Convergence of A Galerkin Method for 2-D Discontinuous Euler Flows
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Abstract: We prove the convergence of a discontinuous Galerkin Method approximat-
ing the 2-D incompressible Euler equations with discontinuous initial vorticity: wy € L?(£2).
Furthermore, when wy € L*°(2), the whole sequence is shown to be strongly convergent.
This is the first convergence result in numerical approximations of this general class of

discontinuous flows. Some important flows such as vortex patches belong to this class.

§1. Introduction. Numerical simulation of 2-D discontinuous incompressible flows
is of considerable interests in both theoretical analysis and applications. It is believed

that the Lagrangian methods such as vortex methods [5,9], or the ones based on contour
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dynamics [1,15] give preferable treatments for such flows especially for inviscid inter-facial
flows. However, the convergence of such methods poses great difficulties. Past efforts
concentrate on either special flows (see [4,12,13]), or require heavy machinery (such as
large derivation [14]) and yield much weak convergence results [2,3,14]. However, for more
complicated flows (such as a flow mixing), such front-tracking methods are impossible to
implement. Thus, grid-based methods such as finite difference and finite elements are called
for. Yet, the convergence of such methods is unknown as we know of [10, 12]. Recently, a
discontinuous Galerkin method was proposed in [12] which has the main advantages that
the energy is conserved even for upwind type numerical fluxes, and amusingly, the numerical
enstropy is non-increasing in time. The main observation of this paper is to point out that
the boundness of energy and enstropy are sufficient condition for strong convergence for a
class of discontinuous initial data wy € L? including vortex patches. In particularly, our
results imply that the discontinuous Galerkin methods in [12] do converge for such flows.
82. A Discontinuous Galerkin Method. The 2-D incompressible Euler equation

in vorticity stream-function formulation reads:

ow+ (Vi -Viw =0, V= (-08,,0,)

(2.1a)
AY =w
with no-flow boundary condition
(2.1b) =0, on 0N
and initial condition
(2.10) wlimo = wo(z) € TA(Q)

where Q C R? is a simply-connected domain with a C? boundary, or piecewise C? bound-
ary with convex corners. Assume that {2 is equipped with a quasi-uniform triangulation
Tn = {K} consisting of polygons K of maximum size (diameter) h. Denote 2, = UK.
The vorticity w is approximated by wy in a discontinuous finite element space th =

{U :v | € P¥K), VK € 77L}, while the stream function % is approximated by 1, in a
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continuous one Wé“,h = V¥ N Co(Qy). Here P¥(K) denotes the set of all polynomials of
degree at most k£ on the cell K. In the following, we will also use the notations that (-)
stands for the standard integration over the whole domain 2;,, while an integral over a
sub-domain K is denoted by (-)x. The semi-discrete discontinuous Galerkin method in

[12] can be described by looking for wy, € Vi¥ and v, € Wé“, 5, such that

(2.2a) (Orwnon)k — (whun - Vo) + Y (up-napv,)e = 0, Yo, € Vi,
eCOK
(2.2b) —(Von - Vo), = (Whson)a,,  Yon € Wi

where e is a cell boundary and n is its unit out-normal. We now explain the notations used
in (2.2). First the velocity field is given by uj, = V1. Note that even through both wy,
and test function v, may be discontinuous across the cell boundaries, yet the velocity field
possesses continuous normal component across each cell boundary due to the definition of
the finite element space W(‘i p- Thus the numerical flux in (2.2a) can be defined as follows:
Denote by v;, (v;") the value of v;, from the inside (outside) of the element K, then the

upwind fluz is set to be

w, ifup-n >0,
(2.3) oh=4 "

w;br if up - n <0.

It should be remarked that for smooth flows, we could use a central flux defined by
(2.3) @n =% (i +wy).

