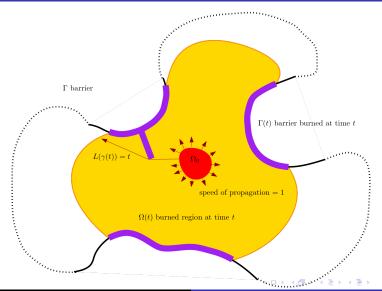
# Spiral strategies for blocking fire

Martina Zizza, S.B.

SISSA, Trieste

October 30, 2023



▶ The barrier  $\Gamma \subset \mathbb{R}^2$  is a Borel set with finite length

- ▶ The barrier  $\Gamma \subset \mathbb{R}^2$  is a Borel set with finite length
- ► The *fire* is propagating in every direction with speed 1 starting from an open set  $Ω_0 \subset \mathbb{R}^2$ , but it cannot cross the barrier Γ

- ▶ The barrier  $\Gamma \subset \mathbb{R}^2$  is a Borel set with finite length
- The *fire* is propagating in every direction with speed 1 starting from an open set  $\Omega_0 \subset \mathbb{R}^2$ , but it cannot cross the barrier  $\Gamma$
- ► The burned region is the relatively open set  $\Omega(t) \subset \mathbb{R}^2\Gamma$  which is reached by the fire at time t:  $\forall x \in \Omega(t)$  there is a curve with length < t which connects  $\Omega_0$  to x avoiding  $\Gamma$

- $\blacktriangleright$  The barrier  $\Gamma\subset\mathbb{R}^2$  is a Borel set with finite length
- ► The *fire* is propagating in every direction with speed 1 starting from an open set  $Ω_0 \subset \mathbb{R}^2$ , but it cannot cross the barrier Γ
- ► The burned region is the relatively open set  $\Omega(t) \subset \mathbb{R}^2\Gamma$  which is reached by the fire at time t:  $\forall x \in \Omega(t)$  there is a curve with length < t which connects  $\Omega_0$  to x avoiding  $\Gamma$
- ▶ The barrier is *admissible* if the part  $\Gamma(t) = \Gamma \cap \text{clos}(\Omega(t))$  reached by the fire has length  $\leq \sigma t$ ,

$$\mathcal{H}^1(\Gamma(t)) = \mathcal{H}^1(\Gamma \cap \operatorname{clos}(\Omega(t))) \leq \sigma t$$

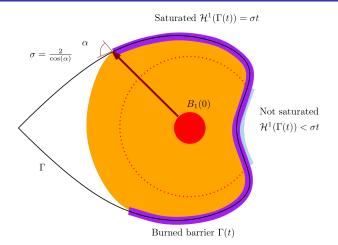
- $\blacktriangleright$  The barrier  $\Gamma\subset\mathbb{R}^2$  is a Borel set with finite length
- ► The *fire* is propagating in every direction with speed 1 starting from an open set  $Ω_0 \subset \mathbb{R}^2$ , but it cannot cross the barrier Γ
- ► The burned region is the relatively open set  $\Omega(t) \subset \mathbb{R}^2\Gamma$  which is reached by the fire at time t:  $\forall x \in \Omega(t)$  there is a curve with length < t which connects  $\Omega_0$  to x avoiding  $\Gamma$
- ► The barrier is *admissible* if the part  $\Gamma(t) = \Gamma \cap \text{clos}(\Omega(t))$  reached by the fire has length  $\leq \sigma t$ ,

$$\mathcal{H}^1(\Gamma(t)) = \mathcal{H}^1(\Gamma \cap \operatorname{clos}(\Omega(t))) \leq \sigma t$$

The *fire blocking problem* is whether there exists an admissible barrier (strategy) encircling the fire in finite time.



