A NOTE ON THE RIEMANN PROBLEM FOR GENERAL STRICTLY
HYPERBOLIC SYSTEMS

STEFANO BIANCHINI

ABSTRACT. We consider the construction and the properties of the Riemann solver for the hyperbolic
system
(0.1) ut + f(u)z =0,

assuming only that Df is strictly hyperbolic. In the first part we prove a general regularity theorem
on the admissible curves T; of the i-family, depending on the number of inflection points of f: namely,
if there is only one inflection point, T; is C'>'. Note that if the i-th eigenvalue of Df is genuinely
nonlinear, by [7] T; is C*!, and we give an example of a Lipschitz continuous admissible curve T; if f
has two inflection points.

In the second part, using the same analysis of [4], we show a general way for constructing the curves
T;, and we prove a stability result on the solution to the Riemann problem. In particular we prove the
uniqueness of the admissible curves for (0.1).

Finally we apply the construction to various approximations to (0.1): vanishing viscosity, relaxation
schemes and the semidiscrete upwind scheme. In particular, when the system is in conservation form,
we obtain the existence of smooth travelling profiles for all small admissible jumps of (0.1).

1. REGULARITY OF THE ADMISSIBLE CURVES FOR GENERAL HYPERBOLIC SYSTEMS

Consider the n x n strictly hyperbolic system of conservation laws
(1.1) ug + f(u), =0.
Let A;(u) be the i-th eigenvector of A(u) = Df(u), and 7;(u), ;(u) the corresponding right and left
eigenvectors, normalized by
1 i=j
0 i#j
Denote with R;(s,u), S;(s,u) the i-th rarefaction and shock curves starting in u, respectively. It is well

known that these curves are defined for s € [—d1, 1], 01 small, and that can be parametrized by the i-th
coordinates, i.e.

ri(w)| =1, (l(w),ri(u) =

s = <li(u0),Ri(s,u)>, s = <li(u0),5i(s,u0)>.
See for example [5], [6].
In [8] it is shown how to construct the entropic self-similar solution a Riemann problem for (1.1), i.e.
with the initial data

u <0

(1.2) u(0,-) = v 150

The fundamental step is the definition of the admissible i-curve T;(s,u) passing through u: each point
T;i(s,u) can be connected to u by a finite union of rarefactions and admissible shocks of the i-th family
with increasing speed. Following [8], we say that the a shock [u, S;(5,u)] is admissible if satisfies the
Rankine-Hugoniot conditions,

(13) f(Sz(§>u)) - f(u) = U(S,’LL) (Si(gy U) - U),
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and for all 0 < s < § we have that

(1.4) U(Si(g,u),u) < U(Si(s,u),u).

In [8] it is shown that the above condition is equivalent to

(1.5) o(Si(5,u),u) > o(Si(s — 5, 5:(5,u)), Si(5,u)),

and that Tj(s,u) exists and it is unique in a neighborhood of u, under the assumption that the flux
function f has a finite number of inflection points. The last condition means that for all ¢ = 1,..., IV,
the directional derivative of \; along r;(u), DX;r;(u), vanishes only on a finite number of hypersurfaces
Fm, m=1,..., M;, and each F; is transversal to the vector field r;(u).

As it is shown in [8], for fixed s, u~, the point T;(s,u) can be constructed patching together a finite
number of curves R; and S;. Moreover using the same proof of [8] or the results of Sections 2 and [4], one
can prove that 7; is Lipschitz continuous. The following example shows that this is the best regularity
we can expect in general.

Ezample 1.1. Consider the following triangular system:

ug + (u(w—a)*Ba—u)) = 0
(1.6) 2 T
vt + Avg — u?/2 = 0
with a € (0,1]. Since we will consider solution with u € [0,4¢«], the above system is certainly strictly
hyperbolic for all 0 < o < 1if A > 4. Denote with f(u) the flux function of u, namely

flu) = u(u —a)*(Ba — u).
It is easy to see that the shock 1-curve for this system passing in (u,v) is given by

2 _ 2 _
Pow )W)
2(A —o(s)) s—u

For this system, we can explicitly construct the mixed curve T; starting in (0, 0): in fact, for s € [0, «],
T;(s;(0,0)) coincides with the shock curve S;(s, (0, 0)):

82

= e
For s € [, 3a), let x(s) be the point in [«, s) determined by

(1.9) f'(=@(s))(s — 2(s)) = f(5) = f(x(s)).

