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I. Introduction

Aim: Consider the plasma-vacuum and plasma-plasma interface
problems in a horizontal periodic slab in R3 impressed by a uniform
non-horizontal magnetic field.
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I. Introduction

§1.1 Formulation of the plasma-vacuum interface in Eulerian
coordinates.

Consider the plasma-vacuum interface problem in Ω = T2 × [−1, 1]
impressed by a uniform transversal magnetic field B̄ with B̄3 6= 0,
such that

Plasma region:

Ω−(t) = {(yh, y3) , (y1, y2, y3) ∈ T2 × R | −1 < y3 < η(t, yh)}(1.1)

Vacuum region:

Ω+(t) = {y ∈ T2 × R | η(t, yh) < y3 < 1} (1.2)
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P-V interface:

Σ(t) , {y ∈ T2 × R | y3 = η(t, yh)} (1.3)

η : R+ × T2 → R is unknown; (1.4)

Upper and lower fixed boundaries are Σ± , T2 × {±1}.
In the plasma region Ω−(t), the flow is given by the incompressible,
inviscid and resistive magnetohydrodynamics equation (MHD)

∂tu + u · ∇u +∇p = curl B × B
divu = 0
∂tB = curl E , E = u × B − k curl B
divB = 0

(1.5)
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where u : velocity field
B : magnetic field
p : pressure
E : the electric field of the plasma

k > 0 : the magnetic diffusion coefficient

In the vacuum region Ω+(t), the magnetic field B̂ and the electric
field Ê are assumed to satisfy the pre-Maxwell equations:{

curl B̂ = 0, divB̂ = 0 in Ω+(t)

∂tB̂ = curl Ê , divÊ = 0 in Ω+(t)
(1.6)
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The free interface satisfies the kinematic boundary condition

∂tη = u · N on Σ(t) (1.7)

with N = (−∇hη, 1) , (−∂1η,−∂2η, 1) begin the upperward
normal vector of Σ(t).

Furthermore, across the Σ(t), the balance of normal stress and
classical jump conditions for the magnetic and electric fields
should be satisfied.

Balance of Normal Stress:

(pI +
1

2
|B|2I − B ⊗ B)N =

(
1

2
|B̂|2I − B̂ ⊗ B̂

)
N − σHN on Σ(t) (1.8)
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with I being the 3× 3 Identity matrix, σ > 0 surface tension, H:
the mean curvature of Σ

H = divh

(
∇hη√

1 + |∇hη|2

)
.

Classical jump conditions of magnetic and electric fields:

B · N = B̂ · N , (E − Ê )×N = u · N (B − B̂) on Σ(t) (1.9)

Under the consideration that B is close to B̄ so that
B · N = B̂ · N 6= 0, then (1.7) and (1.8) are equivalent to

p = −σH, B = B̂, E ×N = Ê ×N (1.10)
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(B.C.): The upper wall Σ+ is assumed to be perfectly insulating:

B̂ × e3 = B̄ × e3, Ê · e3 = 0 on Σ+; (1.11)

while the lower wall Σ− is assumed to be impermeable and
perfectly conducting:

u · e3 = 0, B · e3 = B̄ · e3, E × e3 = 0 on Σ− (1.12)

with e3 = (0, 0, 1).
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(I.C.): Given initial surface Σ(0) as the graph of

η(0) = η0 : T2 → R, which yield Ω−(0) and Ω+(0). We also
specify u(0) = u0 : Ω−(0)→ R3, and B(0) = B0 : Ω−(0)→ R3.

Thus the plasma-vacuum interface problem is to look for

(u,B, p, η, B̂, Ê ) satisfying (1.5), (1.6), (1.7), (1.10), (1.11),
(1.12) and (I.C.).

Remark (1.1)

Mathematically, as Ladyzenskaya-Solonnikov, one may regard the
electric field Ê in vacuum as a secondary variable. Indeed, set

b = B − B̄, b̂ = B̂ − B̄. (1.13)
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Then (1.5)-(1.7), (1.10)-(1.12) imply the following problem

∂tu + u · ∇u +∇p = curl b × (B̄ + b) Ω−(t)
divu = 0 Ω−(t)
∂tb = curl E ,E = u × (B̄ + b)− k curl b Ω−(t)
divb = 0 Ω−(t)

curlb̂ = 0,divb̂ = 0 Ω+(t)
∂tη = u · N Σ(t)

p = −σH, b = b̂ Σ(t)

b̂ × e3 = 0 Σ+

u3 = 0, b3 = 0,E × e3 = 0 Σ−
η|t=0 = η0, b|t=0 = b0, u|t=0 = u0 Ω−(0)

(1.14)
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Remark (1.2)

Once (1.14) is solved, then Ê can be recovered by solving the
following elliptic system,

curl Ê = ∂t b̂, divÊ = 0 in Ω+(t)

Ê ×N = E ×N on Σ(t)

Ê3 = 0 on Σ+(t)

(1.15)
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Remark (1.3)

Formally, the magnetic field in vacuum, b̂, can be suppressed in
(1.14) too. Indeed, b̂ can be determined by b · N on Σ(t) through
the following problem:

curl b̂ = 0,divb̂ = 0 in Ω+(t)

b̂ · N = b · N on Σ(t)

b̂ × e3 = 0 on Σ+

(1.16)

This implies that the jump condition b = b̂ on Σ(t) in (1.14) could
be regarded as a nonlocal boundary condition for b:

b ×N = Bt(b · N )×N on Σ(t) (1.17)

where Bt(b · N ) is the solution to (1.16).

