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Supervised Learning

Supervised Learning

Given a labeled data set {(xi , yi )}Ni=1 ⊂ Rm × Rn, fit a parametric family
of functions f : (x, θ) ∈ Rm × Rp → Rn to the data;

Choose f (x , θ)

Choose a loss function L(θ) =
∑N

i=1 L(f (xi , θ), yi )

find θ ∈ Rp by minimizing L(θ)

Example. Linear regression:
1. f (x , θ) = Wx + b with θ = [W , b]
2. L(θ) =

∑N
i=1 ‖f (xi , θ)− yi‖2
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Deep Neural Network

Image source: Goodfellow, et al.

Composition of L functions:

f (x, θ) = f (3)(f (2)(f (1)(x)))

hidden variables at `-th layer:

h(`) = f (`)(h(`−1))

:= σ(W (`)h(`−1) + b(`))

σ(t): an elementwise nonlinear
activation function:

Rectified linear unit (ReLu)
σ(t) = max{t, 0}
Logistic sigmoid
σ(t) = 1/(1 + e−t)
Tanh σ(t) = tanh(t)
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Loss Function

For the model output ŷi := f (xi , θ), use loss L(θ):

Regression problem: MSE

L(θ) =
∑
i

‖ŷi − yi‖2

Classification problem: Cross-Entropy

L(θ) = −
∑
i

∑
j

y
(i)
j log(ŷ

(i)
j )
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Optimization/Training

Gradient descent:
θ ← θ − λ∇L(θ)

λ > 0 - learning rate

Mini-batch training;

Back-propagation algorithm

Accelerations: SGD with momentum, Adams, RMSPROP, Batch
normalization, ...
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Vanishing gradients

∇L(θ) ≈ 0 for θ in some large regions not near local minimum.

Logistic sigmoid and tanh: σ′(t) ≈ 0 for most t;

ReLU: σ′(t) = 0 for t < 0

Choice of L(θ)

initialization

depth of the network: multiplications of L weight matrices
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Recurrent Neural Network (RNN)
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RNN Basics

Sequential data x = (x(t))τt=1.

Language Processing

Audio and Video Files

Difficulties with feedforward network models:

high dimensional inputs

variable sequence length
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RNN Basics

State-space model of input-output systems:

h(t) = σ
(

UTx(t) + WTh(t−1) + b
)

o(t) = VTh(t) + c

Input: x = (x(t))τt=1 with x(t) ∈ Rm

Output: o = (o(t))τt=1 with o(t) ∈ Rp

State h = (h(t))τt=1 with h(t) ∈ Rm

L(θ) =
∑

i L(o
(t)
i , y

(t)
i )

Often output at τ only: o = VTh(τ) + c
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RNN Basics

Image source: Goodfellow, et al.
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Backpropagation Through Time

∂L
∂h(t)

=
∂L

∂h(t+1)

∂h(t+1)

∂h(t)
=

∂L
∂h(t+1)

D(t)WT

where D(t) = diag
(
σ′
(
UTx(t) + WTh(t−1) + b

))

0 ≤ σ′(t) ≤ 1 and ‖D(k)‖ ≤ 1.

Vanishing (if ‖W ‖ < 1) or exploding (if ‖W ‖ > 1) gradients:

∂L
∂h(t)

=
∂L
∂h(τ)

T
(

t+1∏
k=τ

D(k)WT

)

For t � τ , h(t) or x(t) has little effect on L or o(τ)
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Long Short Term Memory (LSTM) Network

Image source: Colah’s blog
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Long Short Term Memory (LSTM) Network

Most popular architecture of RNN

Complicated network

a large number of trainable parameters

Other variants: Gated Recurrent Units (GRUs)
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Unitary RNN (uRNN)
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Unitary Evolution RNN (uRNN)

Use unitary or orthogonal W in RNN:

Taking 2-norms∥∥∥∥ ∂L
∂h(t)

∥∥∥∥ ≤
∥∥∥∥ ∂L
∂h(τ)

∥∥∥∥ τ∏
k=t+1

∥∥∥D(k)
∥∥∥ ‖W‖

≤
∥∥∥∥ ∂L
∂h(τ)

∥∥∥∥
How to construct W ?

