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@ Neural Networks for Supervised Learning
© Recurrent Neural Network (RNN)

© scaled Cayley Orthogonal RNN (scoRNN)
@ Eigenvalue Normalized RNN (ENRNN)

© Experiments
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Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}Y.; € R™ x R", fit a parametric family
of functions f : (x,0) € R™ x R? — R" to the data;
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Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}Y.; € R™ x R", fit a parametric family
of functions f : (x,0) € R™ x R? — R" to the data;

e Choose f(x,6)
@ Choose a loss function L£(0) = Z,N:l L(f(xi,0),yi)
e find 6 € RP by minimizing £(0)

Qiang Ye (Joint works with Kyle Helfrich, Ga: scoRNN



Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}Y.; € R™ x R", fit a parametric family
of functions f : (x,0) € R™ x R? — R" to the data;

e Choose f(x,6)
@ Choose a loss function L£(0) = Z,N:l L(f(xi,0),yi)
e find 6 € RP by minimizing £(0)

Example. Linear regression:

1. f(x,0) = Wx 4+ b with 0 = [W, b]

2. £(6) = 14 I (xi,6) — yill?
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Deep Neural Network

@ Composition of L functions:

hidden layers

f(x,0) = FE(FA(FV(x)))

@ hidden variables at /-th layer:
A0 — f(ﬁ)(h(f—l))

o(WO R 4 p)

input layer

@ o(t): an elementwise nonlinear
activation function:

Image source: Goodfellow, et al. o Rectified linear unit (RelLu)
o(t) = max{t,0}

e Logistic sigmoid
o(t)y=1/(1+e7")

e Tanh o(t) = tanh(t)
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For the model output y; := f(x;, 8), use loss L£(0):
@ Regression problem: MSE

L) =19 — il

o Classification problem: Cross-Entropy

£0)=->23y " log(s")
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Optimization/Training

Gradient descent:
0« 60— VL)

A > 0 - learning rate
Mini-batch training;
Back-propagation algorithm

Accelerations: SGD with momentum, Adams, RMSPROP, Batch
normalization, ...
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Vanishing gradients

VL(0) ~ 0 for 6 in some large regions not near local minimum.

e Logistic sigmoid and tanh: ¢/(t) ~ 0 for most t;
@ ReLU: o/(t) =0fort <0
@ Choice of £(0)
@ initialization

°

depth of the network: multiplications of L weight matrices
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Recurrent Neural Network (RNN)
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RNN Basics

Sequential data x = (x(1))7_;.
@ Language Processing
@ Audio and Video Files
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RNN Basics

Sequential data x = (x(1))7_;.
@ Language Processing
@ Audio and Video Files

Difficulties with feedforward network models:
@ high dimensional inputs

@ variable sequence length
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RNN Basics

State-space model of input-output systems:

h = (u Tx(® f WTh(t=D) b)
o) =VvTh(") ¢

Input: x = (x()7_, with x(t) ¢ R™

Output: 0 = (o(")7_; with o(t) ¢ RP

State h = (h(t )) with h(t) ¢ R™
£(0) = ¥; Lo, y")

Often output at 7 only: 0 = VTh(") 4 ¢
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RNN Basics

Image source: Goodfellow, et al.
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Backpropagation Through Time

oL oL ontth  9r
oh(t) — Ah(t+1) gh(t) — Hh(t+l)
where D() = diag (a’ (UTx(t) +WTh(t-1) 4 b))

DOWT
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Backpropagation Through Time

oL oL ontth  9r
oh(®) — Oh(t+1) gh(t) " Oh(t+1)
where D() = diag (of (UTx(t) +WTh(t=1) ¢ b))
e 0<o(t)<1land DX <1.
e Vanishing (if || W|| < 1) or exploding (if | W|| > 1) gradients:
oc o T[T
_ (yw T
oh(® ~ oh(®) (H DrW

k=1

DOWT
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Backpropagation Through Time

oL oL ontth  9r
oh(®) — Oh(t+1) gh(t) " Oh(t+1)
where D() = diag (of (UTx(t) +WTh(t=1) ¢ b))
e 0<o(t)<1land DX <1.
e Vanishing (if || W|| < 1) or exploding (if | W|| > 1) gradients:
oc o T[T
_ (yw T
oh(® ~ oh(®) (H DrW

k=1

DOWT

e For t < 7, h(t) or x(t) has little effect on £ or o(")
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Long Short Term Memory (LSTM) Network
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Image source: Colah’s blog

Qiang Ye (Joint works with Kyle Helfrich, Ga:




