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Abstract

We prove the global existence of a shock wave for the stationary supersonic gas flow past an infinite
curved and symmetric cone. The flow is governed by the potential equation, as well as the boundary
conditions on the shock and the surface of the body. It is shown that the solution to this problem
exists globally in the whole space with a pointed shock attached at the tip of the cone and tends to a
self-similar solution under some suitable conditions. Our analysis is based on a global uniform weighted
energy estimate for the linearized problem. Combining this with the local existence result of Chen-Li [1]
we establish the global existence and decay rate of the solution to the nonlinear problem.
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61. Introduction

In this paper we are concerned with the global existence of solution to the supersonic flow past a
pointed body. Such a problem is a fundamental one in gas dynamics. It is also one of the basic models
in studying the theory of weak solution to the quasilinear hyperbolic equations in multidimensional
space. There exist extensive literatures in the study of supersonic flow past a pointed body by either
physical experiments or numerical simulations. The rigorous mathematical analysis starts with the work
of Courant and Friedrichs in [3], where they show that if a supersonic flow hits a circular cone with axis
being parallel to the velocity of the upstream flow and the vertex angle being less than a critical value,
then there appears a circular conical shock attached at the tip of the cone, and the flow field between the
shock front and the surface of the body can be determined by solving a boundary value problem of an
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ordinary differential equation. Recently, the local existence of supersonic flow past a pointed body has
been established by S.Chen and D.Li in the symmetric case [1], and by S.Chen in general nonsymmetric
case [2]. In addition, W.C.Lien and T.P.Liu also obtained the global existence of a weak solution and
long time asymptotic behaviour in the symmetric case under suitable conditions on Mach number, vertex
angle and the shock strength by using the Glimm'’s scheme in [7]. Our main interest is on the structure of
the global solution of such a problem. The goal of this paper is to establish the global existence of a shock
as observed in physical experiments and numerical computations. This is achieved in the symmetric case
by combining the local existence of the shock and the global uniform weighted energy estimates developed
in this paper. Moreover, our method can be used to treat the general case of multidimensional perturbed
cone. This result will be given in the near future.

Let us first give a brief description of our main result. The stationary inviscid flow is governed by the
steady Euler system. Under the assumptions that the flow is isentropic and irrotational the system can
be written as

3
> 05(pu;) =0,
j=1

3
> 0;(pusuj) + 0P =0,i=1,2,3

j=1

(1.1)

where p, u = (u1,u2,u3) and P stand for the density, the velocity, and the pressure respectively. For the
polytropic gas, P(p) = Ap”, here A > 0 and 1 < v < 3, v is the adiabatic exponent.

Suppose that there is a uniform supersonic flow (u1,uz2,u3) = (0,0, g) with constant density pg > 0
which comes from infinity. The flow hits a pointed body, whose surface is denoted by m(x1,x2,x3) = 0.
As we indicated above, if the vertex angle of the tangential cone of the pointed body is less than a given
value, then there will be a pointed shock attached at the tip of pointed body. Denote by u(x;,x2,23) =0
the equation of the shock front. Then on the surface of the body and the shock front the following
boundary conditions should be satisfied. Namely,

u181m+u282m+U383m =0 (12)
on m(xy,x2,x3) = 0, and the Rankine-Hugoniot conditions become

[pu1]dp + [pu2]Oap + [pus)Osp = 0,
3

1.3
Z[puiuj]aju + Poin=0,i=1,2,3 (13)
Jj=1
on the shock front.
Since the flow is irrotational, one can deduce from (1.1) that
1 2
SOu(luf?) + din(p) =0, (14)
where |u|? = u? + u3 + u2, h(p) is the specific enthalpy satisfying h'(p) = P’/Ep) > 0. For the polytropic
gas,
A -
P(p) = Ap”,v > 1,h(p) = mp” L (1.5)
The integration of (1.4) is the Bernoulli’s law
Lo L
Slul” +1lp) = 56 + hlpo). (1.6)



Since the flow is irrotational, we can introduce a potential ® satisfying u = V®. Then by implicit
function theorem we have

p =7 (548 + hipo) — L [VEP) = H(V®) (1.7)

Consequently, the system (1.3) can be reduced to the following second order equation

((019)% — )01, P + ((02@)? — 2)03,® + ((03®)* — ?)033® + 20, 202 DO7, P

+ 281@83@8123@ + 282@83@833(1) =0. (18)
2 ! H(V‘I)) . . . . . .
where ¢*(p) = P'(p) = TN It is easy to verify that (1.8) is strictly hyperbolic with respect to

xz if 03® > ¢ . (1.2) and (1.3) yield the boundary conditions for ®. On the surface of the body
m(x1,x2,x3) =0, ® satisfies
01 PO M + 02P0am + 93PIz3m = 0, (19)

while on the shock front u(z;,z2,x3) = 0, ® is continuous and satisfies
[01PH(V®)|01 1+ [02PH (V)02 + [05PH (VP)]051 = 0. (1.10)

This is also called the Rankine-Hugoniot condition.

Due to the geometry of the pointed body, it is convenient to work in the polar coordinates (r, z), where
r = +/x? + 23,23 = 2. Assume that the tip of the pointed body locates at the origin, the equation of the
pointed body is r = o(z) with ¢(0) = 0 and the equation of the shock front is r = x(z) with x(0) = 0.
Set ® = goz + . Then the equation (1.8) can be written as

((@0-+ -0 = N + (0,907 — )0+ 20y0lao + 09009~ “0,p =0 (11D
Meanwhile, the boundary conditions can be rewritten as
—(qo + 0.9)0' (2) + Orp =0, on r=oc(2) (1.12)
~[(qo + 0:0)HIX'(2) + [0rpH] =0, on r=x(2) (1.13)
Moreover, the potential ¢(r, z) is continuous on the shock, so it should satisfy
e(x(2),2) =0 (1.14)

The main conclusion in this paper can be summarized as:
Theorem 1.1. Assume that a curved and symmetric cone is given by r = o(z), which satisfies

o(0)=0, o'(0)=by, c®0)=0 (2<k<k), (1.15)
dk
|zkw(a(z) —boz)| <eo for 0<k<kyz>0, (1.16)

where k1, ko are suitable integers. Suppose that a supersonic polytropic flow parallel to the z-axis comes

~1

from infinity with velocity qo, density pg > 0 satisfying qo > cp = WTWJT . Additionally, by > 0 is
assumed to be very small and less than the critical value determined by ¢o and pg. Then for the large qo
and sufficiently small 9 depending on qo, po, bo, v, k1 and ko, the problem (1.11)-(1.14) admits a global
weak entropy solution with a pointed shock front attached at the origin. Moreover, the location of the
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shock front and the flow field between the shock and the surface of the body tend to the corresponding
ones for the flow past the unperturbed circular cone r = byz with the rate z=1/4.

Remark 1.1. It should be emphasized that there is no other discontinuities in our solution besides
the main curved shock. This is in sharp contrast with the previous result [7]. The condition (1.15) comes
from the local existence theorem ( see [1] or [2] ), and the condition (1.16) especially gives a restriction
on the surface of body for large z. Since the perturbation of the surface of body is sufficiently small, any
possible compression of the flow will be absorbed by the main shock. This is the mechanism to provent
the formation of any new shock inside the flow field caused by the perturbation of the body. Thus our
result demonstrats that the self-similar solution with a strong shock is structurally stable in a global
sense. Such a phenomenon is contrast to the formation of singularity of smooth solution to the Cauchy
problem of two or three dimensional compressible Euler equations (see [9], [11], [12] and the references
therein).

Remark 1.2. Our result can be extended to the general case of miltidimensional perturbed cone, that
is, the self-similar solution with a strong shock is still globally stable for the multidimensional stationary
supersonic flow which is isentropic and irrotational. It will be given in a future publication.

To prove the theorem, we need to establish some global uniform weighted energy estimates for the
linearized problem of (1.11)-(1.14). Based on such estimates we can use the standard continuity method
for hyperbolic systems to obtain the existence and the asymptotic behaviour of the solution to the
perturbed nonlinear problem ( for instance, see [4] or [6]). The key element in the analysis to obtain the
weighted energy estimates is to look for suitable multiplier. Finding such suitable multiplier is much more
involved due to the following reasons. First, in order to obtain the global existence, one needs to establish
a global estimate independent of z for the potential function and its derivatives on the boundary as well
as in its interior of a domain. This yields stringent constraints on the multiplier and needs us to give a
very delicate computation. Second, since our background solution is self-similar on a fixed domain and
strongly depends on the position of boundary of the cone we must solve a system of ordinary differential
inequalities with very complicated coefficients to obtain the multiplier. Here we should note that the
method in [4] can not be adapted to our case, because the boundary condition on the surface of body is
the Neumann type rather than the Dirichlet type which is artificial in our physical problem. Furthermore,
it should be noted that the arbitrary closeness of the boundary plays a key role in the analysis of [4],
which is not the case for our problem. We overcome all these difficulties to solve the system of ordinary
differential inequalities by using the facts that the Mach number is large and the vertex angle of cone is
small.

Our paper is organized as follows. In §2, we derive some basic estimates for the background self-similar
solution, which are needed for the construction of multiplier. In §3, we reformulate the problem (1.11)-
(1.14) by decomposing its solution as a sum of the background solution with a small perturbation. In
84, we establish the weighted energy estimate for the linearized problem, where the precise form of the
appropriate multiplier is given . Based on this energy estimate Theorem 1.1 is proved in §5 for the special
case when the body is a circular cone but initial data is perturbed. Finally, in §6 we indicate that the
conclusion obtained above is also valid to the general case with some modifications. Some complicated
computations and useful facts are given in the Appendix.