Early attempts: initialize W to be orthogonal
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Unitary Evolution RNN (uRNN)

Arjovsky, et al. (2016)

Use a special unitary matrix:

W = D3R2F−1D2ΠR1FD1

Dk - diagonal matrix with entries Dj ,j = e iwj and wj ∈ R (trainable)

R = I− 2 vv∗

‖v‖2 - Householder reflection matrices (trainable v ∈ Cn)

Π - fixed random permutation matrix

F , F−1 - Discrete Fourier and inverse Fourier transforms

Requres 7n in memory storage.
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modReLU

New activation function:

σmodReLU(z) =

{
(|z |+ b) z

|z| if |z |+ b ≥ 0

0 if |z |+ b < 0

σmodReLU(z) = σReLU(|z |+ b) z
|z|

Unlike ReLU, for the real case it can have postive and negative
activation values.
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Full-Capacity uRNN
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Full-Capacity uRNN

Wisdom, et al. (2016)

Find W from Stiefel Manifold Vp(Cn) = {X ∈ Cn×p|X∗X = I}
Optimize minW ∗W=I L(W );

Updates W by moving along a descent curve on Vp(Cn) by Wen and
Yin (2013):

W(k+1) =

(
I +

λ

2
A(k)

)−1(
I− λ

2
A(k)

)
W(k)

λ is the learning rate

A(k) = G(k)W(k)∗ −W(k)G(k)∗ is a skew-hermitian matrix (A = −A∗)

G(k) =
[
∂L
∂Wi,j

]n
i ,j=1
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Limitations of the Full-Capacity uRNN

The descent curve not necessarily in the steepest descent direction.

Loss of orthogonality due to repeated matrix multiplications.
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Other orthogonal RNNs

oRNN: construct W by Householder reflections
euRNN: construct W by Givens rotations

Long product W = H1H2 · · ·Hm nonlinearity

More complicated learning algorithm

Implemented with small m

expRNN: construct W through exponential of skew-symmetric matrix

W = exp(K )
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Scaled Cayley Orthogonal RNN
(scoRNN)
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Cayley Transform

Every real orthogonal matrix W that does not have −1 as an eigenvalue
can be expressed as:

W = (I + A)−1 (I− A)

where
A = (I + W)−1 (I−W)

is skew-symmetric.

Unstable when an eigenvalue of W is close to -1
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Scaled Cayley Transform

Theorem 1 (Kahan, O’Dorney)

Every orthogonal W ∈ Vn (Rn) can be expressed as

W = (I + A)−1(I− A)D

where A = [aij ] is real, skew-symmetric with |aij | ≤ 1, and D is diagonal
with all entries equal to ±1.
Every unitary W ∈ Vn (Cn) can be expressed as

W = (I + A)−1(I− A)D

where A = [aij ] is skew-Hermitian with |aij | ≤ 1, and
D = diag{e iθ1 · · · , e iθn}.

In practice, only need |aij | bounded

Achieved by many D

Qiang Ye (Joint works with Kyle Helfrich, Gayan Maduranga, Devin Willmott) (UKY)scoRNN
July 16, 2020 - S.T. Yau Center, Southeast University 25

/ 53



Scaled Cayley Transform

Theorem 1 (Kahan, O’Dorney)

Every orthogonal W ∈ Vn (Rn) can be expressed as

W = (I + A)−1(I− A)D

where A = [aij ] is real, skew-symmetric with |aij | ≤ 1, and D is diagonal
with all entries equal to ±1.
Every unitary W ∈ Vn (Cn) can be expressed as

W = (I + A)−1(I− A)D

where A = [aij ] is skew-Hermitian with |aij | ≤ 1, and
D = diag{e iθ1 · · · , e iθn}.

In practice, only need |aij | bounded

Achieved by many D

Qiang Ye (Joint works with Kyle Helfrich, Gayan Maduranga, Devin Willmott) (UKY)scoRNN
July 16, 2020 - S.T. Yau Center, Southeast University 25

/ 53



scoRNN Architecture

Similar to a standard RNN:

z(t) = UTx(t) + WTh(t−1)

h(t) = σmodReLU(z(t))

W = (I + A)−1 (I− A) D where D has ρ diagonals being −1.

