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Abstract

This paper concerns the initial formation and construction of shock waves for 3 x 3
quasilinear strictly hyperbolic system in one space dimension with small initial data. The
system is assumed to be genuinely nonlinear with respect to a characteristic family. For
such system, it is well-known that if the given smooth initial data satisfies certain nondegen-
erate condition, then the corresponding classical solution will blow up in finite time. Near
the blowup point, we construct a weak entropy solution which is not uniformly Lipschitz
continuous on two sides of the shock curve. This concrete construction yields detailed and
precise estimates on the solution in the neighbourhood of the blowup point. This result
is also applied to the Euler system describing the inviscid compressible flow in one space
dimension.
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§1. Introduction

In this paper, we discuss the development of singularities of solution to the following
3 x 3 quasilinear strictly hyperbolic conservation law system with the small initial data:

Oru+ (f(u))z=0
{ u(x,0) = cug(x) (1.1)

where u = (u1,uz, uz)", f(u) = (fi(u), f2(u), f3(u))", fi(u) is smooth, = > 0 is small
)

enough, ug(x) = (uf(x), us(x), u(x)
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genuinely nonlinear for at least one eigenvalue. From the results in [1],[2] and [3], we know
that the lifespan T. of classical solution to (1.1) satisfies:

. 1
T =m0 = —— o (1.2)
1<5<3

here M; = min h;(x) and h;(x) can be determined by the coefficients and the initial data of

(1.1) (see §2). On the other hand, it has been proved that the system (1.1) admits a unique
global weak solution in the BV spaces(see [4], [5] and [6]). However, to better understand
the physical process of development of singularities from smooth flow and the evolution of
singularities starting from the blowup point, we are motivated to give a precise description
of the location of shocks, as well as the estimates of solution and its derivatives near the
blowup point.

The above problem is simply called as formation and construction of shock in this paper.
For scalar equations, this problem has been completely solved early(see [7], [8], [9], [10] and
so on). It is well known that in this case the formation of shock is caused by the squeeze of
characteristics. For 2 x 2 p-system the same fact is also true. In [11] M.P.Lebaud gives an
positive answer when the solution is a simple wave before the appearance of shock. For such
a system with general smooth data, if only one Riemann invariant blows up and the blowup
point is formed by the normal squeeze of only one family of characteristics, while another
family of characteristics don’t squeeze at the same point, the problem of formation and
construction of shock wave was also completed in [12]. It is natural to study such problems
for the Euler system describing the compressible flow and the physical shocks. However,
even in one space dimension, the complete Euler system for gas dynamics is a 3 X 3 system.
Therefore, in order to study the process of formation of shock waves, we need to study the
case of 3 x 3 system.

In our study we benifit from S.Alinhac’s result on the analysis of the mechanism of
blowup of solutions to nonlinear hyperbolic system as well as the result on the extension
of solution to the blowup system of (1.1) across the blowup time (see [13]). Based on this
result we can concentrate our effort to the construction of solution with shock front after
the blowup time. As in [11] and [12], one of the main difficulties is that the derivatives
of solution blow up at the blowup point and their ratios of blowup are of ﬁ although
the solution itself is continuous, hence here problem is different from the usual Riemann
problem on the hyperbolic conservation laws because the Riemann problem generally has
the discontinuous and piecewise smooth initial data. However, in constrast to the case of
the 2 x 2 p-system considered in [11] and [12], where the existence of Riemann invariant
coordinates plays the crucial role in their analysis, new ideas are needed for 3 x 3 hyperbolic
system, which generally cannot be diagonalized by the Riemann invariants. In particular, we
must find a new form of (1.1) such that its solution is more singular along one direction than
other directions, this will be guaranteed by a new transformation given in §2. Furthermore,
one needs to choose a good iterative scheme to construct the weak entropy solution which
isn’t uniformally Lipschitzian on two sides of shock curve. Moreover, in order to prove the
convergence of iterative scheme we must pay more attention to the eigenvalue of (1.1) whose
expression is more complex than the case for p-system.

Our paper is organized as follows. In §2, we first trasform the system (1.1) to the
form which is suited to our further discussion, and then prove that the solution of blowup
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system of (1.1) can be extended across the blowup time. Meanwhile, we will give a precise
description of result on the formation and construction of shock. In §3, by constructing an
iterative sequence of approximate solutions near the blowup point, we prove the existence of
solution with a shock starting from the blowup point. Finally, we apply for the above result
to the compressible Euler equations with the initial data which is a small perturbation from
the constant state. Consequently, the location of shock front as well as the solution near
the blowup point are obtained.

§2. Reduction and main results

Let us first introduce some notations. We assume that three eigenvalues of matrix f’(u)
in (1.1) are different from each other, satisfying A;(u) < Aa(u) < A3(w). The corresponding
right eigenvectors and left eigenvectors are rq(u), ro(u), r3(u) and Iy (u),l2(u),l3(u) respec-
tively. The system (1.1) is assumed to be genuinely nonlinear for at least one eigenvalue,
that is, VA (u)r;(u) # 0 for some i. Define

_ VuA(0)r(0)
= T (0)r500)

and let M; = min h;(z), then (1.2) holds according to [2]. For simplicity, we assume My < 0o

and My < inf{Mi, M3} in the sequel. In fact, if M7 < inf{My.M3} or M3 < inf{My, M-},
the discussion will be simpler.

Lemma 2.1. Under the assumptions of strict hyperbolicity and genuine nonlinearity,
the system (1.1) can be reduced to the following form by an invertible transformation in
the neighborhood of origin:

(@) GO,  1<j<3

{ dw + B(w)0,w =0 (2.1)

w(0,7) = ewl(z) + 2w?(x) + ...

bu(w) 0 blg(w)
here B(w) = | ba1(w) A2(w) bag(w) | and B(0) is a diagonal matrix diag{A1(0), A2(0),

b31(’w) 0 b33(w)
A3(0)}

Proof. The proof is just the process of reduction. The whole reduction consists of three
steps. First, one reduces the matrix f’(u) to a matrix whose elements a2 and age vanish.
The second step is to make the coefficient matrix be diagonal at the origin. Finally, we
transform the result into one for which each equation in the system contains only directional
derivatives along same directions.

Choose two Riemann invariants aq(u) € C* and as(u) € C* corresponding to Aa(u),
that is, aq(u) and ag(u) satisty V,aq(u)ra(u) = 0 and V,as(u)ra(u) = 0, and choose a

A(ai,a2,a3)

is invertible for
A(u1,uz,u3)

smooth function aq(u) such that the Jacobian matrix J =
small |u|. Introduce the transform:
a1 = aq(u) — ay(0)
g = ag(u) — az(0) (2.2)

az = ag(u) — az(0)
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the system (1.1) can be changed into the form:
ha+ Al)d,a =0 (2.3)

here the 3x3 matrix A(a) = (a;j(a)) = J(0y, f;)J~'. Denote the second right eigenvector of
A(a) by 72(ar). Since 0 = Vyaq(u)ra(u) = Vaagia(a) and 0 = Vyas(u)ra(u) = Vaasia(a),
then we can choose 72(a) = (0,1,0)T. It follows from A(a)iz(a) = Ag(a)7a(a) that a1p =
aze = 0, and (2.3) can be written as:

8150&1 + au(a)ﬁmal + alg(Oé)a/EOég =0

8150&2 —f— agl(a)ﬁmal —f— agg(a)amag —f— a23(a)8ma3 = 0 (24)
8toz3 + CL31(O()8$061 + a33(a)8xa3 =0

Since A(ar) has three distinct real eigenvalues Aj(a) < Aa(a) < Az(@), then agq(a) = Aa(a),

= . a11(04> a13(04> . .
and B(a) = (agl(a) ass(a) has two eigenvalues Aj(a) and Az(a). So there exists a

2 x 2 invertible number matrix C' = (¢5)7 j—; such that C~'B(0)C = <)\1(0) 0 >

0 A3(0)
Set (w1> =C <a1>7 then (2.4) shows

w3 a3

8t <w1> + B(U)l, ozg,wg)@m (w1> =0
w3
where B(w, as,ws) = CB(a)C~" and B(0,0,0) = ()q(gO) 0 >
Hence (2.4) has the form:
8,5101 +5L11(w1,a2,w3)8$w1 + dlg(wl,a%wg)@mwg =0

Oy + ag1 (W, o, w3)Opwy + A2 (wi, Ay, w3)pas + Aoz(we, 2, w3)Oyws =0 (2.5)

drws + azy(wy, ag, w3)dywy + ass(wy, ag, ws)0yws = 0

azp ass
Set ay = w9y + miwy + mows, where my, ms € R are constants to be determined. Then

where (ELH a13> at (0,0,0) is a 2 x 2 diagonal matrix.