Notations:

O(bg) (j > ‘1): a bounded quantity, which means that there exists a generic constant M, such that
|O(B))| < Mob}), where M, depends only on 7.

O(qy ") (v > 0): a bounded quantity, which means that there is a generic constant A/; depending only
on by and «y such that |O(gg ") < Mgy ”.

O(ego): a bounded quantity, which means that there exists a generic constant M, such that |O(eg)| <
Mseg, where Ms depends only on by, go and 7.



62, The analysis on the self-similar solution

In this section we first discuss the solution to the case when the pointed body is a circular cone, whose
equation is r = bpz. Such a solution can be obtained by using the method in [3] with replacing the shock
polar by its similarity defined for the potential flow in [5]. The solution will be called as the background
solution in this paper. The actual solution of the nonlinear problem discussed in this paper is a small
perturbation of the background solution. Due to the requirement of proving our main theorem we need
to have more information on the background solution, particularly, the estimates when the Mach number
is sufficiently large. The required information will be given by several lemmas in this section.

As indicated in [3], if by is less than a critical value b*, the background solution is symmetric and
self-similar, so that it can be obtained by solving a boundary value problem of ordinary differential
equation. In this case the shock front is also a circular cone with equation r = sgz, while the solution
between the shock front and the surface of the cone has the form: p = p(%), uy = U(3)%*, up = U(Z) %2,
uz = qo + W(%), where U and W represent the radial and axial components of velocity respectively. In
what follows, we denote s = 2, Uy = lim U(s), Wy = s_l)grgl_oW(s), Py = s_l}isrgl_o p(s). Ahead of the

s—s0—0
shock, the flow is constant with the density po and the velocity (u,,u.) = (0,qo), and behind the shock
the flow is characterized by p and (u,,u,) = (U,qo + W). In the following Lemma 2.1 it will be proved
that ¢2(p)(1+52) — (s(qgo + W) —U)? # 0 for by < s < s9. Consequently, the system (1.1) can be reduced
to

() = - pU(s(qo + W) —U)
s(c?(p)(L+5%) — (s(qo + W) = U)?)
) = A(pU o< s
R e e e 1 e B R 2
) = (p)U
W) = T = @+ W) =P
The parameters of the flow satisfy the boundary condition
U=bo(qgo+W) on s = bg. (2.2)

Moreover, they also satisfy the Rankine-Hugoniot conditions and entropy conditions on the shock s = sy,
namely
[pU] = s0lp(qo + W)] =0,
[5U% + 5(00 + W)* + h(p)] =0, (2.3)
[QO + W] + S()[U] = 0,

and
MUy, Wy) < so < X2(Us, W),

c(po) < s (2.4)

% — 2 (po)

where A\ »(U, W) = U(q()+W)¥(Cq((:)J)r\V/VI)J;jC(2q(()$W)2702(/7)

(2.4) can be solved by the shooting method. Corresponding to the given data of the incoming flow (pg, qo)
one can draw an apple curve on (u,,u,) plane. The apple curve takes (go, 0) as its intersection, and plays
the similar role like the shock polar in the study of oblique shock wave. For any given small by, we can
determine the solution by using the intersection of the apple curve and the ray starting from the origin
with the slope by (the details can see [3] or [5]).

Lemma 2.1. Denoting A;(s) = A\t (U(s), W (s)), k =1,2. If go + W > ¢(p), then we have

() U >0 and (p)(1+5%) = (s(ao + W) = U)* > elpy) (1 + B8 (c(py) — 2IZEZEE) > 0.

. It is shown that the boundary value problem (2.1)-
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(11) )\2(5) > Sp.
Proof. (i) From (2.3) we have

_ 5090(p+—po0)
Us = T05edns

_ _Solesp)
W =-S5 (2:5)

hlps) = hlpo) — Gt = 0.
so(qo+W4)-Ug

Obviously, Uy > 0 due to the entropy condition. Noticing that T
S0

is equal to the component

of the velocity normal to the shock front, we have

s(go + W (s)) —U(s)
V1 + 52

for s = sg ( the inequalities can also be verified directly ). Hence by the continuity of p(s),U(s), W (s),
(2.6) is also valid in so—dg < s < sg with small dp, and then (2.1) makes sense in this interval. Due to (2.1)

p'(s) <0,U'(s) <0and W'(s) > 0in so—dp < s < Sp, we know that the function c(p(s))—%\/%w

is a decreasing function of s. Then we can conclude in sy — dg < s < so: U(s) > Uy, p(s) > py, and

s(go + W(s)) —=U(s) > 0,c(p(s)) > (2.6)

(p($) (1 +5%) = (s(g0 + W (s)) = U(s))

_ s(@+W(s)) = U(s) s(go + W(s)) = U(s)

= (1+ ) (e(p(s)) ) (o)) + M,
> c(pa) (14 B)(e(py) — 20T ~Usy (2.7)

Vit

The solution of the system (2.1) will blow up only in the case when the denominator tends to zero.
However, (2.7) means that the denominator is bounded away from zero as long as the solution of (2.1)
exists. Therefore, (2.7) holds in the whole interval [bg, so], and the solution of (2.1) exists there, which
satisfies

U'(s) <0,W'(s) >0,p'(s) <0.

Moreover by a direct computation, we know that ¢(p(s)) — %\/%U(ﬂ is a decreasing function in

by < s < s9. Hence we complete the proof of (i).
(i) Since My(s) = Z2U"(s) + Z2W'(s) + L2 (p)p'(s), and

8)\2 1 cU

G (g4 WH >0,

o " wrwp—e OV e &)

O 1 5 o 2cU%(qo + W) + c(go + W)((go + W)? = ¢?) }
= _ U W) — <0,
T = TR Ut W =)+ VT @ W&

e _2U(@+W) U+ (0 + W) —c 27U + (90 + W)* = ) -0
Oc ((qgo + W)?2 — ¢2)2 (g0 +W)2 —¢2 ((go + W)2 — ¢2)\/U? + (qo + W)2 — 2 ’

then by U'(s) < 0,W'(s) > 0 and p'(s) < 0, we obtain \,(s) > 0 for by < s < sg. In light of the entropy
condition (2.4), one gets \2(s) > X2(so) > so-

In this paper we are mainly concerned with the case when the Mach number is large, so next we
estimate the solution of (2.1) by using the expression of the power of gy for large go. Such estimates will
play an important role in the discussion of the following sections.
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Lemma 2.2. If ¢y is large, that is, the Mach number of coming flow is large, and 1 < v < 3,
0<bo<\/§—1 then

) O_bO_‘_O(QO’7 1)7

3

(i

(ii) 0 < s(qo + W) — UfO(qS‘l),
(iii) U(s) = {2% + O(g5 ),
(
(v

1+b2

iv) go + W(s) = iz + Olgg ),

> __ao(1=bi(1+3)) 1 =1 ,
) g0+ W(s) = clp(s)) 2 ) (b /1000 O(3) +0(gg ™) >0

Proof. (i) From the third equation in (2.5), we have

A/y y—1 y—1 qug £0 \2
P =Py ) =5 o= ()7)
7—1(+ o) 2(1+83)( P+
Denoting a = ’;—::, we have
5 (v =13 1
ar =14 S0 (= 1a 2)‘]0(1 o,
2Av(1 + s3) a?
or
2T shoo (= Dab. (2.8)

a? -1 2A~(1 + s2)

The left hand side of the above equality is bounded if « is bounded. Therefore, for large ¢o we obviously

1

21— -1 _2
have a > 2 and 1 — 25 > 2. The fact implies @ = (%&?) a (1 + O(qig))7 hence

5090 1 5040 =
U, = 1——)= + O(qy 2.9
+ 1 Sg( ) 1 8(2) (Q() )7 ( )

g0+ Wy qO((ls(f(;;pp:) = 11088 + 0 ) (2.10)
Furthermore, from
Uy <U(s) <U(bo) = bol(go + W(bo)) < bo(go + W), (2.11)
we have
Lo 4 0l < fi‘” +0l), (2.12)

which leads to sg < by + O(q(;ﬁ).
(ii) From the argument in Lemma 2.1 we know (s(go + W (s)) — U(s)) is an increasing function.
Therefore,

I
v
o
L)
o
|
)
—~
2
|
,i
~

0<s(go+W)-U <so(go+Wy)-Uy (2.13)

(iii) comes from (2.9),(2.11).
(iv) comes from (2.10),(2.11) and the monotonicity of W (s).
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(v) According to the Bernoulli’s law we have 1(U? + (qo + W)?) + % =142 + h(po). Then ¢*(p) =
GV (14 0(% 1)+ 0y 7). Hence

2(1+b3)
Q0 V7 — 1bogo 1 -2 =2
+W - = - 14+0(=)+0(q, ” +O(q
n W)= TrR " AaT b2)< () + 0l ™) +06™)
1 2 ’77
(1+b2 \/ \/ +03) +0 )+ 0(gg™")
qo(1 = b5(1 + b%)) 1=2

= A+ )1 +boy/1+ 08 O(q_o) +0lg™) >0

Here we already used the conditions 1 < 7 < 3 and the smallness of by in the last inequality.
Lemma 2.3. Under the assumptions of Lemma 2.2, we have

(i) M(s) < s,

-3

(i) U'(s) = — %=y + O(5) + O(qf%
(i) W'(s) = (ﬁgg)g +O0(L)+0(g57),

(iv) [p'(s)] < C,
for bg < s < 59, where C' is a constant independent of ¢g.
Proof. (i) By using the expression of A\; and the conclusions of Lemma 2.2, we have

2

bo \/(vfl)bﬁ 1 (y—1)b2

s— )\ (5) = by — (14b7)2 2(1+b7) 1+b32 2(1+b7) + O(qo_’vll)
1 _ (y—1)b3
(1+02)2 2(1+b32)
V7 — 1bo(1 + b2 -2
7 = Lhol + ) +0(q ™) >0.