ρ is a hyperparameter;

The entries of A are the trainable parameters.
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scoRNN Architecture

Theorem 2

Let L = L(W ) : Rn×n → R be some loss function for an RNN and
W = W(A) := (I + A)−1 (I− A) D Then

∂L
∂A

= VT − V (1)

where V := (I− A)−1 ∂L
∂W

(
D + WT

)
,

Update A:

A(k+1) = A(k) − λ∂L
∂A
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Training of D

Real case: discrete D determined by ρ (number of −1 in D)

ρ needs to be tuned.

Complex case: continuous D = diag{e iθ1 · · · , e iθn}
optimize θi through gradient descent
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Training of D

Scaled Cayley Unitary RNN (scuRNN): train D = diag{e iθ1 · · · , e iθn} by
optimizing with respect to θ = [θ1, · · · , θn].

Theorem 3

Let L = L(W ) : Cn×n → R be some differentiable loss function for an
RNN with the recurrent weight matrix
W = W(A,D) := (I + A)−1 (I− A) D. Then the gradient of
L = L(W (A,D)) with respect to θ = [θ1, · · · , θn] is

∂L

∂θ
= 2Re

(
i

((
∂L

∂W

T

Z

)
� I

)
d

)
,

where d =
[
e iθ1 , e iθ2 ,...e

iθn
]T

θ(k+1) = θ(k) − λ∂L
∂θ
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Eigenvalue Normalized RNN
(ENRNN)
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ENRNN

Orthogonal/Unitary RNNs → Long term dependency:

Unable to ”forget” short term information
Reduces capacity

ENRNN:

Two states: Long term memory and short-term memory
Short-term memory state: Use W with ρ(W ) < 1

Qiang Ye (Joint works with Kyle Helfrich, Gayan Maduranga, Devin Willmott) (UKY)scoRNN
July 16, 2020 - S.T. Yau Center, Southeast University 31

/ 53



ENRNN

Orthogonal/Unitary RNNs → Long term dependency:

Unable to ”forget” short term information
Reduces capacity

ENRNN:

Two states: Long term memory and short-term memory
Short-term memory state: Use W with ρ(W ) < 1

Qiang Ye (Joint works with Kyle Helfrich, Gayan Maduranga, Devin Willmott) (UKY)scoRNN
July 16, 2020 - S.T. Yau Center, Southeast University 31

/ 53



ENRNN Architecture

Version 1:


h
(L)
t = σ

(
U(L)xt + W (L)h

(L)
t−1 + b(L)

)
h
(S)
t = σ

(
U(S)xt + W (S)h

(S)
t−1 + b(S)

)
yt = V (L)h

(L)
t + V (S)h

(S)
t + c

(2)

W =

[
W (L)

W (S)

]

W (L) is orthogonal/unitary

ρ(W (S)) < 1
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ENRNN Architecture

Version 2:


h
(L)
t = σ

(
U(L)xt + W (L)h

(L)
t−1 + W (C)h

(S)
t−1 + b(L)

)
h
(S)
t = σ

(
U(S)xt + W (S)h

(S)
t−1 + b(S)

)
yt = V (L)h

(L)
t + V (S)h

(S)
t + c

(3)

W =

[
W (L) W (C)

W (S)

]
W (L) is orthogonal/unitary

ρ(W (S)) < 1
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ENRNN Architecture

Theorem 4

With the ReLU nonlinearity, if ‖W (S)‖2 < 1 then∥∥∥∥∥∂h
(S)
t+τ

∂h
(S)
t

∥∥∥∥∥ ≤ ∥∥∥W (S)
∥∥∥τ and

∥∥∥∥∥∂h
(S)
t+τ

∂xt

∥∥∥∥∥ ≤ ∥∥∥W (S)
∥∥∥τ ∥∥∥U(S)

∥∥∥
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ENRNN Architecture

Construction of W (S):

Parameterize W (S) by T as

W (S) = W (S)(T ) :=
T

ρ (T ) + ε

Gradient descent in T .
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ENRNN Architecture

Theorem 5

Let L = L(W ) : Rm×m → R be some loss function for an RNN and let
∂L
∂W :=

[
∂L
∂Wi,j

]
∈ Rm×m. Let W be parameterized as W = T

ρ(T )+ε . If

λ = α + iβ is a simple eigenvalue of T with |λ| = ρ(T ) and if Tu = λu
and v∗T = λv∗, then

∂L

∂T
=

1

ρ̃ (T )

[
∂L

∂W
− 1

ρ̃ (T )
1Tm

(
∂L

∂W
�W

)
1mC

]
where C = αRe (S) + β Im (S) with S = vuT

v∗u ∈ Cm×m, 1m ∈ Rm is a
vector consisting of all ones, ρ̃ (T ) = ρ (T ) + ε.
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ENRNN Architecture

Selecting λ or λ results in same derivative due to conjugation.

