
From the Optimal Transport problem of Monge to
Einstein’s Gravitation through Euler’s

Hydrodynamics

Yann Brenier, CNRS,
LMO, Orsay, Université Paris-Saclay,

in association with the team CNRS-INRIA "MOKAPLAN".

International Conference on recent advances in Nonlinear PDEs
and their applications,

THE CHINESE UNIVERSITY OF HONG-KONG, 30 OCT 2023

YB (CNRS, LMO-Orsay) From Monge to Einstein via Euler visio from Paris/30 Oct 2023 1 / 20



Many works have made connections between
Einstein’s equations and Fluid Mechanics
(ex. Damour, Jackiw, Slemrod, Unruh...) and there is
even an entire related field called "analogue gravity".

Recent works linking Einstein and optimal transport
R. McCann, Camb. J. Math. 2020,
A. Mondino, S. Suhr J. EMS 2022, arXiv:1810.13309,
all based on Sturm/Lott-Villani OT "synthetic" definition
of Ricci curvature.
However, the present talk (based on Y.B. CRAS 22) seems unrelated to these works.
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The (quadratic) Monge OT problem:

Monge 2(ρ0, ρ1)
2 = inf

∫
Rd

|T (x)− x |2ρ0(x)dx ,

for all Borel maps T for which ρ1(y)dy is the image by y = T (x) of ρ0(x)dx ,

admits a hydrodynamical formulation (à la Euler)

Monge 2(ρ0, ρ1)
2 = inf

∫ 1

0
dt

∫
Rd

ρ(t , x)|v(t , x)|2dx ,

(ρ, v) s.t. ∂tρ+∇ · (ρv) = 0, ρ(0, ·) = ρ0 ρ(1, ·) = ρ1,

which is convex in (ρ,m = ρv), Benamou-B. 2000.
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Euler’s Hydrodynamics

In 1757, Euler described fluids in a definite way as a
"field theory", with a comprehensive and consistent set
of partial differential equations:

∂tρ+∇ · (ρv) = 0, ∂t(ρv) +∇ · (ρv ⊗ v) +∇(p(ρ)) = 0.

This was the prototype of the future field theories in
Physics (Maxwell, Einstein, Schrödinger, Dirac)... and
the first multidimensional evolution PDEs ever written!
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Euler 1757 : the 1st multiD evolution PDEs ever writen...
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The least action principle for the Euler equations

It amounts to looking for fields
(t , x) ∈ R×Rd → (ρ, v)(t , x) ∈ R+ ×Rd , critical points

of
∫

(
ρ|v |2

2
− Φ(ρ))dxdt (where rΦ”(r) = p′(r))

subject to the ’continuity equation’: ∂tρ+∇ · (ρv) = 0.

Optimality equations read:

v = ∇ϕ, ∂tϕ+ |∇ϕ|2/2 + Φ(ρ) = 0

⇒ ∂t(ρv) +∇ · (ρv ⊗ v) +∇(p(ρ)) = 0.
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The pressureless case and the Monge problem

Without pressure, p = 0, the action principle reads

crit
(∫

ρ|v |2

2
dxdt

)
, s.t. ∂tρ+∇ · (ρv) = 0

and leads to a convex minimization problem in (ρ, ρv)
for suitable time-boundary conditions, which is nothing
but the optimal transport problem of Monge in its
Eulerian formulation!
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A matrix-valued generalization

Find matrix-valued fields (C,V )(x , ξ) ∈ R4×4 over the
tangent bundle (x , ξ) ∈ (R4)2 of R4, critical points of∫

trace(C(x , ξ)V 2(x , ξ))dxdξ

subject to ∇x · C +∇ξ · (CV + VC) = 0 and

C = ∇ξA − I4∇ξ · A, V = ∇ξW ,

for some vector-potentials A(x , ξ), W (x , ξ) ∈ R4.
crit

∫
Ck

j V j
qV q

k s.t. ∂x j C j
k + ∂ξj (CV + VC)j

k = 0, C j
k = ∂ξk Aj − ∂ξγ Aγδj

k , V j
k = ∂ξk W j .
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Theorem (Y.B. CRAS 2022) in english on my webpage at LMO

Let g be a smooth solution to the Einstein equations in
vacuum R4 with Christoffel symbols Γ ="g−1∂g".

Then
(C,V ) solves the matrix-valued OT problem, where

C j
k(x , ξ) = ∂ξk Aj(x , ξ)− ∂ξqAq(x , ξ) δj

k ,

Aj(x , ξ) = ξ j detg(x) cos(
gαβ(x)ξαξβ

2
),

V j
k(x , ξ) = ∂ξk W j(x , ξ), W j(x , ξ) = −

Γj
γσ(x)ξγξσ

2
.