V2= ( - DR+ V1B

(ii) and (iii) can be directly derived from Lemma 2.2, here we omit the details.
1

(iv) Since c2(p) = Ayp"~!, then p = (%) o +O( )+O(q0 i 1) Hence by the expression
0

of p'(s) in (2.1) and the conclusion of Lemma 2.2 we get the boundedness of p'(s).
63. The reformulation of the main problem

Since the local existence of solution to (1.11)-(1.14) has been established in [1] and [2], without loss
of generality, we can study the global existence by solving an initial boundary value problem with initial
data on z = zp for some zy. To illustrate the main idea to obtain the global energy estimates on the
linearized problem we will assume that the boundary is simply r = bpz ( but the initial data on z = zp are
not the same as the background solution ). The general case will be treated in §6, where we will show the
contribution of the perturbation of the boundary. Indeed, by introducing a coordinate transformation
the general case can be reduced to the case discussed here with some modifications of the coefficients of
the equation, while such modifications will not break down the main arguments.

According to the result in [1], the initial data on z = zp can be regarded as a small perturbation of the
background solution given in §2 with the amplitude of order O(gg). Moreover, the initial data also satisfy
the compability conditions at the intersection points of z = zy with the shock front and the surface of
the body. Later on, for convenience we simply assume zg = 1.

Since the denominator of the system (2.1) is positive in [bg, so], we can extend p, U, W, as well as the

2

potential ¢, to [so, S0 + 7o) for small 1y satisfying 0 < 1y < g, "~ (so — bp). Later on we will denote
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the extension of p,U , W and ¢ in the domain {(r,z) : z > 1,bpz < r < (so 4+ 10)z} by p,U,W and ¢
respectively.
Set ¢ = ¢ — ¢, through a direct computation the equation (1.11) can be reduced to:

9% + 2P (D)0 ¢ + P2(5)33¢ + Py(r, 2)0:¢ + Pa(r, 2)0hp

*N

—f11(Z Tz‘p)azz@_‘_le(Z rzﬁﬂ)amﬁf?+f22( Vo, 0) 08¢

+ fo(z \CR z>1, boz <1 < x(2) (3.1)

where f;;(s,0,0) =0, fo(s,0,0) = Vg fo(s,q1,q2)|g=0 = 0. Moreover

(0 + W (s)U(s)

Pl(S) = =

(QOfW( $)2 —&(s)’
o= U =E6)

(g0 +W(s))* = *(s)

1 A .
Py(r,z) = - —2(é(s)é' (s o+ W ()W (s)s?
(r,2) (o 1 ()2 CQ(S)){ 2(e(s)é'(s) + 1)(q0 + W (s))W'(s)
+26(5)& (5) (g0 + W ()T () + 26()& (5) (0 + W (s))U (5) — 25°U ()" ()} = % P3(s),

Py(r,z) = = ! {—2528(s) (s)U (s)W' () + 2s(1 + &(s)& (s))U (s)U' (s)

7((qo + W (s))? — é2(s))
— &2(s) + 26(3)& (5)U? (s) — 252 (g0 + W(s))U'(s)} =

with
é(s) =c(p(s),  &(s)=¢(p(s)p'(s)

The boundary conditions are also reduced to the new forms. On the boundary r = byz, we have
8, = bod. . (3.2)
On the boundary r = x(z), we first write (1.13) as
H(Ve)((0r9)? + (0:9)° + 200:9) = pododop =0 on 1= x(2) (3.3)

Using ¢ = ¢ + ¢, and introducing the notation £(z) = M , which describes the perturbation of the
slope of the shock front, the above equality can be rewritten as

B10y¢ + B20,¢ + Bsé = k0(&, Vi 2) on r=x(z) (3.4)
where
By = —TI(UQ + W3+ W)Uy +2p4 Uy,
By = —TI(UQ + W5+ Wy (g0 + W) + 20 Wi + (py — po)o,
Bs = py (2ULU'(s0) + 2W4 W' (s0) + aoW'(s0)) + 5/ (s0) (U2 + W2 + qoWy) — pogo W' (s0),

9



and

k0(&,Vr29) < C(E Vi 9)?).

Later on the function x;(£, V, ) or the notation 0> (&, V) will be used to denote any quantity domi-
nated by C|(£,V,..$)|?, here the generic constant C doesn’t depend on &q.

By using Lemma 2.2 and Lemma 2.3, we have the following estimates for large ¢o.

Lemma 3.1.

1

2b, — 1) 7T 2t 2
By = 0<(7 )0)) 7% (1+0(q ")),

1+02 \24v(1+ b3
1-02/ (y—1)p2 \77T 22 _z
B, = 0 0 =10 71
=i (simaey) @ a0 T,
bo (v = 1)b3 = 25 -2
B; = — e )
’ (1+b§)2<2A7(1+b3) a6 (14006 ™)

Dividing (3.4) by B; we can write (3.3) as

arQ‘b + /11629.9 + /-1/25 =K1 (57 vr,zg‘b) on r= X(Z) (35)

1-b2 -3%5 —2
where pn = R (1+0(qp ")), p2 = =545 (1 + Olgy "))
Besides, (1.14) implies \'(z) = —g:i

800’(80) + W’(So) =0 that

on r = x(z), it follows from Taylor’s expansion and the fact

L (0.0)(0(2), =) + 500, 2)(x(2), ) = Oa(£, V).

Since 9.(¢(x(2),2)) = (9:9)(x(2),2) + X'(2)(0-9)(x(2),2) = (9:9)(x(2),2) + s0(0r@)(x(2),2) +
02 (&, V), then by substituting it into the above equation we have

9. (6 + U% 5(X(2),2)) = ka6, Vo) (3.6)

(3.5) and (3.6) are the new forms of the Rankine-Hugoniot condition (1.13) and the continuity condition
(1.14) on the shock front.

After such a reformulation of the problem (1.11)-(1.14), to prove the main theorem we only need to
solve the problem (3.1), (3.2), (3.5) and (3.6) with small initial data ¢(r, z)|.=1,&(2)|,=1 in the domain
{(r,z) : 2> 1,bpz < r < x(z)}. The smallness means

SIVLLeL > 10 <Ce  on z=1 (3.7)

1<k 1<ko

where ko and ey are given in Theorem 1.1. We notice that (3.7) can be derived from the result on the
local existence and stability in [1].

§4. Uniform estimate on the linearized operator

Now we give an energy estimate for the linear part of (3.1). The following conclusion plays the key
role in our analysis.
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Theorem 4.1. Set Dy = {1 <z < T bpz<r<x()}forany T > 1. T'p ={1<z<T,r=x(2)}
and By = {1 < z < T,r = bpz} are the lateral boundaries of Dp. If ¢ € C°°(Dr) satisfies the boundary
condition (3.2), |£(2)| + |2£'(2)] < Cey is sufficiently small for z € [1,T]. Then there exists a multiplier
M =ra(%)d.¢ + 2b(%)0rp, such that

x(T) 3 1 1
& Vo 2p(r, T)|?dr 4 Oy // zf§|VT,Z<jJ|2drdz +C4 / 27 2|0,p|7dl + C4/ 272(0,p|%dl
\/T boT Dr I'r Br
5 . x(1)
< // 272 Lo Mpdrdz +05/ 2*5(80¢)2dl+06/ (|p(r, D)|? + |0.¢(r, 1)|?)dr (4.1)
Dt I'r bo
where

L = 025 +2Pi(2)2.0 + Po(2)02p + Pa(r, 2)0:0 + Pa(r, )00,
Bop = (ar + /1182)95-

and C;(1 < i < 6) are positive constants independent of ¢y and eg, in particular,

2y — 1 2 1
e = Y204 008) + 0, 7 +0()
0
-1y 5 e 1
Cs = L5408+ 00) + 0(eu) + Olay ™) + 0 )
0

Remark 4.1. The values of constants Cy and Cj will play an important role in the energy estimates for
the nonlinear problem (3.1),(3.2), (3.5)-(3.7) in §5. Because our nonlinear problem is with the Neumann
boundary condition (3.2), the usual Poincare inequality doesn’t hold for the solution ¢. Hence from the
equation (3.5) and (3.6) we know that the term fFT 272 (Bo¢)2dl which appears in the right hand side
of (4.1) will bring the much more troubles for us. Thanks to the choice of Cy and Cj5, we can show that
the term Cfs fFT 272 (Byp)2dl can be asorbed by the left hand side of (4.1). The details see below §5.

Remark 4.2. The integral on I'r in the left side of (4.1) only contains the term [}, 27210,¢|2dl and
doesn’t contain [}, 2~ 2]0,¢|2dl, but we can get the estimate on Ir, 2 2|0 2dl if Ir, 2 2|0,¢|2dl and

Ir. 272 |Byp|2dl are known. In fact, we have

[ = HoPa<aga [ s tpgPae [ o HigPa)
Ir Ir Ir

Proof. Let A= A(r,z) and B = B(r, z) be determined. Denoting My = A(r,2)0.$ + B(r, z)0,p, we
have by the integration by parts that

/ / 2T LoMpdrdz = / / 273 (Ko(0:9)? + K1 (0,9)° + K20,90,¢))drdz
DT DT
3 x(T) x(1) 3
+T7 2 / Ks(r,T)dr — / Ks(r,1)dr + / 272 (bo K3 — Ky)dl
boT bo Br

+ / (K — ' Ka)dl (4.2)
I'r

11



where

3A

0,A 0O,
_ar(Pl )+P3A+4_

IX'OZ— 5 —+

Ki = —0.(PB) + %GZ(PQA) - %ar(pQB) + PuB + 43 (2B — Py A)
Ko = —8.B — 0,(PA) + P,B + Py A + %

Ky = g(a £)? + Bo,ovp + (PLB — %A)(argo)?