Then the curve T;(s;0) is given by

T A s? — a%(s) / fs) = f(x(s))

(1.10) v(s)—ﬁ-i—/a )\—Al(s)ds+2()\—a’(s))’ o'(s) = PR
where A\ (s) = f'(s). In fact, the point (s,v(s)) is connected to (0,0) by a shock, a rarefaction and a
shock: the first shock start at Py = (0,0) and ends in P; = S;(a;(0,0)) = (o, «/2)), and has speed 0.
The rarefaction starts in P; and ends in P, = Ry (z(s) — «, P), with speed increasing from 0 to f'(z(s)).
The last shock is S;(s — z(s); P2), and has speed equal to f'(z(s)).

Finally for s > 3a, the curve T (s; (0,0)) coincides with the shock curve Si(s; (0,0)), given by (1.8).

Similarly the mixed curve T} starting in P; is given by (1.10) for a < s < 3a and by the shock curve
S1(s; Py) for s > 3, which is the given by

o? s2 — o2

(1.11) o) =t o)

(1.7 v(s) =v+

(1.8) o(s) = (s — @)*(3a — s).

" (s) = s(s — a)(3a — s).

For s = 3a we have that

9a?

T

We now compute the derivatives of these curves for s = 3a. We have with elementary computations that
the first and second derivatives of (1.10) are given by:

dv 3a  24at dv 1 670 288aS
(1.12) vl - _Ba Mof dvp 1 677, 28807
G|, "N N de| ., A A X

T1 (3a,P0) = Sl (30&; P()) = T1(30é; Pl) = 52(301; Pl) =
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FIGURE 1. The curves Ti(s, (0,0)), Ri(s, P1) and T} (s, P;) for the hyperbolic system (1.6).

On the other hand we have that for the Rankine-Hugoniot curve (1.8), starting in (0, 0),

@ _ 3_a _ 18a*
ds A A2

(1.13)

s=3a
Instead, the Rankine-Hugoniot curve (1.11) starting at P; has derivatives

dv _ 3a 24t dz_v 1 58a°  288a’
ds|,—s, A A2 7 ds?

(1.14)

. AT e ta

s=3«

Thus we obtain that the curve T (s, P;) is only C*! in s = 3a, and the curve T} (s, (0,0)) is only Lipschitz
continuous in s = 3a.

Note that Ty (s, Py) is only C'! because in the interval [a, 3a] there is an inflection point, and the
jump in the second derivative is due to the fact that 2’ = —3/2 for s - 3a~—, but z = 1 for s > 3a:
thus the function z(s) is only Lipschitz continuous. On the other hand, there are two inflection points in
[0, 3], and the Lipschitz continuity of T} (s, (0,0)) is due to the fact that we switch from the shock curve
S1(s — a, Py) to the shock curve Si (s, (0,0)) as s crosses 3a.

The above example proves that if there are at least 2 inflection points, then the curve 7} is in general
Lipschitz continuous. On the other hand, it is well known that if the field is genuinely nonlinear, then
the curve T; is C*! [7], so that one expect an intermediate situation when there is only one inflection
point: as example 1.1 suggests, T; should be C1:!.

Assume that f has only one inflection point in the i-th family, i.e. the i-th eigenvalue satisfies

DXi(u)ri(u) =0

in a hypersurface transversal F to the vector field r;(u). Consider a point u~, and and let T;(s,u™) be
the mixed curve of the i-th family starting in 4~ and parametrized by

<li(u*),Ti(s,u*) — u*> = s.

