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Abstract

In this paper, we improve the algorithms for the construction of the wavelet-like basis
matrix introduced by B. Alpert, et. al. [3]. It has been shown in [3] that the n xn wavelet-like
basis matrix is of the form U = U;U;_; - -- Uy, where n = k2! is the number of quadrature
points and U;, j = 1,---,1 are sparse orthogonal matrices. In this paper, we prove that
each U; (1 < j <) can be represented by a 2k x 2k matrix. It follows that the storage
requirement for all matrices U; is 4lk®. We also show that the cost of the construction of
all matrices U; can be reduced to O(lk®) = O(logn - k*). We recall that in [3], the storage
requirement and the construction cost of the matrix U are 4nk and O(nk?) respectively.
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1 Background

In [3], a class of wavelet-like bases was constructed. In these bases, the dense matrices resulting
from the discretization of the second-kind integral equations are transformed into sparse matri-
ces. More precisely, the n X n matrices resulting from an n-point discretization are transformed
into matrices with O(nlogn) nonzero elements (to arbitrary finite precision). The inverse ma-
trices are also sparse and are obtained in order O(n log®n) operations by Schulz method [5].

Let n = k2!, where k and [ are positive integers. Let {z1,29,--,zp} C R be a set of n
distinct points with x; < z9 < -+ < z,,. The wavelet-like basis defined on {z1,z2,---,z,} has
two fundamental properties:

1. all but k£ basis vectors have k vanishing moments; and

2. the basis vectors are nonzero on different scales.
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As an illustration, we show a matrix of basis vectors for n = 128 and k£ = 4 in Figure 1. In
Figure 1, each row represents one basis vector, with the dots depicting nonzero elements. The
first k basis vectors are nonzero on zy,---, %o, the next k are nonzero on zopy1,- -, %4k, and
so forth. In all, one-half of the basis vectors are nonzero on 2k points from {z1,z2, -+, z,},
one-fourth are nonzero on 4k points, one-eighth are nonzero on 8k points, etc. Each of these
n/2+mn/4+---+k =n —k basis vectors has k zero moments, i.e., if b = (by,---,by,) is one of
these vectors, then

n .
» bzl =0,  j=0,1,---,k—L
=1

The final & vectors result from the orthogonalization of the moments (x{,mg, e ,m%) for j =

0,1,---,k—1.

Figure 1. An example of wavelet-like basis matrix (k =4, n = 128)

These properties of local support and vanishing moments lead to efficient representations of
functions that are smooth except at a finite set of singularities, see [2]. The projection of such
a function on an element of this basis will be negligible unless the element is nonzero near one
of the singularities.

1.1 The Construction Procedure

In [3], it has been shown that the wavelet-like basis matrix has the form
U=UU_,---Ui,

where the matrices Uj, j = 1,2,---,1 are sparse orthogonal matrices. Before we state the
algorithm to construct the matrices Uy, ---,Uj, let us give some additional notation and show
the sparse structure of Uj, j = 1,2,---,1.



(i) Suppose that V is a matrix whose columns vy, ---,vg; are linearly independent. We
define W = Orth(V') to be the matrix that results from the column-by-column Gram-Schmidt
orthogonalization of V. Namely, denoting the columns of W by wy, - - -, wog, we have

span{wy, - -+, w;} = span{vy,---,v;} and wZ-ij =0;j, 1,7 =1,2,---,2k. (1)

Here 6; ; denotes the Kronecker symbol.
(ii) For a p x ¢ matrix V', we let V(i1 : 42,71 : j2) denote the submatrix of V' defined by

Vi1, Vi, ji+1 T Ui g
o Vir4+1,51 Vi+1l,50+1 00 Vig41,542
V(i1 :dg, g1t 42) = | . . L ;
Via,j1 Vis,j1+1 T Uiy g

where 1 < i3 <19 < pand 1l < j; < j9 < ¢q. In particular, for a 2k x 2k matrix V, we let
V(1 :k,:)and V(k+ 1 : 2k,:) denote two k x 2k matrices, with V(1 : k,:) consisting of the
upper k rows and V' (k + 1 : 2k,:) the lower k rows of V.

