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Abstract� We prove the convergence of a discontinuous Galerkin Method approximat�

ing the ��D incompressible Euler equations with discontinuous initial vorticity� �� � L����	

Furthermore� when �� � L����� the whole sequence is shown to be strongly convergent	

This is the 
rst convergence result in numerical approximations of this general class of

discontinuous �ows	 Some important �ows such as vortex patches belong to this class	

x�� Introduction� Numerical simulation of ��D discontinuous incompressible �ows

is of considerable interests in both theoretical analysis and applications	 It is believed

that the Lagrangian methods such as vortex methods �
���� or the ones based on contour
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dynamics ����
� give preferable treatments for such �ows especially for inviscid inter�facial

�ows	 However� the convergence of such methods poses great di�culties	 Past e�orts

concentrate on either special �ows �see ����������� or require heavy machinery �such as

large derivation ����� and yield much weak convergence results ��������	 However� for more

complicated �ows �such as a �ow mixing�� such front�tracking methods are impossible to

implement	 Thus� grid�based methods such as 
nite di�erence and 
nite elements are called

for	 Yet� the convergence of such methods is unknown as we know of ���� ���	 Recently� a

discontinuous Galerkin method was proposed in ���� which has the main advantages that

the energy is conserved even for upwind type numerical �uxes� and amusingly� the numerical

enstropy is non�increasing in time	 The main observation of this paper is to point out that

the boundness of energy and enstropy are su�cient condition for strong convergence for a

class of discontinuous initial data �� � L� including vortex patches	 In particularly� our

results imply that the discontinuous Galerkin methods in ���� do converge for such �ows	

x�� A Discontinuous Galerkin Method� The ��D incompressible Euler equation

in vorticity stream�function formulation reads�

����a�
�t� � �r�� � r�� � � � r� � ���y� �x�

�� � �

with no��ow boundary condition

����b� � � � � on ��

and initial condition

����c� �jt�� � ���x� � L����

where � � R� is a simply�connected domain with a C� boundary� or piecewise C� bound�

ary with convex corners	 Assume that � is equipped with a quasi�uniform triangulation

Th � fKg consisting of polygons K of maximum size �diameter� h	 Denote �h � �K	

The vorticity � is approximated by �h in a discontinuous 
nite element space V k
h �n

v � v jK� P k�K�� �K � Th
o
� while the stream function � is approximated by �h in a
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continuous one W k
��h � V k

h � C���h�	 Here P k�K� denotes the set of all polynomials of

degree at most k on the cell K	 In the following� we will also use the notations that h � i

stands for the standard integration over the whole domain �h� while an integral over a

sub�domain K is denoted by h � iK 	 The semi�discrete discontinuous Galerkin method in

���� can be described by looking for �h � V k
h and �h �W k

��h such that

����a� h�t �h vhiK � h�h uh � rvhiK �
X
e��K

huh � nc�h v�h ie � �� �vh � V k
h �

����b� �hr�h � r�hi�h
� h�h� �hi�h

� ��h �W k
��h�

where e is a cell boundary and n is its unit out�normal	 We now explain the notations used

in ��	��	 First the velocity 
eld is given by uh � r��h	 Note that even through both �h

and test function vh may be discontinuous across the cell boundaries� yet the velocity 
eld

possesses continuous normal component across each cell boundary due to the de
nition of

the 
nite element space W k
��h	 Thus the numerical �ux in ��	�a� can be de
ned as follows�

Denote by v�h �v�h � the value of vh from the inside �outside� of the element K� then the

upwind �ux is set to be

����� c�h �
���
��

��h if uh � n � ��

��h if uh � n � ��

It should be remarked that for smooth �ows� we could use a central �ux de
ned by

������ c�h � �
�

�
��h � ��h

�
�

However� the up�wind �uxes ��	�� are preferred since the main concerns here are discontin�

uous �ows	

The 
rst important property of this scheme is the conservation of �no numerical dissi�

pation in� energy

����� kr��h��� t�kL���h� � kr��h��� ��kL���h�

for the upwind �ux ��	��� which can be veri
ed directly by taking vh � �h in ��	�a�� sum�

ming up the resulting equations over all K in the triangulation� and using ��	�b� and the
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continuity of the normal velocity across the cell boundaries	 Next� taking vh � �h� integrat�

ing by parts for the second term in ��	�a�� and summing up for all K and estimating the

terms involving cell boundaries by using ��	�� and the continuity of the normal component

of the velocity 
eld across the cell boundaries� one can show that the enstropy decays in

the sense that

���
� k�h��� t�kL���h� 	 k�h��� ��kL���h� 	 k��kL���h�

where the initial data �h��� �� is taken as the L� projection of �� and hence is uniformly

bounded in L�	 Furthermore� taking �h � �h in ��	�b�� one derives the fact that

����� kr�hk
�
L���h�

� �h�h� �hi�h
�

Our main observation in this paper is the fact that these three simple properties� ��	���

��	��� yield a strong convergence	 To prove and state such a result� one needs some time�

regularity estimate 
rst	

x�� Time Regularity Estimate� In this section� we will prove the following lemma

about the time regularity for the approximate solutions constructed by the discontinuous

Galerkin method	

Lemma �� �time regularity� It holds that

����� k�t �hkL��	��T ��W���q���� � k�t �hkL��	��T ��Lq���� 	 C for any � 	 q � �

where �h and �h denote respectively their natural extension or restriction from �h to �	

Proof� We 
rst show that

����� k�t �hkL��	��T ��L���h�� 	
C

h�

For any smooth function v � C�
� ��� with zero extension to the outside� let vh be the L�

projection of v in the space of V k
h 	 Now taking vh as a test function in ��	�a�� one gets

����� h�t �h vi�h
� h�t �h vhi�h

�
X
K

h�h uh � rvhiK �
X
K

X
e��K

huh � nc�h v�h ie 
 I� � I�
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I� can be estimated directly as

jI�j 	 k�hkL�
X
k

kuhkL��K�krvhkL��K� 	 Ck�hkL���h�kuhkL���h�krvhkL���h�

Using the inverse inequality� the L� estimate for uh and �h in ��	�� and ��	
�� and the fact

that vh is the L� projection of v� one has

����� jI�j 	
C

h�
k�hkL���h�kuhkL���h�kvhkL���h� 	

C

h�
kvkL���h�

Next� we proceed to estimate I�	 Since uh �n is continuous and c�h take same value from
both sides of a cell boundary� the contribution of the two sides will gives the jump of vh	

Therefore� one can obtain

���
� jI�j 	
X
K

X
e��K

hjuh � n c�h�v�h � v�h �jie

Thanks to the quasi�uniformly regularity in the triangulation� one can show

�����
X
K

X
e��K

k�hkL��e�kvhkL��e� 	
C

h

X
K

k�hkL��K�kvhkL��K�

Hence�

����� jI�j 	
C

h�
kvhkL���h� 	

C

h�
kvkL���h�

Combining ��	�� with ��	�� shows

����� jh�t �h vi�h
j 	

C

h�
kvkL���h�

Which yields the desired estimate ��	��	 Since the natural extension of �t�h to � from �h

gives equivalent norms	 Hence we have also shown

������ k�t �hkL��	��T ��L����� 	
C

h�

Next� let Ihv be the piecewise linear interpolation of v in V k
h 	 Then one can decompose

I� in ��	�� as

����� I� �
X
K

h�h uh � rIhviK �
X
K

h�huh � r�vh � Ihv�iK 
 I�� � I��






I�� is bounded by

������ jI��j 	
X
K

k�hkL��K�kuhkL��K�krIhvkL� 	 k�hkL���h�kuhkL���h�krIhvkL���h�

Due to the inequality

krIhvkL���h� 	 CkvkW ������

one obtains from ��	��� ��	
�� and ��	��� that

������ jI��j 	 CkvkW ������

One can estimate I�� similarly	 Indeed�

jI��j 	
X
K

k�hkL��K�kuhkL��K�kr�vh � Ihv�kL���h� 	 Ckr�vh � Ihv�kL���h�

Using the inverse inequality

kr�vh � Ihv�kL���h� 	
C

h�
kvh � IhvkL���h�

and

������ kvh � IhvkL���h� 	 kv � IhvkL���h�

which holds true since vh is the L� projection of v� one gets

������ jI��j 	
C

h�
kv � IhvkL���h�

This� together with the standard estimate for the interpolation� leads to

������ jI��j 	 CkvkH����

It follows from ��	��� and ��	��� that we have obtained an estimate on I� in ��	�� inde�

pendent of h	 Now we can also derive an h�independent estimate on I� in ��	�� as follows	