Assume for definiteness that DA; (v )r;(u™) > 0 and DX;(u™ + sri(u™))r;(u™ + sri(u™)) < 0 for some
s > 0: this means that the rarefaction curve R; will cross the hypersurface F for some s; > 0

In [8] it is shown that the curve T} for s > 0 is formed by a rarefaction until s = sy, i.e. T;(s;,u~) € F.
Then, for s; < s < s9, it is composed by a rarefaction R;(r,u~), 7 € [0,z(s)], starting in v~ and ending
in the point P, = R;(z(s),u ), followed by a shock S;(7', P1), 7' € [0, s —z(s)], where z(s) is determined
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FI1cURE 2. Single inflection point in the i-th family.

by the equation

The value s, is determined by the relation
(1.16) f(Si(s,u™)) = flw™) = Xi(u™)(Si(s,u™) —u™).

Finally, for s > so, T;(s,u™) coincides with the shock curve S;(s,u~). Note that by letting s — §
the admissibility assumption (1.5) implies that A\;(T3(5,v7)) < o(Si(5,u7),u™), and by the genuinely
nonlinearity for s > s; we obtain that

(117) )\Z(TZ(Sz,Ui)) < O’(Ti(SQ,ui)) = /\i(uf),

i.e. Aj(u7) is not an eigenvalue of A(T;(s2,u™)).
In [8] it is shown that the mixed curve Tj(s,u~) is C? for s # sa, i.e. outside the point P, =
Ti(s2,u~) = Si(s2,u™). The proof is based on the fact that the point z(s) depends smoothly on s.
We now prove that in that point the curve is C'. In fact, differentiating (1.15) for s = s;, we have
aS; _ d:r) dx _dz

(A(Pg) — )\Z(uf)I) < D5 + DuSiri(u )E = (A(uf) - /\i(u’)I)ri(u*)E + D/\iri(u )E

(P~ )

= D/\iri(u*)j—i: (P2 — u*).

By definition we have
oT;
Js

Dy,Siri(u™)—| ,
+ Dy Siri(u )dssz—

s 0s

so that, using the fact that (I;(u™),8T;/ds) = 1 and (1.17), we obtain

= D)\iri (u_) Z—asj

82

oT;

0s (A(P2) _Ai(u_)f)_l (P2 —u_)

(1.18)

(AP) ~N@)N) (B—uT)
(Li(u™), (A(Py) = Xi(u™)T) " (Py — u™))
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Repeating the above computation for 0T;/ 63|s+ we obtain
2

a;;l L Cilgsl +(A(P2)—/\i(u*)1)*1(p2_uf)
(AP = X)) (P —u) or,

)

8o

(1w ), (A(Py) = Ai(u)I) (P —u-)) D5
and as a Consequence

dai
ds

_d(fi
+_ ds

S2

d
= D)\iTi (Ui) d—z.

82

S2

This concludes the proof. One can also verify that if v~ € F, then Tj is C>.

2. CONSTRUCTION OF THE MIXED CURVES

Consider the hyperbolic system (1.1) with diagonal viscosity,
(21) ut + f(u)w —Uge =0

It is well known that to identify a small travelling profile of the i-th family one needs n + 2 parameters:
the value wu, the derivative of u in the i-th direction r; and the speed o; of the profile [4]. In the case
of (2.1), it is known that there is an invariant manifold, which contains all small i-th travelling profiles,
invariant under the flow generated by the ODE

(2.2) —ouy + f(u)y —ugy = 0.
In this manifold, the above ODE takes the form

uy = viTi(u,vi,0;)
(2.3) Vie = 0igi(u,vi,04)
Oix = 0

The function 7; gives the component of the derivative u, when we know the i-th component u; , = v;,
while ¢; describes the internal dynamics of the travelling profile.

Aim of this section is to prove that it is possible to associate three curves to the system (2.3) under
the assumptions that the functions 7;, ¢; are smooth and that

0i
9% < 0.
These curves, which we will denote as R;, S;, T;, correspond to the rarefaction curves R;, shock curves S;
and the mixed curves T; for the hyperbolic system (1.1). Once fixed the functions 7;, ¢;, the curves R;,
S;, T; are unique, but of course they will depend on 7;, ¢;. However, we will prove that if the “rarefaction
curves” R; and the “shock curves” S; of (2.3) coincide with their hyperbolic counterparts R;, S;, then
also the “mixed curves” 7; coincide with the curves T;. As a consequence the uniqueness of the admissible
curves T; follows.