However, the up-wind fluxes (2.3) are preferred since the main concerns here are discontin-
uous flows.
The first important property of this scheme is the conservation of (no numerical dissi-

pation in) energy

(2.4) IV54n G )20y = IV 900 Ol 22

for the upwind flux (2.3), which can be verified directly by taking v, = ¢, in (2.2a), sum-

ming up the resulting equations over all K in the triangulation, and using (2.2b) and the



continuity of the normal velocity across the cell boundaries. Next, taking v, = wy,, integrat-
ing by parts for the second term in (2.2a), and summing up for all K and estimating the
terms involving cell boundaries by using (2.3) and the continuity of the normal component
of the velocity field across the cell boundaries, one can show that the enstropy decays in

the sense that

(2.5) lwn (5 )12 () < llwn( 0)llz2(0,) < lwollzz ey

where the initial data wy(-,0) is taken as the L? projection of wy and hence is uniformly

bounded in L2. Furthermore, taking ¢; = vy, in (2.2b), one derives the fact that

(2.6) IVnlZ2q,) = —(wn, ¥n)e,-

Our main observation in this paper is the fact that these three simple properties, (2.4)-
(2.6), yield a strong convergence. To prove and state such a result, one needs some time-
regularity estimate first.

83. Time Regularity Estimate. In this section, we will prove the following lemma
about the time regularity for the approximate solutions constructed by the discontinuous

Galerkin method.

Lemma 1. (time regularity) It holds that

(3.1) 10r Wil Loo (jo,1y,w—2a(9)) + 110t ¥nllLoo((o,7),La()) < € forany 1 <gq <2

where wp, and vy, denote respectively their natural extension or restriction from €25 to Q.

Proof: ~ We first show that

C
(3.2) 10 willz=o,7),22(0)) < 72

For any smooth function v € C§°(Q2) with zero extension to the outside, let v;, be the L2

projection of v in the space of th. Now taking vy, as a test function in (2.2a), one gets

(33) (8t Wh ’U)Qh = <8t Wh Uh>Qh = Z(u}h up - V’Uh>K - Z Z (uh . TL@’UE% = Il + .[2
K K ecoK



I; can be estimated directly as

L] < Nlwnllze Y- Nunll 2o IVonllze ) < Cllwnllzs @) lunll 2 @) Vol 220,
k

Using the inverse inequality, the L? estimate for u;, and wy, in (2.4) and (2.5), and the fact

that vy, is the L? projection of v, one has

C C
(3.4) 1] < ssllonllzz@lenlliz: @i lvnllzz @) < 33101220

Next, we proceed to estimate I>. Since wy, -n is continuous and @), take same value from
both sides of a cell boundary, the contribution of the two sides will gives the jump of vy,.
Therefore, one can obtain

(3.5) LI <> Y (un-nap(vy —vp,)le

K ecdK

Thanks to the quasi-uniformly regularity in the triangulation, one can show

C
(3.6) Z Z “whHL?(e)thHL?(e) < 7 Z “wh“LQ(K)“Uh“LZ(K)
K e€coK K
Hence,
C C
(3.7) 12| < 5 llonllzzon) < sallollizon)

Combining (3.4) with (3.7) shows

C
(3.8) [(Orwhv)a,| < ﬁ“U“L%Qh)

Which yields the desired estimate (3.2). Since the natural extension of dywy, to Q from

gives equivalent norms. Hence we have also shown

¢

(3.2') 10 whll o< (j0,1),L2(0)) < 73

>

Next, let Z,v be the piecewise linear interpolation of v in th. Then one can decompose

I in (3.3) as

(3.9) L =) (whun - VIv)k + > (whup - V(vp — Typo))x = Iy + Ii
K K



117 is bounded by

(3.10)  [Tu] <Y Nwnllzzollwnllz I VZavllze < llwnllnzpllwnllzz @) IVZholl Loy
K

Due to the inequality

IVZpv|peo(a,) < Cllvllwreo(q)

one obtains from (2.4), (2.5), and (3.10) that
(3.11) 11| < Cllvllwree(a)
One can estimate I1o similarly. Indeed,
1112 <> llwnllzz gy lwnll L2 IV (vh = Zuo) e @,y < CIV (vh — Zpv) [l ooy
K
Using the inverse inequality
C
IV (v = Znv) |l e (a,) < ﬁ”vh — TnollL2(y)
and
(3.12) [vn — Znoll L2,y < v — ool r2(q,)
which holds true since vy, is the L? projection of v, one gets
C
(3.13) [I12] < p”v — Tyollre(ay)
This, together with the standard estimate for the interpolation, leads to
(3.14) [Li2| < Cllvlls2(q)

