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Abstract

We present a necessary and su�cient condition for the convergence
of solutions of the incompressible Navier�Stokes equations to that of
the Euler equations at vanishing viscosity� Roughly speaking conver�
gence is true in the energy space if and only if the energy dissipation
rate of the viscous �ows due to the tangential derivatives of the ve�
locity in a thick enough boundary layer� a small quantity in classical
boundary layer theory� approaches zero at vanishing viscosity� This
improves a previous result of T� Kato ��	
�� in the sense that we
require tangential derivatives only while the total gradient is needed
in Katos work� However we require a thicker boundary layer� We
also improve our previous result where only su�cient conditions were
obtained� Moreover we treat more general boundary condition which
includes Taylor�Couette type �ow� Several application are presented
as well�
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� Introduction

One of the fundamental system governing the motion of �uids like air and wa�
ter under normal conditions is the Navier�Stokes equations for incompressible
homogeneous Newtonian �uids�

�u�

�t
� �u� � r�u� � ��u� �rp� 	 f � in 
 ���

div u� 	 � in 
 ���

u� 	 b on � ���

u� 	 u� at t 	 �� ���

where u� 	 �u��� u
�
�� u

�
�� is the velocity �eld in the Eulerian coordinates� p�

is the pressure� and f 	 �f�� f�� f�� is the external body force� the positive
constant � is the kinematic viscosity� The velocity b at the boundary satis�es

b � n 	 � ���

where n is the unit outward normal to  	 �
� This means that the bound�
ary is impermeable� This includes the case of Taylor�Couette type �ows
among others� The boundary condition sometimes is referred as character�
istic boundary condition since the boundary consists of stream lines all the
time�

The interested reader may consult the books of Constantin and Foias
������� Ladyzhenskaya ������ or Temam ������ for the mathematical theo�
ries of the Navier�Stokes equations�

For realistic �uids like air and water� the kinematic viscosity is very small
and hence we may formally set it to zero and arrive at the Euler system for
incompressible inviscid �dry� �uids�

�u�

�t
� �u� � r�u� �rp� 	 f � in 
 ���

div u� 	 � in 
 ���

u� � n 	 � on � ���

u� 	 u� at t 	 �� ���
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The natural question is then whether such an approximation can be jus�
ti�ed via the zero viscosity limit of the Navier�Stokes equations�

The purpose of this article is to give a necessary and su�cient condition
that the solutions of the Navier�Stokes equations ��� converge to that of
the Euler equations ��� in the energy space �L��
�� at vanishing viscosity
�� � ���

It is clear that due to the disparity of boundary conditions between the
viscous problem ��� where the whole velocity is speci�ed at the boundary
and the inviscid problem ��� where only the normal velocity is speci�ed at
the boundary� the convergence up to the boundary is impossible in general�
In fact we would usually anticipate a thin transition layer near the boundary�
called boundary layer� where the viscous �ows change value from its main�
stream value to the boundary value� �see for instance Temam and Wang
������ for an illustration� and Schlichting ������ for more information�� A
useful observation is that only adjustments normal to the boundary is needed�
or only the normal derivatives need to be large� not necessarily the tangen�
tial derivatives� Due to the presence of boundary layer� uniform estimates
in derivatives are not available� Nor it is possible to derive uniform in space
estimates since there is no�known maximum principle type technique avail�
able due to the presence of the pressure term which makes the problem a
global one� Another approach is along the line of Prandtl� one assume that
the viscous and inviscid solutions are close to each other in the interior of
the domain away from the boundary �layer�� Within the boundary layer�
the viscosity is important� and the motion is approximated by the so�called
Prandtl�s equation which is a heuristic approximation of the Navier�Stokes
equations under the assumption that the �ow scales as u� 	 g�x� y� z�

p
�� t�

where we assumed that z 	 � is the boundary �see Prandtl ������ In order
to justify this picture� one has to prove the well�posedness of the Prandtl
system �local in time at least�� and then use matched asymptotic expansion
or some other techniques to establish the validity of the Prandtl expansion
and the inviscid limit� Unfortunately the well�posedness of the Prandtl equa�
tion is very di�cult �see for instance Oleinik ������� E and Engquist ������
among other�� Even in the case of well�posed Prandtl equation� there is no
known successful matching for non�trivial �ows� �See for instance E ������
for a survey�� A slightly di�erent approach is the so�called corrector approach
along the lines of Vishik and Lyusternik ������ and Lions ������� The idea
here is to write the viscous solution u� as the sum of the inviscid solution u�
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and a corrector �� Inserting this into the viscous equation� assuming that the
corrector � is concentrated in the boundary layer and satisfying certain scal�
ing property� we are able to derive a Prandtl type equation for the corrector�
called corrector equation� One then proceed to prove the well�posedness of
the corrector �Prandtl type� equation and the closeness of the viscous solu�
tion and u� � �� This is closely related to multi�scale �in this case two scale�
expansion� Usually this is also a di�cult task� The advantage here is that
no matching is needed� Indeed in the case of uniformly non�characteristic
boundary case this procedure was carried out successfully by Temam and
Wang ������� The main ingredient of success there is that the Prandtl type
�corrector� equation is a linear elliptic system and the boundary layer is of
thickness linearly proportional to the kinematic viscosity �� However in the
characteristic boundary case as is considered here� even the well�posedness of
the Prandtl equation is beyond our reach now except for some special cases�

In an article published in ����� T� Kato proved a very interesting result
regarding the validity of inviscid limit� i�e�� the convergence of the solutions
of the Navier�Stokes equations to that of the Euler equations at vanishing
kinematic viscosity �for the special case of b � ���
Kato ����� a necessary and su�cient condition for the validity of the inviscid
limit is the vanishing of the following energy dissipation rate in the viscous
sublayer of thickness c�

�
Z T

�

Z
�c�
jru���x� t�j� d�xdt� �� as � � �� ����

where c� is the c� neighborhood of the wall  	 �
� and c is an arbitrary
constant of order one with the unit ���U �� Kato�s result indicates that the
problem of inviscid limit depends on the behavior of the viscous solution in
the viscous sublayer only where the viscosity is supposed to dominate� This
suggest that the Prandtl equation may not be central to the question of in�
viscid limit� Roughly speaking� after been translated into the language of
correctors� Kato found an ansatz for the corrector� His ansatz has nothing
to do with the Prandtl type equations since the scalings are totally di�erent�
Kato�s ansatz was later applied to problem of Ekman layer by Grenier and
Masmoudi ������ among others� Unfortunately Kato�s result is not easily
applicable since it is hard to estimate the energy dissipation rate� The pur�
pose of this note is to present a Kato type result with the total gradient
replaced by the tangential derivatives only� The di�erence between the re�
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sult here and the result of Kato as well as our previous note �Temam and
Wang ����� are the following� �� we use tangential derivatives only �with a
slightly thicker boundary layer�� a small quantity in classical boundary layer
theory� while Kato needs the whole gradient� �� we treat more general and
physically more interesting boundary condition here including Taylor Cou�
ette type �ow while both Kato ������ and our previous note treat stationary
solid wall �u 	 �� on � only� �� we have a necessary and su�cient condition
here �with a slightly thicker boundary layer though� while only a su�cient
condition is presented in our previous note �Temam and Wang ������

This is inspired by classical laminar boundary layer theory which asserts
that the tangential �to the boundary� variation of the velocity is much smaller
than the normal �to the boundary� variation of the velocity� �see for instance
Schlichting �������� the rigorous bound on energy dissipation rate �see for
instance Doering and Gibbon ������ among others� and the laboratory ex�
periment on shear driven �ows �see Lathrop� Fineberg and Swinney ��������
It also agrees with recent carefully designed numerical experiments by J�G
Liu ������ and his collaborators�

� The Main Result and Applications

In this section we state our main result and its application to three examples�

Theorem � Suppose that we have a smooth solution u� of the Euler system
��� on the time interval ��� T �� Then the following are equivalent

�
u� � u�� in C���� T �� L��
�� ����

� There exists ���� such that

lim
���

�

����
	 � ����

lim
���

�
Z T

�

Z
��
jr�u

�
� j� 	 � ����

� There exists ���� such that

lim
���

�

����
	 � ����

�



lim
���

�
Z T

�

Z
��
jr�u

�
nj� 	 � ����

where r� denotes tangential �to the boundary� derivatives and u�� denotes
the tangential component�s� of the velocity while u�n denotes the normal com�
ponent of the velocity�

Remark One of the choice of ���� is h
Re

logRe where h is the characteristic
length and Re 	 hU

�
is the Reynolds number� This is the well�known thick�

ness of viscous sublayer predicted by von Karman ������ logarithmic pro�le�
Notice that the layer here is thicker than the one used by Kato �h�Re��
Remark The short time existence of smooth solutions of the Euler system
��� can be found in Temam ������ provided that the data are smooth�

As immediate application of our result we have
Example � �Radial symmetric disk �ows� see for instance Matsui �������
In this case 
 is a disk of radius R and the velocity is radial symmetric� i�e��

u� 	 u��r� t��

Notice that the tangential derivative is the derivative in the �e� direction� i�e�

r� 	
�

�	
�

Hence the second and third conditions in the theorem are satis�ed which
implies the convergence� This case is not the most interesting one since the
nonlinear term drops out under this radial symmetry� The velocity equation
and the pressure are decoupled�
Example � �Plane parallel channel �ow� Here we consider a special type
of channel �ow� Let 
 be a channel bounded between z 	 � and z 	 h�
Suppose that the third component of the velocity �eld is identically zero�
i�e��

u� 	 �u��� u
�
�� ���

Thus the �ows are parallel to the plane z 	 �� Again the condition for
convergence is satis�ed in the theorem above and hence the convergence
must be true� Unlike the previous example� this case includes some nonlinear
situations� For instance for the special choice of

u� 	 �u���z� t�� u
�
��x� z� t�� ���
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the equations reduce to a weakly coupled nonlinear system

�u��
�t

� �
��u��
�z�

	 f��z� t��

�u��
�t

� u��
�u��
�x

� �
��u��
�z�

� �
��u��
�x�

	 f��x� z� t��

Example � �Parallel Pipe �ow� An example similar to example � is a parallel
pipe �ow� Here we consider a pipe with circular cross�section with x�axis
being the axis of the pipe� We assume that the �ow is parallel to the axis of
the pipe all the time� More speci�cally we consider the special case of

u� 	 u���x� r� t�e� � u�x�x� r� t�ex

in the cylindrical coordinates with 	 being the angle and r being the distance
to the axis of the pipe� Since the normal �ow �in the direction of er� is
identically zero� the convergence is true� Again in a special subcase the
system reduce to a weakly coupled nonlinear system just as in example ��

� Corollary and Related Results

In this section we present several consequences and related results of our
main result� One of the interesting consequences indicates the numerical
di�culty in verifying the inviscid limit� Basically� one has to resolve a small
scale of the order h�Re in the direction parallel to the wall in the numerical
experiment in order to be able to say anything about the inviscid limit� Here
h is the characteristic length of the domain �in the channel case it is the
width of the channel� and Re is the Reynolds number� Notice Kato�s result
implies that one has to resolve small scale of the order h�Re in the direction
normal to the wall only� Another interesting result indicates that if the
pressure variance along the wall does not grow too fast �less than Re���� in
the two dimensional case� then the convergence must be true� This indicates
that even in the case with adverse pressure gradient �thus boundary layer
separates and the Prandtl theory cease to valid�� the convergence may still
be true� This is a further indication that the problem of inviscid limit in
the presence of boundary may not be related to the validity of the Prandtl
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theory� �Though we believe �yet to be proved� that the Prandtl theory should
be valid for a short period of time��

For simplicity we will consider channel �ow ��at boundary� with period�
icity in the horizontal �x� direction�

Corollary � Suppose we have a numerical scheme preserving the property
that the time averaged energy dissipation rate is bounded above independent
of the kinematic viscosity� Let uk be the solutions of a sequence of numerical
experiments with kinematic viscosity �k � � and horizontal cut�o� wave
number Kk ��� The experiment is horizontally under�resolved in the sense
that

lim
k��

�kKk 	 � ����

then at least one of the assumptions in our main result is satis	ed for the
discrete solutions�

Proof Let

uk �
KkX
j��

uk�j�z� t�e��ijx�L

be the numerical solutions where L is the period in the horizontal direction�
Set

�k 	
�k
U
�
LU

�kKk
�
�

�

we have
�k
�k
� ��

We have� thanks to Poincar�e inequality�

�k

Z T

�

Z
��

k

jDxu
k
�j� � ��k�k

Z T

�

Z
��k

jDxDzu
k
�j�

	 ��k�k

Z T

�

Z
��k

jD�
xu

k
�j�

� ��kK
�
k

�
�

L�
�k

Z T

�

Z
��

k

jDxu
k
�j�

� ��kKk

� ��
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where we have used the assumption on time averaged energy dissipation rate�
The fact that the time averaged energy dissipation rate is bounded above
by a constant independent of the kinematic viscosity � for the continuous
equation can be found in Doering and Constantin ������� This leads to our
result which proves the corollary�
Remark� A more rigorous result would require a proof of the convergence
of the discrete solutions to that of the Euler equations under the horizontally
under�resolved assumption ����� The proof for this result as well as some
other related results will appear elsewhere�

Our second corollary indicates that even if there is adverse pressure gra�
dient� it is still possible for the Euler equation to be the inviscid limit of the
Navier�Stokes equations� This indicates that even if the Prandtl theory cease
to valid� the inviscid limit could still be true� This is another indication that
the problem of inviscid limit may not be related to the validity of Prandtl
theory�

Corollary � We consider the two dimensional case with b � �� Suppose
that the pressure of the viscous 
ows satis	es one of the following conditions

lim
���

�
�

�

Z T

�

Z
�
jD�p

� j� 	 �� ����

lim
���

�
Z T

�
jp� j�

H
�

� ���
	 �� ����

then u� converges to u� in C���� T �� L���

Proof� For the two dimensional case with b � �� we haveZ
	
�u � r�u ��u 	 �

for any smooth �H�� divergence free function� �see for instance Constantin
and Foias� ������ �This identity may not hold for the case with nontrivial b
or in the three dimensional case��

For simplicity we will consider �at boundary case at z 	 ��
We multiply the Navier�Stokes equations ��� by ��u� and integrate over


� The nonlinear term vanishes by the identity cited above�
For the right hand side we have

