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Introduction

For finite difference schemes approximating PDEs, there are two major

difficulties associated with numerical boundary conditions:

• High order finite difference schemes involve a wide stencil, hence

there are several points near the boundary (either as ghost points

outside the computational domain or as the first few points inside the

computational domain near the boundary) which need different

treatment.
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For example, if we have the following scheme

un+1
j = aun

j−2 + bun
j−1 + cun

j + dun
j+1

with suitably chosen constants a, b, c and d (which depend on

λ = ∆t
∆x

), approximating the PDE

ut + ux = 0,

u(x, 0) = f(x), u(0, t) = g(t)

to third order accuracy, then either a ghost point un
−1 is needed, or the

scheme cannot be used to compute un+1
1 .
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• The boundary of the computational domain may not coincide with grid

points.

For example, in 1D, we may have the physical boundary x = 0

located anywhere between two grid points. While this seems artificial,

it is unavoidable for a moving boundary computed on a fixed grid.

This difficulty is more profound in 2D (complicated geometry

computed on Cartesian meshes).

One of the major difficulties is the small cell near the boundary and the

resulting small time step required for stability (the so-called “cut-cell

problem”.
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Previous work on numerical boundary conditions:

• h-box method of Berger, Helzel and LeVeque (SINUM 2003): suitable

flux computation based on cells of size h. This method can overcome

the difficulty of small time step for stability, but is somewhat

complicated in 2D and for high order accuracy.

• Reflecting or symmetry boundary conditions for ghost points: suitable

for solid walls or symmetry lines which are straight lines but lead to

large errors for curved walls not aligned with meshes.

Division of Applied Mathematics, Brown University



INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS

• Extrapolation to obtain ghost point values (Kreiss et al SINUM 2002,

2004; SISC 2006; Sjögreen and Petersson CiCP 2007). A GKS

stability analysis must be performed to assess its stability. Second

order is fine but higher order is more complicated to analyze. It is not

stable if the physical boundary is too close to a grid point.

• Converting spatial derivative near the boundary to temporal

derivatives (Goldberg and Tadmor, Math Comp 1978, 1981 for

one-dimensional linear hyperbolic initial-boundary value problems).

• Compatible boundary conditions for boundaries and interfaces

(Henshaw, Kreiss and Reyna, Computers & Fluids 1994; Henshaw,

SISC 2006; Henshaw and Chand, JCP 2009).
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Review on the traditional Lax-Wendroff procedure for solving, e.g.

ut + ux = 0

• Taylor expansion in time

un+1
j = uj + (ut)j∆t +

1

2
(utt)j∆t2 + ...

• Replace the time derivatives by spatial derivatives by repeatedly using

the PDE:

(ut)j = −(ux)j

(utt)j = −((ux)t)j = −((ut)x)j = (uxx)j

...

• Approximate the spatial derivatives by finite differences of suitable

order of accuracy.
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We now look at the basic idea of the inverse Lax-Wendroff procedure, by

switching the roles of x and t in the traditional Lax-Wendroff procedure.

Suppose we are solving

ut + ux = 0, u(0, t) = g(t)

and suppose the boundary x = 0 is of distance a∆x from x1 (with a

constant a), the inverse Lax-Wendroff procedure to determine u1 is as

follows:
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• Taylor expansion in space

u1 = u(0, t) + ux(0, t)a∆x +
1

2
uxx(0, t)(a∆x)2 + ...

• Replace the spatial derivatives by time derivatives by repeatedly using

the PDE:

ux = −ut; ux(0, t) = −ut(0, t) = −g′(t)

uxx = (−ut)x = −(ux)t = utt;

uxx(0, t) = utt(0, t) = g′′(t)

...

• Compute g′(t), g′′(t), etc. either analytically or by finite difference.
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Steady state Hamilton-Jacobi equations

We are interested in the steady state solution of the Hamilton-Jacobi

equation

H(φx, φy) = f(x, y) (1)

together with suitable boundary conditions.

We can use Runge-Kutta or other methods to march in time for the time

dependent PDE

φt + H(φx, φy) = f(x, y) (2)

until steady state is reached, but that is rather slow.
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One class of effective numerical methods is the fast sweeping method

(Boué and Dupuis, SINUM 1999; Zhao, Math Comp 2005). For high order

finite difference fast sweeping methods (Zhang, Zhao and Qian, JSC

2006), the first few points near an inflow boundary are usually prescribed

to be the exact solution. This is not practical for problems with unknown

exact solutions.