It follows from (3.11) and (3.14) that we have obtained an estimate on I; in (3.3) inde-
pendent of h. Now we can also derive an h-independent estimate on I3 in (3.3) as follows.
Noting that Zpv is continuous at the cell boundary, one can insert it into the right hand
side of (3.5) to obtain

(3.15) L] <> > (Jun-n@n(vn—Zpv)l)e < Cllunlizee D D lwnllrze)llvn —Zavllrzc)

K ecOK K ecdK



As in (3.6), one has
C C
(3.16) 1] < 1llon — Tl < wollo ~ Tiolzzqayy < Clollay
Collecting all the estimates (3.11), (3.14), and (3.16), we arrive at
B.17)  [Grwn,v)a,| < Clvllwree (o) + [[vllg2(2)) < Cllvllw2rq)  for any p > 2.

To complete the proof of the first part of (3.1), we need to estimate the difference for the

left hand term between Q and €2;,. First,

[0k whs V), | < 10ewn ll 2@y 10l o (02,) 1/ 12\ 24
Note the simple estimate |Q\Q,| < Ch?, and

[0l o (\0) < CR2|[0llwrico (o

since v vanishes on the boundary 052, we can obtain from these and (3.2’) that
(3.18) {0 wr v)o\q, | < Chllvflwiee ) < Chllvllwz2aq)
for any 1 < ¢ < 2. Consequently,
(3.19) 10t Wi ll oo (fo,1),w-2a()) < C forany 1 < g <2

This proves the first part of (3.1).
Next, we prove the second part of inequality in (3.1). For f € LP(Q) with zero extension

to the outside, we let ¢ solve the following problem
(3.20) —A¢p=f inQ dlag =0
and let ¢, € W(f ;, be the finite element solution:

(3.21) (Vén, Vonda, = (fon)a,  for any o, € W,

Since Oy1py, € WE, | we have

(3.22) (Ostn, fla, = (VObn, Vén)a, = —(Owwn, dn)a,
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where we have used (3.21) and (2.2b) after taking a time derivative. Rewrite (3.22) as

(3.23) (Ospn, fa, = —(Own, d)a, — (Orwn, (Pn — &))qy,

Let p > 2 be the dual number of ¢: 1/p+ 1/q = 1, one gets
(3.24)

[Oubns ol < 0wl Lo jo.1),w -2l @llwze @) + 10wl Lo (jo,1),22(00 ) 160 — PllL2(0)

< Cllpllw2e) + rzlldn — dllL2 ()

Since the domain is either C? or piecewise C? with convex corners, the following the elliptic

regularity and L? estimate is true:

(3.25) pllw2r) < Clfllzrc)
and
(3.26) dn — Bllz2(0) < CE ¢l g2 (0)

Thus, (3.24-26) imply that
|<8t1/)h7f>ﬂh| S C“f“LP(Q)

Or

(3.27) 10 nll Lo jo.1),La(n)) < €, forany 1 <g <2

Since natural extension of 1y, to € from 2, gives equivalent norms, we therefore have shown
(3.27) 10 Ynll oo o1y La) <€ forany 1 <q<2

This gives the second part of (3.1). The proof of the lemma is completed.

84. A Uniqueness Theorem. In this section, we generalize Yudovich’s uniqueness
theorem to show that weak solutions with corresponding vorticity in L* are unique in the
wider class where the vorticities are in L?. This generalization will be used in next section

to obtain a stronger convergence theorem. The precise statement is given by:



Theorem 1: Assume that wy € L°. Then the weak solution
(4.1) w € L®([0,T), L>(Q)) N Lip ([0,T), W >"(Q))

to (2.1) is unique in the space L>([0,T), L4(Q)) NLip ([0,T), W ~27(£2)) where ¢ > 4/3 and

1<r<2.