Ky = (RA = D)(0:4) + PrA0p0.0 + 20 (0,6)°

Our purpose is to choose suitable coefficients A(r,z) and B(r, z) so that all integrals on Dy, By and
t = T in the right hand side of (4.2) are definitely positive and the integral on I'p gives the control on
¢ “in some sense”. We will derive some sufficient conditions for A(r,z) and B(r,z) in the process of
investigating each integral. Assume A(r,z) = ra(%) and B(r,z) = 2b(%) with a(s) > 0 and b(s) > 0
Then a(s) and b(s) will be determined by the following five steps. In what follows, we will denote by C
a generic positive constant independent of ¢o and gq, it may take different value in different expressions.

Step 1. Positivity of [, z*%(bng — Ky)dl.

Since boKs — Ky = (R A — (PLA— £))(0.9)? + (boB — PyA)9,¢0.¢ + (bo(PLB — £24) — 228)(9, )2,
using the boundary condition (3.2) we have onr =byz:

Py(b
bo K3 — K4 =2(9.9)* {b(bo)( + b2 + B3Py (by) — 2(2 O)bg) + a(bo)bo(— P (bo)
bo Py(b
+5 - P (bo)bo — 2( O)bo)}
In view of § + b3 + B3Py (bo) — 220002 = L 4 Lot WOV T L the inequality

b(bo) > bga(bo) >0, (43)
implies
bo K3 — K4 > 2(6295)21)00/(()0){1)0 + bg + bgpl (bo) — P2(b0)bg - P (bo) — Pz(bo)bo}
By the boundary condition U(by) = bo(go + W (bo)) and the expressions of P (by) and Py(bg), we have

bo + b3 + by Py (bo) — Py(bo)b3 — Py (bo) — Pa(bo)bo

02_U2 bo(qo+W)2 02—U2
= b3 b3_ b4P b _0
Rt G — @t T -2 T mrwp—a T i)

Hence by K3 — Ky = 2(0.4)? (b(bo) — b3a(bo)) (5 + b3 + b3 P1(bo) — %bg) > 0 under the condition (4.3).
This leads to the first constraint (4.3) for a(s) and b(s). In addition, bg K3 — K4 will be computed explicitly
in the Lemma A.8 of Appendix.

Step 2. Positivity of f;f](TT) Ks(r,T)dr.
On z =T, we have

Qra

= z(5a2(8) (8299)2 + b(S)az@aﬂp + (Plb(s) —_ %a(s))(aﬂa)g)

12



To ensure the positivity of K3 one requires that the discriminant of the quadratic form should be negative

A =151 — 27, 288) 4 pstB)yey

b(s) b(s)
Denote P2 — P by D;. Then the above inequality leads to
sa(s)>P1—\/D_1_ 1 1
b(S) P2 P1 + vV D1 )\2 (S) ’

Therefore, fbﬁg) Ks(r,T)dr > CT fb T) |V, .p(r,T)|?dr as long as a(s) and b(s) are appropriately se-
lected to satisfy
b(s)

sa(s)

0< < Aa(s) (4.4)

Step 3. Positivity of the integral on Dr.
We look for the requirements for a(s) and b(s), so that
Ko(9:9)* + K1(0,9)* + K20:90,¢ > C((0:9)° + (8:¢)°)
The above estimate holds if the coefficients Ky, K1 and K5 satisfy
o> 0,K3 —4KoK; <0 (4.5)

This is a system of nonlinear ordinary differential inequalities. Indeed, substituting a(s) and b(s) into
the expressions of Ky, K1 and K> yields

Ko = (% — Pis)d'(s) + bl(;)

— Plsa(s) — Pya(s) + Psa(s) + gsa(s)

K2 —4KoK| = {—Pysa'(s) + sb'(s) — Pya(s) + %b(s) — Pysa(s) + &b(s) + ]54a(s)}2

s
s? b'(s)

-5 — Pys)d/(s) + 5 — Plsa(s) — Pya(s) + Psa(s) + _Sa( )}{__2 24/ (s)

4 (Pis = 2)0(5) + Plsb(s) - LPisPa(s) = 2P3b(s) + Do) + (s) = 2 Pasa(e))

Denote by Qo, @1 and @2 the terms which only involve a(s) and b(s), but not their derivatives in Ko, Ky
and K5 , namely,

Qo = (%s —P/s—P + f’3)a(s)

Q1 = P|sb(s) — L Pys*a(s) — L P3b(s) + LPib(s) — 2Pasals) + 22b(s)

Q2 = —Psa(s) + Lb(s) — Pysa(s) + Z2b(s) + Pya(s)

Then
K2 — 4KoK, = (= Pysd'(s) + sb(s))? — 4((% — Ps)d(s) + b'és))(—%s%'( )+ (Pys — %)b ()
F20(~Posd(5) + () + 4Q0( 2%0'(5) — (Prs — 2)0/(5)) Q5 ~ Prsjal(s) + )

+ Q3 —4QoQ1.
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The right hand side is a quadratic form of a'(s) and '(s). Denoting the coefficients of the linear terms
by a1(s) and as(s), namely

{ a1 = —PQas + P2Qos® — Q1(s> — 2P1s) (4.6)

az = Q25 — Qo(2P1s — P2) — Q1

then we have

K2 —4KoK| = (Py + 5> — 2Py 5)(Pys%a’ (5)* — 2P sa’ (s)V' (s) + V' (5)?) 4+ 2a1a’ (5) + 2a2b'(s) + Q3 — 4Qo Q.
(4.7)
The coefficient Py + s2 — 2Py s, which will be denoted by —A, is equal to —(Xa(s) — s)(s — A1 (s)) < 0 in
[bo, So + 1o] due to Lemma 2.1 (ii) and Lemma 2.3 (i).
To transform (4.7) to a standard quadratic form, we introduce

ASZ D1

Yl — a’(S) + a1+agpls,
Y2 = —Plsa’(s) + b’(S) - axg.

Substituting them into the expressions of Ky and K22 — 4Ky K, one gets

- _ s2—Pis Ys as _ (s—P1)(a1+azPrs)
Ko=*=5"N+F+Q+ 24 2AsD; ’

K3 —4KoK) = AS*DyY? — AV} + Q3 — 4Qo@Qy + % — (feelial

A key observation is the fact that the sum of the last four terms in the right hand side of the second

equality above is nonnegative. Indeed, setting Y3 = —(Qo + 5% — %)7 one has the following
identity
2 2
9 a5 (a1 + axPys) 5
—4 4+ = - ————°- =4D,Y.
s~ 4@t + 7 As2D, o

Hence Ko > 0, K3 — 4KoK; < 0 are equivalent to

{ (s2 — Pis)Y; + Yy —2Y3 > 0 (48)
As?DyYE — AYE +4D,YE <0 '
Step 4. Construction of a(s) and b(s).

By studying the solvability condition for (4.8) carefully, one can show that (4.8) is equivalent to the
following differential system

{ (s2 = Pis)Y1 + Yy —2Y3 = \/So(s) + k2(s)s2a?(s)Dy + 4Y2 — 2Y3 (4.9)
As?D Y — AYE + 4D Y2 = —bo(s) Dy,
where the new functions dy(s) > 0 and k(s) > 0 are to be determined together with a(s) and b(s).
By solving Y7 and Ys in (4.9) and rewriting it in terms of a(s) and b(s), one gets that
a(s) + BERAE = — 28 (b (s) — Pisa/(s) — %) + k(s)a(s)
(4.10)

V(s) — Pisa'(s) — % = % (\/go(s) + k2(s)s2a2(s)Dy +4Y2 — k(s)sa(s)(s — Pl))
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We now show that there exist a(s),b(s),00(s) and k(s) satisfying (4.3),(4.4) and (4.10), provided qq is
large. Set b(s) = sA(s)a(s). Then (4.3) and (4.4) are the consequence of the following inequality

s < A(s) < Aa(s) (4.11)

and the first equation in (4.10) becomes

(L+“‘H¥§”‘P”}ﬂﬂ=—5;f(@@Hﬂxwmmr—%)+M$aﬂ
_mtahs (4.12)
A82D1

It is shown in Lemma A.1 of Appendix that the coefficient of a'(s) is positive for large go. Then (4.12)
can be written as:
D,

m+@—HM@—Hﬁ@%“

where Qo(s) = (— ==L (A(s) + sA'(s) — 22y — Bl Bisy /(D) 4 (s — P)(A(s) — P1)) with d,(s) =
ai(s)/a(s)(i = 1,2). Clearly, for a(by) = 1 the linear ordinary differential equation (4.13) has a unique
positive solution a(s) in [bo, so + 10]-

It remains to determine \(s),d(s) and k(s). It follows from the second equation of (4.10) that we

have the following algebraic equation for k(s)

~

d@=(@@+ (4.13)

Ao(s)k?(s) + A1(s)k(s) = As(s), (4.14)
where
B s(A(s) — P)Dy Di . *  D}s’
“@‘<m+<—axu—af*A( m) -2

_ s(A(s) — P1)Dy Dyo_ )+ sX(s) — ax(s)
Aile) = <D1+(3—P1)(5\(s)—P1) 7 P1)> (A( )+ sX(s)

-Hd@—amwo

D_% 50(3) Y7(s)
42<ﬁ@>+4ﬁ@>

Thus, there exists a positive solution k(s) in (4.14), provided

Aa(s) = )—G@+A%wﬁwﬁm&@—awww
Ap(s) <0 and As(s) <0, (4.15)

The fact Ag(s) < 0 can be checked easily, see Lemma A.2 of Appendix. To prove the negativity of Az(s)
we first choose A(s) so that

ADIEG) (v s e\
fl2a2(s) < | A(s) + sN(s) + s(A(s) — P1)Qo(s) — ¥ (4.16)
To this end we set
N So+mo—s 9 s —bo 5
M) = —————(1 — Bpb:) Ao (s9) + ————————(Bpb5 A5 (s 1—6pb5)s 4.17
) so+n0—b0( oby)A2(s0) + 0+170—b(00 2(s0) + ( ob3)so) (4.17)
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Below we choose 0y = 24/2(y — 1).