#### Simple closed curve

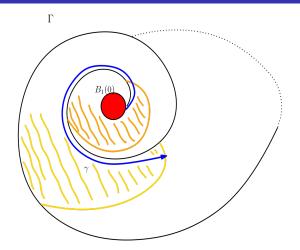


 $\sigma >$  2 OK

[Bressan (..., Chiri), optimal strategies Bressan\_De Lellis (Robyr)]



# Spiral-like barrier



 $\sigma > \text{2.61... OK}$ 

[Bressan (...), Klein-Langetepe-Levcopoulos]

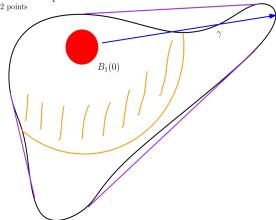
#### If $\sigma$ < 2 then the fire cannot be blocked

[Bressan:] if  $\sigma \le 1$  then the fire cannot be blocked, if  $\sigma \le 2$  it cannot be blocked with a simple closed curve



Hence it not saturated

- 3) By a homotopy argoment deform  $\Gamma$  into a convex closed curve
- 4) The length of  $\Gamma$  is stringtly greater than  $L(\gamma)$



### If $\sigma \leq 2.61...$ then the fire cannot be blocked by a spiral

# [Klein-Langetepe-Levcopoulos:] if $\sigma \leq \frac{1+\sqrt{5}}{2}$ then a spiral cannot block the fire

Assume that when the barrier arrives to  $P_i$  it has already overtaken  $P_{i-1}$ .

The next point  $P_{i+1}$  must satisfy

$$1+\frac{|P_i-P_{i-1}|}{\sigma}+\frac{|P_{i+1}-P_i|}{\sigma}\leq |P_i|\leq |P_i-P_{i-1}|$$

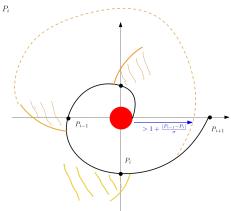
Hence

$$\frac{|P_{i+1}-P_1|}{\sigma} \ge \frac{1}{\sigma-1} + \frac{|P_i-P_{i-1}|}{\sigma(\sigma-1)}$$

If 
$$\sigma \leq \frac{1+\sqrt{5}}{2}$$
, then

$$\frac{|P_{i+1}-P_i|}{2} > 1 + |P_i - P_{i-1}|$$

so that the series is diverging.



#### Our result

We have proved the following.

#### **Theorem**

If  $\sigma$  < 2.3, then a spiral cannot block the fire.

#### Our result

We have proved the following.

#### **Theorem**

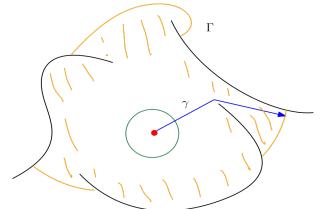
If  $\sigma$  < 2.3, then a spiral cannot block the fire.

#### Some remarks:

- 1. it is possible to tune the method to obtain  $\sigma \leq 2.5$  (with additional technicalities)
- 2. the critical case  $\sigma \leq 2.61...$  is very delicate: any perturbation could lead to a closing spiral.

# Some simplifications

- ► The fire can be assumed to start in (0,0), i.e. u is the distance from the origin avoiding  $\Gamma$
- ▶ The barrier is outside the unit ball  $B_1(0)$



#### Some notation

Let

$$\mathcal{A}(t[x]) = \underbrace{t[x]}_{\text{time taken by the fire}} -\frac{1}{\sigma} \underbrace{L(t[x])}_{\text{length of burned barrier}}$$

be the *admissibility functional*: an admissible barrier satisfies  $\mathcal{A} \geq 0$  by definition.

#### Some notation

Let

$$\mathcal{A}(t[x]) = \underbrace{t[x]}_{\text{time taken by the fire}} -\frac{1}{\sigma} \underbrace{L(t[x])}_{\text{length of burned barrier}}$$

be the admissibility functional: an admissible barrier satisfies  $\mathcal{A} \geq 0$  by definition.

Saturated set 
$$S = \{x \in \Gamma : \mathcal{A}(t[x]) = 0\}$$
  
Unsaturated set  $U = \{x \in \Gamma : \mathcal{A}(t[x]) > 0\}$ 

#### Some notation

Let

$$\mathcal{A}(t[x]) = \underbrace{t[x]}_{\text{time taken by the fire}} -\frac{1}{\sigma} \underbrace{L(t[x])}_{\text{length of burned barrier}}$$

be the admissibility functional: an admissible barrier satisfies  $\mathcal{A} \geq 0$  by definition.

