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1.  Introduction on the Brakke flow.

A family of smooth k-dimensional surfaces       in        is mean curvature flow (MCF)Rn

1

Mt

1

if the normal velocity = the mean curvature vector. v = h

1

Even if the initial data is smooth, singularities can happen later.

==> a suitable weak solution for MCF : Brakke flow.

φ ∈ C1
c (Rn × [0,∞))

1

How to formulate a weak notion of normal velocity:

Suppose that        is moving by the normal velocity                   .   Mt

1

v = v(x, t)

1

For any                                 ,   φ ∈ C1
c (Rn × [0,∞))

1

d

dt

(∫

Mt

φ(x, t) dHk(x)
)
=

∫

Mt

(
φt+∇φ·v−φh·v

)
dHk(x) =

∫

Mt

{
φt+(∇φ−φh)·v

}
dHk(x)

1

and conversely, if a smooth normal vector field                   satisfies    ṽ = ṽ(x, t)

1

d

dt

(∫

Mt

φ(x, t) dHk(x)
)
=

∫

Mt

{φt + (∇φ− φh) · ṽ} dHk(x)

1

for any                                ,

then                        ṽ ≡ v.

1



Lemma If a smooth family of k-dimensional surfaces        satisfies Mt

1

d

dt

(∫

Mt

φ(x, t) dHk(x)
)
≤

∫

Mt

{
φt +

(
∇φ− φh) · h

}
dHk(x)

1

for any non-negative φ ∈ C1
c (Rn × [0,∞))

1

then        is a MCF.             Mt

1
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Lemma If a normal vector field      satisfies the inequality ṽ

1

d

dt

(∫

Mt

φ(x, t) dHk(x)
)
≤

∫

Mt

{
φt +

(
∇φ− φh) · ṽ

}
dHk(x)

1

for any non-negative φ ∈ C1
c (Rn × [0,∞))

1

then we have               So this inequality characterizes the normal velocity. ṽ ≡ v.

1

Proof  The difference                     satisfies  w := ṽ − v

1

0 ≤
∫

Mt

(∇φ− φh) · w dHk(x)

1

for any non-negative                             .  φ ∈ C1
c (Rn × [0,∞))

1

Suppose               .                 

For any           , let                                               , plug this into above, change λ > 0

1

φλ(x, t) := λ−k+1φ(λ−1(x− x0), t)

1

x0 ∈ Mt

1

variables                           and let               .   Then we have    z := λ−1(x− x0)

1

λ → 0+

1

0 ≤
∫

Tx0Mt

∇φ(z, t)·w(x0, t) dHk(z) =
(∫

Tx0Mt

(∇φ(z, t))⊥ dHk(z)
)
·w(x0, t).

1

This implies                 .                 w(x0, t) = 0

1

Lemma If a smooth family of k-dimensional surfaces        satisfies Mt

1

and non-negative φ ∈ C1
c (Rn × [0,∞))

1

then        is a MCF.             Mt

1

∫

Mt2

φ(x, t2) dHk(x)−
∫

Mt1

φ(x, t1) dHk(x) ≤
∫ t2

t1

dt

∫

Mt

{φt+(∇φ−φh)·h} dHk(x)

1

0 ≤ t1 < t2 < ∞

1

for any 
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Definition of Brakke flow  A family of Radon measures      is a Brakke flow if µt

1

1. For a.e.            there exist a countably k-rectifiable set        and 
such that                       , in other word,  
for any                           


2. For a.e.           there exists a vector field                  satisfying      
 
                                        for all                         Also it is locally square-integrable 
wrt space-time measure                       It is called the (generalized) mean curvature 
vector of      . (cf. Brakke’s perpendicularity theorem.)


3. For all                          and non-negative                             , we have  

t ≥ 0

1

Mt

1

θt ∈ L1
loc(Mt : N)

1

µt = θtHk!Mt

1

∫

Rn

φ(x) dµt =

∫

Mt

φ(x)θt(x) dHk(x)

1

φ ∈ Cc(Rn).

1

t ≥ 0

1

h ∈ L2
loc(µt)

1

∫

Mt

divTxMtg dµt = −
∫

Mt

h · g dµt

1

g ∈ C1
c (Rn : Rn).

1

dµ := dµt dt.

1

µt

1

0 ≤ t1 < t2 < ∞

1

φ ∈ C1
c (Rn × [0,∞))

1

Observation  If a smoothly moving k-dimensional      has the property that

                   is a Brakke flow, then       is a MCF. 