The choice of the special form of \(s) comes from the following considerations. The first one is to let
its value is near \y(so) on the boundary r = bgz so that the coefficient of z(9.¢)? in bg K3 — K4 of step 1 is
“large” as soon as possible when \(s) is between s and \a(s). The second one is to let its value is near sg
on the shock r = x(z) so that the coefficient of fFT 272 (Bo¢)2dl in the right hand side of (4.1) is “small”

as soon as possible. Certainly, in order to guarantee the “smallness” of coefficient of fFT z’%(80¢)2dl,
from the below expression (4.20) we also require that a(so) is very near a(by) = 1 for small by. This
property can be obtained when A;(s) < 0in (4.14) (the details see Lemma A.6 of Appendix). In fact, the
choice of 6y = 24/2(y — 1) just only leads to A;(s) < 0 (see Lemma A.7 of Appendix). The third one is
that we hope that \(s) isn’t too “close” to Az(so) so that fb T ) Ks3(r,T)dr > CT fX(T |V o(r, T))?dr
in Step 2, where q > 0 only depends on by and 7. This is anotheg reason that we choose a factor fpb2 in
the expression of A(s). The fourth one is to let the derivative of A(s) be large, so that (4.16) holds.
Because of the special choice of A(s), it is obvious from the entropy condition (2.4) and lemma 2.1 (ii)
that for small by y
s < A(s) < Aa(s) (4.18)
In addtion, we can show that the inequality (4.16) holds true for 1 < v < 3 and large go. The proof of
this fact is given in Lemma A.3 of Appendix. Then with a suitable choice of dy(s) ( see below ) one gets
Ay (s) < 0 from (4.16).
Summarizing the above analysis, we can define the multipliers a(s), b(s) and corresponding 0y (s), k(s)
as follows.
~ So+Mmo—s 9 s — by
A(s) = ————(1 — Boby) A _
9 80+770—bo( o) Aas0) + s0 + 10 — bo
< a?(s)A? ([~ < < ~
fols) = (Dl { (3645709 +5(3() = PYGa(s) -
k(S) —Al \/A2 + 4A0 )AQ(S)
240(s)

s/ D,
=t (Q“S) e L)

b(s) = sA(s)a(s).
In this case, As(s) = —1 in (4.14). This will give us the convenience to analyze the property of k(s) in
Lemma A.6 of Appendix.
Step 5. The estimate on [, 273 (Ky — ' K3)dl.
With the choice of the multipliers given in the previous steps, we can show on r = x(z)

(BobgA2(s0) + (1 = BobF)s0),

d2,§8))2 3 4?5;;3?5) _ 1} >0,

>0,

Ky —YK; > z{(—b2 +O0(B3) + O(0) + O(qy ) + O(q N(8.¢)?

0
B (771 +O(bo) + Ofeo) + Olgy )+0(—3)) bs(Bog)?} (4.19)

2

In fact, by the assumption on £(z) in Theorem 4.1 and 19 < g, " ' (so — bp), it follows that from the
expressions of K3 and Ky,
. . z . P . -5
K=K = 1) ((30(0.6)° + 51060, + B:(0,:00) + (Olay ™) + Oleo)) (Vo))

= 2boa(s0){ (Bo(0:9)” + A10: 00, + Ba(0,8)°) + (Olgy ") + 00V rstol?)}
= zboa(so)(I + I1I) (4.20)
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where 8y = Pi(s0) — o — M751 = Pa(so) — s§ — BobZso(A2(s0) — so) and B> = Ps(sg)so —

Py (s0)82 + 0ob2 (A2 (s0) — 50)(P2(S°) Py (s0)). Noting 0,¢ = Bop — p10.¢, one has

I ={Bo— pu1B1 + 13 B2} (0:9)° + {B1 — 21182109 Bo¢ + B2(Boy)* (4.21)

From the Lemma A.4 in Appendix, we have

b0+0(b2)+0( )+O(q ) (4.22)

Bo — 1B + P =
Additionally, by the Lemma A.5 in Appendix, we have

Bzz——b3+0(b4)+0( )+O(q )

B —2u1 P = \/ 90b3 +0(bg) + O(qy ) + O( ) (4.23)

qo

Using 0.9Bop > —1(bo(Bop)? + %(82,9'9)2), then substituting (4.22) and (4.23) into (4.21) we get

1>y 02) + 066 7 + O(q2 ))(0:)
0
- -2 1 .
- (Tbé +005) +0lay ™) +0(5)) (Bog)” (4.24)
0
Finally, from Lemma A.6 in Appendix, we have
a(s0) = - DO o) (4.25)

Hence substituting (4.24) and (4.25) into (4.20) yields the inequality (4.19).

2
Summing up the estimates in Step 1 to Step 5 and noting that a(s) is bounded and |a/(s)| > Cgi ™"
in [bo, so + o] and using Lemma A.8 in Appendix we have from (4.2)

C x(T) -1 _ 21
— [Vr20(r, T)Pdr + Cy // 2 3|V, 2drdz + (—7 b3+ O0D3) + O(z0) + O(gy, ™)
VT JooT Dr 8

1 1 . 2 2 1 .
+O(—2))/ z*§|az¢|2dz+(%b0+0(b4)+0( )+0(—2))/ 272]0.¢2dl
G Ir 90 Br

g// z*%LgoMgodrdH(
Dr

x(1)
+Cy / (o DI + 0=, 1))dr (4.26)

bo

2

L4 O() + Oeo) + O(qy 77) + 0<q10>> / - (Bogp)dl

where the constants C, Cy and Cg are all independent of gy and g thanks to the choice of a(s) and b(s).
Therefore Theorem 4.1 is proved.

§5. The proof of Theorem 1.1 for the case o(z) = byz

In order to prove Theorem 1.1 with the boundary r = byz, we first derive the following higher order
energy estimates.

17



Theorem 5.1. Assume that ¢ € C*(Dr) and £(z) € C*[1,T] with ko > 5 is a solution of (3.1),
(3.2), (3.5)-(3.7). In addition, |£(z)| + |2£'(2)] < Cep in [1,T], Z zl|Vi,+Z1<p(r z)] < Cep, and
o<i<[*0]41
go > 0 is sufficiently small, then

x(T) 1 3
/ > TRV e(n T)) dr+// PRV el drd:
b D

0T o<i<ko—1 To<z<1v0 1
/ Hvigas [ Y v
Pt o<i<ko—1 Br g<i<ky—1
x(1) Y )
Claonbo. (/ SV a0 DR+ (0 (1), 1) + (b, 1) + € (1)), (5.1)
bo  0<i<kg

here and below C(qo, bo,7y) > 0 denotes a generic constant depending on o, by and +.

Next, we turn to the main arguments for the proof of Theorem 5.1. As in [4] or [6], we will use the
vector fields which are tangent to the surface of the cone and nearly tangential to the shock front. Then
we use the standard commutation argument to raise the order of the energy estimate. The difference from
the usual commutation argument is that the radial vector field is only nearly tangential to the shock front
boundary, and thus there will appear some error terms caused by the perturbation of the shock front to
be estimated. Furthermore, we cannot adapt the analysis in [4], since we have to deal with Neumann
type boundary condition on the fixed boundary, while [4] treats Dirichlet type boundary condition so
that Poincare type inequality (see [4]Lemma 1.), which is one of the key elememts in the analysis in [4],
is available. However, by making use of the delicate energy estimate in §4, we will be able to drive the
desired estimates. To prove this theorem, we first need an elementary estimate.

Lemma 5.1 Assume that ¢ is a C* solution, then there is a constant independent of ¢ and T, so
that

> AV < Clgosbo,y) Y. IVeS'¢l i Dr, (5.2)
0<I<ko—1 0<I<ko—1

where S = 20, + r0,.
Proof. This lemma can be proved as in [4] or [6]. But for the convenience to readers, we verify

the case for kg = 2, the general case can be completed by the inductive method. Since the differential
operators 02,02 can be expressed as follows

2
2= Fa gy iy O
r r2 r2 r2 r
g2 =05 _Zg O
zr r r* r

meanwhile both the boundary of the surface and the shock front are not characteristic, by using the
equation (3.1) we can solve 8%¢. Indeed, from the equation (3.1) we have

(I—fu—(@2h - f12)E + (P f22)—§) = @(82&,& - 0.9) + fo =D

- ;326’@ + fazw Orp) — P30, — PyOr

(a Sp

Since PZ — P, > 0 and ¢ > 0 is very small, then
2923 < C(IVr25¢] + Vi)
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Hence from the above expressions we know (5.2) holds for ko = 2.

The general case can be derived similarly, so we omit the details.