(iii) For a pair of numbers (i, 0) € R x (R\{0}) we define a 2k x 2k upper-triangular matrix
S(u, o) whose (i,7)th element is the binomial term

o= (171 )

for i <j and S(p,0);,; = 0 otherwise.
Now we show the sparse structure of the orthogonal matrices Uy, ---,U;. The matrix U; is
given by the formula

U1,1 (k +1: 2k, :)
Uip(k+1:2k,:)

Ul,n/(%)(k +1:2k,:)

Ui

Ul,l(l : ka :) ,
U1,2(1 : ka :)
Ul,n/(Zk)(l : k, :)
where Uy ;, i = 1,2,---,n/(2k) are 2k x 2k orthogonal matrices. In general, for j =2,,---,1, we
have
I, .91
Uj _ ( n—n/2 . > ,
Uj



where I, is the p X p identity matrix and

Uj,l(k +1: 2]{:, :)
Ujo(k +1:2k,:)

Ujn/kaiy(k +1:2k,)
Uja(1:k,:)
Ujo(l:k,:)

Ujnkaiy (12 k)

Here Uj; for j = 2,---,1,i=1,2,---,n/(k27) are 2k x 2k orthogonal matrices. The orthogonal
matrices Uj; are obtained by the following Algorithm 1. For the details of the derivation of the
algorithm, we refer the readers to [1, 3].

Algorithm 1: Computation of U;;, j = 1,2,---,1,i=1,2,---,n/(k27).

Step 1
Fori=1,---,n/(2k), compute M;; by
1 T(i—1)-2k+1 M1, T(i—1)-2k+1—H1,i 2k—1
01,5 O1,i
1 Fl=D2k+2—Bi (m(ifl)-2k+2*ﬂl,i)2k71
M ; = oL oL : (3)
1 T(i—1)-2b+2k M1 T(i—1)-2k+2k —H1,i 2k—1
01,i 01,i

where 11; = (x(ifl)-2k+1 + zi0) /2 and 01; = (w59 — $(i71)-2k+1)/2'
Step 2

Fori=1,---,n/(2k), compute U; ; from M; ; by using the column-by-column Gram-Schmidt
orthogonalization (1):
UL; = Orth(Myy). (4)

Step 3
Compute M;; and Uj; for j =2,3,---,l and i = 1,2,---,n/(27k).
Do j=23,---,1
Doi=1,2,---,n/(27k)
3.1 Compute p;; and o;; by

tji = (14 (i—1)k2s + Tiki)/2 (5)
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and

0ji = (Tikoi — Tiq(i—1)kai)/2- (6)
Compute
Mg — Hj—1,2i—1 O3
o =Rl g TO
0j-1,2i-1 0j-1,2i-1
and
Hgi — Hj—1,2i O3
g = ———— ,82 = .
0512 01,2

3.2 Compute S},i =S (a1, 01) and Sii = S (awg, B2) respectively, where S(u, o) is defined

as in (2).
3.3 Compute
Uj—12i-1(1 : k,:)M;_1 915}, >
M= 7" DMi12190 ) 7
It < Uj—1,2i(1 2 ky:) M 193, (7)

3.4 Compute U;; from M;; by using the formula (1):

Uj; = Orth(M;y). (8)

Enddo
Enddo

The outline of this paper is as follows. In §2, we discuss the operation count of Algorithm
1. In §3, we first show that we can reduce at least 25% of the operations and then prove that
each Uj, j = 1,2,---,l can be represented by a 2k x 2k orthogonal matrix.

2 The Construction Cost

In order to measure the improvement we can make, we discuss in detail the complexity of
Algorithm 1. We only give the number of multiplications. We first discuss the cost of the
column-by-column Gram-Schmidt orthogonalization (1), the costs of the computation of the
matrix S(u, o) which is defined in (2) and the matrix M;; (j > 2) which is defined in (7).