Mt

1

µt := Hk!Mt

1

Mt

1

More generally  If a family of Radon measures     satisfies 1+2 and if there exists

a vector field                    such that 

3*. for all                         and non-negative                              , we have   

µt

1

u ∈ L2
loc(µ)

1

0 ≤ t1 < t2 < ∞

1

φ ∈ C1
c (Rn × [0,∞))

1

we say that        satisfies                        in the sense of Brakke.  µt

1

v = h+ u⊥

1

∫
φ(x, t2) dµt2(x)−

∫
φ(x, t1) dµt1(x) ≤

∫ t2

t1

dt

∫
{φt+(∇φ−φh)·(h+u⊥)} dµt(x),

1

∫
φ(x, t2) dµt2(x)−

∫
φ(x, t1) dµt1(x) ≤

∫ t2

t1

dt

∫
{φt+(∇φ−φh)·h} dµt(x).

1
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2.       regularity theorem for the Brakke flow.

For stationary varifold (generalized minimal surface), we have Allard regularity

theorem. The following is the precise parabolic analogue proved last year

jointly with Stuvard, ``End-time regularity theorem for Brakke flows’’ (preprint).

ε−

1

Theorem 
There exist                                    and                                      with the following: ε = ε(n, k, p, q, E1) ∈ (0, 1)

1

Suppose that         (                  ) is a family of Radon measures in  µt

1

t ∈ (−3, 0]

1

and satisfies                     (i.e. 1+2+3*) in the sense of Brakke in     v = h+ u⊥

1

(Bk
3 × Bn−k

1 )× (−3, 0]

1

with ‖u‖p,q :=
(∫ 0

−3

(∫

Bk
3×Bn−k

1

|u(x, t)|p dµt(x)
) q

p
dt
) 1

q
< ε,

1

Bk
3 × Bn−k

1 ⊂ Rk × Rn−k

1

and further assume that  

α := 1− k

p
− 2

q
> 0,

1

sup
t∈(−3,0],Br(x)⊂Bk

3×Bn−k
1

r−kµt(Br(x)) ≤ E1,

1

µ−2(B
k
2 × Bn−k

1 ) ≤ 2kωk + ε (here, ωk := Hk(Bk
1 )),

1

C = C(n, k, p, q, E1) ∈ (1,∞)

1

(Bk
2 × Bn−k

1/2 ) ∩ sptµ0 #= ∅,

1

L :=
(∫ 0

−3

∫

Bk
3×Bn−k

1

dist (Rk × {0}, x)2 dµt(x)dt
) 1

2
< ε,

1

then, the support of       in  µt

1

Bk
1 × Bn−k

1/2

1

for                      is represented as a graph of         function                               with              t ∈ [−1, 0)

1

C1,α

1

‖f‖C1,α(Bk
1×[−1,0)) ≤ C(L+ ‖u‖p,q).

1

f : Bk
1 × [−1, 0) → Rn−k

1
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Remark If              then the estimate will be

Moreover,                      is satisfied classically. In the case of Brakke flow, the

graph is smooth MCF in     

u ∈ Cβ

1

‖f‖C2,β(Bk
1×[−1,0)) ≤ C(L+ ‖u‖Cβ).

1

v = h+ u⊥

1

(Bk
1 × Bn−k

1/2 )× (−1, 0).

1

Remark The similar estimate but not up-to-the-end-time estimate was proved

in Kasai-T. (`14), T. (`14). If the Brakke flow is a priori known to be obtained

as a limit of smooth MCF, White (`05) proved the regularity theorem by a 

compactness argument for Brakke flow. 

Remark Just like stationary varifold, one can prove that any Brakke flow is

smooth on a ``dense set’’ of the support using this theorem. But this does

not say much about the size of the singularity set in general.  

3. Co-dimension one existence theorem for Brakke flow.

Aim Given any ``n-dimensional set’’                  , construct a Brakke flow

starting from this set and existing for all time (or until it vanishes). 

M0 ⊂ Rn+1

1

E1(t)

1

E2(t)

1

E3(t)

1

E4(t)

1

Mt

1



Assumptions 1 - 3 :
1.           and                              are non-empty mutually disjoint open sets.                  N ≥ 2

1

E0,1, . . . , E0,N ⊂ Rn+1

1

2.                                 is countably n-rectifiable.                    

3.                                          for some               (So                        .)                                                     

7/10

c0 ≥ 0.

1

M0 := Rn+1 \ ∪N
i=1E0,i

1

∫

M0

exp(−c0|x|) dHn(x) < ∞

1

∪N
i=1∂E0,i = M0

1

Hn(∪N
i=1∂E0,i \ ∪N

i=1∂
∗E0,i) = 0.

