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Classic architectures for Semantic Image Segmentation

Figure 1: Architecture of FCN [Long J, Shelhamer E, Darrell T.]. Fully
convolutional networks can efficiently learn to make dense predictions for
per-pixel tasks like semantic segmentation.
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Examples with and without convex shape priori

'

(a) Without convexity
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Examples with and without convex shape priori

(c) Without convexity (d) With convexity
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Lack of geometry shape prior:

(p) Input (q) DeepLabV3+

(r) Input (s) DeepLabV3+
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General Neural Network for Semantic Image
Segmentation

e Let v € RN1N2 be a column vector by stacking the columns of an
image with size N1 X N,. Taking v as an input of a pixel-wise
segmentation neural network. Mathematically, this network can
be written as a parameterized nonlinear operator Ng defined by

oK = Ne(v).
The output v¥ of the network is given by some recursive
connections
= o, 5)
v* = Ao Ty (v 1),k=1,--- K

Here A* is an activation function of the k-th layer, Tgr-1 is
convolution operator defined as Tgi-1(v) = W¥1v + bk~1. The
parameter set ® = {@% = (Wk,b¥)|[k=0,...,K—1}.
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General Neural Network for Semantic Image
Segmentation

@ The training process is to learn the parameter set @ by giving
some images V = (v1,vy,- -+ ,vn) € RNN2XN and their C classes
ground truth segmentation U = stack(Uy, Us,
<o Uy) € {0, 1FNIN2XCEXN with U, € {0,1}N1N2%C to minimize a
loss functional £(Ng(V),U), namely

®* = argmin L(Ne(V),U).
®

In many references, the loss function are set as the cross entropy
which is given by

LNe(V),U) =— i < Uy, logNe (vn) > .

n=1
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General Neural Network for Semantic Image
Segmentation

@ The algorithm of learning is a gradient descent method:

oL
kystep _ kystep—1 __ — ce —
(G ) (G) ) T@5®k @k:(@k)step—l’ k=0, K—=1,

where step = 1,2, - - - is the iteration number and 7g is a time step
or so called learning rate. 22 can be calculated by

50F
backpropagation technique using chain rule.
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Networks

softmax loss
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Variational explanation of softmax

e Given a vector 0 = (01,02, ...,0;) € R!, the standard (unit)
softmax function S : R — R! is defined by the formula:

el .
S(O)l - ﬁ,l - 1,...,[.
j=1¢"
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Variational explanation of softmax

@ In segmentation case, softmax could be derived from a
minimization problem. When given o € R/*N1N2 a5 the input, I is
the number of classes, N1 x N is the image size, we want to find
a corresponding output u € RI*NiN2 gych that u is the minimizer
of the following problem:

min— <u,0 >+ <u,logu >, ©)
s.t.ueC.

1
C = {u| Uip S [0,1], Zuip = 1,Vp = 1,...,N]N2}.
i=1

1
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Variational explanation of softmax

o Letu=(uy,...,u;),u; € RNM fori=1,2,...1. Some simple
calculations can show that the minimizer of the above problem is:

ﬁj:cexf’&,izl,m,l. (10)
Zj:l exp(oj)

it} is the i-th class probability map of the input image. One can
easily see that this is just the commonly used softmax activation
function, i.e.

" = S(o) (11)
However, this function doesn’t have any spatial regularization.
Prediction of each pixel is independent of other pixels.
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Spatial regularization through activation function

Our idea is to add spatial regularization
through activation functions.
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Proposed Regularization Neural Network

@ Inspired by the soft-max variational problem, we proposed the
following regularized softmax:

(o) =argmin{— <u,0 >+ <u,logu > +ATV(u)}, 12)

ucC

where the item ATV (u) is defined by

1 I
V() =Y. /Q (Vai(x)|dx = sup { / ui(x)divéi(x)dx}

=170
TV (u) is the total variation of the vector image u.

