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Abstract

In this paper� we improve the algorithms for the construction of the wavelet�like basis
matrix introduced by B� Alpert� et� al� ���� It has been shown in ��� that the n�n wavelet�like
basis matrix is of the form U � UlUl�� � � �U�� where n � k	l is the number of quadrature
points and Uj � j � 
� � � � � l are sparse orthogonal matrices� In this paper� we prove that
each Uj �
 � j � l� can be represented by a 	k � 	k matrix� It follows that the storage
requirement for all matrices Uj is 
lk�� We also show that the cost of the construction of
all matrices Uj can be reduced to O�lk�� � O�logn � k��� We recall that in ���� the storage
requirement and the construction cost of the matrix U are 
nk and O�nk�� respectively�
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� Background

In 	
�� a class of wavelet�like bases was constructed� In these bases� the dense matrices resulting
from the discretization of the second�kind integral equations are transformed into sparse matri�
ces� More precisely� the n�n matrices resulting from an n�point discretization are transformed
into matrices with O
n logn� nonzero elements 
to arbitrary �nite precision�� The inverse ma�
trices are also sparse and are obtained in order O
n log� n� operations by Schulz method 	���

Let n � k�l� where k and l are positive integers� Let fx�� x�� � � � � xng � R be a set of n
distinct points with x� � x� � � � � � xn� The wavelet�like basis de�ned on fx�� x�� � � � � xng has
two fundamental properties�

�� all but k basis vectors have k vanishing moments� and

�� the basis vectors are nonzero on di�erent scales�
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As an illustration� we show a matrix of basis vectors for n � ��� and k � � in Figure �� In
Figure �� each row represents one basis vector� with the dots depicting nonzero elements� The
�rst k basis vectors are nonzero on x�� � � � � x�k� the next k are nonzero on x�k��� � � � � x�k� and
so forth� In all� one�half of the basis vectors are nonzero on �k points from fx�� x�� � � � � xng�
one�fourth are nonzero on �k points� one�eighth are nonzero on �k points� etc� Each of these
n�� � n�� � � � � � k � n� k basis vectors has k zero moments� i�e�� if b � 
b�� � � � � bn� is one of
these vectors� then

nX
i��

bix
j
i � �� j � �� �� � � � � k � ��

The �nal k vectors result from the orthogonalization of the moments 
xj�� x
j
�� � � � � x

j
n� for j �

�� �� � � � � k � ��

Figure �� An example of wavelet�like basis matrix 
k � �� n � ����

These properties of local support and vanishing moments lead to e�cient representations of
functions that are smooth except at a �nite set of singularities� see 	��� The projection of such
a function on an element of this basis will be negligible unless the element is nonzero near one
of the singularities�

��� The Construction Procedure

In 	
�� it has been shown that the wavelet�like basis matrix has the form

U � UlUl�� � � �U��

where the matrices Uj � j � �� �� � � � � l are sparse orthogonal matrices� Before we state the
algorithm to construct the matrices U�� � � � � Ul� let us give some additional notation and show
the sparse structure of Uj � j � �� �� � � � � l�

�




i� Suppose that V is a matrix whose columns v�� � � � � v�k are linearly independent� We
de�ne W � Orth
V � to be the matrix that results from the column�by�column Gram�Schmidt
orthogonalization of V � Namely� denoting the columns of W by w�� � � � � w�k� we have

spanfw�� � � � � wig � spanfv�� � � � � vig and wT
i wj � �i�j� i� j � �� �� � � � � �k� 
��

Here �i�j denotes the Kronecker symbol�

ii� For a p� q matrix V � we let V 
i� � i�� j� � j�� denote the submatrix of V de�ned by

V 
i� � i�� j� � j�� �

�
BBB�

vi��j� vi��j��� � � � vi��j�
vi����j� vi����j��� � � � vi����j��
���

���
� � �

���
vi��j� vi��j��� � � � vi��j�

�
CCCA �

where � � i� � i� � p and � � j� � j� � q� In particular� for a �k � �k matrix V � we let
V 
� � k� �� and V 
k � � � �k� �� denote two k � �k matrices� with V 
� � k� �� consisting of the
upper k rows and V 
k � � � �k� �� the lower k rows of V �


iii� For a pair of numbers 
�� �� � R � 
Rnf�g� we de�ne a �k� �k upper�triangular matrix
S
�� �� whose 
i� j�th element is the binomial term