To fix the ideas, let us assume that the left boundary

Γ = {(x, y) : x = 0, 0 ≤ y ≤ 1} (3)

of the computational domain [0, 1]2 is the inflow boundary, on which the

solution is given as

φ(0, y) = g(y), 0 ≤ y ≤ 1.
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We would like to obtain a high order approximation to the solution value

φi,j ≈ φ(xi, yj) for i = 1, 2 and a fixed j, which corresponds to a point

(xi, yj) near the inflow boundary which cannot be computed by the high

order WENO scheme. A simple Taylor expansion gives, for i = 1, 2,

φ(xi, yj) = φ(0, yj) + ih φx(0, yj) +
(ih)2

2
φxx(0, yj) + O(h3)

hence our desired approximation for the third order WENO scheme is

φi,j = φ(0, yj) + ih φx(0, yj) +
(ih)2

2
φxx(0, yj).
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We already have φ(0, yj) = g(yj). The PDE (1), evaluated at the point

(0, yj), becomes

H(φx(0, yj), g
′(yj)) = f(0, yj) (4)

in which the only unknown quantity is φx(0, yj). Solving this (usually

nonlinear) equation should give us φx(0, yj).

To obtain φxx(0, yj), we first take the derivative with respect to y on the

original PDE (1), and then evaluate it at the the point (0, yj), which yields

∂uH(φx(0, yj), g
′(yj))φxy(0, yj) + ∂vH(φx(0, yj), g

′(yj))g
′′(yj)

= fy(0, yj). (5)

In this equation the only unknown quantity is φxy(0, yj), hence we obtain

easily its value.
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We then take the derivative with respect to x on the original PDE (1), and

evaluate it at the the point (0, yj) to obtain

∂uH(φx(0, yj), g
′(yj))φxx(0, yj) + ∂vH(φx(0, yj), g

′(yj))φxy(0, yj)

= fx(0, yj),

This time, the only unknown quantity is φxx(0, yj), which we can obtain

readily from this equality.

It is clear that this procedure can be carried out to any desired order of

accuracy. Also, the inflow boundary Γ in (3) can be any piece of a smooth

curve and does not need to be aligned with the mesh points: we only need

to change the x and y partial derivatives to normal and tangential

derivatives with respect to Γ. However, for this approach to work, Γ can

not consist of a single point.
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Example 1 . We solve the Eikonal equation with f(x, y) = 1. The

computational domain is [−1, 1]2, and the inflow boundary Γ is the unit

circle of center (0,0) and radius 0.5, that is

Γ =

{

(x, y) : x2 + y2 =
1

4

}

.

The boundary condition φ(x, y) = 0 is prescribed on Γ. The exact

solution for this problem is the distance function to the circle Γ. This exact

solution has a singularity at the center of the circle to which the

characteristics converge, hence we exclude the box [−0.15, 0.15]2 when

measuring the errors. Notice that for this example, the domain boundary Γ

is not aligned with the Cartesian mesh. We again use third order WENO

scheme with the fast sweeping method.

Division of Applied Mathematics, Brown University



INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS

Table 1: Example 1. Lax-Wendroff type procedure for the inflow boundary.

N is the number of mesh points in each direction. The errors are measured

in the computational domain but outside the box [−0.15, 0.15]2.

N L1 error order L∞ order iteration number

80 0.573E-05 0.129E-03 25

160 0.122E-05 2.23 0.407E-05 4.98 32

320 0.191E-06 2.68 0.122E-05 1.74 46

640 0.246E-07 2.95 0.161E-06 2.92 62
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Time dependent hyperbolic equations

The same idea we mentioned in the introduction can be used to strongly

hyperbolic conservation laws for U = U (x, y, t) ∈ R2







U t + F (U )x + G(U)y = 0 (x, y) ∈ Ω, t > 0,

U (x, y, 0) = U 0(x, y) (x, y) ∈ Ω̄,
(6)

on a bounded domain Ω with appropriate boundary conditions prescribed

on ∂Ω at time t. We assume Ω is covered by a uniform Cartesian mesh

Ωh = {(xi, yj) : 0 6 i 6 Nx, 0 6 j 6 Ny} with mesh size

∆x = ∆y.
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One difficulty of this procedure, especially for nonlinear systems in

multiple-dimensions, is that the algebra becomes very heavy for higher

order derivatives.