Orvg + G210, w1 + A220,09 + G230,w3
= Jywa + [a21 + My (Go2 — G11) — Mals1|0z w1 + [G23 + Ma(G2e — a33)

— M a13]0, w3 + G220, W2
Note a22(0) = A\2(0), and let the following equalities hold

{ (A2(0) = @11(0))my — az1(0)ma = —a21(0) (2.6)

—613(0)m1 + ()\2(0) - d33(0))m2 = —623(())
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. a11(0) as1(0
In fact, since (dlg(O) g3 (0
has a unique solution (mq, ms). Hence the form (2.1) is obtained.

Three left eigenvectors of B(w) are [;(w) = (l;1(w),liz(w),l;3(w)), i = 1,2,3, which
are unit vectors at w = 0. Because the solution w is small, we know [;;(w) # 0 for
i = 1,2, 3. Since the second right eigenvector of B(w) is r2(w) = (0,1,0)T, and I; (w)ry(w) =
[3(w)ra(w) = 0, then we have l15(w) = 0 and l32(w) = 0 for all small w.

3tw1 —f— )\ (w)
JFrom (2.1), we easily get: [;(w) | dywa + \; (w)3 wy | =0 for i = 1,2,3. Hence we
()0

g) has two distinct eigenvalues A1(0) and A3(0), then (2.6)

Orws + A\ (w
have

11(w)(8tw1 + )\1896101) llg(w)(ﬁtwg + Ala/pwg) =0
lzz(w)(atUJQ + /\anwg) + l21( )(Gtwl + /\anwl) + lgg(w)(at’wg, + /\an’wg) =0
l33(w)(8tw3 + /\389511)3) lgl(w)(atwl + /\3895101) =0
w(0,2) = swl(x) + 2w?(x) + ...
(2.7)
We emphasize that in each equation of (2.7) the differentiation is taken along the same
direction, moreover its coefficient matrix at w = 0 is diagonal.

Since My < inf{Mi, M3}, it follows from [1,2,3] that l2(u)d,u blows up at T. but
l1(u)0,u and l3(u)d,u don’t blow up at T-.. Then one checks easily that lo(w)d,w blows up
at T. while [ (w)9d,w and l3(w)d,w remain bounded at T-. Therefore, from the expressions
of l1,1s,13, we know that only d,ws blows up at T. but d,w; and d,ws3 remain bounded.

To study the structure of solution near the blowup point, we recall the definition of
blowup system of hyperbolic system introduced in [13]. Take a transform x = p(t,y),t =t
and denote w(t,y) = w(t, ¢(t,y)), the blowup system for (2.1) is defined as follows:

Orp = Ao(w)

l2(w)0yw =0

L (0)[0y 0w + (A, — A2)(w)0yw] =0,k =1,3
p(52,y) =y, w(52,y) = w(z2,y)

(2.8)

where 79 is defined in (1.2).

Lemma 2.2. Assume that ho(x) has a unique strictly negative quadratic minimum
point. Then the blowup system (2.8) has a unique smooth solution for small ¢ and ¢ < 2T°
The solution satisfies

08,0t y)| < Ca, |08, 0(t, y)| < Cue for a] > 0 and t < 2o,
dye(t,y) >0int < T-..
Moreover, there is a unique point (7%, y.) such that

ay@(T67y€) - 078 ( 67y6> - 0 83 ( ans) > O 8ty99( 67y6> 0

Proof. Without loss of generality, we can assume A2(0) = 0.
We would like to apply the Theorem 3 in [13]. To this end, we first simplify system (2.1)
as follows.



Let the right eigenvectors of B(w) be written as ry(w) = (ri1(w), ris(w), ris(w))T, ro(w)
= (0,1,0)7, r3(w) = (r31(w), raz(w), r33(w))’. Obviously, 711(w) # 0 and r33(w) ;é 0 for

small |w].

Set o
(T = e et
22w s, ) )
)
L w0 (m1) =0 = 0,i = 1,2, 3
and w§2)(m1,m2) = wgl)(ml),wém(ml,mg) = my + wél)(ml),w:())?)(ml,mg) = wé )( 1),
and

dw!® 3 3 3
d?’ég - r31(wg )7wé )7 ig) ))

W@
dd?’rQLg —7“32(11)%3)7“)53)7 (3))

- (2.10)
dw
drr?ig =733 (wg?))? w;?))v w:(’,3))
. w§3)(m1,m2,m3)|m3=0 = wf)(ml,mz) =1,2,3
We obtain a diffeomorphism H in a small neighbourhood of the origin:
m = (my,mg, mg) = w = (wy, we, W3) (2.11)

here w; = w( )(ml,mg,mg) are difined as in (2.10). Under transform (2.11), the system
(2.1) takes the form as follows:

{ dym + D(m)d,m =0 (2.12)

m(0,x) = em!(x) + 2m?(x) + ...
where three right eigenvectors ri(m), ro(m) and rz(m) of D(m) satisfy ri(mq,0,0) =
(1,0,0)T, 75(0,m2,0) = (0,1,0)T, r3(0,0,m3) = (0,0,1)T respectively. It turns out that
the solution m of (2.12) is 3-simple and 1-simple respectively in the right and left of support

of ms.
The blowup system of (2.12) corresponding to Ay (m) is:

015 = Ao (170

Lo (m)dyi = 0

Le (M) [0, @01 + (Ax — Ao) (M)Dym] = 0,k = 1,3
(32, y) =y, m(52,y) = m(3L,y)

(2.13)
Furthermore, assume 7 = <t, ¢(7,y) = @(Z,y), m(7,y) = m(Z, o(7,y)), from (2.13) we get

(
Le (m )[€3y803 i+ (A — X2)(m)d,m] = 0,k = 1,3 (2.14)
(

70 >_y7 (37y)_ (%7y)
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Since the system (2.12) satisfies all the conditions of Theorem 3 in [13], it follows that (2.14)
has a unique smooth solution (@, m) for small ¢ and % < 7 < 27, furthermore there exists

a unique point (7. = %, y-) such that

8y@(7_57 ys) - 0) 8;95(7—@ ya) = 07 85@(7—@ ya) > 0) 857@(7—57 ys) <0 (215)

Moreover 0,4(r,y) > 0 for 7 < 7.. In terms of the original coordinates (t,y) and the
unkown functions in (2.8), one has

o(t,y) = ot y), w(t,y) = H(m(t,y))

We obtain the conclusion of Lemma 2.2.

It follows from Lemma 2.1 that the unique blowup point of (2.1) at 7. is (T.,x. =
©(T-,y-). Now our main results can be stated as:

Theorem 2.1. For the system (2.1), suppose d2X2(0)d,wi(x) has a unique strictly
negative quadratic minimum point, then for small ¢ (2.1) admits a weak entropy solution
with a shock & = ¢(t) starting from the blowup point (7., z.) in [T-,T- + 1]. Moreover, in
the neighbourhood of (7%, x.), the following estimates hold:

o(t) = v + Aa(w(Te, 2))(t = To) + O((t — Ts)z)
wa(t, ) = wo(Tey ) + O((t = To)® + (x — 2o — Ao(w(To, 2))(t — T.))?)5
wi(t,x) = wi (T, ) + O((t = T.) + (2 — 2o — Mo(w(T-, 2.))(t — Tg))Q)%,i =1,3

Therefore, returning to the system (1.1) we have near (7, z.):
wi(t, ) = uy(To,x.) + O((t — T2)? 4+ (2 — 2o — N (u(Teyz2))(t — Tg))z)é,i =1,2,3

here “O" stands for a uniformly bounded quantity independent of «.