In particular, using the functions 7;, ¢; obtained by the center manifold theorem applied to (2.1), we
can construct the curves T; without any assumption on the number of inflection points of f, see [4].

(2.4)

Consider a fixed base of vectors 7;, i = 1,...,n in R?, and its dual base [;, normalized by
- 1 j=1
| =1, lj,rs) =
Rl=t ) ={) 7]

We will use the following norm in R™:

|u| = max{|<l},u>|;i = 1,...,n}.
Let #; be a smooth vector valued function defined in a neighborhood of a the point (@,0, \;) € R**2,
(25) T, = Fi(u,vi,ai), with ’I:i(ﬂ,o,j\i) =T,
normalized such that

(26) <li,Fi(u,vi,oi)> =1.
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The last condition is not a restriction because for any smooth function 7; satisfying (2.5) we have

2.7)

~ ~ ! ! ! ! ! !
ri(u,vi,ai) —ri(u ,vi,ai) < C’o{|u—u | + |Ui —vi| + |ai —ai|},

where () is a sufficiently big constant and thus
. 1
<li7 ’I"i('U,, Vi, UZ)) Z 57
if (u,v;,0;) is sufficiently close to (@,0, ;). We will call #; the i-th generalized eigenvector.
Similarly, let ¢; be a smooth function satisfying
0
60’,’

(28) ¢z = ¢i(u7vi7 Ui): ¢l(ﬂ7 0> S‘z) = 0> ¢(ﬂ, 0> 5‘) S —c<0.

Since we have

(2.9)

¢i (U, Vi, Ui) - d)l (ula U;: 0-:)

the last conditions in (2.8) imply that

< C’O{|u—ul| + |vi = vi| + |o —0'£|},

19¢;

c 0o

for some constant Cy. For reasons which will be clear later, we define

(2.10)

¢i(u7 Vi, Ui)

)

+ 1‘ < Co{lul + |vi| + |oil},

!
(2.11) Ai(u,v;,00) = Ed)i(u,vi,ai) +o0;
as the i-th generalized eigenvector. By choosing Cy > 1 sufficiently big, we can also assume that
1
(2.12) ~{|Duti] + 91| } < Co-
Note that from (2.8) there is a unique smooth function &; = ;(u, v;) such that
(2.13) @i (u, v, 63 (u, v;)) = 0.

Fix a point v~ € R™ sufficiently close to @ and let §; be a small constant. For any s < d; consider the
family of Lipschitz continuous curves with values in R?+2

(2.14) Ti(s,u) = {7 [0, 8] B, () = (um,vim,oim)}

such that

w(t) —u”[ =71, |v:(0)] =0,
for some small §; < 1/2Cy. We define in I'; the norm

w(0) =u”, uilr) =u; +, vi(r)| <01, |ou(r) = Xi| <2006 <1,

(2.15) Iy =l = flw = w']| g + [loi = wil| po + Sl = | o
For any v € T';(s,u™), define the function f;(m;7v), 7 < s as
. T - T 1
(2.16) fi(rsm) = / i (7i(6)) ds = / {E¢i (u(€),vi(c), 0i(c)) + 0i(€)} d.
0 0
It is easy to verify that we have the estimates

(2.17)

$ir2) = 1] < Cor{ =+ = il + 438 = i = 4G =

where we used (2.10). For any function f defined in [0, s], denote with convf its convex envelope, i.e. the
set

convf(z) = inf{&f(y) +(1-0)f(2), x=0y+ (1-0)z; x,y,z €[0,s], 8 €0, 1]}
We now define the i-th rarefaction curve R;(s,u~) as the solution of the ODE
(2.18) i = 7 (u,0,5:(u,0)).



A NOTE ON THE RIEMANN PROBLEM 7

us

|
5 () s s o 53 s

F1GURE 3. The lines Ry, S; and 77 in the triangular case.