(1) The cost of the column-by-column Gram-Schmidt orthogonalization. In computing w,
we require 2k + 1 multiplications to get ||v1]|2 and another 2k multiplications to get vy /||v1]].
Thus, the cost for obtaining w; is 4k 4+ 1. It is not difficult to see that the costs for getting ws,
w3, --- and wyy are 2-4k + 1, 3-4k + 1, --- and 2k - 4k + 1 respectively. Therefore, the total

cost is
2k

> (4ik +1) = 8k® + 4k* + 2k.
i=1
2) The cost of the construction of S(u, o). We first compute three arrays z = (0!, 11, .-,
1
2k — 1), y = (6% 0%, -+, 0% D and 2z = ((—p)°, (—p)',---, (—p)?*~1). These three arrays



require 6k multiplications to obtain. We then compute the (7, j)th entry (1 <i < j < 2k) of the
2k x 2k upper-triangular matrix S(u, o) in 4 multiplications by the formula

(= Di=w)/t ()2 —i+1)
(=) —Dlod™t 2 — i+ Da()y()

S(p,0)ij =
Therefore, the total cost is
6k + 4 - k(2k 4 1) = 8Kk* 4 10k.

(3) The cost of the computation of M;;. The product of k x 2k matrix with 2k x 2k matrix
requires 4k multiplications. The product of k x 2k matrix with 2k x 2k upper-triangular matrix
requires k(1 +2 4 - -+ + 2k) = 2k3 + k2. Therefore, the total cost is

2(4Kk3 + 2k3 + k%) = 12k3 + 2K2.
In Table 1, we provide the operation counts for each step of Algorithm 1.

Table 1. Computational Cost of Algorithm 1

Step Complexity Explanation
1 2(4142 2k 42) Th26re are n/(2k) r'na‘trl(:(?s M, ; and each M, ; requires
2k 4k* — 2k + 2 multiplications to construct.

The column-by-column Gram-Schmidt orthogonaliza-
(8K + 4k? + 2k) tion of each M ; requires 8% + 4k> + 2k multiplica-
tions.

n

2k

There are n/(4k)+n/(8k)+---+1=n/(2k) — 1 pairs
31 6(=— —1) of (4,i) (j = 2,3,---,1, i = 1,2,---,n/(2k)). Each
pair requires 6 multiplications to get the parameters.

There are 2(n/(2k) — 1) = n/k — 2 matrices S(u,0)

n_ 2
32 (k 2)(8k” + 10k) and each S(u,o) requires 82 + 10k multiplications.

3.3 (ﬁ . 1)(12kz3 + 2k;2) Each matrix M; ; requires 12k3 + 2k2 multiplications
2k to obtain.
no 3 9 The column-by-column Gram-Schmidt orthogonaliza-
34 (2k 1)(8k" + 47 + 2k) tion of each M ; requires 8%k>+4k>+2k multiplications.

total n(14k? + 15k + 11 +4/k) Neglect low order term: —(20k> + 22k + 22k + 6).

3 Improvement

In this section, we show that we can save at least 25% of the work in the construction of
the wavelet-like basis matrix U by simplifying the computation of M;; for j = 2,---,1, ¢ =



1,---,n/(k27). We then prove that each Uj, 5 = 1,2,---,l can be represented by a 2k x 2k
maftrix.

We first note that the column-by-column Gram-Schmidt orthogonalization (1) is equivalent
to the QR factorization. Let the QR factorization of V' be given by V = QR, where @ is an
orthogonal matrix and R is an upper-triangular matrix. We have

i, T2 ot T2k
2,2 "t T2k

(v1,v2,- -+, vok) = (q1, 42, " -, G2k) . ;
T2k, 2k

where v; and g; are the jth-column of matrices V' and @ respectively. It follows that

U1 = T1,141,
v = 11,291 + 72,292,

Vo = T,2kq1 + T2,26Q2 + -+ - + T2k 2k 2k

That is,
Span{Qla"'aQi}:Spa’n{vla"'avi} and qZTQJ:(sl,]a Zaj:132aa2k

Therefore, the QR factorization is equivalent to the column-by-column Gram-Schmidt orthogo-
nalization. Hence, from (4) and (8) we have