In (Tan, Wang, Shu and Ning, JCP 2012), a simplified version of this

inverse Lax-Wendroff procedure is adopted. This procedure is used only

to compute the first spatial derivative ux, subsequent derivatives uxx etc.

are obtained by standard extrapolation with suitable order of accuracy.

The computational examples in (Tan, Wang, Shu and Ning, JCP 2012) are

for physical boundaries aligned with the mesh points. For such cases and

for fifth order WENO schemes, this simplified inverse Lax-Wendroff

procedure works very well with stable results in very demanding

detonation problems.
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In (Vilar and Shu, M 2AN 2015), we perform a rigorous stability analysis

using the GKS (Gustafsson, Kreiss and Sundström) theory, using the

class of central compact schemes in (Liu, Zhang, Zhang and Shu, JCP

2013) as examples. This analysis is also performed for upwind-biased

finite difference schemes (prototypes of WENO schemes with linear

weights) in (Li, Shu and Zhang, JCAM 2016).

This analysis gives explicit guidance on how many terms of ux, uxx, ...

are required to be treated by the inverse Lax-Wendroff procedure in order

to maintain stability (for the fully discrete case, under the same CFL

number as in the periodic case) for arbitrary location of the boundary in

relation to the nearest grid point.

Division of Applied Mathematics, Brown University



INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS

Two different techniques, one based on normal mode GKS analysis and

the other based on eigenstructure analysis of amplification matrices, are

performed, and are shown to lead to identical conclusions regarding

stability when both work.
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Scheme Required leading terms

CCS-T4 3

CCS-T6 3

CCS-T8 5

CCS-T10 8

CCS-T12 9

Table 2: Minimum number of leading terms with ILW procedure required

by the different RK3-CCS-tridiagonal schemes to remain stable under the

same CFL as that for periodic boundary conditions.
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Scheme (kd)min

Third order scheme 2

Fifth order scheme 3

Seventh order scheme 4

Ninth order scheme 6

Eleventh order scheme 8

Thirteenth order scheme 10

Table 3: Minimum number of leading terms with ILW procedure required by

the different upwind-biased schemes with RK3 time discretization to remain

stable under the same CFL as that for periodic boundary conditions.
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At the outflow boundary, extrapolation of appropriate order is used. Either

a regular or a WENO type extrapolation is appropriate depending on

whether the outflow solution is smooth or contains shocks.

For the outflow boundary condition, we can show that the scheme with the

extrapolation is stable for all order s.

We remark that the time step restriction of solving the system of ODEs

with our boundary treatment is not more severe than the pure initial value

problem. The standard CFL conditions determined by the interior schemes

are used in the numerical examples.
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When solving nonlinear conservation laws

ut + f(u)x = 0,

if the boundary condition is given at the left boundary x = 0

u(0, t) = g(t),

then the inverse Lax-Wendroff procedure is to obtain ux(0, t) through the

PDE:

ux(0, t) = − ut(0, t)

f ′(u(0, t))
= − g′(t)

f ′(g(t))
.

This works well if f ′(g(t)) > 0 (to justify giving a boundary condition at

the left boundary x = 0), but it causes problems if f ′(g(t)) is very close

to zero or is zero (close to or at the sonic points).
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In Lu, Shu, Tan and Zhang, JCP submitted, an alternative procedure is

introduced to obtain the values of f(u) (instead of u) at the ghost points

by the inverse Lax-Wendroff procedure. Then, we would need f(u)x at

x = 0, which can be readily obtained as

(f(u)x)|(0,t) = −ut(0, t) = −g′(t).

The remaining higher spatial derivatives of f(u) are obtained by

extrapolation. This alternative procedure works well at or near sonic

points, allowing a smooth transition from inflow to outflow boundaries,

especially for systems.
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An important issue for conservation laws is numerical conservation. While

this is straightforward for finite volume schemes, the very definition of

conservation is not clear for finite difference schemes.