The i-th shock curve S;(s,u™) is the value u at 7 = s of the solution of the system

T

u(r) = u*+A o (u(s), vi(c), 04(<)) ds

vi(t) = c(fi (T;u,vi,ai) - TO'Z')

op = fi(s;u,v5,04) /s

(2.19)

for 7 € [0,s]. Similarly, the i admissible curve T;(s,u™) = u(s), where, for any fixed s > 0, u is the
solution of the system

A
\1
N
[

w ot [ R 0)ds
0
(2.20) vi(T) = C(fi(TQUa'Ui:Ui)_Convfi(T;U;Uian))
d
oi(t) = Econvfi(T;u,vi,Ui)

with 7 € [0,s]. For s < 0, we consider the concave envelope of f; in the second and third equation of
system (2.20).

Remark 2.1. Consider the triangular system of example 1.1 with diagonal viscosity

) {ror G ey e 2

In [3] it is shown that, using the center manifold theorem, there is a function 7y satisfying (2.5),(2.6).
Moreover it is shown that the equations on the manifold are

ur = Fi(u(r),vi(r),01(7))
(2.22) oz Al(u(?_gl

so that the function ¢; = Ai(u) — o satisfies (2.8). It is easy to check that in this special case fi(s) =
s(s — a)?(3a — s), and then we have the identities Ry = Ry, S; =S, 71 = T1.

We consider only the construction of 7;(s,u~) for s > 0, since (2.18) is a standard ODE and the
construction of S; and of 7; for s < 0 are similar. We basically repeat the computations of [4].

On the set I';(s,u™) consider the transformation Q;; : v = (u,v;,0;) — ¥ = (4,0;,6;) defined by
(2.20), i.e.

a(r) = u” + /T 7 (u(s), vi(s), 0i(c)) ds
0
(2.23) B;(7)

C(fi(TEU:'Ui;Ui) —COHVfi(T;U,Ui,Ui))

Gi(t) = iconvfi (T;U,Ui,(fi)

dr
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First of all it is easy to prove that the new line 4 = (4, 9;, 6;) belongs to I';: in fact, using (2.7) we have
that -
<l_j,/ fi(§)d§>‘ < max{T,éngTél + C’0|u* - ﬂ|} =7<46,

0 J

"U,(T) - u*‘ = max
j

|vi(r)| < C/OT|f’(<;7) — f1(0;y)|ds = c‘

() = Xi(u,0,00,(0))]| | < serCioir <o,

+ C()|U_ - 17,| < Cyoy +4C35% + Co|u_ — 17,| < 2Cp0;.

. 1
() = M| < 2+ e

for s, 6; sufficiently small. Moreover f; is a C"' function, which implies that &; is at least Lipschitz
continuous, while u(7) and v;(7) are C.
Next we show that the map €2; 5 is a contraction in I';(s,u™) if s is sufficiently small: in fact we have

/OT (ﬁ- (u,vi,00) — 7 (u', (v3)', g;))d,r

< C()T{ Hu —u

|u(r) —u'(7)] =

Iee

/{:{@ (u,vi,04) — @i (u', v}, 07) + c(oi — aé)}ck

< OoT{H’LL —u + ‘ v; — U} + 400061‘ oi — o, },
Lo Lo Loo
! 1 ! ! ! !
oi(T) — O'i(T)‘ < E‘ oi (u,vi,ai) + co; — ¢i(u ,vi,ai) + co; Lo
SCO{HU—U,’H +‘vi—vé +40051‘0'i—0'£ }
Loo Lo Loo

Thus we conclude that
(2.24)

!

IN

A= Co(2s + 61)||u — u'”Loo + Co(2s + 51)||Ui — 1)§||Loo +Cy (s +4cCyb1s + 4006%) ||O'i - 0’;||Loo

IN

)

10CH(1 + ¢)dq (Hu — || o + [|vi = 0f]| e + 01 ]|oi — o-;”LOC) < %H'y -
if s = O(1)6? and 6, is sufficiently small.
Now we define T;(s,u™~) by
(2.25) Ti(s,u™) = u(s),
i.e. the end point of the solution v(7) € T';(s,u™) to system (2.20).

Remark 2.2. Note that to find the point 7;(s,u™) we have to solve the system (2.20) for 7 € [0, s].
This is similar to the hyperbolic case, where to construct a line T;(s,u~) we have to find the point
u(s) = T;(s,u~) which can be connected to u~ using only admissible shocks and rarefactions of the i-th
family.