M;,; = UjT”iRj,i, j=1,2,--,0, i=1--,n/(2k),

where Uj; and R;; are orthogonal and upper-triangular matrices respectively. It follows that
U;iM;; = Rj;. In particular, we have U;;(1: k,:)M;; = R(1: k,:). Thus by (7), we have

Uj—12i-1(1 : K, )Mj—1,2i—15},i )

k,:
M;; =
g ( Uj—1,i(1 + k) Mj_1,253;
k,:

_( Bjm12im1(1: k98],
o ( ijl,Zi(]- : k‘, )82 ) (9)

7,2

We note that the matrices Rj_12;—1(1 : k,1 : k) and S’;”i(p = 1,2) are k x k and 2k x 2k
upper-triangular matrices respectively. It is not difficult to show that by using the formula
(9), the multiplications required for constructing each M;; are 7/3k + 3k? + 2/3k. Therefore,
the multiplications required in Step 3.3 is reduced from (n/(2k) — 1)(12k3 + 2k?) to (n/(2k) —
1)(7/3k3 + 3k? 4+ 2/3k), i.e., we can save about n(4.8k? — 0.5k — 0.3) multiplications, cf. Table
1. Since that the total multiplications in Algorithm 1 are less than n(14k? + 15k + 11 + 4/k),
we can save at least 25% of multiplications by using (9) for k& > 4. We recall that the integer
k is the degree of approximation polynomials and in general it is required that k£ > 4 to get an
accurate approximation.



In the following, we assume that
Tojpyyr = Ty +ih, i =1,---2k and i=1,2,---,n/(2k) — 1, (10)

where h = 2k/n. We note that this assumption is quite general. For example, the quadrature
points of compound quadrature rules such as the compound Newton-Cotes and the compound
Gaussian rules satisfy (10). We will prove that for j = 1,2,---,[, the matrices M;; only depend
on the first index j. We first prove that the matrices Sjll and SJZZ (cf. Step 3.1 and 3.2 of
Algorithm 1) are independent of i.

Lemma 1 Let the points {x1,x9, -, x,} satisfy (10). Then we have

Top — w1 + (2071 = 1)h

and ' '
pii = tj—12im1 =2 hy pgi— o100 = =2 h,
1 2 . .
It follows that S;; and S5, are independent of i.

Proof. By the assumption on {z1,x9, -, z,}, we have
T1 (k2 =21+ (i —1)27 " "h,
Note that ik2/ =2k + (i - 2071 — 1)2k = 2k + [(277! — 1) + (i — 1) - 277 1]2k, we have
Tipoi = Top + (2771 = 1)h + (i — 1)27 1A,
Therefore, by (5) and (6) we have

. i—1
Wi = 2 = 2 TE—12h (D)
and -
oy = Tiki — x21+(i—1)k21 _ Tok — T +2(27_ - 1)h_ (12)
Furthermore,
Hji = Hj—1,2i—1
27-1 —1)h , 2772 —1)h ’
_ Tt T +2( h | (i — 1)2/ Lp — LT +2( )h _ (20 —2)27 *h
= 2073,
Similarly,

pii — 1.2 = —2"°h.



Thus, 0, pj; — pj—1,2i-1 and pj; — pj12; are independent of i. It follows that the matrices
S'Jl-i and 8]2 ; are independent of 7.

Let p; and o; be defined by

[ — Hj—12i—1 2/ 2h
/1’] — 75t - J . ) — j_z (13)
0j—-1,2i—1 Top — T1 + (2 — l)h
and -
. - 2-1_ 1)h
o) — Oji_ _ Lok —T1t ( ) (14)

Oj—12i—1  Zok —x1+ (2772 —1)h
respectively. We have S'Jll = S(pj,04) and 5321 = S(—pj,05), i.e. they are independent of the

index i. In the following, we will denote S ]ll and SJZZ by S} and S]2 respectively.