For a conservative finite difference scheme

un+1
j = un

j − ∆t

∆x

(

f̂j+ 1

2

− f̂j− 1

2

)

(7)

where uj is an approximation to the point value of the solution u(x, t), the

locally conserved variable appears to be uj∆x (in the sense that its

change over time is purely due to the net inflow and outflow through the

cell boundaries x = xj− 1

2

and x = xj+ 1

2

), and the conserved total

“mass” appears to be

S̃ =

N
∑

j=0

uj∆x, (8)
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in the sense that

S̃n+1 = S̃n − ∆t
(

f̂N+ 1

2

− f̂
−

1

2

)

and, with periodic or compactly supported boundary conditions,

f̂N+ 1

2

= f̂
−

1

2

and we have total “mass” conservation

S̃n+1 = S̃n.

In fact, even though the local “mass”

uj∆x = ūj∆x + O(∆x3)

is only a third order approximation to the true local mass ūj∆x in smooth

regions, the total “mass” S̃, as defined in (8), is equal to the true total
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mass S

S =

∫ b

a

u(x, t)dx, (9)

for any N -th degree trigonometric polynomial (assuming N is even for

convenience)

u(x) =

N/2
∑

k=−N/2

ake
ikx. (10)

That is,

S̃ =
N

∑

j=0

uj∆x =
N

∑

j=0

ūj∆x = S

if the point values uj and the cell averages ūj are both from an N -th

degree trigonometric polynomial (10). Therefore, a conservative finite

difference scheme (7) conserves the total “mass” S̃ as defined in (8),
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which is a spectrally accurate approximation to the true total mass S as

defined in (9), for any smooth periodic or compactly supported solutions.

However, if the solution is not periodic or compactly supported, then we

only have

S̃ =
N

∑

j=0

uj∆x =
N

∑

j=0

ūj∆x + O(∆x2) = S + O(∆x2). (11)

That is, the total “mass” S̃, as defined in (8), is only a second order

approximation to the true total mass S for non-periodic functions.

Therefore, if a finite difference scheme conserves the total “mass” S̃

(subject to net inflow and outflow at the domain boundaries), it can only be

second order accurate.
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This problem exists already for regular finite difference schemes, but is

compounded by the inverse Lax-Wendroff procedure at the numerical

boundaries.

In Ding, Shu and Zhang, JCP 2020, we obtained conservative finite

difference schemes using the inverse Lax-Wendroff procedure, with the

following ingredients:

• Using the numerical quadrature formula

∫

∞

0

h(x)dx = ∆x
+∞
∑

j=0

ωjh(xj) + O ((∆x)ν) , (12)

where the weights ωj depend on ν, but ωj = 1 for j ≥ ν, we define

the numerical total mass consistent with high order accuracy to the

Division of Applied Mathematics, Brown University



INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS

true total mass as

S̃ =
N

∑

j=0

ωjuj∆x. (13)

• We modify the numerical fluxes near the boundary (the modification is

local and is a high order accuracy perturbation from the original

inverse Lax-Wendroff scheme), so that the resulting scheme is

conservative (subject to inflow and outflow) with respect to the

numerical total mass (13).

• The conservative inverse Lax-Wendroff scheme works equally well as

the original inverse Lax-Wendroff scheme in accuracy and

non-oscillatory performance, through extensive numerical tests, and it

shows an advantage in shock location resolution for long time

simulation.
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Example 2 . We test the Burgers equation















ut +
(

1
2
u2

)

x
= 0 x ∈ (−1, 1), t > 0,

u(x, 0) = 0.25 + 0.5 sin(πx) x ∈ [−1, 1],

u(−1, t) = g(t) t > 0.

(14)

Here g(t) = w(−1, t), where w(x, t) is the exact solution of the initial

value problem on (−1, 1) with periodic boundary conditions. For all t, the

left boundary x = −1 is an inflow boundary and the right boundary

x = 1 is an outflow boundary.
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Table 4: Errors of the Burgers equation (14). ∆x = 2/N and t = 0.3.

