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Turbulence, K’'41

dE
€ <E>
From unforced NSE:
e =v(|Vul?).
zeroth law (Sreeni)
e > 0.

two thirds law: ,
(lu(x +£) = u(x)P) ~ (elf))?

1
inertial range: || > (g, lg = (";) f =k
Kolmogorov spectrum:
E(k) = Ceik™3, ininertial range: k < kg.

Four-fifths law: homogeneous and isotropic turbulence, third order
longitudinal moment: (((u(x +¢) — u(x)) - 177))%) = —gel¢l.
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Exceedingly high gradients of velocity are distributed sparsely in
space and time.
Structure functions:

(julx +6) = uClF) ~ (|e|>’3’(€|> —cw('f')%

with ¢, = & for K'41. Nonzero o, = intermittency corrections.

U3
=1
behavior holds for large time,
1] > Lg
and Reynolds number to infinity
UL

Re = —.
v
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Mathematical considerations

What are (- --)? Theoretically, they should be expected values with
respect to a robust measure in path space, supported on solutions of
fluid equations, in permanent state, in the limit of infinite Reynolds
number.

» Long time averages of functionals of solutions of the
Navier-Stokes equation

» Followed by limit of Reynolds to infinity

Now, “robust” means stable, "permanent” means time invariant, and
“infinite Reynolds number” means viscosity sent to zero (fixing all
else).

» Infinite time and infinite Reynolds number limits do not commute.
» Unstable laminar steady states give "wrong” Nusselt vs. Rayleigh
Forced NSE equations, smooth regime. Long time averages

£ S0t = o f [Tutx, ) et — £ (600) - ult)isot

What should ¢ be? Normally, with v = 0, E(t) is unbounded. If E(t) is
bounded then the ¢ defined as the difference in the RHS, is zero.



Multiscale solutions

Theorem
Let Q be an open set in R3. For any o € (1,3), there exist families of
smooth stationary solutions of the forced Navier-Stokes equations

u-Vu+Vp=vAu+F, V-u=0,

with u € Cg°(2), Vp € C3°(Q2), and such that 1/||VUH /s bounded
below, independently of v as v — 0. There is an /nert/al range of
wave numbers k € [ko, kg] such that the dissipation wave number

Ky ~ v diverges with v — 0 and the energy spectrum E(k) obeys
E(k) ~ k= (1)

in the inertial range. o = g i.e. K41 is singled out as having the only
scale independent prefactor. The force F is smooth, compactly
supported, and bounded in LP(Q) for p € [1 1<a<2(and

p€[1,8 =], whena € [2,3]).

’ 2+a)



Compactly supported steady Euler solutions
Axisymmetric, steady, with swirl, compactly supported solutions found
by Gavrilov. Constructed using the Grad-Shafranov equation by La,

Vicol, -C:

u= azrwe, - a'—wez + —ey
with ¢ = 4(r, z) and F = F(v), F arbitrary. Then P = P(¢) arbitrary,
and ¢ solves

Pl
A"+ FF' + == 0
where ' = % and the Grad-Shafranov operator is

o

A= 0f — == + 9.

This set-up leads to steady solutions of the Euler equations with
|uf?
P+p+ o = constant.
Localizable, if and only if u- Vp = 0, i.e. if and only if

u-ViuP?=o.



Construction of multiscale solns NSE

ug(x)-Vup(x)+Vpe(x)=0, V-ug=0
in the unit hollow annulus A= {x = (r,z)| 3 <|r—12+|z]? <1}
with
ug € (C§°(A))°, Vps € C§°(A)
(constructed in La-Vicol-C after Gavrilov).
Take Q C R®, a sequence of points x; € , rotations R; € O(3), and
numbers L >0, T > 0, £ > 0 7 > 0, with associated length scales
and time scales
G=127%  5=T277
forj=1,2,..., such that functions

. R (x — X
Uj(X) _ %2(7_0/"?]“8 <2£] j( - /))

have disjoint supports in dilated, translated and tilted hollow annuli ( a
string of lifesavers, linked or not)

A/' =X+ ijj(A) cQ
Remark: choice of 7; totally free, in particular they could be chosen
differently and change sign with j.