We prove that the line 7;(s,u™) is Lipschitz, and its derivative is close to 7;. In fact, if y € T';(s,u™),
v € Ti(s + h,u™) are the fixed points of the transformation €; s, by the contraction property (2.24) we

have
7= lo.al) <20 (Vl0.0) =l < O5h:
Thus from the first equation of system (2.20) one obtains that
(2.26) Ti(s,u™) — Ti(s + hy,u™) = O(1)sh.
In particular 7;(s,u ™) is differentiable in 0 and has derivative
oT;

Js |, =7 (u*,O,ai(u*,O)).

We now prove a stability result for the curves 7;, analogous to the stability for shock of 1-dimensional
scalar conservation laws.
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Lemma 2.3. Fiz u—, and let 0 < s < s'. Denote with

() = (u(r),vi(r),03(7)),  7i(r) = (W (7),vi(7), 0%(7)),

the solutions to (2.23) in T';i(s,u™), Tiy(s',u™). Then

(2.27) oi(t) > oi(1) T € [0, s].

Proof. Consider f!(1;7') and denote with convf; is its convex envelope in [0, s]. Define the quantities
d

(2.28) wi(r) = fi(m;7') —convs fi(m37"),  &(7) = —convs fi(T3 7).
T

Note that by construction w;(7) < v}(r), and that v} — w;, £ — o} are increasing and positive.
We will now use the following norm on I';(s,u™):

(2.29) Il = dullull o + 0rfvill o + llo] -

It is easy to prove that the map (2.23) is contraction w.r.t. the norm || - ||x, i.e.

1
1965 (0) = 20Nl < 5lv ="l

We can eStlmate Qi’S(U | 0,s ,wl',é-i) as
s
X 0

X (1(),wi(), 6(9)) = X (u(), (), 01(5)) |ds

H Qi,s (UI|[O,S] y Wi, gl) - (ul|[0,s] y Wi, gl)

s
+C/
0

+/s i (u(s), wi(), &(s)) — S\i(U(c),vé(Q,Ué(())‘d(
0

< 5Ca(1+0) [ {(01(6) = wi0) + (660 - (6)) s < 10Ca(1 + i)

Fi (), wil6), () = 7 (u(s), 01(<), 74(5)) | s

Thus by the strict contraction property

fi = filio,s)

This implies immediately that f;(s) > fl(s) + |vi(s)]/2.
Assume now that o;(7) < o}(7) for some 7 € [0, s]. Since f;(s) > f!(s), there is a point § € [0, s] such
that f;(5) < f/(5) and

(2.30) ‘ < 10CE6,vl(s) < %|Ui(s)|

< Cos|ly —v'| < 2COSHQi,s(U;wi:£i) — (u,w;, &)

conv f;(s) = fi(s).
The last equality implies v;(5) = 0. It is easy to check that the curve v restricted to [0, 5] is the solution
to (2.20) in I';(5,» ). But this is in contradiction with (2.30). O

For any u~ we define the jump [u—,S;(s',u )] admissible if for all s € [0, s'] one has
(2.31) oi(t) >0,  TE|0,5],

where o} is the speed of the shock and o; is obtained as the solution to (2.20) in I';(s,u ™). Using the
same proof of Lemma 2.3, it is easy to prove that this is equivalent to the condition of admissibility given
in [8],

(2.32) o > o

= Uiy

where o; is the speed of the jump [u™, S;(s,u7)].
We conclude then with the following theorem:

Theorem 2.4. For all u~ close to u, and for any s sufficiently small, the curves Ti(s,u™) solution to
(2.20) are Lipschitz continuous and admit derivative for s = 0. Moreover these curves are the unique
curves such that each point u(s) = Ti(s,u™) can be connected to u~ by patching a countable number of
rarefaction R; and admissible shock S;, in such a way that the corresponding speed o; is increasing.
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Proof. By construction the line v € I';(s,u ™) solution to (2.20) is the union of generalized rarefaction or
shocks. In fact, if f;(7) = convf;(7) in some close interval [y, Sm+1] C [0, s], then v(7) clearly coincides
with the rarefaction R;(7 — sm,7vi(s;)) for 7 € [Sm, Sm+1]- On the other hand, if f;(r) > convf;(7) in
some open interval (s, Spts) C [0, s], and f;(sn) = convfi(syn), fi(snt1) = convfi(spt1), then it is clear
that v(sp+1) = Si(Sn+1 — Sn, Y(Sn)). By Lemma 2.3 these shocks are admissible.