Remark 2.1. By [1], [2] and [13], under the assumptions of Theorem 2.1 we know the
solution of (1.1) or (2.1) doesn’t blow up away from the small neighbourhood of . for
t € [T-,T-+1]. Hence in order to complete the construction of shock wave in ¢ € [T., T. +1],
we only study that problem in the neighbourhood Q of (7., z.), here Q = {(t,x) : T. <t <
T-+lLx.—K(T-+1—-t) <z <z.+K(T-+1-t)} and K = 2max{|A1(0)],|A2(0)], |[A3(0)|}.

§3. The proof of Theorem 2.1

As remarked in the last section, we only need to analyze the problem in the neighbour-
hood Q of (7., x.). Following similar ideas in [11] and [12] (but with more careful treatments
of the uniform bounds independent of small ¢), we can prove the following three lemmas
which describe some subtle properties of solution of the blowup system.

Lemma 3.1. 1) For t € (T.,T-+1] and in the small neighbourhood of y., 9,¢(t,y) =
0 has two distinct real roots 2 (t) and n7 (¢), moreover n7 (1) < y. < n=(t) and nZ(t),
ng(t) € C=(1., 1. + 1].

2) Set x= (t) = (t,n=(t)) and 23 (t) = »(t,n7.(t)), then

x = p(t,y) has three real roots y= (t,x) < yZ(t,x) < yi(t,x) if v € (25.(t), 2= (t)).

r = p(t,y) has a unique real root y< (¢, ) if x > x< (t).

x = ¢(t,y) has a unique real root y= (¢, x) if x < 27 (t).



3) Denote Q4 = {(t,2) € Q:T. <t <T.+ 1,z > 25 (1)} and Q_ = {(t,z) € Q: 1. <
t<T.+1,xz<2a2(t)}, then yi(t,x) € C°(Qy) and y7 (t,x) € C(Q2y).

Lemma 3.2. We write w_ (t,2) = w;(t,y3(t,z)) in Qy and wi(t,x) = (w(l)jE w3 4,
w] 1), denote the second eigenvalue of matrix (fol (Du, f5)(Ou(wl) + (1 = O)u(w?))dh)? ;_,
by As, then the solution of the initial data problem

{ L0 — Ky Ou )O3 (1 () + (L= D)t 1 CNNO)
¢0( 5) = -
satisfies ¢°(t) € C®[T.,T. 4+ 1] and 25 < ¢°(t) < 2% (t), and

oV(t) = wo + No(w(Te,22))(t — T.) + O((t — T.)?), t € [T, T- + 1]

Lemma 3.3. Denoting d. = (t — T.)3 + (v — x- — Ao (u(T%, x2)) (t — T2))?, then

W (t,2) — ye| < CdB, [0py5 (t, )] < CdZ
00y (t, )| < Cd= 8, |02y5(t,2)] < CdZ®

where ¢ is the direction of second charecteristics passing (7-, x.).
We emphasize that in the above lemmas both the constant C' and the estimates “O” are
independent of ¢.
Define the function o0 0
0 wp 4 (t,x), x> ¢7(t)
w; (t7 .I') = 0 0
wi (t7x>7x < d) ( )

in . Obviously, w®(¢,x) is the solution of (2.1) in Q4 respectively. But it isn’t a weak
solution of (2.1) because it doesn’t satisfy the Rankine-Hugoniot condition along the curve
v: o = ¢°(t). We will use an iterative scheme to construct the shock starting from the point
(T-,z.) for the system (2.1) by modifying the location of curve 7 as well as the solution
on both sides of 4. In the forthcoming iteration, (w°(¢,x), #°(¢)) will be chosen as the first
approximation of iterative scheme.

Lemma 3.4. In the domain Q\v, we have

1) wS(t, ) satisfies the estimates:

;

Wl (¢, ) — wd(T., x.)| < Ceds
19wl (¢, )| < Ced

_1 (3.2)
|0, wd(t,x)| < Ced: ®
[ [020d(t,2)| < C=dz®
2) w(t,x) (i = 1,3) satisfies the estimates:
w(t, ) = wd(T2, 2.)| < Ced?
o (t,x)| < Ce
| 0wy (E, x)] < (3.3

19,00(t,2)| < C=
192w0(t, 7)| < Ced=?



Proof. It is enough to prove the lemma in the domain €2
1) Thanks to Lemma 2.2, and one has
wg(t,x) - Wg(T67x6> = wo(t, ?Ji(t r))

— w2 (T67 ys)
= 8157I}2 (Tea ya)(t -

To) + 0ywa (T2, y) (5 () = y=) + O(e(t —

T)” +e(y: —y:)?)
861”2( x) = 3tu_)2(t,y+(t,x)) + 8yw2(t,y+(t,l‘))8gy+
Oq wz( ) = Oy2(t, y3 (t, v))0uys
wy(t,

x) = Oz (t, Y (8, )) (02y3)* + Oy ba(t, y3 (1, 7)) Oy

Hence (3.2) follows from Lemma 2.2 and Lemma 3.3

) It follows from the blowup system (2.8) and the property that <§11 513 > is invertible
31 33
for small |w| that

{ 3yg08tu_)1 + ()\1 — )\2)(15)8y71;1 =0

3.4
Oy 043 + (A3 — A2)(w)dyws =0 (34)
and dy¢(T.,y-) = 0 implies 9yw1 (1., y-) = Oyws(T:,y-) = 0.

Differentiate with respect to y on two sides of the first equation in (3.4), we get

3
3599375@1 + ay¢afyw1 + (Z(a‘ 2)) (W) dyw; ) Oy w1

+ (A1 — A2)(w)djwy =0
j=1
Set (t,y) = (7%, y.) in the above equality, due to 9, (7%, y.) = 8§¢(Tg, y-) = Oy (1-,y:) =
0, one obtains 97w (T:,y.) = 0. Hence
0,1 (t,y3) = 05,01 (Teyye) (t — T2) + O(e(t = To)? + <(y5 — -)?)
ajwl(ta yi—) = 8ta§w1(Tev y-)(t = T0) + a3w1( € ys)(?/-{- —Ye)
+O0(e(t —T.)* +=(yl —y=)?)

Then by Lemma 2.2 and Lemma 3.3 one has that

9, @1(t,y3)| < Ced?, |02 (¢, y5)| < Ced? (3.5)
Additionally,

wi(t, :U) —w(T., x.) = Opwy (Te,y.)(t — Te) + Oy (T, y=) (Y3 — y=) + O(e(t — T.)*+
+e(t = To) (Y5 — ve)® +e(¥5 — ve)”)
drwi(t,x) = dpwr (t, Y5 (t, ) + Oyw (t, Y5 (t, )0y
3} wl(t x

) = Oywi(t, Y3 (t, 2)) 02y
wi(t, ) = dyw

Oy (t,y5 (8, 2))(02y3)* + Oywa(t, y3.(t,2)) 0y

Combine this with (3.5) and Lemma 3.3, we show that the estimates on w{(¢,x) in (3.3)
hold. The estimates on w§(t, ) are completely similar
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Denoting the jump of w (¢, x) on v by [w?], which equals w? (¢, ¢°(¢)+0) —w? (¢, #°(t) —0),
we have
Lemma 3.5. The jump of w? satisfies the estimates

[wd)] < Coe(t = T)?, |[w]| < Cos(t — T2)* i =1,3

Proof. By using the estimates of ¢°(t) on v, we have d. = (t — T.)> + (¢°(t) — 2. —
Mo (u(Te,2))(t —T.))? ~ (t — T.)3. Therefore Lemma3.4. 1) implies