Repeat eigenvalues unlikely.

Begin normalization once ρ(W ) > 1
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Gradient Analysis

Figure: Gradient norms ‖∂h
(S)
τ

∂xt
‖ Figure: Gradient norms ‖∂h

(L)
τ

∂xt
‖
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Experiments
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Adding Problem

0.58 0.23 0.84 0.06 0.71 0.35 0.22 0.63 0.14 0.97

0 0 1 0 0 0 1 0 0 0

Figure: The goal of the machine is to output the sum of the entries marked by
one, in this case 0.84+0.22 = 1.06

Two sequences concurrently, each length T

First sequence: U [0, 1)
Second sequence: All zeros except a 1 located uniformly in [1, T2 ) and

a second 1 uniformly in [T2 ,T )

Goal: Sum the two entries marked by 1s
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Adding Problem

Figure: Test set MSE on the adding problem.
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Copying Problem

Sequence length: T + 20

First ten uniformly sampled from 1− 8

Marker 9 placed ten timesteps from the end

All other entries 0

Goal: Output zeros until the 9 then output the first ten elements
from the beginning of the sequence.
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Copying Problem

Figure: Cross entropy of each machine on the copying problem.

Qiang Ye (Joint works with Kyle Helfrich, Gayan Maduranga, Devin Willmott) (UKY)scoRNN
July 16, 2020 - S.T. Yau Center, Southeast University 43

/ 53



TIMIT Speech Dataset

TIMIT dataset - 3,696 training, 400 validation, and 192 testing
speech recordings.

Goal: Predict log-magnitudes of the Fourier amplitudes at frame
t + 1.
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TIMIT Speech Dataset

Figure: Validation set MSE for TIMIT

Table: TIMIT: Best validation MSE after
300 epochs

Model n #Params Valid. Test.
MSE MSE

ENRNN 374/94 ≈ 200k 0.13 0.13
scoRNN 425 ≈ 200k 1.56 1.52
LSTM 158 ≈ 200k 8.53 8.27
LSTM 468 ≈ 1200k 5.60 5.42

Model N SegSNR (dB) STOI PESQ
ENRNN 374/94 4.84 0.83 2.75
scoRNN 425 4.55 0.82 2.72
LSTM 158 4.00 0.79 2.51
LSTM 468 4.82 0.81 2.75
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Character PTB

Character PTB dataset - 10k words, 50 characters

5102k training, 400k validation, 450k testing characters

Goal: Predict next character in the sequence
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Character PTB

Table: Best testing MSE in BPC after 20 epochs.

Model n # Param Valid. Test
BPC BPC

ENRNN 310/720 ≈ 1016k 1.475 1.429
LSTM 350 ≈ 1016k 1.506 1.461
GRU 415 - - 1.601*
EURNN 2048 - - 1.715*
GORU 512 - - 1.623*
oRNN 512 ≈ 183k 1.73** 1.68**
nnRNN 1024 ≈ 1320k - 1.47***
LSTM 1030 ≈ 8600k 1.447 1.408
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MNIST Problem

Goal: Classify 28x28 pixel images of handwritten digits (0-9)

Pixel fed into RNN sequentially - single pixel sequence length of 784

Unpermuted and fixed permutation

55,000 training images and 10,000 testing images
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MNIST Problem

Model n # parameters MNIST Permuted MNIST
Test Accuracy Test Accuracy

scoRNN 170 ≈ 16k 0.973 0.943
scoRNN 360 ≈ 69k 0.983 0.962

LSTM 128 ≈ 68k 0.987 0.920
LSTM 256 ≈ 270k 0.989 0.929

Restricted-capacity uRNN 512 ≈ 16k 0.976 0.945

Full-capacity uRNN 116 ≈ 16k 0.947 0.925
Full-capacity uRNN 512 ≈ 270k 0.974 0.947
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MNIST Problem
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Concluding Remarks
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Concluding Remarks

Some difficulties in deep learning pertain to numerical issues

Robust parametrization improves performance

Orthogonal RNNs → accumulation of long term memory

enRNN → short term memory
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The End
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