞ < 1

then lim supt→T ∥u(t)∥W 2,q < +∞.
Note, however that only one special component of P, and only its
negative part are needed to rule out blow up.
Recall models (Vieillefosse, C’94) (Dt → ∂t ) and the blow up for
nonnegative P.
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Localized version

Theorem
(Chae-C, ’21) Let Let (u,p) ∈ C1(B(x0, r)× (T − r ,T )) be a solution
of the Euler equations with
u ∈ C([T − r ,T );W 2,q(B(x0, r)))∩ L∞(T − r ,T ;L2(B(x0, r))) for some
q ∈ (3,∞). We suppose

ˆ T

T−r
∥u(t)∥L∞(B(x0,r))dt < +∞,

If ˆ T

T−r
exp

(ˆ t

0
ds

ˆ s

0
∥[ζ · Pξ]−(τ)∥L∞(B(x0,r))dτ

)
dt < +∞,

then for all ϵ ∈ (0, r) lim supt↗T ∥u(t)∥W 2,q(B(x0,ϵ)) < +∞. If

lim sup
t→T

(T − t)2∥[ζ · Pξ]−(t)∥L∞(B(x0,r)) < 1,

then for all ϵ ∈ (0, r) lim supt↗T ∥u(t)∥W 2,q(B(x0,ϵ)) < +∞.



Main idea of proof
We have

D2
t ω + Pω = 0.

This follows from the S equation and the vorticity equation, Dtω = Sω.
Now

Dt |Dtω| = Dt(Sω) · ζ

because ζ = Sω
|Sω| =

Sξ
|Sξ| . Thus

Dt |Dtω|+ (Pξ, ζ)|ω| = 0.

Lagrangian variables:

ω̃ = ω ◦ X , q = (Pξ, ζ) ◦ X

So, we have
d
dt

| d
dt
ω̃|+ q|ω̃| = 0,

and, integrating in time,
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Hessian bound implies no blow up, continued
∣∣∣∣ d
dt
ω̃

∣∣∣∣ = γ0 −
ˆ t

0
q|ω̃|dτ

Now
d
dt

|ω̃| ≤
∣∣∣∣ d
dt
ω̃

∣∣∣∣
and so

|ω̃(t)| ≤ |ω̃0|+ γ0t +
ˆ t

0
ds

ˆ s

0
q−|ω̃|dτ

holds pointwise, at fixed label a. We have a Gronwall Lemma:

Lemma
If α(t) is nondecreasing and β(t) ≥ 0 then, for y(t) ≥ 0 we deduce
from

y(t) ≤ α(t) +
ˆ t

0
ds

ˆ s

0
β(τ)y(τ)dτ

that
y(t) ≤ α(t)e

´ t
0 ds

´ s
0 β(τ)dτ
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Idea of proofs of conditional regularity NSE
All proofs based on a decomposition of the hydrodynamic pressure at
scale r , with

f (x , r) =
1

4πr2

ˆ
|x−y|=r

f (y)dS(y)

and the quantity b(x , r) defined by

b(x , r) = p(x , r) +
1

4πr2

ˆ
|x−y|=r

(
y − x
|y − x |

· u(y)
)2

dS(y)

which obeys a local equation

Lemma
(C ’13) Let Ω be an open set in R3, let x ∈ Ω. Let r < dist(x , ∂Ω), and
let u be a divergence-free vector field in C2(Ω)3. Let v ∈ R3. Let p
solve its equation in Ω. Then

r∂r b(x , r) +
1

4π

ˆ
|ξ|=1

σij(ξ)wi(x + rξ)wj(x + rξ)dS(ξ) = 0

where σij(ξ) = 3ξiξj − δij and w(x + rξ) = u(x + rξ)− v.



Representation formulas

p(x) = β(x , r) + π(x , r)

This is valid for any r > 0.
▶ β(x , r) is an explicit average of p at distance less than 2r .

β(x , r) =
1
r

ˆ 2r

r
p(x , ρ)dρ

▶ p(x)− β(x , r) vanishes for harmonic functions.
▶ β(x , r) obeys good bounds at fixed r .
▶ π(x , r) has explicit integral representation in terms of squares of

increments of velocity u(x)− u(y) for |x − y | ≤ 2r .
▶ π(x , r) vanishes quadratically in r for almost all t .



Recap

▶ Beware of manufactured forces. Long time statistics are the main
issue.

▶ Regularity conditions exist which permit multiscale, even
multifractal scenarios.

▶ For Euler equations, a bound on one (well chosen) component of
the Hessian of pressure implies regularity.