[w8]| < [w§(t, 6°(t) + 0) — wi(Te, )| + [wh (¢, °(£) = 0) — w§(TL, )| < Cos(t — 1)

Now we state Lemma 3.5 holds for =1, 3.
Since w? (t, x) — wd(T.,x.) = Oyw; (T, y-)(t — T2) + O(e(t —Tg)2+6(t—T)( —y )%+
(y—|— _ye) ) in Q4 and w?(t,x) z(Tsvxs) Opw; (Te,y=)(t —T2) + O(e(t — ) e(t —
To)(y= —y=)* +e(y2 —ye)?) in Q_, then [[w?]| = |w(t, 6(t) +0) —w) (T, x2) — {w](t, &(t) —
0) — w) (T, 2.)}| = |O(ed?)| < Cos(t — T.)%, i = 1,3.
Denote the unknown shock curve by @ = ¢(t). Then the slope of shock o (t) = ¢’ (t) must
satisfy the Rankine-Hugoniot condition:

olui] = [f1(u)]
oluz] = [fa(u)] (3.6)
olus] = [f3(u)]

and the entropy condition.
In terms of the transform in section 2, the relation (3.6) is equivelent to the following

condition:
olur(w)] = [fi(u(w))]
oluz(w)] = [f2(u(w))] (3.7)
olug(w)] = [fs(u(w))]

and the entropy condition for the shock wave can be written as:
AM(w_(t)) <o < A(w_(1)), A2(wy(t)) <o < Az(w(t)) (3.8)

here w () = (wy 4 (6), w1 (£), ws(t, £)) = (wy (£ &(t) £ 0), wa(t, 6(t) = 0), ws(t, B(t) % 0).
Now we claim that for small e, (wy _(t),ws +(t)) can be uniquely determined from
(w1,4(t), wa,—(t), ws 4 (t), ws,_(t),o(t)) by two of three equalities in (3.7).
Indeed, note that Lemma 2.1 implies (5% (0))~*(f"(0) — A2(0)1)(2%(0)) = diag{\(0) —
)\2(0) 0 )\3(0) )\2(0) that i 1S,

B0) B2O)) ((u0) = RaONEEO) (5(0) ~ Xa(0) 2 (0)
(F'(0) = 22(0)]) | 222(0) 22(0) | = | (A(0) = A2(0))222(0)  (As(0) — A2(0)) 222 (0)
2.0) 25(0))  \(A(0) = 22(0))22(0)  (Aa(0) — Aa(0))222 (0)
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Ouy(w)  dui(w)

8’LU1 8’LU3

Hence the matrix <(f’(u(w))) — JI> 81321151”) 8132“5;”) has the rank 2 at the point
Oug(w)  Ouz(w)
owy ow

(w?,_(Te,xe),w?7+(T5,x5),wg,_(Tg,x5) wy +(T5,x5) wg (Tg,xg),wgv_i_(Tg,xg),/\2(0)) for
small £ due to the entropy condition. Without loss of generality we assume

Oui (w)  Oui(w)

((aulfmu(w))—a Oup f1) (W) (D f1) (u(w)) > Dunlis)  Duate)

(Durf) (W) Qusfs)(u(w)) (D f3) (wlw)) =0 ) | Jows = ows
ow1 Ows

has rank 2. By the implicit function theorem we know (w; _(t), ws,+(t)) can be determined
by the two equalities [f1(u(w))] = ofui(w)] and [f3(u(w))] = ofu ( )]. Consequently, (3.7)
and (3.8) are equivalent to:

[f1(w(w))] = olui(w)] = 0
[f3(u(w))] = ous(w)] =0 (3.9)
o = 2o (fy (s ) (Ouwy (1)) + (1 = O)u(w_(1)))do)

With the above preparations, we are now in the position to construct the weak entropy
solution of (2.1) by using an approximate procedure. To avoid the difficulty caused by
the unknown shock curve, which may change its location in the process of iteration, we
introduce a coordinate transform to fix the shock location on the t—axis:

{ s=a— (1)

t=1t

Under the new coordinates, the blowup point becomes (7, 0) and the system (2.7) can be
changed into the following form by dividing l;; (w) # 0:

( Oywy + (A — o (t)0 w1 + pr1(w)(Opws + (A — o (t))0.ws3) =
Dywy + (A2 — o (t))0,wo +p21(w)(8tw1 + (Mg — o (t))0.w1) + pas(w)(drws
+(A2 — o (t))0,w3) = (3.10)
Oyws + (A3 — o (t))0,ws +p31(w)(8tw1 + (A3 —o(t)0.wy1) =0
L wi(t 2) =1, = w)(Te, 2+ 22),i=1,2,3

here p11(w), p21(w), pes(w) and p3; (w) are smooth for small |w|, moreover p11(0) = p21(0) =
p23(0) = p31(0) = 0.

Denoting Q_ = {(t,2) : T. <t < T-+1,-K(T-+1—-1) <z <0} and Q = {(t,2) : T- <
t<T.+1,0<z<K(T-+1-1t)}, with K = 2max{|A1(0)],|A2(0)], |A3(0)|}. Obviously,
for small &, Q_ UQ, lies in the determinate region of {(7.,z) : —K < z < K}. In order to
construct the weak entropy solution of (1.1) and prove Theorem 2.1, we will solve (3.10) on
the domain Q_ U Q+ by an approximate procedure. To this end, we first rewrite explicitly
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the system (3.10) into the following system:
( Qwr 4 + (M (wy) — (1) 0w+ + pri(we) (Qrws 4 + (A (wy) — 0(t))d2ws,4) =0
drwa + + (Ao(wa) — o (t))dzwa + + pa1(we ) (Opwr + + (A2(ws) — o (t))0.w +)
+p23(w)(Oyws + + (A2(wx) — o (t))0.w3 +) =0
(
+ (
(

s — + s(w_) — o (1))Duws — + par(w_) (Dpwr - + g(w_) — o(t))Pswr ) = 0
s — + (M (w_) — o (t))Dwr — + pra(w_) (Dpws— + (M (w_) — o(t))Dws._) = 0
3( o (t))0:ws,+ + p31(w)(Opwr 4 + (As(wy

A
dws 4 + (Ag(wy) — o(t))o.wy +) =0

o (t) = Ao ( [y (Ou, £5) (Ou(w (£, 04)) + (1 — O)u(w_(t,0-)))do
wi (b, 2) =1, = w) L (Tey 2+ 22),i = 1,2,3
(w1, (t,2)[z=0 = w1, (£, 0—), w3 4+ (t, 2)|:=0 = w3 4+ (t,0+)

) =
) =
) —
)

(3.11)
here w; 4 is defined in Q4 and the boundary values w; _(t,0—) and ws 4 (t,0+) are deter-
mined by (3.9). We now solve the initial-boundary value problem by the following iterative
scheme:

(
+P23(wi)(3tw§,i + (A2(wh) — 0" (t)0:w5 4 ) =0
3tw"+1 (Az(w™) —o™(t))0. wgt + p31(w™ (8tw7f7_ + (Az(w™)
—o"(t))0,wy _) =0
wy 4+ (t,2)|t=r. = w(l),+(T€v z +x.), ng:l(tv 2)|t=r. = wg,i(Taa z+ ),

N wgtl(t7 Z)|t=Ts = wg,—(T&Z"_xa)a

(3.12)
and
it + (M (w™) — o™ (). w] T + pry (W) (Dywy _ + (Ar(w?)
—o"(t))0.w} _) =0
duws '+ (As(wh) — o™ (1) d-wi ' + par (w) (Dpw] | + (As(w?)
o ()0 4) = 0 (3.13)
0" (t) = Ao fy (us f5) (Bu(wli(t,04)) + (1 = O)u(w? (t,0-)))do)
wi—(t,2)" o, = w0l _(Te, 2+ x2), ws 1 (t, 2)" M i=r, = wl | (T2, 2 + x.),
Wit 2)am0 = wiH(t,0-), w3t (¢, 2) im0 = w3 L (¢, 0+)
where w”“( 0—) and w”“(t 0+) are determined by the equalities:
[f1(u(@™™ )] = o™ [ug (w" )]
U ) = e .