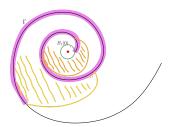
Saturated set 
$$S = \{x \in \Gamma : \mathcal{A}(t[x]) = 0\}$$
  
Unsaturated set  $U = \{x \in \Gamma : \mathcal{A}(t[x]) > 0\}$ 

In the following an *optimal barrier* is the barrier with blocks the fire with minimal length.

#### Definition

A spiral barrier  $\Gamma$  is a simple curve  $\gamma(s)$ ,  $s \in [0, L)$ , such that

- $ightharpoonup \gamma(0) = (1,0), \ \dot{\gamma}(0) = e^{i\theta}, \ \theta \in [0,\pi/2],$
- $ightharpoonup \dot{\gamma} \wedge \ddot{\gamma}(s) \geq 0$ ,
- ▶  $\{u = t\} \cap \Gamma$  is a connected arc.

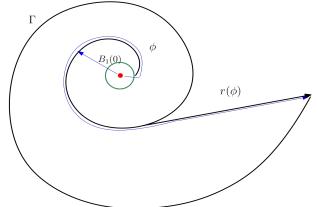


For optimal barriers some of the above assumptions are redundant.



The barrier can be described by means of the coordinates:

- ightharpoonup the rotation angle  $\phi$  of the optimal ray,
- the length  $r(\phi)$  of the free part of the optimal ray.



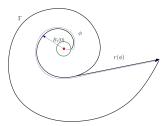
The barrier can be described by means of the coordinates:

- ightharpoonup the rotation angle  $\phi$  of the optimal ray,
- the length  $r(\phi)$  of the free part of the optimal ray.

The equations is the delayed DE

$$\frac{dr(\phi)}{d\phi} = \cot(\beta(\phi))r(\phi) - R(\phi'),$$

with  $R(\phi')$  radius of curvature,  $\phi = 2\pi + \phi' + \beta(\phi')$ , and  $\beta \in [0, \pi/2]$  is a control parameter.



The barrier can be described by means of the coordinates:

- $\blacktriangleright$  the rotation angle  $\phi$  of the optimal ray,
- $\blacktriangleright$  the length  $r(\phi)$  of the free part of the optimal ray.

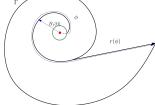
The equations is the delayed DE

$$\frac{dr(\phi)}{d\phi} = \cot(\beta(\phi))r(\phi) - R(\phi'),$$

with  $R(\phi')$  radius of curvature,  $\phi = 2\pi + \phi' + \beta(\phi')$ , and  $\beta \in [0, \pi/2]$ 

The admissibility functional is

is a control parameter. The admissibility functional is 
$$\mathcal{A}(\phi) = 1 + L(\phi') + r(\phi) - \cos(\alpha)L(\phi) \geq 0, \quad \cos(\alpha) = \frac{1}{\sigma}.$$

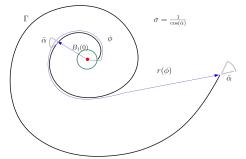


#### A different optimality condition

#### Definition

We say that the admissible  $\Gamma$  is optimal at the angle  $\bar{\phi}$  if  $r(\bar{\phi})$  is minimal.

In particular, if  $r(\bar{\phi}) < 0$  then the barrier blocks the fire before  $\bar{\phi}$ . An example of solution is for  $\beta = \bar{\alpha}$ ,



#### A different optimality condition

#### Definition

We say that the admissible  $\Gamma$  is optimal at the rotation  $\bar{\phi}$  if  $r(\bar{\phi})$  is minimal.

In particular, if  $r(\bar{\phi}) < 0$  then the barrier blocks the fire before  $\bar{\phi}$ . An example of solution is for  $\beta = \alpha$ ,

$$\begin{split} \frac{dr(\phi)}{d\phi} &= \cot(\alpha)r(\phi) - \frac{r(\phi - 2\pi - \alpha)}{\sin(\alpha)}, \\ r(\phi) &= \begin{cases} e^{\cot(\alpha)\phi} & \phi \in [0, 2\pi), \\ e^{\cot(\alpha)(\phi - 2\pi)}(e^{\cot(\alpha)2\pi} - 1) & \phi \in [2\pi, 2\pi + \alpha). \end{cases} \end{split}$$

#### A different optimality condition

#### Definition

We say that the admissible  $\Gamma$  is optimal at the rotation  $\bar{\phi}$  if  $r(\bar{\phi})$  is minimal.