Long Short Term Memory (LSTM) Network

Most popular architecture of RNN
Complicated network

a large number of trainable parameters

Other variants: Gated Recurrent Units (GRUs)
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Unitary RNN (uRNN)




Unitary Evolution RNN (uRNN)

Use unitary or orthogonal W in RNN:

@ Taking 2-norms

H@iﬁ) - Haiﬁ) kﬁ HD(k)H Iwi
=t+1
H oL
~ ||Oh(")

@ How to construct W?

o Early attempts: initialize W to be orthogonal
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Unitary Evolution RNN (uRNN)

Arjovsky, et al. (2016)

@ Use a special unitary matrix:

W = D;3R,F !D,MR,FD;

o Dy - diagonal matrix with entries D; ; = €™ and w; € R (trainable)
e R=1- 2(\:’[2 - Householder reflection matrices (trainable v € C")
@ [1 - fixed random permutation matrix

e F, F~1 - Discrete Fourier and inverse Fourier transforms

Requres 7n in memory storage.

Qiang Ye (Joint works with Kyle Helfrich, Ga: scoRNN



modRelLU

@ New activation function:

(12| + b) % i |z[+b>0

OmodRe zZ) =
oretu(2) {0 if |z] + b < 0

@ OmodRelLU(z) = UReLU(‘Z‘ + b)é
@ Unlike RelLU, for the real case it can have postive and negative
activation values.
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Full-Capacity uRNN
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Full-Capacity uRNN

Wisdom, et al. (2016)
e Find W from Stiefel Manifold V,(C") = {X € C"™*P|X*X = I}
e Optimize miny«w—; L(W);

e Updates W by moving along a descent curve on V,(C") by Wen and
Yin (2013):

A - A
w1l — () ¢ EA(k) | — §A(k) w(k)

A is the learning rate
AK) = WK — WG is a skew-hermitian matrix (A = —A*)

®
2}
=
Il
| —
Q>Q7
3=
o
|
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Limitations of the Full-Capacity uRNN

@ The descent curve not necessarily in the steepest descent direction.

@ Loss of orthogonality due to repeated matrix multiplications.
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Other orthogonal RNNs

oRNN: construct W by Householder reflections
euRNN: construct W by Givens rotations
@ Long product W = HiH5 - - - Hp, nonlinearity
@ More complicated learning algorithm

@ Implemented with small m
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Other orthogonal RNNs

oRNN: construct W by Householder reflections
euRNN: construct W by Givens rotations
@ Long product W = HiH5 - - - Hp, nonlinearity
@ More complicated learning algorithm

@ Implemented with small m

expRNN: construct W through exponential of skew-symmetric matrix
o W = exp(K)
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Scaled Cayley Orthogonal RNN
(scoRNN)
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Cayley Transform

Every real orthogonal matrix W that does not have —1 as an eigenvalue

can be expressed as:
W=(1+A)1(1-A)

where

A=(1+W)I1-w)

is skew-symmetric.

@ Unstable when an eigenvalue of W is close to -1

scoRNN
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Scaled Cayley Transform

Theorem 1 (Kahan, O'Dorney)
Every orthogonal W € V,, (R") can be expressed as

W= (I+A)"*(1-A)D

where A = [ajj] is real, skew-symmetric with |aj| < 1, and D is diagonal
with all entries equal to +1.
Every unitary W € V,, (C") can be expressed as

W= (1+A)"*(1-A)D

where A = [ajj] is skew-Hermitian with |a;| < 1, and
D = diag{e™® ... e/},

Qiang Ye (Joint works with Kyle Helfrich, Ga: scoRNN



Scaled Cayley Transform

Theorem 1 (Kahan, O'Dorney)
Every orthogonal W € V,, (R") can be expressed as

W= (I+A)"*(1-A)D

where A = [ajj] is real, skew-symmetric with |aj| < 1, and D is diagonal
with all entries equal to +1.
Every unitary W € V,, (C") can be expressed as

W= (1+A)"*(1-A)D

where A = [ajj] is skew-Hermitian with |a;| < 1, and
D = diag{e™® ... e/},

@ In practice, only need |a;;| bounded

@ Achieved by many D
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scoRNN Architecture

@ Similar to a standard RNN:
() = uTx(®  wTh(t-1)
h(®) = omodareLu(z()
e W= (1+A)"(I—A)D where D has p diagonals being —1.

