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OUTLINE

Motivation of sampling-type methods

DSMs for Inverse acoustic/EM scattering, EIT, DOT 

General framework of direct sampling methods

Optimal control approach for Sobolev scale  



Most Popular Approach for Inverse Problems

Most IPs: parameter identifications in PDEs, e.g., 
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Stationary PDE: 

or time-dependent PDE: 

Inverse problem is to solve

Mostly the solution parameter q tells us information

geometric shape/location & distributional values 

EIT, DOT, Inverse Scattering, Seismic Tomography,  …   



Least-squares formulation with regularization
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A most crucial mathematical issue : 

IPs are mostly ill-posed: 

transform to a nearby “well-posed” problem: 



Solution of Nonlinear Optim Systems

Output LS Tikhonov regularization :

1st approach:  coupled optimality PDE system  

Forward PDE ;
Adjoint PDE ;

Variational Inequality
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Singularities:    parameters mostly disconts, unknown

e.g.,  conductivity in EIT,  refractive index in inverse medium



Iterative Solvers for Nonlinear Optim Systems

Least-squares minimization :
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2nd approach: iterative

need good initial guess of q, 
repeated forward solutions, 
need the derivatives of u(q) wrt changes of q
often very sensitive to noise 

Is it always worthwhile or necessary to do so?

Most popular iterative, e.g., Newton type: 

highly nonlinear, nonconvex, nonsmooth

Often very expensive & challenge to solve



Alternative  Solvers 
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Alternative  solvers, overcoming technical  barriers:
no need good initial guess of q, 
no repeated forward solutions, 
no need the derivatives of u(q) wrt changes of q

Indeed not worthwhile or necessary to do

1st :  if noise not small,  we can see from 

2nd:  no good accuracy needed for the concerned applications
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Can we reconstruct  
Shape  &   Location,  without Physics?   

Inverse acoustic, EM, elastic wave
EIT, DOT,  MRI, … …   



Linear Sampling Method

a truly revolutionary algorithm!

Consider the far-field operator

and the far-field equation for    :

Colton-Kirsch 96 :

Inverse acoustic scattering: 



10

Algorithm  of  LSM

Algorithm of LSM :   select a numerical cut-off value c

1.  Select a grid Th of sampling points, covering D
2.  At each z ,  solve the far-field equation  for  
3.  Determine  

Turns inverse scattering into solving integral equations 
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No effective strategies to choose numerical cut-off values.

Huge computational efforts:
need to solve the far-field equation for each sampling point, e.g.,

for an                         grid, need to solve n3 ill-posed equations

The grid should be very fine to get a fine reconstruction

Drawbacks of LSM
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New  Variants of LSM

Li-Liu-Zou, SISC 09:
Multilevel Linear Sampling Method,
reduce computational complexity from

Li-Liu-Zou, SISC 10:
Strengthened LSM with a Reference Obstacle,
provide a deterministic technique to select 
feasible numerical cut-off values
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Multilevel Linear Sampling Method

MLSM :   get rid of remote and inner cells
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Numerical Example I
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Numerical Example I
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Numerical Example I
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Numerical Example II



Numerical Example II
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Sampling-type Methods 

Linear sampling method (Colton-Kirsch 96);
Factorization method (Kirsch 98); 
Point source & multipole method (Potthast 98); 
Probe method (Potthast 01); 
Reciprocity Gap Sampling Method (Colton-Haddar, 05) 
Subspace-based optimization method (Chen 08)
… … 

Monographs:  
Potthast, Chapman & Hall, 01;
Kirsch,  Grinberg, Oxford 07; 
Cakoni, Colton, Monk:   SIAM 11;
Cakoni, Colton, Springer 14; 
Nakamura, Potthast, IOP, 15;   
X Chen, Wiley, 2018; … …
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(I)   Cut-off Values & Noise

inaccurate cut-off values6 incidents & 30 receivers
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(II)  Large Data for LSMs 
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derived only for wave-type inverse problems 

And LSMs



Find methods for more realistic cases
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Apply even with data from a single incident field 
or  a single set of Cauchy data

Insensitive to data noise 

Involve no solutions of ill-posed & well-posed linear 
or nonlinear systems   

Apply to general inverse problems 

Clearly, hard to have efficient methods for all these  

Let us try what we can do
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Inverse acoustic medium scattering,  Ito-Jin-Zou 12;

DSMs for General Inverse Problems

Non-wave type IPs:

Electric impedance tomography,  Chow-Ito-Zou 14;

Diffusive optical tomography, Chow-Ito-Liu-Zou 14 ;

Moving objects, Chow-Ito-Zou 16;

Several other important applications, Chow-Han-Zou 20

Inverse EM medium scattering,  Ito-Jin-Zou 13;



General  Framework of DSM
(Chow-Ito-Zou 2019) 
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Define a Sobolev dual product on       with index      :

Select probing & testing funcs ,             based on PDEs

(1)  nearly orthogonal wrt ,   i.e.,   

like a Gaussian

(2) family of testing funcs is fundamental over testing points:

kernel



General  Index functions for DSMs
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We define the index function  

Then the index provides a probability : 
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DSM for Acoustic Media 

Acoustic wave, TM or TE mode :

(Ito-Jin-Zou 2011)

Fundamental solution  G :   

By Lippmann-Schwinger representation:

From the above:
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Direct Sampling Algorithm 
(Ito-Jin-Zou 2011)

Index func for probability of sampling point:
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Numerical Examples I