Zhouping Xin Free Interface Problems for the Incompressible Inviscid Resistive MHD



I. Introduction

§1.2 Physical Energy-Dissipation Law

Key fact: The classical solution to the problem (1.14) admits the
following energy identify:

1

2

d

dt

(∫
Ω−(t)

(|u|2 + |b|2)dy +

∫
Ω+(t)

|b̂|2dy

+

∫
T2

2σ(
√

1 + |∇hη|2 − 1)dyh

)
+ k

∫
Ω(t)
|∇ × b|2dy = 0

(1.18)

which can be derived by using energy estimates and making use of
the structure (1.15) satisfied by the electric field Ê in vacuum.
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(1.18) will be the basis of the energy method to analyze the
problem (1.14).

Remark (1.4)

The fact (1.18) can also be derived by introducing the so called
virtual magnetic field in Ω−(t) as by Ladyzenskaya-Solonnikov for
the viscous an resistive MHD.
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§1.3 Review of Literature

(1) Local well-posedness (LWP):

There are huge amount of studies on free surface Euler
equations:

Water waves for the irrotational Euler equations:

Nalimov, ’74; Yosihara, ’82; Carig, ’85; ...
S. J. Wu, ’97, ’99; Lanes, ’95; Ambrouse-Masoudi, ’05, ’09; ...

Water waves for the general Euler equations, under Taylor sign
condition or surface tension:

Christodoulou-Lindblad, ’00; Lindblad, ’05; Coutand-Shkoller,
’07; Shatah-Zeng, ’08; Zhang-Zhang, ’08;
Masmoudi-Rousset, ’17; Wang-Xin, ’15.

Vortex Sheets, with surface tension:

Ambrosae-Masmoudi, ’03, ’07; Cheng-Coutand-Shkoller, ’08;
Shatah-Zeng, ’08, ’11.
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Compared with the pure fluids, there are only recent studies
on the free interface problems for the ideal (inviscid and
non-resistive) MHD and viscous and resistive MHD:

Plasma-Vacuum interface problem; under the assumption:

B · N = B̂ · N ≡ 0 on Σ(t);

1 Magnetic stability condition (⇔ Non-Collinearity Condition):
|B × B̂| > 0 on Σ(t);
• Morando-Trakhinin-Trebesdi, ’14; linear problem;
• Sun-Wang-Zhang, ’19: Nonlinear local well-posedness!

2 Hydrodynamic stability; Taylor sign condition:
−∇(p + 1

2
|B|2 − 1

2
|B̂|2) · N > 0 on Σ(t)

• Hao-Luo, ’14: B̂ ≡ 0, a priori estimates;
• Gu-Wang, ’19: B̂ = 0, well-posedness.
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Plasma-Plasma interface problem (Current-Vortex sheets):
Syrovatskij stability condition:
|[u]× B+|2 + |[u]× B−|2 < 2|B+ × B−|2 on Σ(t):

Coulombel-Morando-Secchi-Trebeschi ’12; A priori estimates
(under stronger condition);
Sun-Wang-Zhang, ’18: well-posedness;
Compressible case: Chen-Wang ’2008, Trakhinin ’2009.

Plasma-Vacuum interface problem for viscous and resistive
MHD:

Padula-Solonnikov, ’10; Solonnikov, ’12, ’16.
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Remark (1.5)

The Non-Collinearity condition and the Syrovatskij condition show
the stabilizing effects of the magnetic field on the local
well-posedness of interface problems in inviscid fluids since either
the Taylor-sign condition or non-zero surface tension is necessary
for the local well-posed of the one-phase problem, and the
non-zero surface tension is necessary for the local well-posedness of
the vortex sheets problem. However, it requires B · N = 0 on Σ.
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(2) Finite time singularities: Development in finite time of
splash/splat singularities for free boundary problems for some
large initial data:

=⇒ =⇒

Inviscid flows:
Castro-Córadoba-Fefferman-Gancedo-Gómez-Serrano, ’13;
Coutand-Shkoller, ’14; Coutand, ’19.
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Viscous flows:
Castro-Córadoba-Fefferman-Gancedo-Gómez-Serrano, ’19;
Coutand-Shkoller, ’15 arXiv.

The two-phase interface problem:
Fefferman-Ionescu-Lie, ’16; Coutand-Shkoller, ’16; Coutand,
’19.

(3) Global well-posedness:

Irrotational Euler flows: horizontally non-periodic setting with
“small” data: Wu, ’09, ’11; Germain-Masmoudi-Shatah, ’12,
’15; Ionescu-Pusateri, ’15, ’17; Alazard-Delort, ’15;
Deng-Ionescu-Pausader-Pusateri, ’17; ...
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Navier-Stokes flows: Solonnikov, ’77, ’88; Beale, ’81, ’83;
Nishida-Teramoto-Yoshihara, ’04; Hataya, ’09; Guo-Tice, ’13;
Wang-Tice-Kim, ’14; Tan-Wang, ’14; ...