N L1 error order L∞ error order

40 9.11E-05 3.56E-04

80 3.10E-06 4.88 1.35E-05 4.72

160 1.31E-07 4.57 6.51E-07 4.38

320 3.97E-09 5.05 2.68E-08 4.60

640 1.02E-10 5.29 8.34E-10 5.00

1280 2.86E-12 5.15 2.62E-11 5.00
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Figure 1: Burgers equation (14), ∆x = 1/40. Solid line: exact solution;

Symbols: numerical solution.
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Example 3 . Euler equations, blast wave example. We consider the

interaction of two blast waves. The initial data are

U (x, 0) =















UL 0 < x < 0.1,

UM 0.1 < x < 0.9,

UR 0.9 < x < 1,

where ρL = ρM = ρR = 1, uL = uM = uR = 0,

pL = 103, pM = 10−2, pR = 102. There are solid wall boundary

conditions at both x = 0 and x = 1. This problem involves multiple

reflections of shocks and rarefactions off the walls. There are also multiple

interactions of shocks and rarefactions with each other and with contact

discontinuities.
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(b) ∆x = 1/1600

Figure 2: The density profiles of the blast wave problem. Solid lines: ref-

erence solution computed by the fifth order WENO scheme with ∆x =

1/16000; Symbols: numerical solutions by our boundary treatment.
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To better illustrate the advantage of the conservation method, we give the

results for a longer time simulation with a coarser mesh. Figure 3 shows

the results of the modified and original SILW methods at t = 19 with

N = 800 grid points.
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(a) density profile with the modified

method

(b) density profile with the SILW method

Figure 3: The density profiles of the blast wave problem. t = 19. Black

solid line: the reference “exact” solution; red solid line with square symbols

on the left: numerical solution with the modified method; blue solid line with

square symbols on the right: numerical solution with the SILW method.
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Example 4 . We test the 2D Burgers equation














ut + 1
2
(u2)x + 1

2
(u2)y = 0 (x, y) ∈ Ω, t > 0,

u(x, y, 0) = 0.75 + 0.5 sin [π(x + y)] (x, y) ∈ Ω̄,

u(x, y, t) = g(x, y, t) (x, y) ∈ Γ, t > 0,
(15)

where

Ω = (−1, 1) × (−1, 1),

Γ = {(x, y) : x = −1 or y = −1},

or

Ω = {(x, y) : x2 + y2 < 0.5},
Γ = {(x, y) : x2 + y2 = 0.5 and x + y 6 0}.

Division of Applied Mathematics, Brown University



INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS

Here g(x, y, t) = w(x, y, t), where w(x, y, t) is the exact solution of

the initial value problem on (−1, 1) × (−1, 1) with periodic boundary

conditions. Notice that in the second case the domain boundary is not

aligned with the Cartesian meshes.

Table 5: Errors of the 2D Burgers equation (15). ∆x = 2/Nx,∆y =

2/Ny, t = 0.15.

Nx = Ny on a square on a disk

L
1 error order L

∞ error order L
1 error order L

∞ error order

40 1.55E-04 9.86E-03 1.10E-04 1.77E-03

80 1.06E-05 3.87 1.80E-03 2.46 7.24E-06 3.93 4.06E-04 2.12

160 4.93E-07 4.43 2.38E-04 2.91 4.65E-07 3.96 4.77E-05 3.09

320 3.47E-08 3.83 2.83E-05 3.08 3.63E-08 3.68 6.04E-06 2.98

640 2.72E-09 3.67 2.85E-06 3.31 4.10E-09 3.15 9.45E-07 2.68
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Figure 4: 2D Burgers equation (15). ∆x = ∆y = 1/40. Cut along the

diagonal. Solid line: exact solution; Symbols: numerical solution.

Division of Applied Mathematics, Brown University



INVERSE LAX-WENDROFF PROCEDURE FOR NUMERICAL BOUNDARY CONDITIONS

x

u(
x)

-0.5 -0.3 -0.1 0.1 0.3 0.5
0.2

0.4

0.6

0.8

1

1.2

(a) on a disk, t = 0.55

x
u(

x)
-0.5 -0.3 -0.1 0.1 0.3 0.5

0.68

0.72

0.76

0.8

0.84

(b) on a disk, t = 6

Figure 5: Continued.
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Example 5 . We are most interested in applying our method to the solid

wall boundary conditions (u, v) · n = 0, when the wall is not aligned with

the grid and can be curved. Our first example of this kind is the double

Mach reflection problem. This problem is initialized by sending a

horizontally moving shock into a wedge inclined by a 30◦ angle. In order to

impose the solid wall condition by the reflection technique, people usually

solve an equivalent problem that puts the solid wall horizontal and puts the

shock 60◦ angle inclined to the wall. Another way to avoid the trouble of

imposing boundary conditions is to use a multidomain WENO method.