B={(&,....&N| &) <1,Vi=1,...,I}.
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Proposed Regularization Neural Network

@ the first problem in (12) can be easily solved by primal-dual
method:

(ii,n) = argmin max{— <wu,0> + < u,logu >
ucC &cB

+ A < u,divg >}
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Proposed Regularization Neural Network

@ We can use the following primal-dual gradient algorithm to find
the solution for

minmax — < #,0 > + < u,logu > +A < u,divg >, (14)
ucC &€B

in an iterative way:

£t+1 — Et _ T}\Vut,
nt+1 — ,PIB%(E,H_l), (15)
utl = 8(o — Mdiv(n'th)),

where S is the softmax operator, ¢ is the iteration number and 7 is
a time step, Py is a projection operator onto the convex set B.

@ Notation: The item TA in Equation (15) could be seen as a scaled
step size, we set it to a fixed constant in all computation.
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Spatial regularization with TD (Threshold Dynamics)

Spatial regularization with TD (Threshold Dynamics)
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TD regularization

@ MBO (Threshold Dynamics (TD). For a binary u;:
Y 00, = Y. TV (1)) ~ ¥ Z / ) (kg 5 15) (x)dax := R (u)
i=1,i#i

ks is the Gaussian kernel with width o or an indicator function of
the ball of radius o.

OIS - (Y ET R DRI M 514 O) IS tar-Shapes and Convex Shape representation July 2, 2020 39 /87



Entropic & spatial regularization

@ Regularized and geometry prior based softmax

H(u)

. —
A = arg H&lﬁ‘lp < —o,u>+e<ulogu>+R(u).
uc

F(u;0)

o C—-segmentation condition.
@ P—-geometry shape constraint or volume constraint.
@ F—-dual formulation of smooth max function.

@ H— negative entropic regularization (for smooth
backpropagation).

@ R—-spatial regularization (for smoothness segmentation
boundaries).
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Application 1 : STD-softmax (Soft Threshold
Dynamics softmax)

e Taking R to be the threshold dynamics (TD) regularization, we
get soft threshold dynamics (STD)

il = argmiél < —o,u>+e<ulogu>+R(u).
uc

I (u)

® R(u) = (eu, ks * (1 —u)), where e is an edge detector weighting
function and k is a Gaussian kernel.
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Stable and fast algorithm for unrolling

@ F isconvex, R is concave.
o Efficient algorithm (DCA, difference of convex algorithm)
utl = argmin {F(u;0) + R(u") + (p'1,u —u')}.
ucC
o plt = A((ke x (1 —u't))e — ks x (eu'?)) € IR (u').
@ Regularized softmax solution

0j(x)-pil (x)

ult () = ¢ o = softmax.(o — p").
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STD-softmax

Algorithm 1: STD-softmax

Input: The feature o

Output: Soft segmentation function u.
Initialization: u’ = S(0).

fort; =0,1,2,--- do

1. compute the solution of (7) by STD-softmax

ut1+128<0—pt1>.

€

2. Convergence check. If it is converged, end the
algorithm.

end
return Segmentation function u.

Proposition

(Energy decay). Let u't be the t1-th iteration of STD-softmax algorithm, then
we have F(uh 1) + R(uh' 1) < F(uh) + R(uh).
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Proposed STD DCNN segmentation

@ Proposed STD softmax (Liu,Wang and Tai 2020))!:

o' = argmin {F(w;0") +R(u)},t=1,---,T.

ueC

{ ol = Tgmi(vt1,072,... oY),

@ Superiority : spatial prior can be kept both in back and forward
propagation.
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Results on PASCAL VOC 2012 dataSet.

J‘

(@) tmoges

Figure 5: Visual effects of the DeepLabV3+ and proposed STD-DeeplabV3+
on PASCAL VOC 2012 test set.
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Star-shape prior (SS)

Star-shape prior (SS)
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Application 3: SS (Star shape)-STD softmax

5 OO

Figure 10: Star shape objects with given centers

If u: QO — {0,1} is the indicator function of a region, then this region
is star-shape iff
Vu(x)-(x—c) >0, VxeQ.

Here c is center (red point). We will denote s(x) = x — c.
References: Veksler et al (2008), Yuan et al (2012).
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Proposed star-shape soft threshold dynamics

@ Star-shape softmax: if we want the ith class segmented object to
be star-shape, then we need u; € P and solve:

= arg min {.F(u;o) + R(”)} ’

ucCnu;eP
P ={u: (Vu(x),s(x)) > 0}.