Viscous and resistive MHD: “small” data around the zero
magnetic field:
Solonnikov-Frolova, ’13; Solonnikov, ’16;

Viscous and non-resistive MHD:
Y. Wang, ’19; global existence plasma-plasma interface
problem around a transversal uniform magnetic field.
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(4) Motivations:

It is still open whether the free surface incompressible Euler
equations for general small initial data admits a global unique
solution or not, except the case of irrotational flows where
certain dispersive effects can be used to establish global
well-posedness. This is even so for 2D!

Some global well-posedness of free surface problems for
“general small” initial data have been established for viscous
fluids (either Navier-Stokes, or viscous MHD). These results
rely heavily on the dissipation and regularization effects of the
viscosity for the velocity field. It is quite open for inviscid
fluids!
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In the absence of the viscosity for the velocity field, the magnetic
field may provide some stabilizing effects for the local
well-posedness of some free interface problem for the inviscid MHD.
However, there is no any global well-posedness results for the
inviscid MHD. In the free surface problems in a horizontally slab
impressed by a uniform non-horizontal magnetic field, even the local
well-posedness of either plasma-vacuum or plasma-plasma interface
problem is highly non-trivial. In this talk, I will present some global
well-posedness results for the free interface problems for the inviscid
and resistive MHD. Note that this is a subtle and difficult issue
since the free surface is transported by the fluid velocity, and the
global existence of classical solutions to the Cauchy problem in 2D
is unknown. Our results reveal strong stabilizing effect of the
magnetic field based on an induced damping structure for the fluid
vorticity due to the resistivity and the transversal magnetic field.
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§2.1 Reformulation in flattening coordinates

Flattening coordinates

The equilibrium domains:

Ω− := T2 × (−1, 0), Ω+ := T2 × (0, 1) (2.1)

and their interface

Σ := T2 × {0}. (2.2)

The physical domains can be flattened via the mapping

Ω± 3 x 7→ (xh, ϕ(t, x) := x3 + η̄(t, x)) =: Φ(t, x) = y ∈ Ω±(t) (2.3)

where η̄ = χ(x3)Pη : χ(0) = 1, χ(±1) = 0, Pη is the
harmonic extension of η onto R3.
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Set

∂ϕi = ∂i − ∂i η̄∂ϕ3 , i = t, 1, 2, ∂ϕ3 =
1

∂3ϕ
∂3 (2.4)

(∇ϕ)i = ∂ϕi , i = 1, 2, 3, divϕ = ∇ϕ·,
curlϕ = ∇ϕ×, ∆ϕ = divϕ∇ϕ (2.5)

[b] = b̂|Σ − b|Σ (2.6)
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Reformulation:

In flattening coordinates, the Problem (1.4) is equivalent to:

∂ϕt u + u · ∇ϕ u +∇ϕ p = curlϕ b × (B̄ + b) Ω−
divϕu = 0 Ω−
∂ϕt b = curlϕ E , E = u × (B̄ + b)− k curlϕ b Ω−
divϕ b = 0 Ω−
curlϕ b̂ = 0, divϕ b̂ = 0 Ω+

∂t η = u · N on Σ
p = −σH, [b] = 0 on Σ

b̂ × e3 = 0 on Σ+

u3 = 0, b3 = 0, E × e3 = 0 on Σ−
(u, b, η)|t=0 = (u0, b0, η0)

(2.7)
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Then the energy-dissipation law (1.18) becomes

1

2

d

dt

(∫
Ω−

(|u|2 + |b|2)dνt +

∫
Ω+

|b̂|2dνt

+

∫
T2

2σ(
√

1 + |∇hη|2 − 1)

)
+ k

∫
Ω−

|curlϕ b|2dνt = 0
(2.8)

where dνt := ∂3 ϕ dx is the volume elements.

§2.2 Statement of the Main Results

Assumptions on Initial Data

Zero-average condition:∫
T2

η0 = 0 (2.9)
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2N-th order compatibility condition for (u0, b0, η0):
divϕ0u0 = divϕb0 = 0 on Ω−; u0,3 = b0,3 = 0 on Σ−;[
∂jtb(0)

]
×N0 = 0 on Σ, ∂jtE (0)× e3 = 0 on Σ−,

j = 0, · · · , 2N − 1.

(2.10)

Remark (2.1)

It can be verified easily that (2.9) implies∫
T2

η(x , t) = 0 for all t ≥ 0
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Remark (2.2)

The 2N-th order compatibility conditions are necessary for local
well-posedness theory in the high order regularity contest.
However, due to the non-local and nonlinear nature of the problem
(2.7), the construction of initial data satisfying the 2N-th order
compatibility conditions is highly technical and non-trivial. We can
achieve this by using the implicit function theorem.

