

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Nonlinear Methods for Data Assimilation and Inversion

Roland Potthast

KLIMA UND UMWELT

FORSCHUNG

WETTER

Roland Potthast September 2020

Co-Authors:

LEISTUNGEN

DER DWD

Anne Walter Andreas Rhodin Nora Schenk Peter-Jan van Leeuwen

and many people of DWD Data Assimilation (FE12)

Contents

Prediction (NWP): **Earth System Modeling!**

- 2. Discussion of Ensemble (+Particle) Methods
- 3. Global+LAM+LES Model: ICON and ICON-EPS and

the LEKTF+EnVAR/KENDA System

4. LAPF & LMCPF Particle Filters for Non-Gaussian

Distributions – Details and Results

- Framework Operational Numerical Weather Prediction (NWP)
- 2. Discussion of Ensemble (+Particle) Methods
- 3. Global+LAM+LES Model: ICON and ICON-EPS and

the LEKTF+EnVAR/KENDA System

4. LAPF & LMCPF Particle Filters for Non-Gaussian Distributions – Details and Results

Framework Numerical Weather Prediction

DWD Model Configurations

ICON Global, EU and D2

AIREP MODE-S PILOT TEMP DRIBU SYNOP RADAR LHN RADAR RW

OPERATIONS

Development RADAR 3D SYNOP T,RH RADAR OBJ SEVIRI IR SEVIRI VIS Lightning LPI MWR GB Remote Crowd Source RADAR DualP

File: an_R19B07.20190603060000

Contents

- Framework Operational Numerical Weather
 Prediction (NWP)
- 2. Discussion of Ensemble (+Particle) Methods
- 3. Global+LAM+LES Model: ICON and ICON-EPS and
 - the LEKTF+EnVAR/KENDA System
- **4. LAPF & LMCPF Particle Filters** for Non-Gaussian Distributions Details and Results

Data Assimilation Cycling

Data Assimilation Methods

Since 2010

0.2

Why variational Data Assimilation (3D/4D-VAR)?

- Why Hybrid Methods? (3D/4D-EnVAR)
- Why Particle Filters? (PF,GPF,ETPF,LAPF,LMCPF) Since 2020

5. State Propagation

5. State Propagation

Stochastic View \Leftrightarrow **Minimization**

University of

EDA: Ensemble Kalman Filter (EnKF)

Time t

Values

- Kalman Filter needs B update => expensive!
- Estimate B based on an ensemble of forecasted states (stochastic estimator).

B will be **flow-dependent** and variable, depending on the **model dynamics** and on the **observations**

Ensemble Methods & PF

3D-VAR, EnKF and PF

3D-VAR, EnKF and PF

Curse of Dimensionality

- 1) Curse of Dimensionality
- 2) Low Ensemble Number
- **3)** Dynamical System Errors

Practically you cannot sample from highdimensional spaces!

LAPF Basic Idea

LAPF/LMCPF Basic Idea

LAPF Development Summary Deutscher Wetterdienst

- Wetter und Klima aus einer Hand
- 1. Localized Adaptive Particle Filter (LAPF) first high-dimensional sampling tests in Summer 2015 (c.f. Inverse Modeling by Nakamura & Potthast)
- 2. Implemented in **DACE** (Data Assimilation Coding Environment) for the *global ICON* Model, first stable runs in 2016 by Anne Walter (c.f. Potthast, Walter, Rhodin MWR 2019)
- Extension to Localized Adaptive Mixture Coefficient Particle Filter (LMCPF) 2018 by 3. Walter and RP
- Implemented LMCPF for *global ICON Model* since 2018 (Walter, RP), Diskussions 4. with Peter-Jan van Leeuwen, Alternative PF for ICON+DACE
- 5. LAPF and LMCPF implemented in DACE for COSMO Convective Scale Model, first stable runs in Nov 2018 by RP
- Implemented LMCPF for ICON D2 (convective scale), stable runs in Nov 2019, by RP 6.
- 7. Lorenz 63 and 96 Implementations of LAPF/LMCPF and Testing (Nora Schenk & RP 2019 & 2020)
- 8. Implementation of **LMCPF** in Speedy Model by Miyoshi and Kotsuki, RIKEN (2019)
- 9. Testing LMCPF with SEVIRI VIS Reflectance Assimilation (2019/2020), Lilo Bach & RP

Contents

- 1. Framework **Operational Numerical Weather**
 - **Prediction** (NWP)
- 2. Discussion of Ensemble (+Particle) Methods
- 3. Global+Regional Model: ICON and ICON-EPS and

the LEKTF+EnVAR/KENDA System

4. LAPF & LMCPF Particle Filters for Non-Gaussian Distributions – Details and Results

Global NWP Modelling: Det + EPS – Reality + Goals

Full Observation System

Conventional Synop +

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Observations: Geostationary Satellites

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Observations: Polar Orbiting Satellites

²⁸ Ensemble Datenassimilation EnVar

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Operational since January 2016

Deutscher Wetterdienst

DWD

Contents

1. Framework Operational Numerical Weather

Prediction (NWP)

- 2. Discussion of Ensemble (+Particle) Methods
- 3. Global+LAM+LES Model: ICON and ICON-EPS and

the LEKTF+EnVAR/KENDA System

4. LAPF & LMCPF Particle Filters for Non-Gaussian

Distributions – Details and Results

$$w_{\ell} := e^{-\frac{1}{2}(y - Hx^{(\ell)})^T R^{-1}(y - Hx^{(\ell)})}, \quad \ell = 1, \dots, L$$

We need a selection based on relative weights!