�
Z
	
f ��u� � jf jL�j�u� jL�

� �

�
j�u� j�L� �

�

�
jf j�L��

�



For the pressure term we have eitherZ
	
rp� ��u� 	

Z
�
p��u� � n

� jp� j
H

�

� ���
j�u� � nj

H�
�

� ���

� jp� j
H

�

� ���
j�u�jL�

� �

�
j�u�j�L� �

�

�
jp� j�

H
�

� ���
�

or Z
	
rp� ��u� 	

Z
�
p��u� � n

	 �
Z
�
p��u��

	 �
Z
�
p�
��u��
�z�

	
Z
�
p�

��u��
�x�z

	 �
Z
�

�p�

�x

�u��
�z

� j�p
�

�x
jL����j�u

�
�

�z
jL����

� j�p
�

�x
jL����j�u

�
�

�z
j
�

�

L� j�u
�
�

�z
j
�

�

H�

� �

�
j�u�j�L� � ju��j�H� �

�

�
�

�

j�p
�

�x
j�L�����

These implies� together with the assumptions�

d

dt
jru�j�L� � �j�u�j�L� � �jru�j�L� � o������

and hence we have

lim
���

��
Z T

�
j�u�j�L� 	 ��

or equivalently

���� � ��

LU
T

Z T

�
j�u�j�L� � �� as � � ��

��



Setting
��� 	 ����

�

� �

we have
�

�
	 U � �� as � � ��

Moreover we have

�
Z T

�

Z
��
j�u

�
�

�x
j� � ���

Z T

�

Z
��
j �

�u��
�x�z

j�

� ��

�U�

Z T

�
j�u�j�L�

	 LU�T����
�

�

� �� as � � ��

Hence the assumptions in the main theorem are satis�ed and the corollary
follows�

� Sketch of the Proof

Our proof is along the line of Kato ������ and Temam and Wang ������ with
some modi�cation� The basic idea is to construct a so called Background
ground �ow with a free parameter  which interpolates between the viscous
sublayer �Kato type result� and laminar boundary layer �Prandtl theory��

For simplicity we will consider channel �ow ��at boundary� and two di�
mensional case only� The case with curved boundary can be treated in the
same way as in our previous work Temam and Wang ������ using curvilin�
ear coordinates� The three dimensional case is very similar to our work on
energy dissipation rate Wang ������ ������

Our approach is close to the idea of Vishik and Lyusternik ������ �see
also Lions ����� in the sense that we seek a corrector which approximates
the di�erence between the viscous and inviscid solution� Hence it is slightly
di�erent from Kato�s ������ approach�

Throughout this section� � will denote a generic constant independent of
the kinematic viscosity ��

We prove the necessity �rst� For this purpose let 	 be a �xed incompress�
ible �ow that matches b on the boundary of the domain� The existence of
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such �ows is classical �see for instance the textbook by Temam ������ Now
consider

v� 	 u� � 	� ����

v� 	 u� � 	� ����

Notice that v� satis�es the following equation

�v�

�t
� �v� � r�v� � �v� � r�	� �	 � r�v� � ��v� 	 f � �	

�t
� �	 � r�	� ��	����

div v� 	 �� ����

v� 	 � on � ����

v� 	 u� � 	 at t 	 �� ����

The usual energy inequality on Leray�Hopf type weak solution implies that

�

�

d

dt
jv�j�L��

Z
	
�v� �r�	�v���jrv�j�L� �

Z
	
�f��	

�t
��	�r�	���	��v�� ����

Integrating in time we deduce

�

�
jv��T �j�L��

Z T

�

Z
	
�v��r�	�v���

Z T

�

Z
	
jrv�j� �

Z T

�

Z
	
�f��	

�t
��	�r�	���	��v���

�
ju��	j�L��

����
On the other hand the inviscid solution �after translation by 	� v� satis�es

the following equality �as long as it remains smooth enough�

�

�
jv��T �j�L��

Z T

�

Z
	
�v��r�	�v� 	

Z T

�

Z
	
�f��	

�t
��	�r�	���	��v��

�

�
ju��	j�L��

����
Since u� � u� in C���� T �� L�� we deduce that

v� � v� in C���� T �� L��� ����

which further implies that

lim sup
���

�
Z T

�

Z
	
jrv�j� 	 �� ����

This implies the necessarily condition in our main theorem�
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Next we move on to the su�ciency of our condition� For simplicity we
will consider two dimensional domain with �at boundary only� Without loss
of generality we assume z 	 � is the boundary and the domain lies in the
upper half plane�

We introduce a corrector with a free parameter  which allows us to
interpolate between the laminar boundary layer theory of Prandtl and the
viscous sublayer� The family of stream function is de�ned as

���x� z� t� 	 �b��x� �� t�� u���x� �� t��
Z z

�
��
Us

�
� ds� ����

with a corresponding part for the upper boundary �z 	 h for the channel
case� and with the typical velocity U de�ned as