1

Conclusions (1-8): 
 There exist a Brakke flow            and              for                 with the following.           {µt}t≥0

1

{Ei(t)}t≥0

1

i = 1, . . . , N

1

and                         if  lim
t→0+

µt = µ0

1

µ0 = Hn!M0 , Ei(0) = E0,i

1

1.                   

2.  Write                                  Then for all                  
∫

Rn+1

Ω(x) dµt(x)+

∫ t

0

dt

∫

Rn+1

Ω(x)|h|2 dµt(x) ≤ exp(c0t)

∫

M0

Ω(x) dHn(x).

1

Ω(x) := exp(−c0|x|).

1

t > 0,

1

    In particular, if               (so                       )             c0 = 0,

1

Hn(M0) < ∞

1

µt(Rn+1) +

∫ t

0

dt

∫

Rn+1

|h|2 dµt(x) ≤ Hn(M0).

1

3.                          are mutually disjoint open sets.  Write  E1(t), . . . , EN(t)

1

Mt := Rn+1 \ ∪N
i=1Ei(t).

1

     Then for all t>0, Mt = ∪N
i=1∂Ei(t) = {x : (x, t) ∈ spt (dµt dt)}.

1

4. For all t>0,                     and                            for any compact  sptµt ⊂ Mt

1

Hn(Mt ∩K) < ∞

1

K ⊂ Rn+1.

1

5. For a.e. t>0 and any           ,  δ > 0

1

Hn−1+δ(Mt \ sptµt) = 0.

1
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6.   For each                ,                                                                    i = 1, . . . , N

1

∀ ξ ∈ C1
c (Rn+1×(0,∞);R),

∫ ∞

0

(∫

Ei(t)

∂tξ dx+

∫

∂∗Ei(t)

(h·ν∂∗Ei(t)) ξ dHn
)
dt = 0.

1

7.   If for a.e.                                                                    t ∈ [0, T ], θ = 1 for Hn"Mt−a.e., then µt = Hn"∪N
i=1∂

∗Ei(t) for a.e. t ∈ [0, T ].

1

8. For n=1, for a.e. t>0,            consists of embedded                 curves with the

    endpoints meeting with angles of either 0°, 60° or 120°, and if N=2, only 0°

    (Kim-T. `20). 

sptµt

1

W 2,2 ∩ C1, 12

1

Remark We can also consider a fixed boundary setting in a strictly convex

domain, in which case, as the time goes to infinity, the Brakke flow 

subsequentially coverges to a stationary varifold with possible multiplicity.

In a sense, we can solve the Plateau problem by MCF using this result. 

E1,0

1

E2,0

1

E3,0

1

E4,0

1

E5,0

1

E1

1

E2

1

E3

1

E4

1

Remark The construction of solution is involved. First construct a time-discrete

approximate flow. This involves smoothing of varifold and a restricted Lipschitz

almost minimization, which gives a certain amount of regularity in a small length 

scale lost due to the smoothing.
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4.  Application: dynamic stability/instability of minimal surfaces

Question: Is there a minimal hypersurface with singularity from which 

there exists a non-trivial Brakke flow starting from it?

Conclusion: Then there exists a Brakke flow       (fixing boundary 

                 ) such that 

µt

1

∂Bn+1
1 ∩M0

1

lim
t→0+

µt = µ0 and µt(B
n+1
1 ) < µ0(B

n+1
1 ) for t > 0.

1

2.         is stationary (          ) in         . 

Theorem (Stuvard-T. preprint) Suppose                 is open.   E0 ⊂ Rn+1

1

Assume that

Bn+1
1

1

1.                            and define  

lim
r→0+

Hn!M0
r
= qHn!Rn×{0}, for some q ∈ {2, 3, 4, . . .}.

1

Hn(∂E0 \ ∂∗E0) = 0

1

M0 := ∂E0, µ0 = Hn!M0 .

1

µ0

1

3.   

4.  There exist                                   such that    α > 1/2, r0 > 0, C > 0

1

M0∩{(x′, xn+1) ∈ Rn×R, : |x′| ≤ r, |xn+1| ≤ r0} ⊂ {(x′, xn+1) : |xn+1| ≤
Cr

(log(1/r))α
}

1

for all     0 < r < r0.

1

h = 0

1
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5. Further questions:

1. full characterization of Brakke flow w.r.t. Lipschitz minimization.

2. general almost everywhere regularity for 1-d (sheeting theorem).

3. analysis on the higher multiplicity part.

4. regularity of singular sets (1-d triple junction: T.-Wickramasekera `16).

5. how to de-singularize by restarting.

6. dynamically stable minimal surface — a bit like 2nd variation w.r.t. 

Lipschitz deformation.
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