It should be clear from our claim that the problem (3.12)-(3.14) has a unique smooth
solution. Thus our main task is to obtain some uniform bounds for the approximate solution
sequences w} and o™ (t) and show their convergence, which leads to Theorem 2.1 directly.
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Lemma 3.6.(Boundedness) For small ¢, there exists a constant M > Cj independent
of £, such that in 2_ or Q4

whi € C'(Qx\ (T2,0)) (3.15)
jwh ¢ — w) 4| < Me(t —T.) (3.16)
0: (w5 . —w§ )| < Me((t —T2)° 4 2°)7s (3.17)
00 (wh 4 —w) )| < Me((t =T0)% + 2%) 76 (3.18)
wly —wd | < Me(t—T.)%,i=1,3 (3.19)
0. (wly —wd )| < Me(t —T.)2,i= 1,3, (3.20)
10 (wly —w )| < Me(t —T.)%,i =1,3, (3.21)

hold for all n.

Proof. We will prove the conclusion by induction. Obviously, (3.15)-(3.21) hold for
n = 0. Assume that these estimates hold for n, we will prove they are still valid for n + 1.
This will be completed by the following six steps.

Step 1. The estimate of 0" (t)

Since (3.15)-(3.21) are true for n, by using the expression of ¢”(¢) and the mean value
theorem one has

0" (t) = o ()] < Cre(t = T¢)

in [T.,T. + 1]. here Cy is a constant depending only on M.

Step 2. Estimates of ngj, wfil and w”+1

We only give the estimate on wgf, the others are treated similarly.

Set v(t,z) = wgil — w9 ;, then v(t, z) satisfies the equation:

v+ (Aa(wh) —0™)d.v = (Ao (wl) — Ao(wh) + 0™ — 0°)0.wf | — Z pap (W) x

{0r(wy 4 — wg#) + (Ao (wh) — o™)0.(wi 4 — w) ) - (A2 (wh) — /\z(wiﬁ) +o"

—00)8zw2,+} - Z (p2r (W) — p2k(w+))(8twk + (/\2(w+) — o).y +)
k=1,3

v(T.,z)=0

\

(3.22)
Noting

par (W0 (Wi 4 — wi ) + (Aa(w]) — 0™ (wit 4 —wi 1)} = (9 + (Aa(w])

— ™)0:) (par(wh) (wi . —wp 1)) = {Z(awjpzk)(wi)(atw?,+ + (Aa(wl)

- J”)@zw;”}(wz# - w2,+)v k=13
So in view of the inductive hypothesis, p21(0) = p23(0) = 0 and Lemma 3.4, one can
integrate along the characteristics directly to derive

t
lo(t,y)| < |p21(w_7_)(w7f,+ - w(l),+)| + |p23(w_7_)(w7f,+ - w(l),+)| + CMEQ/T (I+ s —1T.)ds

< CM€2(t — TE)
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here and below C); denotes a generic constant depending only on M. Hence (3.16) holds
for small e.
Similarly, one can show that

it —wd L < Ot — To)2, Juh i — wd 4| < Cue?(t — 12)3

Step 3. Estimates of w”+1 and wgil

It suffices to estimate w?,tl. Set v(t,z) = w?“ w{ _. Then v(t,z) solves:

O+ (AL (w™) — 0™)0.v = (A (W) — A (w™) + o™ — ao)ﬁzw?,_ — pr1(w? ) {0 (wy _
—wg )+ (A (w?) = o™ (wh - — w5 ) = (M (wl) = Ay (w?) + 0" = 0%)0.wf _}
—(pr(w2) = pri(w ))(3twg _+ (M(w?) - Uo)azwg,—)
v(T-,z) = 0,v(t, 2)| =0 = ”+1(t 0—) —w) _(t,0—)
(3.23)
Let § = £(t, z, s) be the back characteristics of (3.23) through the point (%, z) in the domain
Q_.
If the characteristics £ = {(t, z, s) intersects with z—axis, then in a similar way as in Step
2, we have |v(t,z)| < Cpe2(t — T.)2. If the characteristics & = £(t, z, s) intersects with

t—axis at (s,0) with s > 7., then we have to estimate the value of w”“(t 0—). First, by
using the inductive hypothesis and characteristics method as before, one gets that

[o(t, 2)] < Jwpth(s,0-) — wl _(s,0-)] + Crre?(t — 12)* (3.24)
Next, we claim that
[wi*] = Fi(wid (s,04+), wyt (s, 04), wy T (s,0-), wi Ll (s, 0-) [y ™' (3.25)
here F} is a given smooth function of its arguments.
In fact, (3.7) can be rewritten as:
O(uy, usg, u [w:]
(F (= (0,0-))) = o) 20 ]
wy, W2, w3 w=w_(t,0—) [wS]
o [wi® [wi][we]  [wi][ws]
=B | [wn][ws]  [w2]*  [wo][ws] (3.26)
[willws] [we][ws]  [ws]?
here B = (b (w_(t,0-), w, (t, 04)))7 j=1 s a 3 x 3 matrix of smooth functions.
3 3
Since o = Ap(w_(t,0-))+ > Fy(w_(t,0-))[wi]+ > Fij(w_(t,0=), wp(t,0+))[w;][w;]
i=1 ij=1
and by Lemma 2.1
8(“17“27“3) >_1 ’ > 8(“17“27“3)
= u(w_(t,0—))) —ol | 77—
<8(w1,w2,w3) w:w_(tﬁo_)(f ( ( ( ))) 8(101,102,103) w=w_ (t,0—)

bu(w_(t,O—)) — 0 0 b13(w—(t70_))
= b21(w_(t,0—)) )\Q(w_(t,o_)) — 0 b23(w—(t70_))
bs1 (w_(t,0—)) 0 bas(w—(t,0-)) —
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~1
then multiplying <M> on two sides of (3.26) we can get

8(w1 ,W2 ,’LU3)

w=w_(t,0—)

( 3

[wi] = Y Qf(w-(t,0-))[wi][w;] + Z Qiji(w—(t,0=), w(t,04)) ws][w;][wi]
% i,j=1 2,7,k=1

3

)= 3 QY00 + 3 @107} 104

\ 2,j=1 3,7,k=1 (327)
here sz’ 7 and ka, ka are smooth.

Permute w_(t,0—) and w4 (t,0+) in (3.27), one gets

_ZQz'lj w-i— t 0+)) Wi wj] + ZQzlgk w-i—(tv 0+)?w—(tv0_))[wi][wj][wk]
== QF(w(t, 04)[willw;] + Y Q. (w+(t, 04), w-(t,0-))[wi][w;][w]

(3.28)
Summimg up (3.27) and (3.28), we have
Z Qi (w— (t,0=), wo (t, 04)) [wy] [w; ] [wy]
bIR=1 (3.29)
Z Q1 (w—(t,0=), w (¢, 04)) [wi][wy][wy]
\ i,7,k=1

where Q1 . and QZ . are smooth. Set [wi] = x1[w2]? and [w3] = w2[ws]?, and note that
wy —(t,0—) = w17+(t 0+)—[w1], ws,+(t,04+) = ws,—(t,0—)+[ws], then applying the implicit
function theorem to (3.29) one can obtain for small [ws]

{ r1 = I (w1,~|—(t7 0+)7 w?,—i—(tv 0+)7 w?,—(tv 0_)7 w3,—(t7 0_))
€r3 — F3(w1,~|—(t7 0+)7 w?,—i—(tv 0+)7 w?,—(tv 0_)7 w3,—(t7 0_))

where the functions F; are smooth.
Similar analysis yields (3.25).
Since
Wi (s,0=) = w? _(5,0-)] < [[wi ] + Jwi T (s, 040) — w? 4 (s, 04+) + |[w?]
and
[ws ™) < Jwg (s, 04) = w4 (5, 040) ]+ |wi T (5,0=) — w) _(s5,0=)| + |[w3]]
It follows from (3.24), (3.25) and Step 2 that for small ¢
w(t,2)| < Coelt — T.)? + Cpe(t — T.)2 < Me(t —T.)? (3.30)