@ p is a hyperparameter;

@ The entries of A are the trainable parameters.
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scoRNN Architecture

Let £L=L(W):R"™" — R be some loss function for an RNN and
W =W(A):=(I+A)"*(1—A)D Then

8_A:VT_V (1)

where V.= (1 — A)* % (D+WT),
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scoRNN Architecture

Let £L=L(W):R"™" — R be some loss function for an RNN and
W =W(A):=(I+A)"*(1—A)D Then

8_A:VT_V (1)

where V.= (1 — A)* % (D+WT),

Update A:

oL
(k+1) _ a(k) _ 9%~
A =A /\8A
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Training of D

Real case: discrete D determined by p (number of —1 in D)
@ p needs to be tuned.

Complex case: continuous D = diag{e™® ... , e/}

@ optimize 0; through gradient descent
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Training of D

Scaled Cayley Unitary RNN (scuRNN): train D = diag{e® ... e/} by
optimizing with respect to 6 = [01,--- ,6,].

Let £L = L(W):C"™" — R be some differentiable loss function for an
RNN with the recurrent weight matrix

W = W(A, D) := (1+A)"' (I — A)D. Then the gradient of

L= L(W(A,D)) with respect to 0 = [61,--- ,0,] is

oL ((oLT

T
: : 0
where d = |ef1, gi02:--€' "}
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Training of D

Scaled Cayley Unitary RNN (scuRNN): train D = diag{e® ... e/} by
optimizing with respect to 6 = [01,--- ,6,].

Let £L = L(W):C"™" — R be some differentiable loss function for an
RNN with the recurrent weight matrix

W = W(A, D) := (1+A)"' (I — A)D. Then the gradient of

L= L(W(A,D)) with respect to 0 = [61,--- ,0,] is

oL ((oLT

T
: : 0
where d = |ef1, gi02:--€' "}

glk+1) _ gtk _ 3 9F

00
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Eigenvalue Normalized RNN
(ENRNN)
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ENRNN

e Orthogonal/Unitary RNNs — Long term dependency:

o Unable to "forget” short term information
o Reduces capacity
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ENRNN

e Orthogonal/Unitary RNNs — Long term dependency:
o Unable to "forget” short term information
o Reduces capacity

o ENRNN:

e Two states: Long term memory and short-term memory
o Short-term memory state: Use W with p(W) < 1
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ENRNN Architecture

@ Version 1:

K = o (U + WO, + b0
WS =6 (UOx + WORD), 4+ b(S)) (2)
Ve = \/(L)th) + \/(S)hgs) +c

w(b)
]

o W is orthogonal /unitary
o p(W®)) <1
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ENRNN Architecture

@ Version 2:

H = o (U0x + WORE, + WO, + b0)
W = o (US)x+ WK, + 59)) (3)
ye = VWORE L v 4 ¢

(L) (©)
W — [ w w ]

WS

o W is orthogonal /unitary
o p(W®)) <1
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ENRNN Architecture

Theorem 4

With the ReLU nonlinearity, if |W()|, < 1 then

|05 < el ame |2 < o] )
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ENRNN Architecture

Construction of W():
o Parameterize W(®) by T as

w® — w1y = — -~
D=y
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ENRNN Architecture

Construction of W(S):
o Parameterize W(%) by T as

W) = we(T) = ———
M= mve

@ Gradient descent in T.
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ENRNN Architecture

Theorem 5

Let L= L(W):R™™ — R be some loss function for an RNN and let
59—‘}‘/ = [8‘3& } e R™M et W be parameterized as W = (TGJFE. If

A=« +if is a simple eigenvalue of T with |\| = p(T) and if Tu= \u
and v*T = Av*, then

oL _ 1 [8L - 1)1T<8L®W>1mc]

aT — p(T) [aw (T oW
where C = aRe(S) + B1m (S) with S = Yel c Cmxm 1, € R™
vector consisting of all ones, p(T) = p( T) Fe.
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ENRNN Architecture

@ Selecting A or X results in same derivative due to conjugation.
@ Repeat eigenvalues unlikely.

@ Begin normalization once p(W) > 1
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Gradient Analysis

Short State Heat Map (Norm of ahvdx) Long State Heat Map (Norm of dhax)

O |

()
Figure: Gradient norms || 5= oH)

Figure: Gradient norms || 7=
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Experiments
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Adding Problem

0.5810.23|0.84|0.06|0.71 0.35/0.22|0.63|0.14 | 0.97

Figure: The goal of the machine is to output the sum of the entries marked by
one, in this case 0.84+40.22 = 1.06

@ Two sequences concurrently, each length T
o First sequence: [0, 1)
o Second sequence: All zeros except a 1 located uniformly in [1, %) and
a second 1 uniformly in [1, T)

@ Goal: Sum the two entries marked by 1s
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Adding Problem