Properties and choices

Supports of gradients of pressures Vp; also disjoint. Therefore, for
any N> 1,

N
u(x) = y(x).
=

solves the steady incompressible Euler equation. Note u € C5°(2)3.
Fix 7 = at with a € (2, 3). Keep L, T, ¢ free. Range of a: energy
bounded, enstrophy diverging as N — oc.

k=L""24

The energy spectrum E(k) is by definition the contribution of the
kinetic energy at scale k, per unit mass and per scale:

E(k) =L %k HU/‘HEZ(Q)

It follows that

E(k)= 5(k)™*,  a=6-2ac(1,3).



Forced Navier-Stokes

L2
— 2—(3—a)NZ
14 77-

L2

€ = UL_SHVUHEz(Q) = 70‘].

E(k) = Cxeik™3

Only spectrum independent of L. The smallest scale ¢y = L2~V in
terms of €, v:

— 4 1 1
651 = kg = C1 3= [ 3@-a) 3G a) y Ta

K41: a = % and familiar expression, independent of L:

Al

kil =ty4= Curies.
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Incompressible Fluid Pressure

Momentum equation in homogeneous (constant density)
incompressible Newtonian fluids

ou+u-Vu—vAu=-Vp
with incompressibility constraint
V-u=0
Gradient of pressure is the driver. Pressure equation

—Ap=V-(u-Vu)

In the absence of pressure: max principle, no NS singularity.
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Known high derivatives a priori estimates:

T 2

/ |u(t)||fm "dt < co, m>1 (Foias-Guillope-Temam '80)

0
with consequences
T T 1
/ lu(t)|| = dt < o, (Tartar '80) / IVullidt < so (C'90).
0 0
By a different method, using vorticity:

.
/ IA(u(t))]]®, dt < oo (C’90, Lions ‘96, Vasseur '10, Vasseur-Yang '21)
0

™~ s

EX]

All the above estimates are quantitative.

Grujic and collaborators: assuming sparse upper level sets of high
derivatives, the gap between the known a priori estimates and
conditions for global regularity vanishes asymptotically, as the
number of derivatives tends to infinity. Cheskidov and Shvykoy:
conditions based on Littlewood-Paley components: if intermittency
"dimension” < 3/2.



Sufficient conditions for regularity, Navier-Stokes

Ladyzhenskaya-Prodi-Serrin:
u e LP(dt; L9(dx)), 2+ 2 =1, g> 3. In particular,

T
/ Ul di < 00 = u € C
0

g=3:
sup ||ul];s < 0o = ue C™
t<T

(Escauriaza-Seregin-Sverak).
In terms of the pressure:

)
/ I3t < o0 = u € C*
0

(Berselli, Galdi).
imtcp>foo:$u€C°°
X,

(Seregin, Sverak).



Quantitative LPS

Theorem
Let3 < q < oo. If

T 29
| o)zt < My < o
0
then

PN 2%
lu(®)1Z, < [lu(0)I, exp [Cv_g—s/o IU(S)IIZq‘SdS]~

for0<t< T. Accessible.




Quantitative LPS

Theorem
Let3 < q < oo. If

T 29
/ lu(t) |5 dt < My < o,
0
then
s (! 2
lu(t)|2, < [U(O)|Z, exp lCV /0 lu(s)|1% " ds| .

for0<t< T. Accessible.

Strong solutions: Given u(Tp) € V where V is the closure of Cg°
divergence-free fields in H', there exists a unique

ueLl®(To, To+7, V)N LE(To, To + 7, HZ N V).

Strong solutions are C*° smooth (unless boundary conditions or
forcing obstruct).



Criterion in terms of pressure

Theorem
There exists an absolute constant C, such that, if p = R;R;(u;u;)
satisfies the finite uniform integrability condition

3 3
35> 0,Vt,YA |A| ga;»/\p(x,t)pdxg (5)
JA

forall t € [0, T], then u € L>=(0, T; L3(R3)).
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Criterion in terms of pressure

Theorem
There exists an absolute constant C, such that, if p = R;R;(u;u;)
satisfies the finite uniform integrability condition

' 3 v\3
36> 0,Vt,VA |A <6 = / Ip(x, 1) 2dx < <7>
Ja C
forallt € [0, T], then u € L>=(0, T; L3(R3)). Moreover forr > 4,

CtIIUollfz>

u(-, )|l < [|uoller exp <
720}

Accessible.