U 	 max
���T ���

jb� � u��j� ����

The corresponding velocity �eld �corrector� is de�ned as

���x� z� t� 	 curl���x� z� t� 	 �
���

�z
�����

�x
�� ����

plus a corresponding part at z 	 h� where � is a cut�o� type function having
the property

� 	 C�������

���� 	 ��

����� 	 ��

supp � 
 ��� ���Z �

�
� 	 ��

j�jL� � ��

j��jL� � ��

Notice that our choice of corrector �background �ow� has a back 
ow�
Notice that by our explicit construction� the stream function �and hence

the velocity �eld� is supported in the �
�U

neighborhood of the boundary�
Hence it is plausible to call � 	 �

�U
the thickness of the boundary layer

associated with the background �ow�
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Our next step is to consider the adjusted di�erence

w� 	 u� � u� � ��� ����

We intend to prove that w� approaches zero at vanishing viscosity provided
the assumptions in our theorem are satis�ed�

The adjusted di�erence w� satis�es the following equation

�w�

�t
� �u� � r�w� � ��w� �rq� 	 ����

�t
� ��� � r��� � �w� � r��� � �w� � r�u�

���� � r�u� � ��u� � ���� � ����

div w� 	 �� ����

w� 	 �� on � ����

w� 	 �� at t 	 �� ����

Thanks to the explicit construction of our corrector �� we have

j��
�

�t
j�L� � U�

t

L�

U
� U�

tx

L��

�U�
�

j��� � r���j�L� � �U�U�
x

L�

U
� U�U�

xx

L��

�U�
� U

x

L��

�U�
�

j��� � r�u�j�L� � jru�j�L��U� L�

U
� U�

x

L��

�U�
��

jr��j�L� � �U�
x

L�

U
� U�LU

�
� U�

xx

L��

�U�
�

where

Ut 	 max
���T ���

j�b�
�t

� �u��
�t
j�

Ux 	 max
���T ���

j�b�
�x

� �u��
�x

j�

Utx 	 max
���T ���

j �
�b�

�t�x
� ��u��

�t�x
j�

Uxx 	 max
���T ���

j�
�b�
�x�

� ��u��
�x�

j�

��



This implies� together with the standard multiplier method�

�

�

d

dt
jw� j�L� � �jrw� j�L� � �

s
�U�

x

L�

U
� U�

LU

�
� U�

xx

L��

�U�
jrw� jL�

�U�
t

L�

U
� U�

tx

L��

�U�

�U�U�
x

L�

U
� U�U�

xx

L��

�U�
� U

x

L��

�U�

jru�j�L��U� L�

U
� U�

x

L��

�U�
�

���j�u�j�L�

��� � jru�jL��jw�j�L�

�
Z
	
�w� � r�w� � ��� ����

Notice the nonlinear term can be rewritten asZ
	
�w� �r�w� ��� 	

Z
	
w�

�

�w�
�

�x
����

Z
	
w�

�

�w�
�

�z
��� �

Z
	
w�

�

�w�
�

�x
��� �

Z
	
w�

�

�w�
�

�z
����

����
and hence we have the following estimates on the nonlinear term� thanks to
the explicit construction of the corrector
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which further implies� thanks to Gronwall inequality
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If this is not satis�ed� �the boundary layer for the background �ow is too
thick�� just replace it with a background �ow with narrower support�
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On the other hand� if
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Combining the two cases and ���� we deduce that
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This completes the proof of the part of the main theorem on tangential
derivative of tangential velocity�

For the part with assumption on the tangential derivative of the normal
velocity� we introduce an auxiliary function
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We then have the following alternative estimates on the nonlinear terms
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Again this is a restriction on the thickness of the boundary layer for the
corrector� If this is violated� just replace it with a corrector with thinner
boundary layer�

The rest of the proof is parallel to the previous case�
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