With the use of our method, we are able to solve the original problem with

a uniform mesh in a single domain.
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Figure 6: Left: The computational domain (solid line). The dashed line

indicates the computational domain used in the traditional finite difference

solvers. The square points indicate some of the grid points. Right: Density

contour of double Mach reflection. ∆x = ∆y = 1
320

.
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Figure 7: Density contours of double Mach reflection, 30 contours from

1.731 to 20.92. Zoomed-in near the double Mach stem. The plots in the left

column (our computation with the new boundary condition treatment) are

rotated and translated for comparison.
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Figure 8: Continued

.
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Example 6 . This example involves a curved wall which is a circular

cylinder of unit radius positioned at the origin on a x-y plane. The problem

is initialized by a Mach 3 flow moving toward the cylinder from the left. In

order to impose the solid wall boundary condition at the surface of the

cylinder by the reflection technique, a particular mapping from the unit

square to the physical domain is usually used in traditional finite difference

methods. Using our method, we are able to solve this problem directly in

the physical domain.
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(0,− 6)

(0, 6)

Mach 3 flow

r = 1
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(− 3,− 6)

(− 3, 6)

Figure 9: Physical domain of flow past a cylinder. The square points in-

dicate some of the grid points near the cylinder. Illustrative sketch, not to

scale.
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Figure 10: Pressure contour of flow past a cylinder.
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Compressible inviscid flows involving complex moving geome tries

We extend the high order accurate numerical boundary condition based

on finite difference methods to simulations of compressible inviscid flows

involving complex moving geometries.

• For problems in such geometries, it is difficult to use body-fitted

meshes which conform to the moving geometry.

• Instead, methods based on fixed Cartesian meshes have been

successfully developed. For example, the immersed boundary (IB)

method introduced by Peskin (JCP 1972) is widely used. One of the

challenges of the IB method is the representation of the moving

objects which cut through the grid lines in an arbitrary fashion.
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• To solve compressible inviscid flows in complex moving geometries,

most methods in the literature are based on finite volume schemes.

The challenge mainly comes from the so-called “small-cell” problem.

Namely, one obtains irregular cut cells near the boundary, which may

be orders of magnitude smaller than the regular grid cells, leading to a

severe time step restriction.

• In terms of accuracy, most finite volume schemes in the literature are

at most second order. In particular, the errors at the boundaries

sometimes often fall short of second order.

• Our inverse Lax-Wendroff procedure can be extended to such

situations with moving geometries. The only change is to obtain

relationships between the temporal and spatial derivatives via the PDE

in moving Lagrangian framework.
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Example 7 . We consider a gas confined between two rigid walls. The right

wall is fixed at xr = 1.0 while the left wall is moving. We assume the left

wall is positioned at xl(t) = 0.5(1 − t). The initial conditions are

ρ(x, 0) = 1 + 0.2 cos [2π (x − 0.5)] ,

u(x, 0) = x − 1,

p(x, 0) = ρ(x, 0)γ,

such that the initial entropy s(x, 0) = 1. As long as the solution stays

smooth, we have isentropic flow, i.e., s(x, t) = 1. Thus the numerical

value of the entropy can be used for the analysis of convergence.
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Table 6: Entropy errors and convergence rates of Example 7

h xl(t) = 0.5(1 − sin t)

L1 error order L∞ error order

1/40 7.26E-07 1.32E-06

1/80 1.15E-08 5.98 2.82E-08 5.55

1/160 3.43E-10 5.07 6.19E-10 5.51

1/320 9.90E-12 5.11 2.49E-11 4.64
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Example 8 . This is a 1D problem involving shocks and rarefaction waves.

A piston with width 10h is initially centered at x = −5h inside a shock

tube. Here h is the mesh size. The piston instantaneously moves with a

constant velocity up = 2 into an initially quiescent fluid with ρ = 1 and

p = 5/7. This problem is equivalent to two independent Riemann

problems and thus the exact solution can be obtained. A shock forms

ahead of the piston and a rarefaction wave forms in the rear.
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Figure 11: Density and pressure profiles of Example 8. The piston is rep-

resented by the rectangle. Solid lines: exact solutions; Symbols: numerical

solutions with h = 0.25.
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Example 9 . The last example shows that our high order method can also

treat a rigid body whose motion is induced by the fluid. We test the

so-called cylinder lift-off problem. In this problem, a rigid cylinder initially

resting on the floor of a 2D channel is driven and lifted by a strong shock.