Condition is weaker than uniform integrability, because % is fixed. It
leads to explicit quantitative bounds on the enstrophy.



Ladyzhenskaya- Prodi-Serrin for Pressure

Theorem

Let p = RiR;(uju;). Assume that there exists q > 2 such that

r 2
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Then u € L>(0, T; L3(R®)) and u is smooth on [0, T].




Ladyzhenskaya- Prodi-Serrin for Pressure

Theorem
Let p = RiR;(uju;). Assume that there exists q > 2 such that

r 2
| e gyt < o0

Then u € L>(0, T; L3(R®)) and u is smooth on [0, T].

Note that g = ~ is allowed and the condition is

|
AHMWMW<W



Structure function and regularity
Let

Sa(x, t)(r):/ \U(X+Y)—U(X)|2dy

lyl<ar |y‘3

Theorem
There exists an absolute constant C such that if

36 >0, 3r(t), [y r4(t)dt < oo,
Al <8 = [, (So(x, 1)(r)E dx < (4)°

holds for on [0, T], then the solution of the Navier-Stokes
equation is smooth on [0, T].




Structure function and regularity
Let

St - [ 1) v

lyl<ar |y‘3

ay

Theorem
There exists an absolute constant C such that if

36 >0, 3r(t), [y r4(t)dt < oo,
Al <8 = [, (So(x, 1)(r)E dx < (4)°

holds for on [0, T], then the solution of the Navier-Stokes

Ctlluol = s
[u(:, O)lles < [[tol|ra exp <V5L2 + 172 w2 (1)

where

r(t)= /Otr“(s)ds.

equation is smooth on [0, T]. Moreover, Accessible: forq > 4




Nearly selfsimilar example
Let
u(x,t) = V + smooth
where the profile V satisfies
E4

ez - vols < ot ()]

for some s > 0. Let us note that this condition is satisfied by many
functions with slow decay which are not in L2 or even in L2, such as
V(y) = (1+1y|)~?, B > 0. Of course, the condition is also satisfied
on B _(R?).

We have

/ASz(X, r)¥dx < Cs(UL)? ({)35

We take UL
— =Re(V)<R
14

and see, by taking ({)33 < C5'(2CR)~®

;
/ L=*dt < 00, Re(V) < R = Regularity
0



A Dini condition

Theorem
Assume that u satisfies

16y ull2 < m(lyl)

where jyu(x,t) = u(x+y,t) — u(x,t), and where 0 < mis a
time independent function satisfying

1
/ mz(p)@ < 0.
0 P

Then u is smooth on [0, T]

Clearly m(r) ~ log™*(r~") with & > 1 is enough.



An L9 Dini Condition

Theorem
Let3 < g < co. Assume that u satisfies

[oyulls < m(lyl, t)

where jyu(x,t) = u(x+y,t) — u(x,t), and where 0 < m is a
time dependent function satisfying

q

T[ ot 73
/ / m?(p, t)@ dt < oo
0 0 P

Then u is smooth on [0, T]

The case g = o is allowed, and, in that case it is required that

T 1
/ / m?(p, t)@dt< 00
o Jo p



Time dependent regions of interest

Theorem
Let U(t), G(t) and r(t) be positive numbers such that

/T(r(i‘)4 + U(t)? + G(t))dt < oo.
0
Consider the set
B(t) = {x| |u(x,t)| > U and |Vu(x, t)| > G}.

There exists an absolute constant C such that, if

%
dy v\2
spulx, Pdx | = < (=
/y|<r(r) </B(t)| A > P (c)

then the solution of Navier-Stokes equations is smooth and
obeys explicit a priori bounds.




Multifractal scenario

We assume that the velocity increments
s = f lutxy) - uasiy
y|=r

obey bounds

7 20(x) 20(x)
s2(x,r) < G? (Z) . Sa(x, 1) < cezagx) (%0)

ae. inxeB()with0<r<r<L

In multifractal turbulent intermittent scenarios, it is assumed that there

is a spectrum of near-singularities of H6lder exponent h and that

these are achieved on sets ¥}, of dimension d(h) < 3 which occur

randomly with probability du(h).