Noting that Ihv is continuous at the cell boundary� one can insert it into the right hand

side of ��	
� to obtain

����
� jI�j 	
X
K

X
e��K

hjuh �nc�h�vh�Ihv�jie 	 CkuhkL�
X
K

X
e��K

k�hkL��e�kvh�IhvkL��e�
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As in ��	��� one has

������ jI�j 	
C

h�
kvh � IhvkL���h� 	

C

h�
kv � IhvkL���h� 	 CkvkH����

Collecting all the estimates ��	���� ��	���� and ��	���� we arrive at

������ jh�t �h� vi�h
j 	 C�kvkW ������ � kvkH����� 	 CkvkW ��p��� for any p � � �

To complete the proof of the 
rst part of ��	��� we need to estimate the di�erence for the

left hand term between � and �h	 First�

jh�t �h� vi�n�h
j 	 k�t�hkL���n�h�kvkL���n�h�

q
j�n�hj

Note the simple estimate j�n�hj 	 Ch�� and

kvkL���n�h� 	 Ch�kvkW ������

since v vanishes on the boundary ��� we can obtain from these and ��	��� that

������ jh�t �h vi�n�h
j 	 ChkvkW ������ 	 ChkvkW ��q���

for any � 	 q � �	 Consequently�

������ k�t �hkL��	��T ��W���q���� 	 C for any � 	 q � �

This proves the 
rst part of ��	��	

Next� we prove the second part of inequality in ��	��	 For f � Lp��� with zero extension

to the outside� we let 	 solve the following problem

������ ��	 � f in � 	j�� � �

and let 	h �W k
��h be the 
nite element solution�

������ hr	h�r�hi�h
� hf� �hi�h

for any �h �W k
��h

Since �t�h �W k
��h� we have

������ h�t�h� fi�h
� hr�t�h�r	hi�h

� �h�t�h� 	hi�h

�



where we have used ��	��� and ��	�b� after taking a time derivative	 Rewrite ��	��� as

������ h�t�h� fi�h
� �h�t�h� 	i�h

� h�t�h� �	h � 	�i�h

Let p � � be the dual number of q� �
p� �
q � �� one gets

������

jh�t�h� fi�h
j 	 k�t�hkL��	��T ��W���q����k	kW ��p��� � k�t�hkL��	��T ��L���h��k	h � 	kL���h�

	 Ck	kW ��p��� �
C
h� k	h � 	kL���h�

Since the domain is either C� or piecewise C� with convex corners� the following the elliptic

regularity and L� estimate is true�

����
� k	kW ��p��� 	 CkfkLp���

and

������ k	h � 	kL���h� 	 Ch�k	kH����

Thus� ��	������ imply that

jh�t�h� fi�h
j 	 CkfkLp���

Or

������ k�t �hkL��	��T ��Lq��h�� 	 C � for any � 	 q � �

Since natural extension of �h to � from �h gives equivalent norms� we therefore have shown

������ k�t �hkL��	��T ��Lq��� 	 C � for any � 	 q � �

This gives the second part of ��	��	 The proof of the lemma is completed	

x	� A Uniqueness Theorem� In this section� we generalize Yudovich�s uniqueness

theorem to show that weak solutions with corresponding vorticity in L� are unique in the

wider class where the vorticities are in L�	 This generalization will be used in next section

to obtain a stronger convergence theorem	 The precise statement is given by�
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Theorem �� Assume that �� � L�	 Then the weak solution

����� � � L����� T �� L����� � Lip ���� T ��W���r����

to ��	�� is unique in the space L����� T �� Lq�����Lip ���� T ��W���r���� where q � �
� and

� 	 r � �	

Proof� Suppose that the initial boundary value problem ��	�� for the �D Euler equations

has two weak solutions with same initial vorticity �� � L� and the following regularities�

����� �� � L����� T �� L����� � Lip ���� T ��W���r����

and

����� �� � L����� T �� Lq���� � Lip ���� T ��W���r����

q � �
� and � 	 r � �	 It su�ces to show that �� � ��	

Denote by �� and �� the stream functions in ��	�� corresponding to �� and �� respec�

tively	 Then by the elliptic regularity� we have

����� �� � L����� T ��W ��p���� � Lip ���� T �� Lr����

and

���
� �� � L����� T ��W ��q���� � Lip ���� T �� Lr����

We denote the correspond velocities by u� � r��� and u� � r���	 Then one can rewrite

the Euler equations ��	�a� in a distribution sense�

����� r���tu� � u�ru�� � � � D�

and

����� r���tu� � u�ru�� � � � D�

Set

����� u � u� � u�� � � �� � ��

�



and subtract ��	�� from ��	�� to get

����� r���tu� u�ru� uru�� � � � D�

It follows from ��	�� and ��	
� that

������ � � L����� T ��W ��q���� � Lip ���� T �� Lr����

Therefore� one can take � as a test function in ��	�� to obtain integration by parts� and use

fact that u � r�� and � vanishes on the boundary� we have

������

Z
�
u��tu� u�ru� uru�� dx � �

where one has used the fact that u � r�� and � vanishes on the boundray	 De
ne

������ E�t� �

Z
�
juj� dx

Due to the regularity assumption ��	���	��� one can show that

������
d

dt
E�t� � �

Z
�
u � ut dx

Using the fact

������

Z
�
uu�ru dx � �

and the equation ��	��� we have

����
�
d

dt
E�t� 	 �

Z
�
juj�jru�j dx

Using the classical potential estimate

������ kru���� t�kLp 	 Cpk����� t�kL�

for all � � p ��� where C is an constant independent on p� u� and ��� together with the

fact that

������ k����� t�kL� 	 k��kL�

��



one shows by the H�older inequality that

d

dt
E�t� 	

�Z
�
juj�p��p��� dx

	�p����p
kru�kLp 	 Cp

�Z
�
juj�p��p��� dx

	�p����p

where C is independent on p	 The right hand side above can be further estimated as

Z
�
juj�p��p��� dx �

Z
�
�juj���p�����p����juj
����p��� � kuk

��p�����p���
L� kuk


��p���
L�

On the other hand�

kukL� 	 Ckuk
q��
�q����
W ��q kuk

��q�
���
�q����
L�

Since kukW ��q is bounded� we thus have shown that

������
d

dt
E�t� 	 CpE�t�����q�
���
p�q����

Therefor

������
d

dt

�
E�t���q�
���
p�q����

�
	 C

Now one can conclude that E�t� 
 �	 Indeed� taking an interval ��� T �� with the property

that CT � 	 ����� one obtains from ��	��� and E��� � � that

������ E�t� 	 �
�

�
�
p�q�������q�
� 
 � as p tends to in
nity

So E�t� 
 � for t � ��� T ��	 Repeating these arguments we conclude that E�t� � � for all

t � T 	 This completes the proof	

x
� Main Convergence Theorem� Finally� we are able to state and prove our

main convergence theorem	

Theorem �� Let � � R� be a simply connected domain with C� boundary �or piecewise

smooth C� boundary with convex corners�� and equipped with a quasi�uniform triangula�

tion	 Suppose that the initial vorticity �� belongs to L
����	 Let ��h� �h� � V k

h �W
k
��h be the

approximate solutions generated by the discontinuous Galerkin method ��	��	 Then there

exists a convergent subsequence of ��h� �h� �for which we will still use the same notation

for simplicity� such that

�
��� �h � � �star weakly� in L����� T �� L����� � Lip ���� T ��W���q����

��



for any � 	 q � � and

�
��� �h 
 � �strongly� in L����� T ��H�����

and the limiting functions ��� have the properties that

�
��� � � L����� T �� L����� � Lip ���� T ��W���q����

and

�
��� � � L����� T ��H�
� ����� � Lip ���� T �� Lq����

for any � 	 q � �� and for any 	 � C�
� ���� t� � ��

�
�
�

Z T

�

Z
�
��	t � �r�� � r	� dxdt � �

�
��� �� � � in D�

In other words� ����� is a weak solution to the Euler equation ��	�� with initial data ��	

Furthermore� if the initial data �� � L����� then the whole sequence of ��h� �h� will

converge to the unique solution of the Euler equations and the limiting vorticity � is bounded

in L����� T �� L�����	

Proof� As in the Lemma �� we extend �h and �h to � form �h naturally	 First� ��	
� and