Proof: Suppose that the initial boundary value problem (2.1) for the 2D Euler equations

has two weak solutions with same initial vorticity wg € L* and the following regularities:

(4.2) w1 € L¥([0,T), L>(Q)) N Lip ([0,T), W ~27(Q2))
and
(4.3) wy € L2([0,T), L4 (Q)) N Lip ([0,T), W 2"(Q))

g>4/3 and 1 <r < 2. It suffices to show that w; = ws.
Denote by 1 and 1, the stream functions in (2.1) corresponding to w; and wy respec-

tively. Then by the elliptic regularity, we have

(4.4) 1 € L([0,T), W*P(Q)) NLip ([0,T), L" ()
and
(4.5) o € L([0,T), W>(Q)) N Lip ([0,T), L"(2))

We denote the correspond velocities by u; = V41 and uy = V- 1),. Then one can rewrite

the Euler equations (2.1a) in a distribution sense:

(4.6) V(0u +uVu)) =0 €D
and
(4.7) V- (0us +usVus) =0 €D
Set
(4.8) U =1u; — U, Y =11 — o



and subtract (4.7) from (4.6) to get

(4.9) V(0 + uaVu +uVu)) =0 €7D

It follows from (4.4) and (4.5) that

(4.10) ¢ € L¥([0,T), W>1(2)) N Lip ([0,T), L"(2))

Therefore, one can take 1 as a test function in (4.9) to obtain integration by parts, and use

fact that u = V_L4y and 1) vanishes on the boundary, we have
(4.11) / u(Ou + ueVu + uVu)de =0
Q
where one has used the fact that w = V14 and 1 vanishes on the boundray. Define
(4.12) B() = / uf? de
Q
Due to the regularity assumption (4.2-4.3), one can show that
d
(4.13) 2B = 2/ w - uydo
dt Q
Using the fact
(4.14) / uuVuder =0
Q
and the equation (4.9), we have
d 2
(4.15) Y B < 2/ 2|V | de
dt Q
Using the classical potential estimate

(4.16) IVur (-, )l ze < Cpllwr (-, 8) || oo

for all 1 < p < oo, where C' is an constant independent on p, u; and wy, together with the

fact that
(4.18) w1 (-, 8) | < llwollnee
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one shows by the Holder inequality that

(r=1)/p _—
;;E </ || 2/ (1) da:) |Vui||rr < Cp </ a2/ = 1) da:)
Q

where C is independent on p. The right hand side above can be further estimated as

/ |u|2p/(p71) de :/(|u|2)(pf2)/(p71)(|u|4)1/(p71) _ ||u||i(2p ” ||4/p 1)
Q Q

On the other hand,

1 3 4 1
]| s < Cfa]| 8 g P 0/ (K0 1)

Since ||u|ly1.¢ is bounded, we thus have shown that

(4.19) %E(t) < CpE(t)17(5qf4)/(4p(qfl))

Therefor

d
fad (5¢—4)/(4p(g—1))
- (E(t) q p(a ) <C

(4.20)
Now one can conclude that E(t) = 0. Indeed, taking an interval [0, 7] with the property
that CT* < (1), one obtains from (4.20) and E(0) = 0 that

(4.21) E(t) < (%)4”(‘171))/(5‘174) — 0 as p tends to infinity

So E(t) =0 for t € [0,T*]. Repeating these arguments we conclude that E(¢) = 0 for all

t < T. This completes the proof.

§5. Main Convergence Theorem. Finally, we are able to state and prove our

main convergence theorem.

Theorem 2: Let Q C R? be a simply connected domain with C? boundary (or piecewise
smooth C? boundary with convex corners), and equipped with a quasi-uniform triangula-
tion. Suppose that the initial vorticity wo belongs to L%(Q). Let (wp, ) € ViFx W(fh be the
approximate solutions generated by the discontinuous Galerkin method (2.2). Then there
exists a convergent subsequence of (wp, ) (for which we will still use the same notation

for simplicity) such that
(5.1) wp, —w (star weakly) in L°°([0,T), L*(22)) N Lip ([0, T), W ~29(£2))

11



for any 1 < ¢ < 2 and
(5.2) Yn — b (strongly) in L*([0,T), H'(Q2))

and the limiting functions w, ¥ have the properties that

(5.3) w € L>([0,T), L*>(Q)) N Lip ([0,T), W ~24(Q2))
and
(5.4) ¢ € L*([0,T), Hy (0)) N Lip ([0,T), L9(£2))

for any 1 < ¢ < 2, and for any ¢ € C§°((0,t) x )

(5.5) /0 ! /Q (woy + WV - V) dadt = 0

(5.6) AYp=w in D'

In other words, (w,1)) is a weak solution to the Euler equation (2.1) with initial data wy.