Step 4. Estimates of [V(wit' —w )|
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Set v(t,z) = 0, (wgil — w3 ), then v(t, z) satisfies the following equation
(O + (Aa(wh) — 0" (£)0:0 + 9. (Ap(wh))v = — > por(wi {90 (wi . —w) )
k=1,3

+(Ag(wl) — 0”)8,233(11),3Jr — w2,+> + (A2(wh) — o™ — )\2(103_) + 00)8311)2#}

3
FA(wl) = Ap(wh) + 0™ — 0")02wd ;=Y {(Ow, o) (W) Dow] |
j=1

3
_(awjAQ)(wgr)azw?,+}azw(2),+ - Z Z{(awjp%)(w$>8zw2+{3t(w2,+ - w2,+)
k=1,3j=1

Fa(wl) = )2 (], — 0l 4) — (a(w) = Aawl) + " — a0,
+((8wjp2k)(w$)azw;‘l,+ - (8wjp2k)(w9|-)azw?,+)(8tw2,+ + (A2 (wg-)

3
000wl )= YD par(w) {0, Aa(w])Dow] | D wp

k=1,3 j=1
_8wj )\2 (wi)azw‘?’+azw27+}
L U(Tsa Z) =0

(3.31)
Let £t = ¢ntl(¢t, 2, 5) be the back characteristics of (3.31) through the point (¢, 2), that
is, €711 satisfies the equation

n+1
{ B = No(wi(s, ")) —o"(s), T.<s<t

§n+1|s:t =z

Note that we can assume 0y, Ao (w) > 8“’%2(0) > 0 for small |w| due to the genuine nonlin-
earity of (2.1) with respect to Ag(w). Furthermore, Ay and o are related by the equation
(3.44) below. Hence by following the arguments as for Lemma 8.1 and Lemma 8.3 of [11],
one can prove that there exists a constant C' independent of n and & such that

(s = 7o) + ("7 > C((t = To)* + 2%) (3.32)

and

/Tt 1(0:(A2(w1))) (s, €™ |ds < lng + Cye/t—T. <1 (3.33)

Integrating (3.31) along characteristics and using (3.32), (3.33), Lemma 3.4 and the induc-
tive hypothesis, we have

o(t,2)[ < D Ipow(w?)O- (w4 —wil L )(t 2 |+/ (9= (A2 (W) (s, €™ H[v(s,y)lds

k=1,3
—T6 Vs —T. 1
+CM€/{ 5 T ° r + 1}d8
(t—T.)3+2%)s ((t—T)24+2%)3  ((t—T.)3+22)=

scM62<<t—Tg>3+z2>—%+ /T (- (o (™)) (5, €7+ (s, )| ds
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This yields the desired estimate (3.17) due to (3.33) and Gronwall’s inequality. Moreover
in view of (3.23) we obtain (3.18).

Step 5. Estimates on |[V(w]*" — w{ )| and |V(w§t' —w] )|

We only estimate |0, (wff —wf )| and |8t(w7fil - w(l) )l

Set v(t,z) = 0. (Wt —w? ), then v(t, z) satisfies the equation:
1,4 1+

(O + (M (w?h) —o™(1))00 + 0. (A (w))v + pro(w){9,0- (wh | —w§ )
+()‘ (wﬁ) ”)3z82(w§7+ - wg,+) - ()‘ (w+) )‘l(w+) +o"

3
—00)02wd 1} + Y {(Du;p10) (w])0ow] L (Owh 4 + (Ma(wlh) —o™)0zwy )

j=1
+p11(wfﬁ)(@wjAl)(wi)azw£+3zw§,+ — (3wjp11)(wg_)azw?,+(8twg,+ + (Al(wi)
3
—00)0.w3 ;) — pr1 (W) (Dw, M) (W) Dow? L D-wd 4+ { (O, A1) (W),
j=1

—(Ow; Al)(wi)azw?,+)azw?,+} =0
(. v(T.,2)=0

(3.34)
Let €071 = €0 F1(¢, 2, 5) be the back characteristics through the point (¢, 2), for small ¢ we
have

12 4 N (0) = AO)] (¢ - 5) (35)

By integration along the characteristics one can get

t (s, n+1
()1 < o ()20 = )+ Cove [ A
9 Vs =T, s—"1T.
Cye T T T ds
o |y e G @

By using (3.35) and p11(0) = 0, we obtain

—— " lu(s, &)
|’U(t,z)| SCM€2 t—T5+CM€/ “771)2618
T. —5)3

Hence Gronwall’s inequality implies

lu(t,y)| < Cyc\/t —T.

This in turn yields the desired estimate on J;(w] ”+1 —w? _) due to (3.34).

Step 6. Estimates on |V(w] ™' — v )| and IV (wit —wd )]

We only compute |0 (w] ' — w‘f )| and 0. (with —wf ).
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Set v(t, z) = O (w] ”“ — w(l)y_), then v(t, z) satisfies the equation:

(O + (M (wl) — 0" (1))0.0 + Oy (A (W) — o™ (t))v + pry (W) {0, 0 (w5 — w3 _)
(A (W) = 0™) 90 (wh _ — w3 _) + (A (wl) = A (w?) +0° — 0™)0F,wl _}
+(pra(w?) = pra(w2)){0Fws _ + (A (wl) — 027wl _} — (A (wl) — Ay (w?)

~~

3
+om — )Rl _ + > {(Ow,p11) (W)l _(dpwh _ + (A (w") — o")dw] )
j=1

+p11 (W) (A1 (w™) = 0™)Dwh _ = (Do p11) (w2 )Dpwf (9w _ + (A1 (w?)
—0%)d.w3 _) = p11(w2)d (A (w?) = 6%)d.w3 _} =0
( 0(T%,2) = 0,0(t,2)]z=0 = (De(wiFh —wl _))(t,0-)

(3.36)
It follows from Lemma 3.4 and inductive hypothesis that

[wi_(t, 2) = wily (4, 00)| < Jwp (8 2) —w]_ (£, 2)] + [w] (£, 0+) = wp (£, 0+)] + [w] _ (¢, 2)
— w)_(t,0-)| + |[wf]] < Crnre((t = To)* +22)5,
i (t, 2) — w) _(,0-)] < |wp_(t,2) —wi_(t, 2)] + |w) _(t. 2) — w]_(t,0-)]
< Cue((t = T.)? + 22)5
Hence by the expressions of Ay and ¢™(t), we have
Ao(w”) — o™ ()] < Care((t — T2)? + 2%)5 (3.37)

Note that [0ywd _(t,2)] < [(0y + Xo(w?)dy)ws _(t, )| + [(AJ(w?) — Aa(w™) + Ap(w™) —
0" (t))0,wy _(t,z)|. Then Lemma 3.4, the inductive assumption and (3.37) imply

n CMS
|8tw2,—(t?z)| S m
Consequently
/T [(Or( A1 (w™)))(s,&(t, 2,8)) — (Ora™)(s)|ds < Cppe/t — T (3.38)

Let € = £(t, z, s) be the back characteristics of (3.36) through the point (¢, z) in the domain
Q_. If £ = £(t, 2, 5) intersects with z—axis before it meets t-axis, then integrating (3.36)
along characteristics and using the result in Step 1, inductive hypothesis and the fact
p11(0) = 0, one can show

[o(t, 2)] < [pra(w?)dp(wy _ — w5 _)(t, 2 |+/ |(De(Ar(w™))) (5, E(E, 2, 5)) = (0r0™) (s)]
—1T. 1
x |v(s,&(t, 2, 8))|ds + Opre? / {1+ +s—T1T-+ \/s—T)3+22 + \/s—TE}dS

1

< Cye(t—To) / (@ (™)) (5. €t 2, 8)) — (0™ () [o(s. £ =. 5))|ds
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This and (3.38) lead to
v(t, )| < Me(t — T.)?