Suppose now that 4 is another curve obtained by patching rarefactions and admissible shocks such
that o; is increasing. Then it is clearly a solution to (2.20). By the uniqueness of the solution the result
follows. O

As a corollary we have that

Corollary 2.5. Assume that the rarefactions and shock lines are obtained using the hyperbolic function
f- Then for every u™ there is a unique admissible curve T;(s,u™) for s sufficiently small.

Proof. In [4] it is proved the existence of the admissible curves T;(s,u ™) obtained by patching admissible
shocks and rarefactions by means of the center manifold for (2.1). The above theorem gives the uniqueness

of the line T; = 7;. |
Remark 2.6. Assume that we have the function 7;, ¢; for i = 1,...,n and that

(2.33) span{Fl,...,Fn}:]R", A << Ao

We can construct the curves T;(s;,u), i = 1,...,n for |s;] < 1, |[u — @] < 01, with §; sufficiently small,
and moreover we have that the composed map

(2.34) (51, 8n) n<sn,n_1 (sn_l,n_Q(sn_Q, . ..ﬂ(sl,u)))>

has an invertible derivative in {s; = 0} because of (2.33). Thus, by the implicit function theorem,
given u~, ut, we can connect u~ to uT by a sequence of rarefactions R; and admissible shocks S; with
increasing speed.

The inverse of (2.34) defines a Riemann solver, which in the conservative case is unique by Corollary
2.5.

Remark 2.7. If instead of the last inequality in (2.8) we assume that
0

i

¢(a,0, bar)\i) >c>0,

then we can repeat the computations of this section by considering the system

i = w [ A u00)ds

0
C(fi(TEU:'Ui;Ui) - COHCfi(T;U;vi,Ui))
G;(r) = %concfi(v';u,vi,ai)

where concf; is the concave envelope of f. In the hyperbolic setting, it means that we are going from u+
to u~, or equivalently that t is reversed.

<
N
—

3
~

I

3. APPLICATIONS

We now consider some applications of the construction of the curves 7;. Our aim is to prove that
we can obtain the functions 7;, ¢;, and thus the curves R;, S;, 7; using the center manifold theorem
applied to many approximations of the hyperbolic system (1.1): vanishing viscosity, relaxation schemes
and semidiscrete schemes. By Remark 2.6, we can then specify a Riemann solver “compatible” with the
approximation.

In particular we can identify all the small travelling profiles of these approximations. If the system is
in conservation form, i.e. the shock curve satisfy the Rankine-Hugoniot condition, Corollary 2.5 implies
that all the small admissible jumps [u™,u™] of the system (1.1) have a smooth travelling profile ¢(£) such
that p(—00) = U™, w(+00) = u* (see [1], [9], [10]).
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3.1. Vanishing viscosity. Consider the parabolic system

(3.1 ug + A(u, ug)uy — B(u)ug, = 0.

Note that particular case of the above system is the system in conservation form
ug + f(u)s — (B(u)ug) = 0.

The matrix A(u,u,) is assumed to be strictly hyperbolic and B(u) a positive definite matrix. Denote
with \;(u, u,) the i-th eigenvalue of A(u,u,) and let r;(u,u,), l;(u,u,) be the corresponding right and
left eigenvectors.

We assume that, by means of a change of coordinates y = J(u)z, B(u) can be written as

(3.2) wa=ﬂw{8 C&)]I%m,

where C'(u) is a k x k uniformly positive matrix. We assume moreover Kawashima’s dissipative condition,
ie.

(3.3) (li(u, uz), B(u)ri(u,ug)) > 0.