Energy and Dissipation Functionals

Sobolev Norm:

||f ||m := ||f ||Hm(Ω±), and |f |s := ||f ||Hs(T2), k ≥ 0, s ∈ R

Anisotropic norm:

||f ||k,l :=
∑

α∈N2,|α|≤l

||σαf ||k
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For N ≥ 4, the high-order energy is defined as

E2N =
2N∑
j=0

||∂jtu||22N−j +
2N−1∑
j=0

||∂jtb||22N−j+1 + ||∂2N
t b||20

+
2N−1∑
j=0

||∂jt b̂||22N−j+1 + ||∂2N
t b̂||20 +

2N−1∑
j=0

||∂tp||22N−j

+
2N−1∑
j=0

|∂jtη|22N−j+ 3
2

+ |∂2N
t η|21 + |∂2N+1

t η|2− 1
2
.

(2.11)
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Remark (2.3)

One of the key parts in proving the global well-posedness of (2.7)
is to show that E2N(t) for N ≥ 8 is bounded for all t ≥ 0. To this
end, one needs to derive a sufficiently fast time-decay of certain
lower-order Sobolev norms of the solution, which will be achieved
by some dissipation estimates.
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Dissipation functional: For N + 4 ≤ n ≤ 2N,

Dn :=
n−1∑
j=0

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j +
n∑

j=0

||∂jtb||21,n−j

+
n∑

j=0

||∂jt b̂||2n−j+1 +
n−2∑
j=0

||∂jtp||2n−j−1

+
n−2∑
j=0

|∂jtη|2n−j+1/2 + |∂n−1
t η|21 + |∂nt η|20

(2.12)

Note that the dissipation functional D2N cannot control E2N .
Furthermore, in the derivation of the dissipation estimates for
Dn, the following lower-order energy functional is involved:
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En := ||u||2n−1 + ||u||20,n +
n∑

j=1

||∂jtu||2n−j + ||b||2n

+
n−1∑
j=1

||∂jtb||2n−j+1 + ||∂nt b||20 + ||b̂||2n

+
n−1∑
j=1

||∂jt b̂||2n−j+1 + ||∂nt b̂||20 +
n−1∑
j=0

||∂jtp||2n−j

+
n−1∑
j=0

|∂jtη|2n−j+3/2 + |∂nt η|21 + |∂n+1
t η|2−1/2

(2.13)

In fact, it is En that would decay, but not En.
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Main Results:

Theorem (Plasma-Vacuum Interface)

Let k > 0, B̄3 6= 0, σ > 0, and N ≥ 8 (an integer) be fixed.
Assume that the initial (u0, b0, η0) is given such that

(i) u0 ∈ H2N(Ω−), b0 ∈ H2N+1(Ω−), η0 ∈ H2N+ 3
2 (Σ),

E2N(0) < +∞
(ii) (2.9) and (2.10) are satisfied.

Then ∃ universal constant ε0 > 0 such that if E2N(0) ≤ ε0, then ∃|
global solution (u, p, η, b, b̂) to the plasma-vacuum interface
problem (2.7). Moreover, for all t ≥ 0, it holds that
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Theorem (Plasma-Vacuum Interface) (continued)

E2N(t) +

∫ t

0
D2N(s)ds ≤ cE2N(0) (2.14)

and

N−5∑
j=1

(1 + t)N−5−jEN+4+j(t)

+
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s)ds ≤ cE2N(0)

(2.15)
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Remark (2.4)

The theorem implies in particular that
√
EN+4(t) ≤ c(1 + t)−

N−5
2 ,

which is integrable in time for N ≥ 8. This decay result can be
regarded as “almost exponential” decay rate. Since η is such that
the mapping Φ(t, ·), defined in (2.3), is a diffeomorphism for each
t ≥ 0, one may change coordinates to y ∈ Ω±(t) to obtain a
global in time decay solution to (1.14).
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Remark (2.5)

The theorem provides the first results for the global well-posedness
of free surface problems without viscosity for the general
incomperessible rotational flows. This is due to the strong coupling
between the fluid and the diffusive transversal magnetic field. In
contrast to the earlier works on the local well-posedness of free
inteface problems for ideal MHD, where the tangential magnetic
field play the important role, here the global well-posedness
depends crucially on the transversally of the magnetic field. Indeed,
our analysis fails for the case B̄ being horizontal. For example, for
B = B̂ = B̄ = e1 = (1, 0, 0). Take u1 ≡ 0, ⇒ 2D Euler!
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Remark (2.6)

The surface tension is important for the theory here (σ > 0).
Indeed, to solve (2.7) with the desired regularities of b (and b̂) in

(2.11), even locally in time, one needs η ∈ H2N+ 1
2 due to the

magnetic diffusion term curlϕ curlϕ. In the case σ = 0, it seems
that only H2N regularity for η is available. Hence σ > 0 is
necessary here even for local well-posedness! This is different from
the viscous case where the viscosity has a regularizing effect of 1

2
order for η and so σ > 0 is unnecessary!
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Remark (2.7)

It should be noted even the local well-posedness of the interface
problem (2.7) is unknown and non-trivial, which is of independent
interests. Indeed, note that it is difficult to apply the ideas for
previous local well-posedness of interface problems for ideal MHD
(see Gu-Wang, Morando-Trakhinin-Trebeschi, etc.) where the
parallelness of the magnetic field to the interface is important!
Even though the magnetic diffusion has a regularizing effect for the
magnetic field, one of the main difficulties in constructing solutions
to (2.7) lies in solving the magnetic system due to the non-local
boundary conditions for the magnetic field. For the viscous and
resistive MHD, Padula-Solonnikov solved the magnetic system in
the framework of full parabolic regularity theory, which
unfortunately cannot be applied to the inviscid problem due to the
less regularity of the velocity.
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Remark (2.7) (continued)

Out strategy is to solve the magnetic system in the framework of
energy method, which is naturally consistent with the Euler
equations, so that the solution can be constructed as the limit of
the approximate solutions to an elaborate chosen regularization.