In the case that if £ = £(¢, z, s) intersects with t—axis at (s,0) with s > T, then we need
to deal with the boundary conditions on t-axis. Indeed, by integration along characteristics
one gets:

[o(t, )] < 1O (wiLh —wh ) (s,0-)| + [pra(w?)or(wh - —ws _)(t,2)]

/ (e A (w™))) (5, &(t, 2,5)) — (0r0™ (3))[v(s, £(E, 2, 5))[ds

+ Cye? /{1+\/ T. + T1)1€+ = ﬁ}ds

<Oyt = T.)2 + (9 (wi ! —w?,_))(SaO—)I

+/T |(@e(Aa(w)))(5,&(E, 2,5)) — (0r0™) () [v(s, (8, 2, 9))|ds (3.39)

To estimate the additional boundary condition |(8s(wft1 — wf _))(s.0—)|, one notes that
the claim (3.25) shows

0a(} 1 (5,0-) = w _(5,0-)] < [0 (0] (5,04) = w4 (5,04))| + 3 O(1)[dw*
— 0.y P+ 3 O [wh P — [wlP0au®] + 3 O(1) |t
= w||[wy P [Osws ]| + Z OW)fws ™ 205wy ™ — [wi]?[9sws]|

where 3" means summation over all the indices except (1,—) and (3, +).
Now the inductive hypothesis implies that

[ws ™1 < Jwp (s, 04) —w (5, 040) | + [wy T (s,0—) — wh _(s,04)| + [[wy]]
S CME(S — TE)%

n CM8

[05w5 ] = [Dsw3]| < T T

CME

o.wr | <
R

So it follows from the above computation and that in Step 5 that |Js (w?tl(s,()—) -
w) _(s,0-))] < Care?(s — T.)z holds for small e. Substituting this into (3.39) we obtain
lu(t, 2)| < Care?(t — T2)= for small «.

Finally, since [Aj(w™) — o™ > 2(A2(0) — A(0)) > 0 for small , then from equation
(3.23), we know [, (w} T — w) )(t,2)| < Ope?(t — T.)3.

Collecting all the estimates obtained above we conclude the lemma by induction.

Now we prove the convergence of the sequences {¢"} in [T.,7. + 1] and {w}',} in Qs
based on Lemma 3.6. The key estimates are given in the following lemma.
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Lemma 3.7.(Convergence) For small ¢, there exists a constant C'y; independent
of £ and n such that
3
lo™ = o™ Hlpoeqr. 1) < Om Y wfs — 0P 3 | oo (3.40)
i=1
lwi ' - )+ Cu Y it —w < (U =o)fllws s — w3 Mg~
1=1,3
+Cum Z Jwiy — wZ;HLoo(Qi)} (3.41)
i=1,3
here ||wn+1 ZiHLoo(Qi ||wnJrl - wZ+||L°°(Q+) + ||w?:ir1 - wZ_HLoo(fz_)

Proof. First, (3.40) follows from the expression of ¢”(¢) and Lemma 3.6.

In order to prove (3.41), we start with the estimate on wgil —wy . Set v(t,z) =

wgil —w} ., then v(t, z) solves the following equation:

(O + (A(wh) —o™)dv = (A (W) = A (wh) + o™ — a"_l)azwg:f
= > (WP {O(wf  — wp ) + Qo(wh) — 0™ (wy . — wiRh) = (Ao(wl ™)
k=1,3
Ao (w}) + 0" =" Nowp  F = D (par(wl) — par(w ) @ewp  + Na(wi ™)
k=1,3
—o" 1wy 2h
\ ’U(TE, Z) =0

(3.42)
The most singular term on the right hand side of (3.42) is the term (Ag(w’}™") — Ao (w?) +
o — 0”_1)8210721;1, because it contains the unbounded term 8Zw721;1 which isn’t integrable
along the characteristics for (3.42).
To estimate (A2(w}™') — M(wi))@zwg;l, we rewrite the term (9, A2)(w'} )0 wy , as
%{a Ma(w?)) = 3 (B, Ao) (w])0.w? ) for k = 1,3, which is valid due to the
7=1,3
genuine nonlinearity that d,,A2(w) # 0 for small |w|. Note that d,w?,(j = 1,3) and
0= (A2(w?)) can be estimated thanks to Lemma 3.6 and (3. 33) We now set

(Ao (wl) — Aa(wl™))0 wg_l_l ZI

with
3

I = Z {/ / 2 A (O1(OwW + (1 0w + (1 — 01)w't=)9d0do;
X (wZJr wy! + )(wn+ )}3 wy
- Z{wmxwi—w = (0, M)} (0 = )
3

Iy = (0w, o) (W) (D T — Dl ) (wh — wiT!)
j:l
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k=1,3
8wk}\2 wi n—1
" /-c;s Eam)\zggwisaz(h(w”)(wk + W)
8wk )\2 w" " _—
e ka—:l 3 E3w2/\2;Ew£; {(Ou; A2) (W) 0wy (w4 —wi )

Hence one can get

n n— n— n Cuye n n—
|()\2(w+) - )‘2(w+ 1))8zw2,+1| < (|8z()‘2(w+))| + ﬁ)h%,-{- w2,+1|
+Cy Y |wly —w'T (3.43)

1=1,3

Next, we decompose the term (o™ — a"_l)azwg;l. Note that the relation between o™ and
A2(w! (t,04)) can be derived in a similar way as in [5] or [14] to obtain:

Y (O Ao) (w—(t,0-))[wi] + O([w"]?) (3.44)

k=1

o = Xa(w_(t,0—)) +

[N

8
Then we write (0" — 0"~ 10wy " as E J;, where
i=1

DN | —

Ji={ Z(a’lUk)\Q(w_ (t,0-)) — 8wk)\2(w2_1))[w2 — wZ_l]
+O0([w"?) = O([w" 1)} 0wy 3

1 n— n n n— n—
Ty =5 D O Xa(w™h) = Dy A (w?)) )t — wp ™ 0wp !

3
1 n n n— n— n
J3 = ) E :811119 Ao (w)[wi — wy, 1](azw2,+1 —O.wy )

k=1
1 3
Jy = 2 (Owy A2(w™) — 8wk/\2(wi>)[w2 B wg_l]azwg#
k=1
1 . . -
J5 = §8z()\2(w+))[w2,+ _ w2,+1]
1 ) N
J6 = _5 (810] )\2)(w+)8zw] _|_[U)2 " ?,U2,_|_1]
j=13
1 (810)\2)(101) »
=35 : d.(\ 0o
' 2 j=1,3 (81112)‘2)(?1}1 ( 2(w+)>[w] + U)J n
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1 (Ow; A2)(w]) Ny n n—
Jg = 5 Z —:j[){(8wk/\2)(w+)3zwk,+}[wj,+ - wj,+1

Hence it is easy to obtain

CM€

n n— n— 1 n n n-
(6" — o™ 1wy <(510:(A2(wl))] + ﬁ>|[wz,+ — w3 3|
+Cn Y |[wpy —wl ] (3.45)

i=1,3

Based on the estimates (3.43) and (3.45), analyzing (3.42) in a similar way as in the proof of
Lemma 3.6 (in particular, the Step 4), and noting that |[wl —w} ]| < |lw} — wz_lnLoo((zi)
in J; — Jg, we can show that

i w2,+||Loo(Q+)S(ln_+CM5vt_Ta)||w2,+ 7~U2+1||Loo(sz+)+( In 5T

+ Cyey/t — T0)|wi ! — Wy 1|l (ey)) + Cm Z Jwi'y —wi'L ||L°°(Qi)

i=1,3

lwy

Similar analysis shows that

. 3 . . 1. 3
Jwpt! — wh _ @ ) < (ln§ + Cueyt = To)|wy _ — wy —1||Loo(§z,) + (51”§+
+CM€\/t—TE)||1U£L’:|: wo :t1||Loo(Qi) +CM Z ||U) ?::T:l“LOO(Qi)