��	�� show that there is a subsequence of �h �for which we still use the same notation� such

that

�
��� �h � � �star weakly� in L����� T �� L����� � Lip ���� T ��W���q����

and the limiting function � satis
es �
	��	

Next it follows from ��	
�� ��	��� and the Poincare inequality that

�
��� k�hkL��	��T ��H�� 	 C�

This� together with ��	��� shows that there there is a subsequence of �h such that

�
��� �h � � �star weakly� in L����� T ��H����� � Lip ���� T �� Lq����

��



and

� � L����� T ��H����� � Lip ���� T �� Lq����

Since the distance between ��h to �� is of order O�h�� and �h vanishes on ��h� we have

�
���� k�hkL����� 	 Ch�kr�hkL���h� 	 Chkr�hkL���h� 	 Ch
 �

Hence � satis
es �
	��	

We now show that �h converges strongly	 First� It follows from �
	��� ��	�� and the

Lions�Aubin lemma that

�
���� �h 
 � strongly in L����� T � � �� �

which� together with ��	�� and �
	��� yields

�
����

Z T

�
kr�hk

�
L� dt � �

Z T

�
h�h �hi dt
 �

Z T

�
h� �i dt�

To obtain the strong convergence that

�
���� r�h 
r� strongly in L����� T �� �� �

it su�ces to show that Z T

�
kr�hk

�
L� dt


Z T

�
kr�k�L� dt�

which is a direct consequence of

�
���� �

Z T

�
h� �i dt �

Z T

�
kr�k�L� dt�

that will be veri
ed below	 Indeed� for any 	 � C�
� ���� T � ���� taking �h � Ih	 in ��	�b�

yields

�
��
� �

Z T

�
hr�h � rIh	i dt �

Z T

�
h�h Ih	i dt

where Ih is the interpolation operator in W k
��h	 Using the strong convergence ����

�
���� Ih	
 	 strongly in L����� T �� L����� and L����� T ��H����� �

��



and weak convergences �
	�� and �
	��� one shows from �
	�
� that

�
���� �

Z T

�
hr� � r	i dt �

Z T

�
h� 	i dt

This immediately gives �
	��� since C�
� ���� T �� �� is dense in L����� T ��H�

� ����	

As a sequence of �
	���� one concludes that

�
���� uh 
 u strongly in L����� T � � ��

where u � r��

Now we show that the limit functions ����� are indeed a weak solution to the Euler

equations	 To this end� one can take vh to be Ih	 for any 	 � C�
� ���� t���� in ��	�a�� sum

over all the cells� and integrate in time to obtain

�
����

Z T

�
�h�t �h Ih	i � h�h uh � rIh	i� dt � ��

where we have used the facts that the upwind �uxes c�h are the same for the adjacent

elements� both Ih	 and the normal component of the velocity 
eld are continuous across

the interior cell boundaries� and u � n � � on the exterior cell boundaries	 Since 	 is

compactly supported� and �tIh	 � Ih�t	� we can integrate by part to get

�
����

Z T

�
�h�h Ih�t	i� h�h uh � rIh	i� dt � ��

Using the weak convergence of �h in �
	�� and strong convergence of Ih	� one shows that

Z T

�
h�h Ih�t	i dt


Z T

�
h� �t	i dt

Similarly� it follows from the weak convergence of �h in �
	��� strong convergence of uh in

�
	��� and strong convergence of r	h that

Z T

�
h�h uh � rIh	i dt


Z T

�
h� u � r	i dt�

Hence

�
����

Z T

�
h� �t	i dt�

Z T

�
h�u � r	i dt � ��

��



This gives �
	
�	 Finally� �
	�� follows from ��	�b� by taking �h � Ih		 Thus we have

proved that ��� �� is a weak solution to the Euler equations ��	��	

In the case that the initial data �� � L����� then the Cauchy problem for the Euler

equations has a solutions � � L����� T � � ��� and from Theorem � we know that this

solution is unique in the class of �
	�� and �
	��	 Therefor every convergent subsequence

has the same limit	 As a consequence� the whole sequence of ��h� �h� converges to the

unique solution	 This completes the proof of the theorem	
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