@ Dual problem in terms of KKT condition

(u,q) = argr?ei?maox {F(u;0) +R(u) —(gq,s-Vu;)}.

=

o Algorithm

qtﬁ‘l = max{g' — TS - Vuf, 0}.
ultl = argmin { F(u; 0) + R(u) + (div(gh's),u;) },

ueC
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SS-STD softmax segmentation algorithm

Algorithm 3: SS-STD softmax

Input: The feature o, and a center c of star-shape.

Output: Soft segmentation function .

Initialization: u” = S(0). Calculating the star-shape
vector field s according to c.

fort; =0,1,2,--- do

l.update dual variable for the i-th star-shape
region

¢ = max{¢" — 7,5 - Vui',0}.

2. compute the solution of (7) by SS-STD
softmax

U?Jrl =S

€

o; —pi* — & div(ghTs)\ .
7 s , Z — 17 e

3. Convergence check. If it is converged, end the
algorithm.

end
return Segmentation function w.
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The network architecture of STD -DeepLabV3+

(]
ot — 7-®H (vt—llvt—zl‘ - ZJO),
o' = argmin {F(w;0') +R(u)},t=1,---,T.
ucC,u;cP
SS layers
q4°=0 Cl\ ¢ (V) @ W () @

:\ﬂﬁ‘
&
=
LN
G
[:
A

Figure 11: S5-STD block for DCNN. This architecture is constructed
according to the SS-STD algorithm.
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Comparison

Testing of Algorithm 3 as a segmentation tool:

E|EE S D

(a) Feature o (b) Softmax () STD  (d) SS-STD  (e) SS-STD

Figure 12: Segmentation results by softmax, proposed STD and SS-STD
softmanx.
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Comparison

Testing when Algorithm 3 is integrated into the CNN network for:

(a) image (b) ground truth  (c) DeepLabV3+ [38] (d) with regularization (¢) with volume pre- (f) with star-shape &

(without spatial priori) serving & regulariza- regularization

tion

Figure 13: An example of without and with the proposed spatial priori for
DeepLabV3+ on ISIC2018 validation set.
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Results on ISIC2018 validation set.
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Performance on ISIC2018 validation set

Methods mloU

Baseline DeepLabV3+ [38] 89.77
STD 91.02

Ours VP-STD 92.46
SS-STD 91.57
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Convex shape (CS) prior

Convex shape (CS) prior
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Convex shape prior

(a) image (b) label [(z)  (c) sublevel set (d) sublevel set
U1 u2

Figure 14: The cup and disc areas in retinal images with sublevel set functions
ul and u2 representation can be both convex.
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Conditions for convex shapes with binary
representation

N ] ..;
Circle A (;ir'ctle

@ Convex shape condition(Luo,Tai,Wang,2O19)4:
{ L xeB,CQ,

B’
0, else.

8r(x) =

o If u € Ccs with Ccg being defined as
Ces=A{u: (1—u(x))(gr*(1—2u))(x) >0,¥VB, C Q,Vx € Q},

then the connected components of D are all convex.
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CS-STD (Convex Shape Soft Threshold Dynamics)
sigmoid

@ Convex shape (CS) soft thresholding dynamics (STD):

u= argmin {(—o,u) +e(ulnu+ (1 —u)In(l —u))
u€l0,1]NCcs

+ {eu, kx (1 —u))}.
=R (u)

=F(u;0)

@ Ccs is a quadratic constraint for convex shape.
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Algorithm

e Apply DCA

u€l0,1]NCes

o plt = (kx* (1 —uh))e—kx(eu) € IR (u)
@ No closed-form solution.
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Our new algorithm

@ Pseudo projection algorithm
uhts = argmin { F(u;0) + A{ph,u)},
u
uttl :Prol'[o,lmccs(“tﬁ%)-

@ The first subproblem

i’]-‘r% — 1 O_Aptl

u =§(
1+e

).