S
�� ��i�j �

�
j � �
i� �

�

���j�i

�j��

��

for i � j and S
�� ��i�j � � otherwise�
Now we show the sparse structure of the orthogonal matrices U�� � � � � Ul� The matrix U� is

given by the formula

U� �

�
BBBBBBBBBBBB�

U���
k � � � �k� ��
U���
k � � � �k� ��

� � �

U��n���k�
k � � � �k� ��

U���
� � k� ��
U���
� � k� ��

� � �

U��n���k�
� � k� ��

�
CCCCCCCCCCCCA

�

where U��i� i � �� �� � � � � n�
�k� are �k� �k orthogonal matrices� In general� for j � �� � � � � � l� we
have

Uj �

�
In�n��j��

U �

j

�
�






where Ip is the p� p identity matrix and

U �

j �

�
BBBBBBBBBBBB�

Uj��
k � � � �k� ��
Uj��
k � � � �k� ��

� � �

Uj�n��k�j�
k � � � �k� ��

Uj��
� � k� ��
Uj��
� � k� ��

� � �

Uj�n��k�j�
� � k� ��

�
CCCCCCCCCCCCA

�

Here Uj�i for j � �� � � � � l� i � �� �� � � � � n�
k�j� are �k � �k orthogonal matrices� The orthogonal
matrices Uj�i are obtained by the following Algorithm �� For the details of the derivation of the
algorithm� we refer the readers to 	�� 
��

Algorithm �� Computation of Uj�i� j � �� �� � � � � l� i � �� �� � � � � n�
k�j��

Step �

For i � �� � � � � n�
�k�� compute M��i by

M��i �

�
BBBBBBB�

�
x�i�����k������i

���i
� � �

�
x�i�����k������i

���i

��k��
�

x�i�����k������i
���i

� � �
�
x�i�����k������i

���i

��k��
���

���
���

���

�
x�i�����k��k����i

���i
� � �

�
x�i�����k��k����i

���i

��k��

�
CCCCCCCA
� 

�

where ���i � 
x�i�����k�� � xi��k��� and ���i � 
xi��k � x�i�����k������

Step �

For i � �� � � � � n�
�k�� compute U��i fromM��i by using the column�by�column Gram�Schmidt
orthogonalization 
���

UT
��i � Orth
M��i�� 
��

Step 


Compute Mj�i and Uj�i for j � �� 
� � � � � l and i � �� �� � � � � n�
�jk��
Do j � �� 
� � � � � l

Do i � �� �� � � � � n�
�jk�


�� Compute �j�i and �j�i by

�j�i � 
x���i���k�j � xik�j ��� 
��

�



and
�j�i � 
xik�j � x���i���k�j ���� 
��

Compute

	� �
�j�i � �j����i��

�j����i��
� 
� �

�j�i
�j����i��

and

	� �
�j�i � �j����i

�j����i

� �

�j�i
�j����i

�


�� Compute S�
j�i � S 
	�� 
�� and S�

j�i � S 
	�� 
�� respectively� where S
�� �� is de�ned
as in 
���


�
 Compute

Mj�i �

�
Uj����i��
� � k� ��Mj����i��S

�
j�i

Uj����i
� � k� ��Mj����iS
�
j�i

�
� 
��


�� Compute Uj�i from Mj�i by using the formula 
���

UT
j�i � Orth
Mj�i�� 
��

Enddo

Enddo

The outline of this paper is as follows� In x�� we discuss the operation count of Algorithm
�� In x
� we �rst show that we can reduce at least ��� of the operations and then prove that
each Uj� j � �� �� � � � � l can be represented by a �k � �k orthogonal matrix�

� The Construction Cost

In order to measure the improvement we can make� we discuss in detail the complexity of
Algorithm �� We only give the number of multiplications� We �rst discuss the cost of the
column�by�column Gram�Schmidt orthogonalization 
��� the costs of the computation of the
matrix S
�� �� which is de�ned in 
�� and the matrix Mj�i 
j � �� which is de�ned in 
���


�� The cost of the column�by�column Gram�Schmidt orthogonalization� In computing w��
we require �k � � multiplications to get jjv�jj� and another �k multiplications to get v��jjv�jj�
Thus� the cost for obtaining w� is �k � �� It is not di�cult to see that the costs for getting w��
w�� � � � and w�k are � � �k � �� 
 � �k � �� � � � and �k � �k � � respectively� Therefore� the total
cost is

�kX
i��


�ik � �� � �k� � �k� � �k�


�� The cost of the construction of S
�� ��� We �rst compute three arrays x � 
��� ��� � � ��

�k � ����� y � 
�	� ��� � � � � ��k��� and z � 

���	� 
����� � � � � 
����k���� These three arrays

�



require �k multiplications to obtain� We then compute the 
i� j�th entry 
� � i � j � �k� of the
�k � �k upper�triangular matrix S
�� �� in � multiplications by the formula

S
�� ��i�j �

j � ���
�u�j��


j � i��
i � ����j��
�

x
j�z
j � i� ��

x
j � i� ��x
i�y
j�
�

Therefore� the total cost is
�k � � � k
�k � �� � �k� � ��k�



� The cost of the computation of Mj�i� The product of k � �k matrix with �k � �k matrix
requires �k� multiplications� The product of k��k matrix with �k��k upper�triangular matrix
requires k
� � � � � � �� �k� � �k� � k�� Therefore� the total cost is

�
�k� � �k� � k�� � ��k� � �k��

In Table �� we provide the operation counts for each step of Algorithm ��

Table �� Computational Cost of Algorithm �

Step Complexity Explanation

�
n

�k

�k� � �k � ��

There are n�
�k� matricesM��i and eachM��i requires
�k� � �k � � multiplications to construct�

�
n

�k

�k� � �k� � �k�

The column�by�column Gram�Schmidt orthogonaliza�
tion of each M��i requires �k

� � �k� � �k multiplica�
tions�


�� �

n

�k
� ��

There are n�
�k��n�
�k�� � � ��� � n�
�k��� pairs
of 
j� i� 
j � �� 
� � � � � l� i � �� �� � � � � n�
�jk��� Each
pair requires � multiplications to get the parameters�


�� 

n

k
� ��
�k� � ��k�

There are �
n�
�k� � �� � n�k � � matrices S
�� ��
and each S
�� �� requires �k� � ��k multiplications�


�
 

n

�k
� ��
��k� � �k�� Each matrix Mj�i requires ��k

� � �k� multiplications
to obtain�


�� 

n

�k
� ��
�k� � �k� � �k�

The column�by�column Gram�Schmidt orthogonaliza�
tion of eachMj�i requires �k

���k���k multiplications�

total n
��k� � ��k � �� � ��k� Neglect low order term� �
��k� � ��k� � ��k � ���

� Improvement

In this section� we show that we can save at least ��� of the work in the construction of
the wavelet�like basis matrix U by simplifying the computation of Mj�i for j � �� � � � � l� i �

�



�� � � � � n�
k�j�� We then prove that each Uj � j � �� �� � � � � l can be represented by a �k � �k
matrix�

We �rst note that the column�by�column Gram�Schmidt orthogonalization 
�� is equivalent
to the QR factorization� Let the QR factorization of V be given by V � QR� where Q is an
orthogonal matrix and R is an upper�triangular matrix� We have


v�� v�� � � � � v�k� � 
q�� q�� � � � � q�k�

�
BBB�

r��� r��� � � � r���k
r��� � � � r���k

� � �

r�k��k

�
CCCA �

where vj and qj are the jth�column of matrices V and Q respectively� It follows that

	


�



�

v� � r���q��
v� � r���q� � r���q��
���
v�k � r���kq� � r���kq� � � � �� r�k��kq�k�

That is�

spanfq�� � � � � qig � spanfv�� � � � � vig and qTi qj � �i�j� i� j � �� �� � � � � �k�

Therefore� the QR factorization is equivalent to the column�by�column Gram�Schmidt orthogo�
nalization� Hence� from 
�� and 
�� we have

Mj�i � UT
j�iRj�i� j � �� �� � � � � l� i � �� � � � � n�
�jk��

where Uj�i and Rj�i are orthogonal and upper�triangular matrices respectively� It follows that
Uj�iMj�i � Rj�i� In particular� we have Uj�i
� � k� ��Mj�i � R
� � k� ��� Thus by 
��� we have

Mj�i �

�
Uj����i��
� � k� ��Mj����i��S

�
j�i

Uj����i
� � k� ��Mj����iS
�
j�i

�

�

�
Rj����i��
� � k� ��S

�
j�i

Rj����i
� � k� ��S
�
j�i

�
� 
��

We note that the matrices Rj����i��
� � k� � � k� and Sp
j�i
p � �� �� are k � k and �k � �k

upper�triangular matrices respectively� It is not di�cult to show that by using the formula

��� the multiplications required for constructing each Mj�i are ��
k

� � 
k� � ��
k� Therefore�
the multiplications required in Step 
�
 is reduced from 
n�
�k� � ��
��k� � �k�� to 
n�
�k� �
��
��
k� � 
k� � ��
k�� i�e�� we can save about n
���k� � ���k � ��
� multiplications� cf� Table
�� Since that the total multiplications in Algorithm � are less than n
��k� � ��k � �� � ��k��
we can save at least ��� of multiplications by using 
�� for k � �� We recall that the integer
k is the degree of approximation polynomials and in general it is required that k � � to get an
accurate approximation�

�



In the following� we assume that

x�ik�i� � xi� � ih� i� � �� � � � � �k and i � �� �� � � � � n�
�k� � �� 
���

where h � �k�n� We note that this assumption is quite general� For example� the quadrature
points of compound quadrature rules such as the compound Newton�Cotes and the compound
Gaussian rules satisfy 
���� We will prove that for j � �� �� � � � � l� the matrices Mj�i only depend
on the �rst index j� We �rst prove that the matrices S�

j�i and S�
j�i 
cf� Step 
�� and 
�� of

Algorithm �� are independent of i�

Lemma � Let the points fx�� x�� � � � � xng satisfy ����� Then we have

�j�i �
x�k � x� � 
�j�� � ��h

�

and

�j�i � �j����i�� � �j��h� �j�i � �j����i � ��j��h�

It follows that S�
j�i and S�

j�i are independent of i�

Proof� By the assumption on fx�� x�� � � � � xng� we have

x���i���k�j � x� � 
i� ���j��h�

Note that ik�j � �k � 
i � �j�� � ���k � �k � 	
�j�� � �� � 
i� �� � �j����k� we have

xik�j � x�k � 
�j�� � ��h� 
i� ���j��h�

Therefore� by 
�� and 
�� we have

�j�i �

x���i���k�j � xik�j �

�
�

x� � x�k � 
�j�� � ��h

�
� 
i� ���j��h 
���

and

�j�i �
xik�j � x���i���k�j

�
�

x�k � x� � 
�j�� � ��h

�
� 
���

Furthermore�

�j�i � �j����i��

�
x� � x�k � 
�j�� � ��h

�
� 
i� ���j��h�

x� � x�k � 
�j�� � ��h

�
� 
�i � ���j��h

� �j��h�

Similarly�
�j�i � �j����i � ��j��h�

�



Thus� �j�i� �j�i � �j����i�� and �j�i � �j����i are independent of i� It follows that the matrices
S�
j�i and S�

j�i are independent of i�

Let �j and �j be de�ned by

�j �
�j�i � �j����i��

�j����i��
�

�j��h

x�k � x� � 
�j�� � ��h

�
�

and

�j �
�j�i

�j����i��
�

x�k � x� � 
�j�� � ��h

x�k � x� � 
�j�� � ��h

���

respectively� We have S�
j�i � S
�j� �j� and S�

j�i � S
��j � �j�� i�e� they are independent of the

index i� In the following� we will denote S�
j�i and S�

j�i by S�
j and S�

j respectively�

Theorem � Let the points fx�� x�� � � � � xng satisfy ����� Then for each j� the matrices Mj�i are