Implementation
A region Vj, around X, partition it in small disjoint cubes of size p
with p < rp. The multifractal assumption is that the number of such

cubes of Vj is of the order Njy(p) = (%)_d(h). Assuming a(x) > hto
hold on each such cube, we have

2h
Ss(x, 1) < CG2h™" (%’) .

It follows that
3—d(h)+3h
/ Sa(x, ro)2dx < C(GL)3h~% (%’)
BynVy
Summing in h, remembering the frequency, we obtain
3 1 3—d(h)+3h
/ 83 (x, ro)dx < C(GL)3/ ht (i")
Byn(Un Vi) 0 L

In the multifractal formalism, the structure function exponents are
defined by

du(h)

¢ = inf(3 — d(h) + ph).

€
/ Salx. ) ax < G, (GLY* ()
Bﬂ(Uth) L



Euler equations
Notation:
ar X(a,t), 9X(at)=u(X(at)t).

D[:81+U'v, (th)OX:@[(fOX)

1 1
Vu=8+J, S=g(Vu+ (vu)h), J= 5(Vu— (Vu)")
JV=wxv
Diw = Sw, “vorticity equation”

DS+ 8%+ J2+P=0, “S equation”



Nonnegative Pressure Hessian blow up
If the matrix P = VVp is nonnegative in a weak vorticity region
carried by the flow, then there is blow up.



Nonnegative Pressure Hessian blow up
If the matrix P = VVp is nonnegative in a weak vorticity region
carried by the flow, then there is blow up.

Theorem

(C '95). (A simplified version). Let a be a marked point and assume
that T > 0 is a (coherence) time with the properties that the vorticity
is bounded and the pressure Hessian is nonnegative on the trajectory
x=X(at),t<T:

sup lw(x, )] < Q,
0<t<T,x=X(a,t)

P(x,t)v-v>0, VYveR3 forx=X(at), t<T.

Assume there exists a unit vector vy € S? such that

og = S(a,O)Vo VW < —%.

Then blow up occurs if the coherence time is long enough

2Q
TQ > | 1+ —).
- Og( Jr2|Uo|—9)



Pressure Hessian component bound: no blow up

Theorem

(Chae-C, 21) Let (u, p) € C'(R3 x (0, T)) be a solution of the Euler
equation with u € C([0, T); W29(R®)), for some q > 3. If

/OTexP (/O’ds/OSHC- Pf]_(T)||Lood7—> ot < 4o,

then limsup;_, 7 ||u(t)|| we.a < +oo.



Pressure Hessian component bound: no blow up

Theorem
(Chae-C, 21) Let (u, p) € C'(R3 x (0, T)) be a solution of the Euler
equation with u € C([0, T); W29(R3)), for some q > 3. If

/OTexP (/O’ds/OSHC : Pf]_(T)||Locd7-> ot < 4o,

then limsup, 7 ||u(t)||we.a < +oo. In particular, if

im sup (T 12| - PE]-(t)]|1 < 1

t—

then limsup,_, 7 |[u(t)|| we.a < +o0.
Above: [x]- = max{—x, 0},
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[C-PE- <P

we have in particular that if

T t s
/exp </ dS/ IIP(T)ILoodT> dt < 400,
0 0 0

then limsup;_, 7 [Ju(t)||we.e < +o0.



Remarks
Because
[C-PE- <P

we have in particular that if

T t s
/exp </ dS/ IIP(T)ILoodT> dt < 400,
0 0 0

then limsup;_, 7 ||u(t)||wzq < +oo. In particular, if

limsup (T — 1‘)2H'D(t)HL°o <1
T

t—

then limsup;_, 7 [|u(t)||we.e < +o0.



Remarks

Because
[C-PE- <P

we have in particular that if

T t s
/exp </ dS/ IIP(T)LoodT> dt < 400,
0 0 0

then limsup;_, 7 ||u(t)||wzq < +oo. In particular, if

limsup (T — 1‘)2H'D(t)HL°o <1
T

t—

then limsup;_, 7 [|u(t)||we.e < +o0.
Note, however that only one special component of P, and only its
negative part are needed to rule out blow up.