Return to the proof of Theorem 5.1. Since the vector field S is tangent to the boudary r = bz, then
0rS™p = bg0,S™p on r = bgz in view of the boundary condition (3.2), so we can apply Theorem 4.1
and the Remark 4.2 to S™p(0 < m < ko — 1) (at this time, we can contemporarily neglect the concrete
expressions of the constants in (4.1)), we have

1 x(T) 3
— > VST dr+// 272 |V,..8™ ¢ |2drdz
Dr

VT Joor 0<m<ko—1 0<m<kg 1

+/ Y |v,7zsm¢|2dl+/ TE N VLSl
Ir

0<m<ko—1 Br 0<m<ko—1
SC(qo,bo,v)(// Y ,cS%MSmgodrder/ ZE > (BoS™y)dl
Dr 0<m<kg—1 I'r 0<m<ko—1
x(1)
+/ > ViEe(r,1)2dr) (5.3)
bo p<m<ko

To estimate the first term in the right hand side of (5.3), we need an explicit representation of £S5™p.
Thanks to SPi(Z) = SPy(£) = 0 and S(1) = =1, we have LSy = SLp — 2L¢. Tt follows from the
equation (3.1) that

>ooag > 011,2< (f11)0252¢ + 5" (f12)02,52¢ + 5" (f22)02 5"

0<i<m l1+12<1

+ ﬁsb (f0)> } (54)

where f; ;, fo are the functions appeared in (3.1). By the properties of f;;, fo and the assumptions in
Theorem 5.1, one can show that for m < kg — 1

1Shfsl<C >0 VST, ISh () SC D Ve ST (5.5)

m<ko—1 m<ko—1
We will treat [}, 2380 (f11)025%p MS™pdrdz only, because the other terms can be disposed similarly.

There are two cases:
if [ <m — 1, from Lemma 5.1 and assumptions in Theorem 5.1 one can get

1S (£11)02S2pMS™p| < Ceo Y |V,.S™ ¢ (5.6)

m<ko—1
if [y = 0,12 =m, then
) . . o1 . 1 .
Sll(fn)azslzga./\/lsmcp = 0.(f11B0.S™p0,.S™p — EAfn(aZSmga)z) - iar(an(aZSmcp)z)
1 . m - m -
+ 5(3r(f113) — 0.(f114))(0:5™¢)* — 0.(f11B)0.S™$0,S™ . (5.7)
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Hence by the integration by parts we get

// 27% Z ﬁSmcpj\/lSmcpdrdz S 060 (\/_ Z |Vr,z5m¢(rv T)|2d’l‘
DT -

Ogmgk()fl

+// Y |VT,ZSm<,b|2drdz+/ E D S \ L
Dt

0<m<ko—1 Ir 0<m<ko—1
+/ E N V,L8my| dl+/ > Ve 1) dr) (5.8)
Br 0<m<ko—1 bo  o<m<ko

Next, we estimate the second term on the right hand side of (5.3), that is fFT 272 Z(Bosmcﬁ)?dl

m
which is a major term, because it involves the boundary of shock front. Write BpS™¢ = [Bo, S™]¢ +
(S™ — SP")Bop + ST B , we estimate each term separately. The first term has the form

[Bo,S™¢= > C1S'Bo¢ (5.9)
0<i<m—1

To estimate other two terms, we notice that from the equation (3.6)

Soooamargl<o( D MVETel+E) on r=x(2) (5.10)

0<m<ko—1 0<m<ho—2

Hence by the assumptions in Theorem 5.1, we have

> 2MIrE < Ceo (5.11)
0<m<['P]+1
In addition, the equation (3.5) yields
St'Bo¢ + p2 St = St'ko(§, Vo) on 1 =x(?) (5.12)

where Sp = 20, + zx'(#2)0; is tangent to the shock surface r = x(z). It should be noted that |usz| is a
large constant with the same order as ¢p. Using (5.11) and (5.12), for m < ko — 1 we have the following
estimate:

ISEBop| < Clao D> 2M0L¢l+20 D 2[VELg)). (5.13)

0<I<m 0<I<m
As in the Lemma 10 of [4], one can prove that

(5™ = SF)Bog| < Ceo( D 2|V el + 1)) (5.14)

0<i<m

Now collecting (5.9), (5.13) and (5.14) and using (5.10) and Lemma 5.1 one can get that

x(T)
/ T2~ 3% |Vl+1<p (r,T)|dr + // |Vl+1<p| drdz
boT 0<l<k0 1 Dr 0<1<A0 1

/F

2l—é|vl+1¢| dl+/ 21——|Vl+1<p| dl
BT g<i<ko—1

x(1)
23|V )2 dl+/ 3¢ dl+/ > VL Le(r1)] dr)
bo o<i<h, (5.15)

T 0<i<ko—1

C(qo,b0,7 (/
r

T 0<Ii<ko—2
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In the special case kg = 1, by the estimate (4.1) and the equation (3.5) and the inequality (5.8),(5.15)
actually is

Ol X(1) . 2 // _3 .12 / _1 .12
— V0, T)|%dr + C 2 2|V, ¢ drdz + C z72|0,p|°dl
N3 ] f] = [ =t
V207 =1 . 1 oy
(PO 008 + 0, ) + 01 [ = Houetoz. 2 P
0 1

-1 -2 1 1

< (gt +08) + 0(eo) + Ol 7 ) +0(=) | = Hieka
0 T

x(1)
+Co [ (0 DP + 1050 )P ar (5.16)

bo

Here C4,C5,C3 and (g are generic constants independent of ¢o and &g.

It follows from (5.15) and the inductive argument that the crucial point to prove (5.1) is to estimate
the first term in the right hand side of (5.16). Note that the first term in the right side of (5.16) has a
large factor g3. We will absorb this term into the left hand side of (5.16).

Indeed, by the assumption on £(z), we have

2 T 1
[ HeIPa = (14 008) + 0() + Olay 7)) [ = He)F (5.17)

In order to estimate flT 272|€(2)|2dz, we treat it as follows

T T
/ e Pd = / 3 |26(2)Pdz
1 1

1. T 1 T 1.
<+ ) / A + b () P + (14 B) / + A pn(e). 2
=I+1I (5.18)

Here and below we often use the inequality (z + y)? < (14 35)2? + (1 4 b3)y>.
0

By use of the Hardy type inequality in Lemma A.9 of Appendix, the equation (3.6) and the assumptions
in Theorem 5.1, we have

16 1 N 1 > 2 2
< 5L+ %)(1*‘{’0)/1 27700 (2€(2) + U—+¢(x(2)72))l dz + C(bo, 7)(€°(1) + ¢° (x(1),1))
T
< C(bow)(ﬁﬁ/1 22 (€GP + Ve (x(2), 2)P)dz + £2(1) + ¢ (x (1), 1)) (5.19)

Now we decompose I] < II; + I, so that I] can associate with the integral on r = byz and the interior
of Dp, where

1 (1403 o .

1= 0+ B [Tt o0e),2) - otz )P
0 + 1

(1+03)?

15, =
2 Ui

T 5
/ z*5|<,'9(boz,z)|2dz
1
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II; can be treated as follows

1+ b2)4 2 T, x=
|[IL| = ﬁ(l—kO(qo g ))/1 z 2(/b Orp(r, 2))*dz

L+ b5)" -3 T g, X9 . z) —boz
< (4720)(1 +0(q " ))/ : g(/ |3T99(r,z)|2dr)X()70dz
boas 1 box 2

214 s L )
%(1 + O(QO "*1))(0(60) + O(qo 7*1)) //DT Zﬁ§|ar9.9(7"72)|2d7"d2’ (5.20)

Using again the Hardy type inequality in Lemma A.9 and the boundary condition (3.2), we have

16(1 + b2)° N A T . , .
L] < =gz (14006 ")) [ 272 [bo0rp(boz, 2) + 0:4(bo, 2)dz + C'lbo, 7)¢" (bo, 1)
040 1
16(1 +05)" N L .
= (9b2q2°) (1+0(q " ))/ 272|0,p(boz, 2)|2dz + C(bo, ) $? (bo, 1) (5.21)
040 1

Substituting (5.21), (5.20), (5.19) into (5.18), (5.17) and (5.16), for the fixed by and % which are very

small but % is much smaller than by and the arbitrary smallness of g, we have

c, x(T
\/T boT

—_ 2 T 1
+ (PO 4 008) + 0l 7T 401 [+ Hop 005, 2P

4 i

)
|V, .p(r, T)2dr + O // z—%|vr,z¢|2drdz + 03/ z—é|vr,2¢|2dl
Dr

r'r

-1 -2 1 T
(7 g b+ O(b3) +O0(z0) + O(qy ") + O(q—Q))/ 27210,p(boz, 2)[2dz
0 J1

16
<
-9

x(1)
+C(QO7b07’7)(/ Vie@(r, 1)]dr + €2(1) + ¢*(x(1),1) + ¢°(bo, 1)) (5.22)
bo
Where C;(1 < i < 3) only depends on by and 7.
Now we compare the coefficients of flT 2 210,¢(boz, 2)|2dz in two sides of (5.22). Obviously, the main

parts of the coefficients in the left hand side and right hand side are 7v2(47_1) bZ and wbg respectively.
Since 1 < v < 3, then we have
2v=-1) _ 2001
I
Therefore, for the small by, ql—o and ey, the right side term fFT 27210, (boz, 2)|2dz in (5.22) can be absorbed

(5.23)

by the corresponding left side. Hence we can get the estimates on [j; 27219, ¢[2dl and Jr, 2 2]0,p|2dl
from (5.22). This also leads to the estimate on fFT 273¢2(2)dl through the insertion of (5.21),(5.20) and
(5.19) into (5.18) and (5.17), that is, fFT 272 |Bop|2dl is known. Noting the Remark 4.2, then we obtain
(5.1) for ko = 1.

(5.15) shows that the higher order derivatives of ¢ can be dominated by its lower order derivatives,
then by inductive argument we obtain (5.1). This completes the proof of Theorem 5.1.