The computational domain is [0, 1] × [0, 0.2]. A rigid cylinder with radius

0.05 and density 10.77 is initially centered at (0.15, 0.05). A Mach 3

shock starts at x = 0.08 moving towards the cylinder. The density and

pressure of the resting gas are ρ = 1.4 and p = 1.0 respectively. The top

and bottom of the domain are rigid walls. The left boundary is set to the

post-shock state and the right boundary is supersonic outflow.
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Table 7: Center of the cylinder of Example 9.

h t = 0.1641 t = 0.30085

x-coordinate y-coordinate x-coordinate y-coordinate

1/160 3.7058E-01 8.1140E-02 6.7178E-01 1.3759E-01

1/320 3.6153E-01 8.3219E-02 6.4959E-01 1.4444E-01

1/640 3.5706E-01 8.3680E-02 6.3895E-01 1.4517E-01

1/1280 3.5539E-01 8.4133E-02 6.3550E-01 1.4607E-01

1/2560 3.5461E-01 8.4258E-02 6.3362E-01 1.4638E-01
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Figure 12: Pressure contours at t = 0.1641. 53 contours from 2 to 28.

t = 0.1641.
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Figure 13: Pressure contours at t = 0.30085. 53 contours from 2 to 28.

t = 0.30085.
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Convection-diffusion equations

The extension to convection-diffusion equations is non-trivial, since totally

different boundary treatments are needed for the diffusion-dominated and

the convection-dominated regimes.

We look at the simple example of heat equation:

ut = uxx, 0 < x < ∞

with boundary condition

u(0, t) = g(t).

If we perform a Taylor expansion at x = 0

uj = u(0, t) + ux(0, t)xj +
1

2
uxx(0, t)x

2
j + · · ·
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then the inverse Lax-Wendroff procedure can only determine the even

order derivatives:

u(0, t) = g(t), uxx(0, t) = g′(t), · · ·

and the odd derivatives must be obtained by extrapolation.

Stability of such inverse Lax-Wendroff procedure, when the relative

location of the boundary and the closest grid point is arbitrary, and for both

Dirichlet and Neumann boundary conditions, is systematically analyzed in

(Li, Shu and Zhang, JSC 2017),
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Now, suppose we have a convection-diffusion equation

ut + aux = εuxx, 0 < x < ∞

with boundary condition

u(0, t) = g(t).

There are two ways of applying the inverse Lax-Wendroff procedure to

obtain the first two spatial derivatives:
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1. The first approach is to use extrapolation to obtain the second

derivative uxx(0, t) = uext
xx , and then use the inverse Lax-Wendroff

procedure to obtain the first derivative

ux(x, 0) =
1

a

(

g′(t) − εuext
xx

)

The remaining derivatives can be obtained similarly. This is the

approach for the purely convection equation (ε = 0), hence it is

expected to work well for convection-dominated situation.
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2. The second approach is to use extrapolation to obtain the first

derivative ux(0, t) = uext
x , and then use the inverse Lax-Wendroff

procedure to obtain the second derivative

uxx(x, 0) =
1

ε

(

g′(t) + auext
x

)

The remaining derivatives can be obtained similarly. This is the

approach for the purely diffusion equation (a = 0), hence it is

expected to work well for diffusion-dominated situation.

In (Lu, Fang, Tan, Shu and Zhang, JCP 2016), we have designed a careful

combination of the boundary treatments for the two regimes and obtained

a stable and accurate boundary condition for general convection-diffusion

equations, which worked well for various test cases including compressible

Navier-Stokes equations.
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Concluding remarks

• We have demonstrated an inverse Lax-Wendroff procedure for

boundary treatment, which yields stable discretization with the same

CFL number as the inner scheme and allows us to compute problems

on arbitrary domains using Cartesian meshes.

• The technique can be applied to inviscid and viscous flows with

complex moving geometries, yielding stable and high order accurate

solutions.

• Future work would involve a generalization of this technique to other

schemes such as the discontinuous Galerkin method, and to problems

with deformable structures and interface problems.
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The End

THANK YOU!
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