DWD

Kalman Filter

Best Estimator

$$x^{(a)} = x^{(b)} + BH^T (R + HBH^T)^{-1} (y - Hx^{(b)})$$

$$K = BH^T (R + HBH^T)^{-1}$$

$$\tilde{B} = (I - KH)B$$

Kalman Matrix

Update B Matrix

Ensemble B Estimator

$$\bar{x} := \frac{1}{L} \sum_{\ell=1}^{L} x^{(\ell)}$$

$$B = \frac{1}{L-1}XX^T$$

$$X = (x^{(1)} - \bar{x}, ..., x^{(L)} - \bar{x}) \in \mathbb{R}^{n \times L}$$

Y := HX

 $Y^{T}(R + \gamma YY^{T})^{-1} = (I + \gamma Y^{T}R^{-1}Y)^{-1}Y^{T}R^{-1}$

Transformed Kalman Filter

$$x^{(a)} = x^{(b)} + BH^{T}(R + HBH^{T})^{-1}(y - Hx^{(b)})$$

= $x^{(b)} + \gamma XX^{T}H^{T}(R + \gamma HXX^{T}H^{T})^{-1}(y - Hx^{(b)})$
= $x^{(b)} + \gamma XY^{T}(R + \gamma YY^{T})^{-1}(y - Hx^{(b)})$
= $x^{(b)} + \gamma X(I + \gamma YR^{-1}Y^{T})^{-1}Y^{T}R^{-1}(y - Hx^{(b)})$

$$A = Y R^{-1} Y^T$$

$$B = \frac{1}{L-1} X X^T$$

LAPF & LMCPF: Transform

 \tilde{B}

$$= (I - KH)B$$

$$= (I - BH^{T}(R + HBH^{T})^{-1}H)B$$

$$= (I - \gamma X X^{T}H^{T}(R + \gamma HX X^{T}H^{T})^{-1}H)\gamma X X^{T}$$

$$= X (I - \gamma Y^{T}(R + \gamma YY^{T})^{-1}Y)\gamma X^{T}$$

$$= X (I - \gamma (I + \gamma Y^{T}R^{-1}Y)^{-1}Y^{T}R^{-1}Y)\gamma X^{T}$$

$$= X ((I + \gamma Y^{T}R^{-1}Y)^{-1}(I + \gamma Y^{T}R^{-1}Y - \gamma Y^{T}R^{-1}Y)\gamma X^{T}$$

$$= X (I + \gamma Y^{T}R^{-1}Y)^{-1}\gamma X^{T}$$

$$= X (\frac{1}{\gamma}I + Y^{T}R^{-1}Y)^{-1}X^{T}$$
Transform for any
Gaussian Particle

$$Y^{T}(R + \gamma YY^{T})^{-1} = (I + \gamma Y^{T}R^{-1}Y)^{-1}Y^{T}R^{-1}$$

LAPF & LMCPF: Mixture

Explicit Calculations possible for each term We need a selection based on relative weights!

LAPF & LMCPF: Weights

Projection onto Ensemble Space

Derivation by Anne Walter, Andreas Rhodin and RP (MWR 2019)

Abbreviating $A := \mathbf{Y}^T \mathbf{R}^{-1} \mathbf{Y}$ and $C := A^{-1} \mathbf{Y}^T \mathbf{R}^{-1} (\mathbf{y}^o - \overline{\mathbf{y}}^b)$

Projection Operator

$$P(\mathbf{y}^o - \overline{\mathbf{y}}^b) = \mathbf{Y}(\mathbf{Y}^T \mathbf{R}^{-1} \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{R}^{-1} (\mathbf{y}^o - \overline{\mathbf{y}}^b),$$

Projected discrepancy

$$P(\mathbf{y}^o - H\mathbf{x}^{(\ell)}) = \mathbf{Y}A^{-1}\mathbf{Y}^T\mathbf{R}^{-1}((\mathbf{y}^o - \overline{\mathbf{y}}^b) - \mathbf{Y}e_\ell)$$

Exponent =
$$\mathbf{Y}(C-e_{\ell}), \ \ell=1,...,L.$$

$$P(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]^{T}\mathbf{R}^{-1}P(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)}) = [C - e_{\ell}]^{T}A[C - e_{\ell}], \ \ell = 1, ..., L,$$