Two incidents:  20% noise        
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DSM for Inverse EM Media Scattering 

Time harmonic EM system :

(Ito-Jin-Zou 2013)

Fundamental solution G :   

Maxwell fundamental soln:   
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Direct Sampling Algorithm 
(Ito-Jin-Zou  2013)

Index func for probability of sampling point:

By Lippmann-Schwinger representation:

Nearly orthogonality:
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Numerical Examples I

Two incidents, same polarizations p & q:  20% noise        
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Numerical Examples II

Two incidents, same polarizations p & q:  20% noise        



DSM  for  EIT
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Electrical Impedance Tomography:

given   (f, g),   recover  electrical conductivity  



Choice of Probing & Testing Spaces/Funcs
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Define on the measurement surface      :  

(1)  Nearly orthogonal wrt ,    i.e.,   

like a Gaussian

(2)  The testing family is fundamental:

Select probing & testing funcs ,             s.t.



Choice of  Probing Functions
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Define

Dipole potential :

Probing functions as dir. derivative of Green funcs :   



Probing functions for special geometries
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Verification of  Fundamental Properties 
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For p.w. constant inclusions

Similarly for p.w. smooth inclusions 

so testing funcs take the same as probing, with 



Verification of  Othogonality
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For circular measurement curve :

Similarly for spherical measurement surface, but much 
more technical 

with a complex polynomial 



Index  Function
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Index function for EIT : 

With the Sobolev index



Numerical Experiments
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Four separated square objects

Thin square ring object:



DSM  for  DOT
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Diffusive optical tomography in absorption medium      
with absorption coeff & photon density      :  

given   (f, g),   recover  the absorption coeff



General  Principle of DSM
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Define  on the measurement surface      :  

Select a set of probing & testing funcs &              :

(1)  nearly orthogonal wrt , i.e.,   

like a Gaussian

(2) family probing funcs is fundamental:



Choice of  Testing Functions
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Green function : 

Scattered potential                     

Fundamental representation :                     

Green functions: good candidates for testing funcs



Choice of  Probing Functions
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Green function : 

Fundamental solution in the whole space           

Probing functions,    

Define                                            



Probing functions for special geometries
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Index Function for DSM
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Recall the kernel functions for DOT: 

with the Sobolev index



Example  I  (5% noise)
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Severely ill-posed, 4 inclusions close to each other & to the boundary,
but reconstructions quite satisfactory: 
5% noise,  only one Cauchy data, data far away from inclusions  



General  Principle of time-dependent DSM
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Define a Sobolev dual product on                        :

Select probing & testing funcs ,            based on PDEs

(1)  nearly orthogonal wrt ,   i.e.,   

Gaussian

(2) testing funcs are fundamental over set of testing points:

kernel 
func:



General  Index functions for DSMs

52

We define the index function  

Then the index provides a probability : 



DSM  for  Moving Potential
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Heat conduction/moving DOT:

given  u ,   recover



Testing  Functions
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:  heat intensity with background potential

we have

with fundamental solution

Therefore 

Probing functions :   



Index Function
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Normalization :   

Define  on the measurement surface :   

DSM index functions :   
not surface Laplacian this time



Index Function: real-time 
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no any data after time t needed   

DSM index functions :  real time reconstruction



Behavior of index for point source 
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max 
at 

t=0.5,
far

from 
t=1,

further
away

zeroth
order 
index



Temporal derivatives of zeroth order index   
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From the behaviour of       , we see big drop in spatial 
maximum with time as time goes on from t=1, so a rate 
of change of        may capture the inclusion more 
effectively: 



Behavior of index  for point source 
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max 
well 

reached
at 

t=1

1st

order 
index



Verification of Index Function
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Consider the kernel 

and its derivatives 



Numerical Experiments I  
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there is 
a time lag,

reconstructed 
inclusion

follows
closely

exact inclusion

5% noise

green * 
yellow 

:
centre of
inclusion

mass



Numerical Experiments II 
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Initially, for t<2, 
the reconstructed 

inclusion
tries to find 

the exact inclusion

once it 
succeeds 

to approach 
exact inclusion 
for t>2, it starts 

to follow 
exact path  

recovered 
trajectory can 
even follow 

very fine turnings 
as exact one from 

t >4 onwards  



Numerical Experiments III 
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initially, strongly 
coupling,  gradually,

clearly 
seen 

2 objects, 

2 objects, 
with different 

speeds, 
highly 

ill-posed



Numerical Experiments III 
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after long time, 
signal to noise

weak, 
less stable,

more 
oscillatory 

2 objects, 
with one set 

of data,
very 

challenging
task 

still tracing 
2 objects

reasonably 
well



An Optimal Control framework
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Forward equation:

Background equation:

Parameter-to-solution:



An Optimal Control Framework
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Parameter-to-solution:

Index function :



Index Function for DSM
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Recall the kernel function : 

Sobolev index : 

DOT: 

Wave-type: 

EIT: 



Features of DSMs
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Robust against noise in data, due to orthogonality: 

high frequency components in data orthogonal to 
fundamental solutions on measurement surface 

Computationally very cheap, completely parallel

Works for a single measurement data

Stability:  straightforward
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Other related sampling methods

R Potthast 2010, inverse obstacle scattering 

H Ammari,  et al. 

ZM Chen et al. (since 2013):  
reverse time migration, inverse obstacle acoustic & EM scattering 

WK Park, et al.

HY Liu, XD Liu, JZ Li,  YK Guo, … … 

… … 

Mostly for inverse wave scattering 
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