Adding Problem, Sequence length = 750

0.25
Baseline
—— scoRNN Original
= ENRNN
— L5TM
0.207 _ ‘s*;g::rau RNN
0.15 1
w
%]
=
0.10 4
0.05 +
0.00 T T T T
0 1 2 3 9 5 6
Epoch
Figure: Test set MSE on the adding problem.
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Copying Problem

Sequence length: T + 20

First ten uniformly sampled from 1 — 8
Marker 9 placed ten timesteps from the end
All other entries 0

Goal: Output zeros until the 9 then output the first ten elements
from the beginning of the sequence.
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Copying Problem

Copying Problem, T=2000

Baseline
— ENRNN
— scoRiN
— LSTM =68
—- 1STMn=182
— Ful-Capacity RN

0.0200 4

0.0175 4

0.0150 4

0.0125 4

0.0100 4

Cross Entropy

0.0075 +

0.0050 4

0.0025 4

0.0000 T T T T y T T
0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

Figure: Cross entropy of each machine on the copying problem.
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TIMIT Speech Dataset

o TIMIT dataset - 3,696 training, 400 validation, and 192 testing
speech recordings.

@ Goal: Predict log-magnitudes of the Fourier amplitudes at frame
t+1.
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TIMIT Speech Dataset

- TIMIT MSE Approx. 200k Trainable Parameters Ta ble TIMIT Best Valldatlon MSE after
— ENANN 468 Valid. NSE
[ 300 epochs
10%
Model n #Params Valid. Test.
10? MSE MSE
" ENRNN 374/94 ~ 200k 0.13 0.13
2 10 scoRNN 425 ~ 200k 1.56 1.52
LSTM 158 ~ 200k 8.53 8.27
100 LSTM 468 ~ 1200k 5.60 5.42
Model N SegSNR (dB) STOI PESQ
101 ENRNN 374/94 4.84 0.83 2.75
scoRNN 425 4.55 0.82 272
10-2 LSTM 158 4.00 0.79 2.51
o 50 100 150 200 250 300 LSTM 468 4.82 0.81 2.75

Epoch

Figure: Validation set MSE for TIMIT
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Character PTB

@ Character PTB dataset - 10k words, 50 characters
@ 5102k training, 400k validation, 450k testing characters

@ Goal: Predict next character in the sequence
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Character PTB

Table: Best testing MSE in BPC after 20 epochs.

Model n # Param  Valid. Test
BPC BPC
ENRNN 310/720 =~ 1016k 1.475 1.429
LSTM 350 ~ 1016k  1.506 1.461
GRU 415 - - 1.601%*
EURNN 2048 - - 1.715%*
GORU 512 - - 1.623*
oRNN 512 ~ 183k  1.73** 1.68**
nnRNN 1024 ~ 1320k - 1.47%%*
LSTM 1030 ~ 8600k  1.447 1.408
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MNIST Problem

Goal: Classify 28x28 pixel images of handwritten digits (0-9)
Pixel fed into RNN sequentially - single pixel sequence length of 784

Unpermuted and fixed permutation

55,000 training images and 10,000 testing images
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MNIST Problem

Model n  # parameters MNIST Permuted MNIST
Test Accuracy Test Accuracy
scoRNN 170 =~ 16k 0.973 0.943
scoRNN 360 ~ 69k 0.983 0.962
LSTM 128 =~ 68k 0.987 0.920
LSTM 256 =~ 270k 0.989 0.929
Restricted-capacity uRNN 512 ~ 16k 0.976 0.945
Full-capacity uRNN 116 =~ 16k 0.947 0.925
Full-capacity uRNN 512 = 270k 0.974 0.947
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MNIST Problem

100 Pixel-By-Pixel Unpermuted MNIST 100 Pixel-By-Pixel Permuted MNIST
. T T 2 T
AR AR —
; A~ NN
0.95 0.95
oy oy E %@
@ @
8 8
< 0.90 < 0.90
k] k]
b a
B o
3 3
[ ~
— scoRNN, n=170 — scoRNN, n=170
085 — scoRNN, n=360 085 — SCORNN, n=360
— LSTM, n=256 — LSTM, n=256
—— Full uRNN, n=512 — Restr. uRNN, n=512
— Restr. uRNN, n=512 —— Full uRNN, n=512
0.80 H H H n n n 0.80 H H H n n n
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epochs Epochs
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Concluding Remarks
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Concluding Remarks

Some difficulties in deep learning pertain to numerical issues
Robust parametrization improves performance

Orthogonal RNNs — accumulation of long term memory

enRNN — short term memory
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The End
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