The proof of Theorem 1.1
Based on the the energy estimate of higher order we can easily prove the global existence of shock
by using the local existence theorem and the standard continuity extension method. The local existense
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of the solution of (1.8),(1.9) and (1.10) near the tip is achieved in [1] and [2], while for any given zq,
the solution of (1.8) with the initial data given on z = z; and the boundary conditions (1.9),(1.10) in
[21, 21 + (] for some ¢ > 0 can be obtained by using the characteristics method ( see [13] ), provided that
the initial data is smooth and satisfies the compatibility conditions. Moreover, if the perturbation of the
initial data given on z = 2o is small as O(gp), the lifespan of the solution is at least as large as Cey!
with C' > 0. Therefore, as long as we can establish that the maximun norm of ¢, £ and their derivatives
decays with a rate in z, then the solution can be extended continuously to the whole domain. That is,
by using the local existence theorem and the property of decay of the solution we can obtain the uniform
boundedness of ¢, £ and their derivatives, and then extend the solution continuously from zg < z < z1 to
zo < z < z1 + ¢ with ¢ being independent of z;. Hence the key element of the proof of Theorem 1.1 is to
show the decay rate of the maximum norm of ¢, £ and their derivatives.

It follows from the Sobolev’s imbedding theorem (or see [4] Lemma 14) and the assumptions of Theorem
5.1 that for bpz < r < x(z) and 1 < z < T, one has

x(z)
> EVvitePr <ot / > Ve ) Pdr (5.22)
0<I<ko—2 boz  g<i<ko—1
On the other hand, (5.1) shows that
x(2) .
/b Z |lef,'f;1<,b(r,z)|2dr < Cedze (5.23)
0%

0<i<ko—1

Hence Z |leffZl<[9|2 < 063271/2 for bpz < r < x(z) and 1 < z < T. For kg > 5, one has
0<I<ko—2
> Vil < Cepz 1. In addition, due to ko — 2 > [£] + 1, the equations (3.4) and (3.5) yield
I<[H 141
|€(2)| + |2€'(2)] < Cepz~ 1. Noting that the constant C' is independent of T, we complete the proof of
Theorem 1.1 under the addtional assumption that o(z) = bpz as mentioned above.

66. The treatment for the general boundary

In this section, we discuss the general case when the surface of the symmetric obstacle is curved. We
change the boundary of curved cone into a straight one by the following coordinates transform.

{

Under the transformation (6.1), we use the notations 95,93 and Y instead of ¢, ¢ and y. Similar to the
computations in §3, the equation (1.11) can be rewritten as:

a(z)

bo (6.1)

oW
I

02:¢ + 2P1(g)3gf95 + P2(g)ag?¢ + P3(7, 2)0:¢ + Py (7, 2)05¢ = fll(; Viz0)0%2:¢
7 . . 7 . . 1. 7 . o'(z). . ~ oz -
+ f12(2, Vi 20)02:0 + for(<, Vi :0)0%:0 + = fo( =, Vi z8) + (1 — ( )){fu(vf,z% ( ))3§2<P
z E FOUVE bo bo
+ o Vo D085 + o (Vi SN0 8) + fon (V. D)o ()02
1. _o'(z o'(z B
+ = fo2(Vi,20, ( ))(1 - ( ))3?90 (6.2)
B bo bo
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where Py, Py, Ps, Py, f11, f12, f22 and fy are the same as in (3.1), fij is smooth on its arguments. We
emphasize here that %(Oz) appears in the expression of f” as a whole argument. The fact that all
derivatives of this quantity is small as shown in (1.16) will play the essential role in estimating the
influence of the perturbation of the boundary later.

Set £(%) = M Then the boundary conditions (1.12),(1.13) and the continuity condition (1.14)

take the forms

—boBs + B + bo(1 — (";)(OZ) )2)@ + bo(1 — ("'b(oz) 2)és + qolbo —0'(2)) =0 on  F=hy? (6.3)
0+ e ok = ka6, Vr9) + o6V, TN - B o r=x) 6
(z6) + %(3243()2(5)75) T 500 5(X(3)2) = malE, Vi 25(1(2), 2)) (6.5)

where the meaning of the function kg3, k4 is shown in Section 3, fo is a function similar to f”
In order to prove Theorem 1.1 for general o(z), we have to analyze the contribution due to the pertur-
bation of the boundary. It turns out that we can modify the arguments in the proof of Theorem 5.1 slightly

to deal this general case. As in (5.3), we first estimate the term [[, 55 Z LEMGMS™ pdrdz,
. 0<m<ko—1
where S = 70; + 20;. Note that the first four terms on the right side of (6.2) have been estimated in §5.

Without loss of generality, we only estimate [[, z28m((1 - 7 (2) ) 11 (Vi 20, ”'(z))a‘g’g PYMS™Gdidz

bo bO
and [, 738" (for (Vi 28, Ub(oz) Yo' (2)0:p) MS™Gdrdz, the other terms can be analyzed similarly.
To estimate the integrals, we use the following decomposition:
SO A OIS Iy s 5
bo bo
!
fo1 (Vi 29, ab(z) )o"(2)0:p = In + Iy + I11,
0
where
o'(z ~ _o(z ~ o o'(z N
L=(1- ( )) f11 (Vi 2@, ( ))—fn(vf,z% ( )) 0%:4
bo bo bo
o'(2). » _o(z .
IL =(1- ( )) 11(V7,20, ( ))35599
bo bo
o'(z), ; . o'(z N
1L = (1 - ( ))fn(vm% b( ))3§2<P
0 0
e F . 0'(2) NCACINVIR
I = 0"(2)(for (Viz0, = =) = for (Vi 20, = =)0z
0 0
L 0'(2) 4 .
1L = 0" () fr (Vr56, S0
I1I5 = 0" (2) for (V5 20, ab(z))82¢
0

Note also that |o(2) — boz| < g0 and |2(20.)* (0" (2) — bo)| < o for 0 < k < ky — 1 with kg > ko + 1 due
to (1.16), here ko is the number appeared in Theorem 5.1. Additionally, 9;¢ = U(Z) and 9:p = W (L)
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are positively homogeneous of degree 0. Hence we have the following estimates for m < kg — 1

1S L MS™ G| < — Z V5,255
<m
m m 080 ql x
|S [IlMS | < — Z |v;755 99|
<m
m Ceo 152
|IS"™I,MS |<—Z|VMS &l
<m
m m 060 qlx
1S ILMS™E < ==Y V525G
<m
IS™ITT, M3™H| < CETO > Va8 E
o <m
In addition, the term S™ITI; MS™p can be treated similarly as in (5.5), (5.6) and (5.7) of §5. Using the

2
€o

inequality £ |g| < n|g|* + C'()35, here > 0 is an appropriate small constant, then these estimates and
the integration by parts leads to

73 LS EME™GdidE < O(so) < / V58", T)dF
//D 3 SME™ N7F), X 2(r,T)|

0<m<kop—1 m<ko—1
+// =y |V;,;Sm45|2dfdz+/ CoL I N | el B
Dr 0<m<ko—1 Pr 0<m<ko—1
+/ e Z V253 2dl + Z o(F,1)| d7"+60)
Br 0<m<ko—1 bo o<m<k

wlw

// 5 |V :S™p|2drd?
20 qo,bo, Dr O<m<k0 1
here C'(qo, bo, ) is the constant in (5.3).
Secondly, as in §5 we need to estimate the term fFT i3 Z |BoS™@|%dl. Since the equations
0<m<ko—1
(6.4) and (6.5) are very similar to (3.5) and (3.6) respectively, then this term can be estimated by the
same method in §5.
Finally, we treat the integral on the boundary 7 = bpZ. Since the strict inequality (4.3) holds and the

coefficient of the first perturbed term by (1 —(Z ([Z)) )@= in (6.3) is sufﬁmently small due to the assumption

(1.16), additionally, the second perturbed term in (6.3) satisfies [, 27> 2| 8™ (by (1 — (2 bE)Z)) )$Pz) +qo(bo —

o' (2)))?dl < O(g2) flT 573d% = O(e2), hence the change of the form (6.2) will not influence the validity
of the estimate (5.1). So Theorem 1.1 is proved in general case.

Appendix

Lemma A.1 The coefficient of a’(s) in (4.12) is positive.
Proof. Since for large qo

(Y= DB+ BR)2(1 - (v - DBR) 1 e
D= S —nearwype T Og T >0
s hils) =~ &~ 1+ ) LO(L) 0. ™) <0

2= (v = (1 +03)
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then by use of A(s) < Az(s) we have
Dy + (s — Py)(A(s) = P1) > Dy + (s — Py)(A2(s) — P1) = \/Dyi(s — Mi(s)) > 0

Hence 1+ (s — P1)(\(s) — P1)/D; > 0.
Lemma A.2. The coefficient Ag(s) in (4.14) is negative.
Proof Factorize Ag(s) = Aj(s)A3(s), where

| s(A(s) — P1)Dy Dy oo _ Dy
4o(5) Dit(s—PONs) - P A (s =)+ v/ D
> s(A(s) — P1)Dy Di o py_Dig
A = ey T AT v

Since

Ly A(s) — Py 1
Ag(s) = sDs <D1 + (s — P1)(A(s) — P1) ! Az(s) — S>

sD} (A(s) = M(s))

" (als) - D1+ (5= PYOG) ~ F)

> sD (s—)\l(s))~ >0
(A2(s) =) (D1 + (s — P1)(A(s) — Pr))

20s) sDF (A(s) = M (s) o

(A2(s) = $)(D1 + (s = Pr)(A(s) = P1))

then Aq(s) <0
Lemma A.3. (4.16) holds for 1 < v < 3 and large go.
Proof In fact, (4.16) is equivelent to the following inequality