In particular, if  $r(\bar{\phi}) < 0$  then the barrier blocks the fire before  $\bar{\phi}$ . An example of solution is for  $\beta = \alpha$ ,

$$\frac{dr(\phi)}{d\phi} = \cot(\alpha)r(\phi) - \frac{r(\phi - 2\pi - \alpha)}{\sin(\alpha)},$$

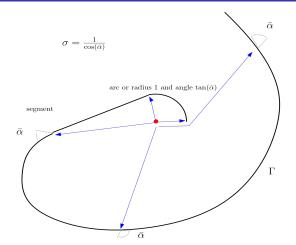
$$r(\phi) = \begin{cases} e^{\cot(\alpha)\phi} & \phi \in [0, 2\pi), \\ e^{\cot(\alpha)(\phi - 2\pi)} (e^{\cot(\alpha)2\pi} - 1) & \phi \in [2\pi, 2\pi + \alpha). \end{cases}$$

One can prove that this  $r(\phi)$  blows up if there is a real solution to

$$\lambda = \cot(\alpha) - \frac{e^{-\lambda(2\pi + \alpha)}}{\sin(\alpha)},$$

and this happens only if  $\alpha \leq \bar{\alpha} = 1.17...$ ,  $\sigma = 1/\cos(\bar{\alpha}) = 2.61...$ 

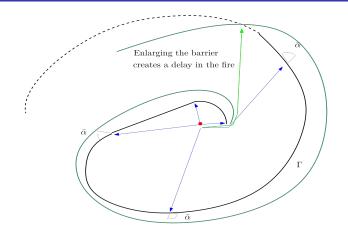
# An example of (locally) optimal barrier



#### Lemma

The above barrier is optimal for angles  $[0,2\pi]$ .

# An example of (locally) optimal barrier



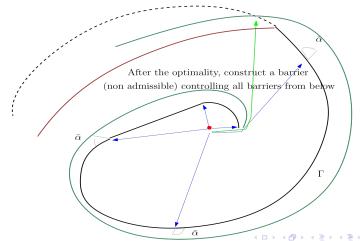
#### Corollary

It is not optimal for  $\phi>2\pi$  , and the optimal barrier depends on  $\bar{\phi}$  .



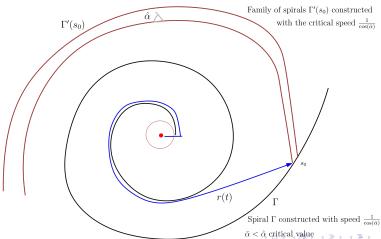
# The (almost) fastest closing spiral

**Problem:** given a spiral barrier  $r(\phi)$ , replace the part  $\phi \geq \phi_0$  with a faster closing spiral.



# The (almost) fastest closing spiral

**Problem:** given a spiral barrier  $r(\phi)$ , replace the part  $\phi \geq \phi_0$  with a faster closing spiral.



# The (almost) fastest closing spiral

**Problem:** given a spiral barrier  $r(\phi)$ , replace the part  $\phi \geq \phi_0$  with a faster closing spiral.

Conclude the proof by showing that:

- the saturated spiral with  $\hat{\alpha}$  equal to the critical angle  $\frac{1}{\cos(\hat{\alpha})}=2.61\ldots$ , does not close: actually it growth exponentially
- ▶ the family of perturbed spirals  $\Gamma'(s_0)$  is increasing w.r.t.  $s_0$  if  $\bar{\alpha} \leq 2.3$  (even something better if you like technicalities)
- deduce that the narrowest spiral in the family is the one starting from the initial (1,0), and thus all spirals are exponentially diverging
- conclude by

$$r(\phi) = \Gamma'(\phi,0) + \int_0^\phi \frac{d\Gamma'(\phi,s_0)}{ds_0} ds_0 \geq \Gamma'(\phi,0).$$

Spiral barriers The (almost) fastest closing spiral

Thanks for the attention!