Remark (2.8)

The main ideas and strategies for the plasma-vacuum interface
problem can be modified to study the plasma-plasma interface
problem to obtain its global well-posedness.
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Strategy:
LWP + Global a priori estimates + Continuity Argument ⇒ GWP

§3.1 Local well-posedness (LWP)

Since the Lorentz force is of lower-order regularity compared
with magnetic diffusion,

Main Strategy: Decompose (2.7) ≈ Hydrodynamic part on
Ω−⊕ Magnetic part on Ω⊕ iteration scheme
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Hydrodynamic part on Ω−: For F = curlϕ̃b × (B̄ + b) with
given ϕ̃ and b, solve the following free surface incompressible
Euler equations with surface tension:


∂ϕt u + u · ∇ϕu +∇ϕp = F in Ω−
divϕu = 0 in Ω−
∂tη = u · N , p = −σH on Σ
u3 = 0 on Σ−
(u, η)|t=0 = (u0, η0)

(3.1)

Remark (3.1)

The hydrodynamic part (3.1) can be solved is a similar way as
Coutand-Shkoller ’07.
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Magnetic part on Ω: For G = u × (B̄ + b̃) with u, b̃, and η
given, solve the following fixed initial boundary value problem
for the magnetic field (b, b̂):

∂ϕt b + k curlϕcurlϕb = curlϕG in Ω−
divϕb = 0 in Ω−
curlϕb̂ = 0, divϕb̂ = 0 in Ω+

[b] = 0 on Σ

b̂ × e3 = 0 on Σ+

b3 = 0, kcurlϕb × e3 = G × e3 on Σ−
b|t=0 = b0

(3.2)
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Remark (3.2)

This is the major difficult part of LWP due to nonlocal boundary
condition on Σ. However, in the more regular case (i.e. u satisfies
NS equation). (3.2) was solved by Padula-Solonnikov (’10) with η
being a small perturbation of flat case (η = 0) by employing the
full parabolic regularity. However, such a full parabolic regularity of
solving (3.2) is not consistent in the iteration scheme to construct
solutions to (2.7) since the hyperbolic Euler equations could not
provide such higher regularity for u and η.
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Now Approach: We solve (3.2) in the functional framework based
on the energy structure (2.8).

Step 3.1: Consider the following regularized problem:

∂ϕ
ε

t bε + k curlϕ
ε
curlϕ

ε
bε = curlϕ

ε
(G ε −Ψε) in Ω−

divϕ
ε
bε = 0 in Ω−

curlϕ
ε
b̂ε = 0, divϕ

ε
b̂ε = 0 in Ω+

[bε] = 0 on Σ

b̂ε × e3 = 0 on Σ+

bεε = 0, kcurlϕ
ε
bε × e3 = G ε × e3 on Σ−

(3.3)
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where ε > 0: smoothing parameter; ϕε = ϕ(ηε); ηε and G ε are
smooth regularizations of η and G ; Ψε: corrector to be
constructed, which are crucial to satisfy the compatibility condition
for (3.3).

Step 3.2: Solve (3.3) in the higher order regularity context by
modifying the arguments due to Padula-Solonnikov (’10).
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Step 3.3: To derive the uniform estimates (independent of ε > 0)
for the solution to (3.3) with the desired regularity in our
functional framework. To this end, we make important use of the
following regularizing electric field in vacuum, Ê ε, which solves

curlϕ
ε
Ê ε = ∂ϕ

ε

t b̂ε, divϕ
ε
b̂ε = 0 in Ω+

Ê ε × N−ε = (−kcurlϕ
ε
bε + G ε −Ψε)× Nε on Σ

Ê ε
3 = 0 on Σ+

(3.4)

whose solvability is classical (see Cheng-Shkoller (’17)).
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Step 3.4: The solution to (3.2) is then obtained as the limit of
solutions to (3.3) as ε→ 0+ after deriving the uniform estimates
on the approximate solutions on a time interval independent of ε
by a variant of the derivation of the estimates for (2.7) to be
sketched below.