—o+Ap'1 £
&

@ The second subproblem has sigmoid solution can be solved by a
simple pseudo projection.

uhtl = argmin ||u — 2|2,

u€l0,1]NCcs

OIS - (Y ET R DRI M 514 O) IS tar-Shapes and Convex Shape representation July 2, 2020 77 / 87



Algorithms

Algorithm 4: Projjy ;¢ for convex shapes

Input: u'*+3, Different sphere radius
r = (ro, 7‘11T27T3»T4)
Initialization: u* = u®*
for t, =0,1,--
1. Setr = Tmod(t;,S)-
2. Find the active set

A={z: (1 -u2(@) (g, * (1 - 2u"))(x) < 0}
2. Update

tat1 1, zeA
u (@) = { u(z), z¢ A
3. Convergence check. If it is converged, end the
algorithm.
end
Output: Segmentation function u*1+1 = uf2+1 with
convex shape.

Algorithm 5: CS-STD sigmoid activation function
Input: The feature o.
Initialization: u° = S(o).
for t; =0,1,2,--- do
1. Compute the solution of the first subproblem in
by regularized STD sigmoid.
2. Calculate the pseudo projection
ut*! = Projjg ;) c(u'*+4) by Algorithm 4.
3. Convergence check. If it is converged, end the
algorithm.
end
Output: Segmentation function » with convex shape
prior.
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New CS-STD sigmoid block for DCNN

ol = Toa(vLo2,... ,0%,t=1,.--- T,
ol = Ao, t=1,---,T—1,

vl = argmin {F(u;07) +AR(u)}.
u€[0,1]NCcs

Here F is the dual representation with sublevel set functions.

CS space \:PfUJ' .0 c: (PTUJ[O.I] nc: \:Pl'oj 0.0 c: \:Proj[u,l] n c)—

STD space

Figure 15: CS-STD block for DCNN. This architecture is constructed
according to the CS-STD algorithm.
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Visual quality

NS

(b) Ground ruth

(@ mages (©) DeeplabV3+ (@ STD (¢) CS-STD

F igure 16: visual quality of the sigmoid, STD-sigmoid, CS-STD-sigmoid on Refuge test set.
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Visual quality

() Images. (b) Ground truth (©) DeeplabV3+ @ STD (¢) CS.STD

Figure 17: visual quality of the sigmoid, STD-sigmoid, CS-STD-sigmoid on Refuge validation set.
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Generalization ability

Image

Ground Truth
DeeplabV3+

CS-STD

Figure 18: visual quality of training on Refuge train set and predicting on RIM-ONE-13 test set.
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Comparison

val. set test set

methods disc  cup disc  cup

Existin: STD [29] 95.1 86.7 952 85.0
2 pOSAL-seg [27] 932 86.9 - -

Baseline  DeeplabV3+ [20] 95.0 86.4 95.1 843

Proposed CS-STD 95.1 883 952 877

Figure 19: pm (dice measure) values of different methods for Refuge validation and test sets.

methods disc  cup

TD-GAN [35] 853 728

Existin Hoffman et al. [36] 852 755
2 Javanmardi et al. [37] 853 779
pOSAL [27] 86.5 789

Baseline DeeplabV3+ [20] 854 709
Proposed CS-STD 922  80.7

Figure 20: DM values of different methods for training on Refuge train set and predicting on RIM-ONE-13 test set.
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Numerical Results of CS-STD

Noise levels o o
o 1 2 3 4 5 6 1 8 ¢
DeepLabV3+ [20] 843 842 84.1 83.8 83.6 83.1 82.6 824 81.7 56 !
'
CS-STD 87.7 87.6 875 87.3 869 866 862 859 855 5 ol D
e, A W
®
Noise levels o = BV
9 10 11 12 13 14 15 16 17 s g 18
3 R
DeepLabV3+ [20] 81.2 80.5 80.1 79.5 79.1 787 77.8 774 766 3 )
<4 A L N
CS-SCT 85.1 846 840 83.5 832 827 823 813 812 2 ° o ®
= ?
’ o/
Noise levels o Voa, by ® O
18 19 20 21 22 23 24 25
DeepLabV3+ [20] 76.1 753 74.6 73.9 72.8 71.6 705 69.0 s - - . =
CS-STD 812 79.9 79.8 789 77.7 769 755 74.7 4

Figure 21: The improved DM values for cup regions in the Refuge test sets
(400 images) between DeeplabV3+ and the proposed CS-STD under different
levels of noise with standard deviation.
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