1=1,3

Summing up the above inequalities yields

3
los s = llpmay) < @G + OneVE= To)lu s = w53 | oy

+Cu Z lwiy = wis @) (3.46)
i=1,3

We note that ZZn% + Cye/t — T < 1 provided ¢ is very small. Modifying the analysis in
Step 3 of Lemma 3.6 we can also establish the estimate

|wit! —wf tllpe@yy + Jwg*t — wy lpoe@ ) < Cmelt Z lwi s Z;“L“’(Qi)

(3.47)
Finally, we estimate w”+1 —wf _. Set v(t,z) = wf“ — wy _, then v(t, 2) satisfies the
equation:

v+ (A (w™) — o™)0v = A (W) = A (w”) + 0" — o No.wl _ — pry(w”)x
{0 (wf _ — w5 Zh) + (M(w?) = 0™)d. (wh _ — w5~ + (A (w2
“Ar(w?) + 0" = 0" Nows T} — (pur(w?) = pr (W) (Guws !
+(A (w2 = " Hdwy )
(T, z) = 0,0(t, 2)| =0 = wﬁtl(t, 0—) — wf_(t, 0—)
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In the case that if the back characteristics & = £(¢, z, s) through the point (¢, z) intersects
with z—axis before it meets the t-axis, one shows easily that

t
n n n— 1
[o(t,2)| < [pia (w?) (w - — wy~")| +CM€Z i+ i,il||Loo(§zi)/T 1+ TTg)dS
3
< Cue ) [lwiy — Wi g pee @y (3.48)
While if £ = £(t, 2, s) intersects with t-axis at (s,0) with s > T, then
3

[o(t, 2)] < [T (s,0=) = wi _(s,0=)| + Cne Y NPT —wi sl peiay (3.49)

i=1
By (3.25), Lemma 3.6 and the above estimates, we get as before that

wit(s,0-) — w? (5,0-)] < [wi 3 (5,04) = wi (5, 04) | + Care(Jwi = (5,0-)
—wi _(5,0-)] + Jwy T (s, 0%) — w} 1. (5,08)| + [wyT (s,0-) — wy _(s,0-)])

< CMez lwis = wi s = o)

3
Hence |v(t, 2)| < CMéz |wi'y — wZZ;l“LOO(Q;I:) holds for all (¢, z).
i=1
The estimate for |w"+1(t z) —wj , (t, z)| is similar.
In summary, we have shown that

( ||w”Jrl w3 1l gy < (2in3 4+ Cyev/t —T0) w4 — w2:|:1||L°°(Qi)
+Cn Y Mwfy = 0 ey

i=1,3

3
Z ||w;fil - wZiHLoo(fzi) < CMgZ Jwi'y — wZ;llle(Qi)

\ =13 i=1

Consequently we have

n n 3
Jws Rt — w3 24l + (Ca +1) Z [ itllpee @y < (QZ” + Cyevit — 1.
1=1,3

CM +CM(CM + 1)6

G S (Cur+ Dt

i=1,3

+ Cu(Cn +1)e)||lwy 4 — wy :i:1||L°°(Qi) +

—1
wiy ||L°°(Qi)

Since 21n < 1 and i"fl_ < 1, and substituting C'y; + 1 by C); in the above inequality,
then Lemma 3.7 holds for small g, this completes the proof of Lemma 3.7.
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The proof of Theorem 2.1.

;From Lemma 3.7, we know that there exist functions o (t) € C[T., T-+1] and w; +(t,2) €
C(€4) such that o™ (t) converges to o(t) uniformly in [T., 7. + 1] and wi'y (t,z) converges
to w; 4 (¢, z) uniformly on Q. respectively. Similarly, we can prove Vi wiy(t, z) converge
to Vi w; +(t, z) uniformly in the any fixed closed subset of Q. respectively. Moreover, by
Lemma 3.6 and Lemma 3.4, wi' (t, z) are equicontinuous on z for the fixed ¢ € (7., 7. +1)
in Q4 respectively. Hence w; +(t,01) exist in (7., T: + 1), furthermore it can be verified
w; —(t,2),2 < o(t)
wi,-i—(tv Z)v z > ¢(t)
of (2.1) due to the contraction of the approximate solution sequence. Finally, the estimates
in Theorem 2.1 are the direct conclusions of Lemma 3.4 and Lemma 3.6 combining with
the convergence of the sequence of approximate solutions, so the proof of Theorem 2.1 is
complete.

easily that the functions w;(t,z) = { are the weak entropy solution

64. Application to compressible Euler equations
Now let’s consider the compressible isentropic Euler equations with smooth initial data:

Op + 0z(pu) =0

Ot (pu) + 9z (pu +p) =0

di(pe + Lpu?) + 9. ((pe + $pu? + p)u) =0

pli=o = b+ epo(w), uli=o = cuo(x), S|i=0 = S + S ()

(4.1)

where 5 > 0 and S are constants, ¢ > 0 is small enough, po(2), ug(x) and Sp(x) are smooth
functions with compact support, p = p(p, S) and e = e(p, S) are smooth on their arguments.
Moreover d,p(p, S) > 0 and dge(p,S) > 0 for p > 0.

For smooth solutions, (4.1) is equivalent to problem:

Oip + u0yp + pOyzu =0

oiu + ud,u + %&Ep =0

WS +ud.S =0

pli=o = p +epo(x), uli=o = cup(x), S|i=o = S + £So(x)

(4.2)

Denoting ¢?(p, S) = d,p(p, S), the system (4.2) has three distinct eigenvalues
AM=u—c(p,S)<A=u<A3=u+c(p,S)
The corresponding left eigenvectors are

C C
L= (51,000 = (0,0,1),15= (5.1,0
1= ( p ), 12 = ( )NE (p )

The right eigenvectors are

C (&
ry = (17 _;7 O)T7r2 - (aspaov _62)T7T3 - (17 ;7 O)T
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Meanwhile,

V/\1r1|p=ﬁ,u:0,S:§ = _apc(ﬁv S) - <0

o

VAgrs |p:ﬁ,u:0,5:§ =0

= c
VAt acosos = el S) + >0

So the function h;(x) defined in (2.1) are

() = 2Ly )
ha(z) =0 (4.3)
pata) = P i)+ /o)

Correspondingly My = minhy(x), My = 0, M5 = minhg(x). Since the perturbation has
compact support, then M; and M;z are negative as long as ug(x) and po(x) don’t vanish
identically. If My # Ms, we can apply Theorem2.1 to the problem (4.1) and obtain the
following conclusion.

Theorem 4.1. Assume M; < Mj, and hy(x) defined in (4.3) has a unique strictly
negative quadratic minimum, then for small £ (4.1) admits an entropy weak solution, which
is smooth in [0,7.), continuous in [0,7.] and has a unique shock = = ¢(x) starting from
the unique blowup point (7., z.) in (7-,7- 4 1). Moreover the entropy solution satifies near
(T-,z.) and in (7., T. + 1]

O(t) = we + M (Tey o) (t — T2) + O((t — T2)?)
plt,7) = p(Te,z.) + O(d2)
ult,x) = u(Te,z.) + O(dE)
S(t,2) = S(To, 2.) + O(d?)

where d. = (t — T.)? + (v — 2o — A\ (T2, 22)(t — T2))2.

Similar conclusion holds in the case of My > Ms3.

Remark 4.1. If M; = Ms, by using the same method we can obtain an entropy weak
solution in [T, T + £) with two shock waves starting from (7, z.) and (77, 2.) respectively
for sufficiently small £, where C'is an appropriate constant independent of ¢ and T. < T! <
T. + % This conclusion is based on such a fact, for small ¢ two strips formed by the first
and third family of characteristics will separate and then the solution of (4.1) is a simple
wave in each strip, where and only where the solution can blow up. The details can be

found in [1], [2] and [3].
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