Finally, we can construct the local solution to (2.7) by the method
of successive approximations based on the solvability of (3.1) and
(3.2).�
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§3.2 A Priori Energy Estimates

Our derivation of a priori estimates for the solutions to (2.7) is
based on the physical energy-dissipation structure (2.8), and
involves the vacuum electric field Ê which solves:

curlϕÊ = ∂ϕt b̂, divϕÊ = 0 in Ω+

Ẽ ×N = E ×N on Σ

Ê3 = 0 on Σ+

(3.5)

and the estimates of Ê in terms E2N , E2N , D2N can be obtained
easily by the Hodge theory.
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Tangential energy estimates:

Applying the energy-dissipation structure law (2.8) to the high
order temporal and horizontal spatial derivatives ∂α for
α ∈ N1+2 with |α| ≤ 2N yields

1

2

d

dt

(∫
Ω−

(|∂αu|2 + |∂αb|2)dνt +

∫
Ω+

|∂αb̂|2dνt

+

∫
Σ
σ|∇∂αη|2

)
+ k

∫
Ω+

|curlϕ∂αb|2dνt

= −
∫

Ω−

∂αp [∂α, div] udνt −
∫

Σ
σ∂αH [∂α,N ] u

−
∫

Ω+

∂αÊ · [∂α, curlϕ] b̂dνt + ΣR ,

(3.6)

where ΣR denotes nonlinear terms which can be controlled by
the energies!
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When α0 ≤ 2N − 1, the first three terms on the right hand
side of (3.6) can be shown to be also of ΣR .

When α0 = 2N, the difficulty is that ∂2N
t p, ∂2N

t H and ∂2N
t Ê

seem to be out of control. However, integrating by parts in
times shows the third term is of ΣR , so it remains to estimate
the first two terms. As we observed earlier, integrating by
parts in both time and space in an appropriate order and then
employing a crucial cancellation between ∂2N

t p and σ∂2N
t H on

Σ by using the dynamical boundary condition, one can show
that the first two terms are of ΣR too!
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The above arguments lead to the following tangential energy
evolution estimate:

Ē2N(t) +

∫ t

0
D̄2N(s)ds

≤ E2N(0) + E
3
2

2N(t) +

∫ t

0

√
EN+4(s)(E2N(s) + D2N(s))ds

(3.7)

where the tangential energy and dissipation functionals are
defined by

Ēn :=
n∑

j=0

||∂jtu||20,n−j +
n∑

j=0

||∂jtb||20,n−j

+
n∑

j=0

||∂jt b̂||20,n=j +
n∑

j=0

|∂jtη|2n−j+1,

(3.8)
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D̄n :=
n∑

j=0

||curl ∂jtb||20,n−j (3.9)

To show that EN+4(t) decays sufficiently fast so that√
εN+4(t) is integrable in time (since the energy cannot be

dominated by the dissipation), we can derive the following set
of tangential energy evolution estimates different from (3.7):

d

dt
(Ēn + Bn) + D̄n .

√
E2NDn, n = N + 4, · · · , 2N − 2, (3.10)

with Bn satisfying |Bn| .
√

E2NEn.
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Improved tangential dissipation estimates: Note that the

tangential dissipation D̄n contains only curl-estimate of b. We
can improve this as follows. Set

D̄n :=
n∑

j=0

||∂jtb||21,n−j +
n∑

j=0

||∂jt b̂||2n−j+1 (3.11)

(1) H1-dissipation estimates of b and full dissipation estimates

on b̂:

D̄2N . D̄2N + EN+4(E2N + D2N), (3.12)

D̄n . D̄n + DN+4E2N , n = N + 4, · · · , 2N − 1, (3.13)

which follows from Hodge-type estimates.
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(2) Tangential dissipation estimates for u: (due to the coupling,

B̄3 6= 0)

B̄ · ∇-dissipation estimates on u:

n−1∑
j=0

||B̄ · ∇∂jtu3||20,n−j−1 +
n−1∑
j=0

||B̄ · ∇∂jt(k∂3bh + B̄3uh)||20,n−j−1

. D̄n + DN+4E2N

(3.14)

which follows by projecting the magnetic equations onto the
vertical and horizontal components respectively. Thus using
Poincare-type inequality related to B̄ · ∇ together with
boundary conditions on Σ− ⇒.
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Tangential dissipation estimates for u:

n−1∑
j=0

(||∂jtu||20,n−j−1 + |∂jtu|2n−j−1) . D̄n + DN+4E2N (3.15)

where B̄3 6= 0 and k > 0 are all used crucially!

Normal Derivative Estmates:

The heart of the analysis is to derive the estimates involving the
normal derivatives of u and b. The key of this is the observation of
the damping structure for the fluid vorticity field induced by the
magnetic field.
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Induced damping structure for the vorticity:

The fluid vorticity curlϕu satisfy

∂ϕt (curlϕu) + u · ∇ϕ(curlϕu) = B̄ · ∇ϕ(curlϕb) + · · · (3.16)

with + · · · being some nonlinear terms. Note that
divϕb = 0⇒

B̄3∂
ϕ
3 (curlϕb)1 = B̄3∂

ϕ
1 (curlϕb)3 + B̄3(curlϕcurlϕb)2,

B̄ · ∇ϕu2 = B̄h · ∇ϕhu2 − B̄3(curlϕu)1 + B̄3∂
ϕ
2 u3.