Theorem 1 Let the points {1, 22, -, xn} satisfy (10). Then for each j, the matrices M;; are
the same fori=1,2,---,n/(2'k). It follows that for each j, the matrices U;; are the same for
i=1,2,,n/(2k).

Proof. From (3) we have that

2%k—1
Louin e gy
2k—1
Louig o gy
Ml,i_ )
2k—1
Lowjop - gy

where u; i = (T(i_1).op4# — H1,i)/01,;- By (11) and (12), we have

u’::I?Zl+(Z—1)h—($1+$2k)/2—(’L—].)hZQIZ/—IEI—IL‘Qk 'L,:1 . 9k
o (zor — 21)/2 Top — @1 CoT

Obviously, u; s are independent of ¢. Therefore, all matrices M, ;, i = 1,2,---,n/(2k) are the
same. We can denote them by M;.

Let the QR factorization of M;; be given by M;; = UIT,Z-RLZ-. We have that the matrices
Ui, and R;; are independent of 7 and can be denoted by Vi and R; respectively. Note that the
matrices S Jll and SJQZ are independent of i, we see from (9) that the matrices My ; are given by

Mo — Rl,?i—l(l : ka )Sll,z _ Rl(]- : ka )Sll
207\ Rygi(1: k, )8t T\ Ri(1:k,)SE )

Thus the matrices My ; are the same for ¢ = 1,---,n/(4k) and can be denoted by Ms. It follows
that Uy; and Ry, i =1,---,n/(4k), can be denoted by V2 and Rj respectively.
Similarly, we have that

M — Ropi1(1: k)85, \  ( Ro(1:k,:)S3
31— Ry (1 : k, :),5’22,2- T\ Ro(1: k) S?



are independent of 7. In general, for j = 1,2,---,[, the matrices M;; are independent of ..

From Theorem 1, we see that for each j = 1,2,---,[, we only require to compute a 2k x 2k
orthogonal matrix V; = Uj;, i = 1,2,---,n/(k2’). Thus we have come up the following revised
algorithm:

Algorithm 2: Computation of Vj, j =1,2,---,1L.

Step 1
Compute the matrix M; by
1w ud e u%k_l
T
where u; = (22; — o, — 1) /(z2r, — 1) for i = 1,2, -, 2k.
Step 2
Compute the QR factorization of Mj:
M, = VI'Ry;
Step 3

For j =2,3,---,1,
Do

Compute p; and o; as defined in (13) and (14) respectively.
Compute S} = S(pj,05) and S’? = S(—pj,05).

1(1:k,:)S}
Compute the matrix M; by the formula M; = ( gj 151 ‘ k’ ;?2 ) .
i—1(L: k,:) S5

Compute the QR factorization of M;: M; = V]-TRj.

Enddo
Our algorithm 2 avoids redundant work and therefore the construction cost is minimized.
By using the fact that U;; = V; for each j = 1,2,---,1, we see that the construction cost is

reduced by 4n/(3l) times, cf. Tables 1-2 and the storage requirement is reduced from 4nk to
ALK
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Table 2.

Computational Cost

Item Complexity Explanation
M, 4k2 — Ok The matrix M; requires 4k? — 2k multiplications to
construct.
The column-by-column Gram-Schmidt orthogonal-
3 2
Viand Ry 8k% 44k + 2k ization of M, requires 8k3+4k%+2k multiplications.
There are 2(/ —1) matrices S(u, o) and each S(u, o)
Vand 57 2(1 — 1)(8k* + 10k ’ ’
SJ an SJ ( )(8k7 + 10) requires 8k2 + 10k multiplications to obtain.
7 1 i . ; 3 2 _
M, (= D)(LR 1312 1 Lp) E;ac‘h matnx M; requires (7/3k” 4+ 3k* +1/3k) mul
3 3 tiplications.
The column-by-column Gram-Schmidt orthogonal-
Vi and R; (I —1)(8Kk® + 4k? + 2k) ization of each M; requires 8k3 + 4k? + 2k multi-
plications.
total < 1(31k3 + 45k + 37k) /3
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