Weights

$$w_{k,\ell} = ce^{-\frac{1}{2}[C-e_{\ell}]^T A[C-e_{\ell}]}, \ \ell = 1,...,L.$$

LAPF & LMCPF: Ingredients

Derivation by Anne Walter, Andreas Rhodin and RP (MWR 2019)

Ensemble Transform

Ensemble Transform as for LETKF X w_m

Localization

Move Particle (Shift)

Localization on R as for LETKF $A := \mathbf{Y}^T \mathbf{R}^{-1} \mathbf{Y}$ and $C := A^{-1} \mathbf{Y}^T \mathbf{R}^{-1} (\mathbf{y}^o - \overline{\mathbf{y}}^b)$

Move each particle as LETKF moves the mean, but now individually calculated

Adaptivity via O-B

Resampling

 $\mathbf{E}\left[\boldsymbol{d}_{o-b}^{T}\boldsymbol{d}_{o-b}\right] = \mathrm{Tr}(\mathbf{R}) + \rho \,\mathrm{Tr}(\boldsymbol{H}\boldsymbol{P}^{b}\boldsymbol{H}^{T})$

Modulated resampling in ensemble space around each remaining particle adaptively based on ρ

4) LMCPF for Lorenz Examples

background • Lorenz 63 * xbm **System** * У Simulation analysis ٠ 26.4 **Prior Ensemble** \ast truth **40 Members** LETKF 26.3 **Natural Run Sigma = 10** Truth Assimilation 26.2 **Posterior** Run Sigma = 10.5 **Ensemble Observation** 26.1 2.5 2.6 2.7 2.8 26 -1.2 -1.1 -1 -0.9 -0.8

Dynamical System Errors

LMCPF for Lorenz Examples

LMCPF for Lorenz Examples

Large-Scale Experimental Set-up

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Full ensemble: 40 members
- Reduced resolution:
 - 26km deterministic
 - 52km ensembles
- Period: 01.05.2016 – 31.05.2016

Experiments programmed and carried out by Anne Walter, DWD& Uni Reading, and Roland Potthast, DWD& Uni Reading

In Cooperation with Peter-Jan van Leeuwen, Uni Reading

Global **RMSE** for **obs-fg** statistics (Radiosondes vs. Model) Period: 08.05.2016 – 31.05.2016

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

LMCPF Scores vs LETKF

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni

Global **RMSE** for **obs-fg** statistics (Radiosondes vs. Model) Period: 08.05.2016 – 22.05.2016

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni

LMCPF Scores vs LAPF

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni

New LMCPF Scores vs

DWD

6

1 5

Deutscher Wetterdienst

LMCPF: Uncertainty based Move works

LAPF Spread vs LMCPF & LEets Ker Wetter dind Klima aus einer Hand

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni

Statistics for spread at level 64 for variable T

Mean of spread

DWD

6

Maximum of spread

time step

LMCPF Scores vs LETKF

Deutscher Wetterdienst a aus einer Hand

DWD

2016/05/02 - 2016/05/24 INI: ALL UTC, DOM: ALL

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni

LMCPF Scores vs LETKF

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

LMCPF vs LETKF for ICON D2

Deutscher Wetterdienst Wetter und Klima aus einer Hand

OPERATIONS AIREP MODE-S PILOT TEMP DRIBU SYNOP RADAR LHN RADAR RW

Development RADAR 3D SYNOP T,RH RADAR OBJ SEVIRI IR SEVIRI VIS Lightning LPI MWR GB Remote Crowd Source RADAR DualP

File: an_R19B07.20190603060000

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Reflectance; Date = 20190603, 1400 UTC

DWD

6

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Reflectance; Date = 20190603, 1400 UTC

LMCPF Analysis Ensemble Mean

Observations

Evaluation by Liselotte Bach and RP Reflectance [analysis ensemble mean in observation space]; Date = 20190603, 1400 UTC

DWD

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Graphics by

Liselotte Bach Nora Amelie Schenk Christian Welzbacher

> Linear Analysis Distributions

VS

Non-linear Analysis Distributions

Summary

(1) LAPF and LMCPF extend the capabilities of the LETKF

- (2) Ensemble Transform, Localization, Adaptive Spread Control – LETKF, LAPF and LMCPF use the same tools
- (3) Gaussian Particles allow to move towards Obs in Ensemble Space
- (4) More flexible than LETKF
- Fully Non-Linear Filtering by LAPF and LMCPF
- (6) Stable Particle Filters for global and regional NWP
- (7) Simple to Code following LETKF
- (8) Promising Features for Cloud Assimilation

IOP Expanding Physics

Inverse Modeling

An introduction to the theory and methods of inverse problems and data assimilation

Gen Nakamura Roland Potthast

Thank You!