21 (P2 = Pa+ (s = POG) = PN < AP = P)(RG6) + 5 (6) = 2 (G6s) = P)as
—(2Ps — P)(A(s)Py P2)> @ ((X(s) —P)(s —2P,) + (\(s)P, —P2)>

Q2

a

(dma—&%d@—a%)

When ¢ is large, one gets from Lemma 2.2 and 2.3

bo 1 -2

P = +0(5)+0(gp "7
B T e T
BO-6-DO+R) 1
P, = . +0(=)+O0(gy ™"
=T I0-oRarw O o)

2

0= DR OB L) Ly, o5

2(1— L(v — DB2(1 + B2)

ho(s) —s = V1 “1§i@f5w(f£f” 4 06,7 + 02

P — P, =

G- UBO+R)
T2- (- DR +8)

+0(qp "~ 1) +O(£)
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@0+ N0 2o+ WD (@ + ) + O

|P1’|:| 17\2 &2 17\2 &2 2 17\2 A2 2|SC
(@0 +W)2=&(s)  ((go+W)2—2()2  ((ao+W)? —&(s))

Pl = | 200" — 26 2(&* = U)((go + W)W’ = ) <o

T (go + )2 —é2(s) (g0 + W)? — &(s))2 -

B3] < Cgy” "

|154|SCQS(J+12)

Qole) | Qule)y Qo)) Tol6), & g5

~ 2
IN(s)] = Cqg
Substituting the above expressions into (A.1), we find that the left hand side of (A.1) is less than

2(v=2)

C(1+q,”"" ), the right hand side of (A.1) is larger than Cq;~". Therefore, (A.1) holds, if go is large
enough and 1 < v < 3. So (4.16) is proved

Lemma A.4 Bo — 1B + p3Be = 1bo +O0(b) + O(qo T 1) + O(
Proof. We denote 3y — 131 + p2 B2 = 11 (s0) + I>(sg), where

I (s0) = Pi(so) — so — i1 (Pa(s0) — s5) + ui(Pa(s0)so — Pi(s0)sp)
Ps(so)

)-

oml’_‘

1
Ix(s0) = Bobp(Aa(s0) — s0)(=5 + paso + 15 ( 5~ Pi(s0)))
Since
o (y=1)b(+53) 1 —351y _ 3 5 T
Pu(so) = 50 = s+ 0() +0(a; 77) = 151+ 00) + 0065 77) + 0(c5)
o (y=1)h3(1 = 3) (1 +b3) i —% _ oy 1y 4 —537
+0O(—=
(qg)
B 2 _ (y = 1)B3 (1 + ) 1 U A T 5 —5o1
Py (s0)so — P1(s0)sp = 2 (- DR+ ) + O(q(z)) +0(g ") = 5 b5+ O(bg) +O(q "™7)
+O( )
%
then for much large ¢o and small b,
_ (y=1)bo(1 +03)° e 1
flso) = T2~ DB+ ) Ol ”O(qa)
= bo +03) +O(qy "~ 1) + O(q ) (A.2)
0
Additionally, from the expressions in the proof of Lemma, A.3, we have
2
Mals) =50 = %bo +0) +0g, ) + 0(5)
0
3
3 -
Py(s0) = b2+0(b4)+0( )+O(q )
0
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2

Noting p; = %ﬁ(l +O(gy ")), hence we can obtain

I(s0) = O(b3) + O(qq )+0(q ) (A.3)
0
Combining (A.2) and (A.3), we know that Lemma A .4 holds.
Lemma A.5
ﬂz:——b0+0(b4)+0( )+O(q )
0

B1—2p1 P2 = \/ 90b3+0(b4)+0( )+O(q )
o

Proof. By the computation in the proof of Lemma A.4, we have

B2 = P2(80)50 - P1(50)8(2) + 9053()\2(50) - 50)(@ - PI(SO))
= =250 + 80ty L5t + O(BE)) (=bo + O(ER)) + O(ER) +0lay ™) +0( )
0
= -T2+ 00) + Oy )+ 0(-y)
4
Similarly,

_}2 _ 2

B =21 82 = Pa(s0) — 55 — Bobjso(Aa(s0) — s0) — bo B2+ 0(gp ")

-1 1-03 -1 25
= 18 - (= -5 9ob4)+0(b4)+0( )4 0()
0 %

S 0ob3+0(b4)+0( )+O(q0)

Hence Lemma A.5 is proved.

b2)+0 72T )
Lemma A.6 a(sg) =e ORI +0t T+ (%).

Proof. We know that

s0 / D,
o) =can{ (@) + s ) A
Since
~ . 1 V(s P —s- . (s = Pr)az(s), ai(s) +az(s)Pis
QO(S)_ D1+(3—P1)(/~\(8)_P1) ((Pl )/\( )+ s /\( )+ AS ) ANSZ )
and Xa(s0) — 50+ O(b2)
X _ N2 So0) — So 0
N = S0 + 10 — bo
then by use of the computation in Lemma A.3, we have
. 1 1
Qo(s) = 7= G0 | op0) 50 + 0 = bo( (P1 = s)(Aa(s0) = s0) + O(qy ) + O(% )

1 9 2
= i 0 + 06 T + O(5)
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Hence

S0 - 2 1
Qo(s)ds = O(b3) +O(gy ") + O(=) (A.5)
bo qO
Additionally, it is easy to get
D, 1505 + O(bg) i 1 2 7 1
- = +0(q, ")+ O0(5)=14+00:)+0(qy ")+ O(=) (A6
DT RIGE ~ T o T O ) +0(E) = 1+ 06) + 0l ) +0(5) (46)

By the expression of k(s), and noting As(s) = —1, then we have

k(s)

2
©/A2(s) — 444 (s) — Ay (s)

2
From the below Lemma A.7, we know A;(s) < —Cq¢j~", here C' > 0 is a constant depending only on by
and 7. Hence k(s) is bounded for large ¢o. Combining this with (A.6), we have

S0 D1 B 77%1
bo D1+ (s—P)(X— Pl)k(S)ds =0 ™) (A1

Substituting (A.5) and (A.7) into (A.4), we heve

__2
O(bg)+o(q() Tt )“I’O(q%)
a(SO) —e 0

_2
Lemma A.7 Ai(s) < =Cqg~", here C' > 0 is a constant depending only on by and ~.
Proof. We denote A;(s) = 2sD; Al (s)A%(s), where

Since for small by, we have

< So+mn0—s s —bg
AMs)—s=——""— _—
50 + 1o — bo S0+ 1Mo — bo

-1 -2 1
> /2 5—0oby + O(bg) + Olgp ™~ )+0(q—2)
0

((1 = Bb)Aa(s0) — s0) + Bob5 (A2 (s0) — s0)

hence
A=s)+(s—P) F05+00) -2 1
Al(s) = ¢ -2 +0(gp ")+ O(=
=T ot Loy OO
2 2
> Boboy | —— — 2bo + O(b3) + O(q " ") + O(=)
y—1 a5
__2_ 1
=2by +0b3) +O(qy ") + O(q_z) >0 (A.8)
0
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Thanks to the choice of 8y = 24/2(y — 1).
For the term A2(s), we substitute the expression of Qo(s) into it, we have

2(6) = X(s sDq -2 i
4160 = X005 pE ey HOu T +0p)
_ Xa(s0) = 80+ O(b3) ) —2 1
- S0 + 10 — bo (bo + O(bg) + O(q )+O(q(2))) <0 (A.9)

Noting 0 < sp + 1o — bp < qu , then comblmng (A.8) and (A.9), we know the lemma holds.

Lemma A.8 boK3 — Ky = 2(0.¢)*(¥Y—— 2(7 L b2 +0M) +0(qy ") + O( )) on the boundary
r=byz.
Proof. By the expression of by K3 — K4 in Step 1 of §4, we have on r = byz:
- P (b
boKs — Ky = 2(0.)2bo(A(bo) — bo)( + b2 + B3Py (bo) — %bg)
. _z 1
= 2(0,9)?bo(Ma(bo) — bo + O(bg))(§ + O(b3) + O(gy ")+ O(q_z))
0
2
= 209220y 00 + 06,77 + 0()

4 q
Lemma A.9(Hardy type inequality) If u(z) € C'[1,T], then

g —-5.2 16 2 g =L 2 2 Loy
272u?(2)dz < —(1+b3) 272 (2)[Pdz + (14 z)u(1)
1 9 1 3 b5

Proof. From [14] Theorem 330, the Hardy inequality is

/ SRR (2)dy < (-2 )p/ 2T (2 (2))Pdz (A.10)
0 r—=1""Jo
wherep>1r>1f()>0andF = [y f( dsforz€(0+oo).
As in [4]Lemma 12, we put G(z fl |u'(s)|ds, then u?(z) < (G(2) + |u(1)])? < (1 4+ B2)G*(2) + (1 +
7=)u?(1), that is,
T T s 2 1
/ ~3a2(2)ds < (1 +bg)/ 3G (2)ds + 5(1 (1) (A1)
1 1 0
Set f(z) =u/(z)if z € [1,T], f(z) =01if 2 € [0,1) U (T, 0) = [ |f(s)|ds for z € [0,+00). Let
r= g,p = 2 in (A.10), then we have
S 16 (% _1
272 F%(2)dz < — 272 f2(2)dz (A.12)
0 9 Jo
In terms of the definitions of f(z) and F(z), (A.12) gives
T s 16 (7 4
/ 272G (2)dz < 3/ 22 (2)]Pdz (A.13)
1 1

Substituting (A.13) into (A.11), we know that Lemma A.9 holds.
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