Thus ∂ϕt b = curlϕE implies that
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B̄ · ∇ϕ(curlϕb)1

≡ B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
3 (curlϕb)1

= B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
1 (curlϕb)3 + B̄3(curlϕcurlϕb)2

= B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
1 (curlϕb)3 +

B̄3

k
(−∂ϕt b2 + B̄ · ∇ϕu2 + · · · )

= B̄h · ∇ϕh (curlϕb)1 + B̄3∂
ϕ
1 (curlϕb)3 −

B̄2
3

k
(curlϕu)1

+
B̄3

k
(−∂ϕt b2 + B̄h · ∇ϕhu2 + B̄3∂

ϕ
2 u3 + · · · )

= B̄h · ∇h(curlb)1 + B̄3∂1(curlϕb)3 −
B̄2

3

k
(curlϕu)1

+
B̄3

k
(∂tb2 + B̄h · ∇hu2 + B̄3∂2u3) + · · ·
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Similar computations hold for B̄ · ∇ϕ(curlϕb)2. Thus we get the
following equation for (curlϕu)h, for i = 1, 2:

∂ϕt (curlϕu)i + u · ∇ϕ(curlϕu)i +
B̄2

3

k
(curlϕu)i

= B̄h · ∇h(curlb)i + B̄3∂i (curlb)3

+(−1)i+1 B̄3

k
(−∂tb3−i + B̄h · ∇hu3−i + B̄3∂3−iu3) + · · ·

(3.17)

Since B̄3 6= 0, k > 0, so (3.17) yields the desired
transport-damping structure for (curlϕu)h, which provides the key
mechanism for global-in-time estimates!!!
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Estimating those terms on the right hand side of (3.17) by
Ē2N in (3.7), one can get estimates in E2N as:

d

dt
||(curlϕu)h||22N−1 + ||(curlϕu)h||22N−1 +

2N∑
j=0

||∂jtu||22N−j

+
2N∑
j=0

||∂jtb||22N−j+1 +
2N∑
j=0

||∂jt b̂||22N−j+1

. Ē2N + D̄2N + EN+4E2N ,
2N∑
j=0

||∂jtu||22N−j +
2N−1∑
j=0

||∂jtb||22N−j+1 + ||∂2N
t b||20

+
2N−1∑
j=0

||∂jt b̂||22N−j+1 + ||∂2N
t b̂||20

. Ē2N + ||(curlϕu)h||22N−1 + EN+4E2N

(3.18)
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Estimating those terms on the right hand side of (3.17) by
(3.15) (the tangential dissipation estimates), one can estimate
the terms in Dn as: for n = N + 4, · · · , 2N,



d

dt
||(curlϕu)h||2n−2 +

n−1∑
j=0

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j

+
n∑

j=0

||∂jtb||21,n−j +
n∑

j=0

||∂jt b̂||2n−j+1 . D̄n + DN+4E2N ,

||u||2n−1 + ||u||20,n +
n∑

j=1

||∂jtu||2n−j + ||b||2n +
n−1∑
j=1

||∂jtb||2n−j+1

+||∂nt b||20 + ||b̂||2n +
n−1∑
j=1

||∂jt b̂||2n−j+1 + ||∂nt b̂||20

. Ēn + ||(curlϕu)h||2n−2 + EN+4E2N

(3.19)
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The energy and dissipation estimates for the pressure p and
the free surface function η can be obtained by the elliptic
estimates as for n = N + 4, · · · 2N,

Energy estimates:

n−1∑
j=0

||∂jtp||2n−j +
n−1∑
j=0

|∂jtη|2n−j+ 3
2

+ |∂nt η|21 + |∂n+1
t η|2− 1

2

≤ Ēn +
n∑

j=1

||∂jtu||2n−j +
n−1∑
j=0

||∂jtb||2n−j + EN+4E2N .

(3.20)
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Dissipation estimates:

n−2∑
j=0

||∂jtp||2n−j−1 +
n−2∑
j=0

|∂jtη|2n−j+ 1
2

+ |∂n−1
t η|21 + |∂nt η|20

≤ D̄n +
n−1∑
j=1

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j−1 + DN+4E2N .

(3.21)
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Global Boundedness of High-order Energy:
Collecting all the tangential and normal estimates and using them
recessively, one can get that for E2N suitably small, then

E2N(t) +

∫ t

0
D2N(s)ds . E2N(0) +

∫ t

0

√
EN+4E2N(s)ds (3.22)

and

d

dt
En + Dn ≤ 0, n = N + 4, · · · , 2N − 2 (3.23)
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The global energy bound will be achieved of EN+4(t) decays
fast in time. However, note that En . Dn does not hold, as
there is no hope to get exponential decays also for either
temporal or spatial regularities, Dn cannot control En, so it is
impossible to derive the algebraic decay as Guo-Tice.

Decay of the Lower-order Energy:
The key observation is that El ≤ Dl+1. This and (3.23) will yield
the desired decay of EN+4 by a time weighted argument:

Rewrite (3.23) as

d

dt
EN+4+j + DN+4+j ≤ 0, j = 0, · · · ,N − 6. (3.24)
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Multiplying (3.24) by (1 + t)N−5−j and using EN+4+j ≤ DN+5+j

yield

d

dt
(1− (t)N−5−jEN+4+j) + (1 + t)N−5−jDN+4+j

≤ (N − 5− j)(1 + t)N−6−jEN+4+j

≤ (N − 5− j)(1 + t)N−6−jDN+5+j

. (1 + t)N−5−(j+1)DN+4+(j+1)

(3.25)
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Integrating (3.25) in time and making a suitable linear combination
of the resulting inequalities, one can get

N−5∑
j=0

(1 + t)N+5−jEN+4+j(t)