Remarks

Because
[C-PE- <P

we have in particular that if

T t s
/exp </ dS/ IIP(T)LoodT> dt < 400,
0 0 0

then limsup;_, 7 ||u(t)||wzq < +oo. In particular, if

limsup (T — 1‘)2H'D(t)HL°o <1
T

t—
then limsup;_, 7 [|u(t)||we.e < +o0.
Note, however that only one special component of P, and only its
negative part are needed to rule out blow up.

Recall models (Vieillefosse, C'94) (D; — ;) and the blow up for
nonnegative P.



Localized version

Theorem

(Chae-C, 21) Let Let (u,p) € C'(B(xo,r) x (T —r, T)) be a solution
of the Euler equations with

ue C(T —r,T), W29(B(xo,r)))NL>(T —r, T; L3(B(xo,r))) for some
g € (3,00). We suppose

]
/ 1U(t)| i (80,0 Ot < +00

T—r

T t s
/ exp (/ ds/ ¢ - Pf]—(T)|Loo(B(xU,r))dT> dt < 400,
T—r 0 0

then for all e e (0, f) lim sup,/T ||u(t)HW2v‘7(B(Xo7e)) < —+o0. If

If

limsup (T — 1)2[|[¢ - PE]- (1)l (Bxo,ry) < 1
t—T

then for all e € (0, r) limsup; 7 [|U(t)]|we.a(B(x,e)) < +00-
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Main idea of proof

We have

thw—l— Pw = 0.

This follows from the S equation and the vorticity equation, D;w = Sw.
Now
Dt|th| = Dt(SOJ) . C

because ¢ = 82 = g Thus
D[ Dyw| + (PE, ¢)|w| = 0.
Lagrangian variables:
w=wolX, g= (P& ¢ o X
So, we have
\ w\ +qlwl =0,

and, integrating in time,



Hessian bound implies no blow up, continued

‘d~

t
4% =0 [ ailar




Hessian bound implies no blow up, continued

4] =0 [ awlar
Now
d . d._.
&|W| < ‘dtw
and so

t S
|mm9w+w+/w/q¢m7
0 0

holds pointwise, at fixed label a.



Hessian bound implies no blow up, continued

Now

and so t .
@) < |ao|+w+/ ds/ q_I5ldr
0 0

holds pointwise, at fixed label a. We have a Gronwall Lemma:

Lemma
If a(t) is nondecreasing and 5(t) > 0 then, for y(t) > 0 we deduce
from . .
v <a®+ [ ds [ s@yrdr
0 0
that

y(1) < aft)eh %) Andr



Idea of proofs of conditional regularity NSE
All proofs based on a decomposition of the hydrodynamic pressure at
scale r, with

f(x,r) = # /|xyr f(y)as(y)

and the quantity b(x, r) defined by

(2= u(y))2 as(y)

_ 1
b =pen+ g [ (=

[x—y|=r

which obeys a local equation

Lemma

(C ’13) Let Q2 be an open set inR3, let x € Q. Let r < dist(x,0Q), and
let u be a divergence-free vector field in C?(Q)3. Letv € R3. Letp
solve its equation in Q2. Then

rorb(x,r) ai(&)wi(x + r&)wi(x + r&)dS(€) =0

+ R
47 Jig)=1

where (&) = 3&:& — 6 and w(x + ré) = u(x + rg) — v.



Representation formulas

p(x) = B(x. 1) +m(x,1)

This is valid for any r > 0.
> B(x,r)is an explicit average of p at distance less than 2r.

1 2
s =7 [ Plxo)dp
r

> p(x) — B(x, r) vanishes for harmonic functions.
> B(x,r) obeys good bounds at fixed r.
>

m(x, r) has explicit integral representation in terms of squares of
increments of velocity u(x) — u(y) for [x — y| < 2r.

> w(x, r) vanishes quadratically in r for almost all ¢.



Recap

» Beware of manufactured forces. Long time statistics are the main
issue.

» Regularity conditions exist which permit multiscale, even
multifractal scenarios.

» For Euler equations, a bound on one (well chosen) component of
the Hessian of pressure implies regularity.