the same for i � �� �� � � � � n�
�jk�� It follows that for each j� the matrices Uj�i are the same for

i � �� �� � � � � n�
�jk��

Proof� From 

� we have that

M��i �

�
BBBB�

� ui�� � � � u�k��i��

� ui�� � � � u�k��i��
���

���
���

���

� ui��k � � � u�k��i��k

�
CCCCA �

where ui�i� � 
x�i�����k�i� � ���i�����i� By 
��� and 
���� we have

ui�i� �
xi� � 
i� ��h� 
x� � x�k���� 
i� ��h


x�k � x����
�

�xi� � x� � x�k
x�k � x�

� i� � �� � � � � �k�

Obviously� ui�i� are independent of i� Therefore� all matrices M��i� i � �� �� � � � � n�
�k� are the
same� We can denote them by M��

Let the QR factorization of M��i be given by M��i � UT
��iR��i� We have that the matrices

U��i and R��i are independent of i and can be denoted by V� and R� respectively� Note that the
matrices S�

j�i and S�
j�i are independent of i� we see from 
�� that the matrices M��i are given by

M��i �

�
R���i��
� � k� ��S

�
��i

R���i
� � k� ��S
�
��i

�
�

�
R�
� � k� ��S

�
�

R�
� � k� ��S
�
�

�
�

Thus the matrices M��i are the same for i � �� � � � � n�
�k� and can be denoted by M�� It follows
that U��i and R��i� i � �� � � � � n�
�k�� can be denoted by V� and R� respectively�

Similarly� we have that

M��i �

�
R���i��
� � k� ��S

�
��i

R���i
� � k� ��S
�
��i

�
�

�
R�
� � k� ��S

�
�

R�
� � k� ��S
�
�

�

�



are independent of i� In general� for j � �� �� � � � � l� the matrices Mj�i are independent of i�

From Theorem �� we see that for each j � �� �� � � � � l� we only require to compute a �k � �k
orthogonal matrix Vj � Uj�i� i � �� �� � � � � n�
k�j�� Thus we have come up the following revised
algorithm�

Algorithm �� Computation of Vj � j � �� �� � � � � l�

Step �

Compute the matrix M� by

M� �

�
BBB�

� u� u�� � � � u�k���

� u� u�� � � � u�k���
���

���
���

� u�k u��k � � � u�k���k

�
CCCA �

where ui � 
�xi � x�k � x���
x�k � x�� for i � �� �� � � � � �k�

Step �

Compute the QR factorization of M��

M� � V T
� R��

Step 


For j � �� 
� � � � � l�
Do

Compute �j and �j as de�ned in 
�
� and 
��� respectively�

Compute S�
j � S
�j� �j� and S�

j � S
��j � �j��

Compute the matrix Mj by the formula Mj �

�
Rj��
� � k� ��S

�
j

Rj��
� � k� ��S
�
j

�
�

Compute the QR factorization of Mj � Mj � V T
j Rj�

Enddo

Our algorithm � avoids redundant work and therefore the construction cost is minimized�
By using the fact that Uj�i � Vj for each j � �� �� � � � � l� we see that the construction cost is
reduced by �n�

l� times� cf� Tables ��� and the storage requirement is reduced from �nk to
�lk��

��



Table �� Computational Cost

Item Complexity Explanation

M� �k� � �k The matrixM� requires �k
���k multiplications to

construct�

V� and R� �k� � �k� � �k
The column�by�column Gram�Schmidt orthogonal�
ization ofM� requires �k

���k���k multiplications�

S�
j and S�

j �
l � ��
�k� � ��k�
There are �
l��� matrices S
�� �� and each S
�� ��
requires �k� � ��k multiplications to obtain�

Mj 
l � ��

�



k� � 
k� �

�



k�

Each matrixMj requires 
��
k
��
k����
k� mul�

tiplications�

Vj and Rj 
l � ��
�k� � �k� � �k�
The column�by�column Gram�Schmidt orthogonal�
ization of each Mj requires �k� � �k� � �k multi�
plications�

total � l

�k� � ��k� � 
�k��
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