In addition: √
−detg(x) g jk (x) = cst

∫
(ξjAk (x , ξ) + ξk Aj(x , ξ))dξ.
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A first comment: Einstein vs Monge

(x , ξ) ∈ R4+4 ⇐ (t , x) ∈ R1+d ; C j
k(x , ξ) ⇐ ρ(t , x)

∂x j C j
k + ∂ξj(CV + VC)j

k = 0 ⇐ ∂tρ+∇ · (ρv) = 0,∫
trace(C(x , ξ)V 2(x , ξ))dxdξ ⇐

∫
ρ|V |2dxdt .

CAVEAT! Our variational principle is designed only to
get the right equations, not to get their solutions!!!
(This is why we entirely ignored boundary conditions.)
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A second comment. There is a (nearly convex!)
formulation of this matrix-valued OT problem:

Find 4 × 4 matrix-valued fields (C,V ,M)(x , ξ) over the
tangent bundle (x , ξ) ∈ (R4)2, critical points of∫

trace(M(x , ξ)V (x , ξ)− C(x , ξ)V 2(x , ξ))dxdξ

subject, for some vector-potential A(x , ξ), to the linear
constraints ∇x · C +∇ξ · M = 0, C = ∇ξA − I4 ∇ξ · A.

N.B. Here the optimization in V should be interpreted as the Legendre transform (but

not Legendre-Fenchel!) of the non-convex function V ∈ R4×4 → trace(CV 2) ∈ R.
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Einstein in OT form: some steps of the proof

Basic idea: view Γ as a collection of 4 vector fields
over the tangent bundle (x , ξ) ∈ R8 which are linear in
ξ: V j

k(x , ξ) = −Γj
kγ(x)ξ

γ,

so that the Riemann and the
Ricci curvatures just read as commutators:

Rn
jkm(x)ξ

m =
(
(∂xk + V γ

k ∂ξγ)V
n
j − (∂x j + V γ

j ∂ξγ)V
n
k

)
(x , ξ)

= ∂xk V n
j + ∂ξj(V γ

k V n
γ )− ∂x j V n

k − ∂ξk (V γ
i V n

γ ),

Rkm(x)ξm = ∂xk V j
j + ∂ξj(V γ

k V j
γ)− ∂x j V j

k − ∂ξk (V γ
j V j

γ).
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The zero-Ricci curvature ’tangent bundle’ equation

∂xk V j
j + ∂ξj(V γ

k V j
γ)− ∂x j V j

k − ∂ξk (V γ
j V j

γ) = 0

is going to play for Einstein (in vacuum) the role taken
by the multiD Burgers equation ∂tv +∇(|v |2/2) = 0
for the quadratic OT problem in its hydrodynamical
form.
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A toy model : the multiD Burgers equation (1/4)

∂tV +∇(
|V |2

2
) = 0, V = V (t , x) ∈ Rd .

Ignoring BC, let us look for critical points (A,V ) of∫ (
−∂tA · V − (∇ · A)|V |2

2

)
dxdt , A = A(t , x) ∈ Rd .
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A toy model : the multiD Burgers equation (2/4)

Critical points (A,V ) of

I(A,V ) =

∫ (
−∂tA · V − (∇ · A)|V |2

2

)
dxdt .

∂A I(A,V ) = 0 ⇒ (1) ∂tV +∇(
|V |2

2
) = 0

(as expected),

∂V I(A,V ) = 0 ⇒ (2) ∂tA + V (∇ · A) = 0

(additional information that we are now going to use).
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A toy model : the multiD Burgers equation (3/4)

We use (2) ∂tA + V (∇ · A) = 0 to rewrite I(A,V )
as:

I2(A,V ) =

∫
(∇ · A)|V |2

2
dxdt .

Claim: whenever (A,V ) is critical for I(A,V ), then
(A,V ) is also critical for I2(A,V ), but subject to (2).

Proof: Let us introduce Lagrangian L(A,V ,B) = I2(A,V )−
∫

B · (∂tA + V (∇ · A)).
The corresponding optimality equations read:
∂BL(A,V ,B) = 0 ⇒ (2) (of course), ∂VL(A,V ,B) = 0 ⇒ (∇ · A)V − B(∇ · A) = 0,
∂AL(A,V ,B) = 0 ⇒ −∇(|V |2/2) + ∂tB +∇(B · V ) = 0.

Assuming that (A,V ) is critical for I(A,V ), we have

∂tA + V (∇ · A) = 0 and ∂tV +∇(|V |2/2) = 0. Setting B = V , we are just in business!
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A toy model : the multiD Burgers equation (4/4)

Let us now write everything in terms of (ρ = ∇ · A,V ):

(2) ∂tA + V (∇ · A) = 0 ⇒ ∂tρ+∇ · (ρV ) = 0,

I2(A,V ) =

∫
(∇ · A)|V |2

2
dxdt ⇒

∫
ρ|V |2

2
dxdt .

So, we just recover OT in its hydrodynamical form. We
may now use the same method for Einstein in vacuum,
starting from the zero Ricci curvature equation.
THANKS!
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