Furthermore, if the initial data wy € L*°(€2), then the whole sequence of (wp,vp,) will

converge to the unique solution of the Euler equations and the limiting vorticity w is bounded

in L=([0, T), L®(%2)).

Proof: As in the Lemma 1, we extend wy, and 9, to Q form Q, naturally. First, (2.5) and

(3.1) show that there is a subsequence of wy, (for which we still use the same notation) such

that

(5.7) wp = w (star weakly) in L*°([0,T), L*(2)) N Lip ([0,T), W ~29(2))

and the limiting function w satisfies (5.3).

Next it follows from (2.5), (2.6), and the Poincare inequality that

(5.8) %bnll oo jo,1), 1) < C-

This, together with (3.1), shows that there there is a subsequence of 1, such that

(5.9) dn — 1 (star weakly) in L([0,T), H' (%)) N Lip ([0, T), LI(%))

12



and

€ L([0,T), H'(2)) N Lip ([0,T), L(%2))

Since the distance between 98, to 9Q is of order O(h?) and 1)), vanishes on 92}, we have

(5.10) [4nll Lo 90y < Ch?

IVonll () < CRIVYRllz20,) < Ch =0

Hence 1 satisfies (5.4).
We now show that v, converges strongly. First, It follows from (5.8), (3.1) and the

Lions-Aubin lemma that
(5.11) Y, — ¢ strongly in L*([0,T) x Q) ,
which, together with (2.6) and (5.7), yields

T ) T T
(5.12) | 19nlizedt == [ ton vyt = [ )t
To obtain the strong convergence that
(5.13) Vb, — Vb strongly in L2([0,T) x Q)

it suffices to show that
T 2 r 2
Il de— [Vl .

which is a direct consequence of

T T
(5.14) —/ (wi)dt = / V4p[|2, dt.
0 0
that will be verified below. Indeed, for any ¢ € C§°((0,T) x ), taking ¢, = Z¢ in (2.2b)
yields
T T
(5.15) —/0 (Viby - Vi) dt = /0 (wn Zne) dt

where 7}, is the interpolation operator in W}, . Using the strong convergence [6],

(5.16) Tnd — ¢ strongly in L>2([0,T), L*(Q)) and L>([0,T), H'(Q)),

13



and weak convergences (5.7) and (5.9), one shows from (5.15) that

(5.17) —/0T<vz/)-v¢> dt = /OT<w¢> di

This immediately gives (5.14) since C5°((0,7) x Q) is dense in L?([0,T), H}()).

As a sequence of (5.13), one concludes that
(5.18) up, — uw  strongly in L?([0,T) x Q)

where u = V4
Now we show that the limit functions (w,1)) are indeed a weak solution to the Euler
equations. To this end, one can take v, to be Zj,¢ for any ¢ € C§°((0,t) x ) in (2.2a), sum

over all the cells, and integrate in time to obtain

T
(5.19) | (0 Tad) = (wnw - VT dt =0,

where we have used the facts that the upwind fluxes @, are the same for the adjacent
elements, both Z;¢ and the normal component of the velocity field are continuous across
the interior cell boundaries, and u - n = 0 on the exterior cell boundaries. Since ¢ is

compactly supported, and 0;Z,¢ = Z,0:¢, we can integrate by part to get
T
(5:20) | (onTatnd) + nun - VI dt =,
Using the weak convergence of wy, in (5.7) and strong convergence of Zj ¢, one shows that
T T
| Tyt [ wo)ar
0 0

Similarly, it follows from the weak convergence of wy, in (5.7), strong convergence of u in

(5.18) and strong convergence of V¢y, that
T T
/ (whwy - VInd) di — / (wu- V) dt.
0 0
Hence
T T
(5.21) / (w8, ) dt+/ (wu - V) dt = 0.
0 0
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This gives (5.5). Finally, (5.6) follows from (2.2b) by taking ¢;, = Zj¢. Thus we have
proved that (¢, w) is a weak solution to the Euler equations (2.1).

In the case that the initial data wy € L*°(2), then the Cauchy problem for the Euler
equations has a solutions w € L*°([0,T") x ), and from Theorem 1 we know that this
solution is unique in the class of (5.3) and (5.4). Therefor every convergent subsequence
has the same limit. As a consequence, the whole sequence of (wy, 1) converges to the

unique solution. This completes the proof of the theorem.
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