+
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s)ds

. E2N(0) +

∫ t

0
D2N−1(s)ds

(3.26)
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The a priori Estimates

Then we arrive at the final energy estimates

Proposition

Let N ≥ 8. ∃ a universal constant δ̄ > 0ni if

E2N(t) ≤ σ̄, ∀t ∈ [0,T ] (3.27)
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Proposition (continued)

Then

E2N(t) +

∫ t

0
D2N(s)ds ≤ cE2N(0)∀ ∈ [0,T ] (3.28)

and

n−6∑
j=0

(1 + t)N−5−jEN+4+j(t)

+
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s)ds

. E2N(0),

(3.29)

where c is a universal constant independent of T .
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As in Figure 2, consider two immiscible plasmas occupying the two
regions Ω±(t) respectively, with corresponding velocities u±,
pressure p±, and magnetic field B±, which are assumed to solve
the following plasma-plasma interface problem:

∂tu± + u± · ∇u± +∇p± = curlB± × B± in Ω±(t)
divu± = 0 in Ω±(t)
∂tB± = curlE±,E± = u± × B± − k±curlB± in Ω±(t)
divB± = 0 in Ω±(t)
∂tη = u± · N on Σ(t)
p+ = p− + σH,B+ = B−,E+ ×N = E− ×N on Σ(t)
u+ · e3 = 0,B+ × e3 = B̄ × e3 on Σ+

u− · e3 = 0,B− · e3 = B̄ · e3,E− × e3 = 0 on Σ−

(4.1)

where k± > 0 and B̄ is a uniform transversal magnetic field
(B̄3 6= 0).
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Using the same flatten map Φ defined in (2.3) and in flatten
coordinates, one has

∂ϕt u + u · ∇ϕu +∇ϕp = curlϕb × (B̄ + b) in Ω
divϕu = 0 in Ω
∂ϕt b = curlϕE ,E = u × B − kcurlϕb in Ω
divϕb = 0 in Ω
∂tη = u · N on Σ
[p] = σH, [b] = 0, [E ]×N = 0 on Σ
u3 = 0, b × e3 = 0 on Σ+

u3 = 0, b3 = 0,E × e3 = 0 on Σ−
(u, b, η)|t=0 = (u0, b0, η0)

(4.2)

where f = f± on Ω±, and [f ] = f+|Σ − f−|Σ.
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The initial data are required to satisfy the 2N-th order
compatibility conditions:

divϕ0 u0 = 0 in Ω, [u0] · N0 = 0 on Σ, u0,3 = 0 on Σ±;
divϕ0 b0 = 0 in Ω, [b0] = 0 on Σ, b0 × e3 = 0 on Σ+, b0,3 = 0 on Σ−;[
∂jtb(0)

]
×N0 = 0 on Σ, ∂jtb(0)× e3 = 0 on Σ+, j = 1, · · · , 2N − 1;

∂jt([E ]×N )(0) = 0 on Σ, ∂jtE (0)× e3 = 0 on Σ−, j = 0, · · · , 2N − 1.

(4.3)

Using the notation ||f ||2k = ||f+||2Hk (Ω+)
+ ||f−||2Hk (Ω)

,

|f |23 = ||f+||Hs(Σ) + ||f−||Hs(Σ).
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For N ≥ 4, define the higher order energy functional,
lower-order energy functional, and the corresponding
dissipation functional as

E2N :=
2N∑
j=0

||∂jtu||22N−j + |∂2N
t u|2− 1

2
+

2N−1∑
j=0

||∂jtb||22N−j+1

+||∂2N
t b||20 +

2N−1∑
j=0

||∂jtp||22N−j

+
2N−1∑
j=0

|∂jtη|22N−j+ 3
2

+ |∂2N
t η|21 + |∂2N+1

t η|2− 1
2

(4.4)
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IV. Results on Plasma-Plasma Interface

En := ||u||2n−1 + ||u||20,n +
n∑

j=1

||∂jtu||2n−j + ||b||2n

+
n−1∑
j=1

||∂jtb||2n−j+1 + ||∂nt b||20 +
n−1∑
j=0

||∂jtp||2n−j

+
n−1∑
j=0

|∂jtη|2n−j+ 3
2

+ |∂nt η|21 + |∂n+1
t η|2− 1

2

(4.5)
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IV. Results on Plasma-Plasma Interface

where n = N + 4, · · · , 2N, and

Dn :=
n−1∑
j=0

||∂jtu||2n−j−1 +
n−2∑
j=0

||∂jtb||2n−j

+
n∑

j=0

||∂jtb||21,n−j +
n−2∑
j=0

||∂jtp||2n−j−1

+
n−2∑
j=0

|∂jtη|2n−j+ 1
2

+ |∂n−1
t η|21 + |∂nt η|20

(4.6)
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IV. Results on Plasma-Plasma Interface

Then the main results are as follows stated as exactly as the
main theorem for the plasma-vacuum interface before except
the condition (2.10) is replaced by (4.3).

Remark (4.1)

The main strategy of the proof is similar as before except two
points: the highest temporal derivative estimates are different, and
the local well-posedness is proved by a different regularization
procedure!
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Thank you for your attention!
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