The change of coordinates y = J(u)z transforms the matrix A(u,u,) in

o @t = [ gl e |

where A1y is a n — k-dimensional matrix, and Ass is k-dimensional. Note that by (3.3), we have that
(3.5) rank{[ (Ay1(@,0) — A(@)I) Ao (@, 0) ]} =n— k.
The equation for travelling profiles is the ODE
(A(u,um)um — aI)uI = B(u)Uyz,

which can be rewritten as the first order system by setting u, = Jp,

Ug == J(u)p
(3.6) B J(wp, = (A(u, Jp) = oil = B(u)(DJ ()] (w))p) J (w)p
g; = 0

Due to the assumptions (3.2), and its consequence (3.5), the equation for p = (p1,ps), with p; € R*=*,
po € R¥, can be divided into two parts: n — k algebraic relations and a system of ¥ ODE for p,.
Using (3.5), we can write

v =Q(@)a,
where o € R¥ and Q is a k x (n — k)-dimensional matrix. For simplicity we assume the condition
(37) det (An(ﬂ,, 0) -\ (17,)[) #0,

so that () takes the form

(3.8) Qa) = —(An(a,o) - /\i(ﬂ)I)_lAIZ(a:O) ] ’

I

but similar computations can be done under the assumption that

i[5 stey |2} =5

Note that the above condition is certainly satisfied by (3.8), but it is not implied by (3.3).
Let v = (v1,v2), where vs is k-dimensional. The assumption (3.7) implies that we can obtain v; as a
function of vy by

(3.9) v = — (An NI — (J}.L}(DJJ)U)HY1 (A12 + (JB(DJJ)’I))12)’1}2,
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if v is sufficiently small, so that the system (3.6) becomes

Ug = J(u)v
(310) C(U)'U27m = (A22 — A21 (AH — )\iI)_lAlg — Ui[ — d(u, ’U)’U) V2
g; = 0

for some smooth function d(u,v).
The linearization of the system (3.10) around the equilibrium (@, 0, A;(@)) gives the linear system

Uy = J(u)v
(3].].) C(’L_L,O)UQJ = (AQQ(’L_L,O) - A21 (All - )\iI)ilA12(’L_L,0) - Al(’L_L)I)UQ
ag; = 0

where v = (v1,v2) can be obtained by
v = — (A11 (ﬂ) — Al (ﬂ)[) 71A12(ﬂ)1)2.

We can write this system as

X =PX,
where the matrix P is the n + k + 1 matrix
0 I 0
—1
(3.12) P=1|0 Ay— Ay (Au - M) A= NI 0
0 0 0

It is clear that P has a null space of dimension n + 2 because A;(@) is an eigenvalue of A(%,0), so that
there is a center manifold C; of dimension n + 2 for the original system (3.6).
In the space (u,v,0;) € R* 1 the invariant manifold is tangent to the eigenspace

(3.13) M; = {U,Uﬁi(ﬂ),ai},
so that we can write
(314) v; = Cji (’U,,Ui,O'i).

Since for (u,v; = 0,0) we have that the solution to (3.6) is constant, this implies that C;;(u,0,0;) = 0,
i.e.
(315) v = Uﬁi(u,vi,ai),

for some smooth vector function 7;, normalized by (l;(@),7;) = 1. Moreover C; is tangent to the eigenspace
M;, so that

T (17,, 0, )\l(ﬂ)) = Tl(ﬂ)

The equations on this invariant manifold are

Uy = /Uifi(uy (%7 Ui)
(3.16) ci(u, 05,0050 = (ai(u,vi,ai) - O'iI)’Ui
ag; == 0
where we defined the function
(3.17) ci(u,v;,0) = <li(a), B(u) (7 (u, v, 05) + viFs 0 (u, v3,05)) >,
(3.18) ailu,v5,05) = (L), A, vi7)Fi(u, 01, 07) ) = vi(1i(w), B(w) DFifs (u, vi,03) ).

Note that by the assumption (3.3) we obtain that in a neighborhood of (@, 0, A\;(@)), ¢; is strictly bigger
than 0. Defining

. ai(u,v;,0;) — 0y
.1 : : : i —————
(3 9) ¢z(uavlagl) Ci(U,Ui,Ui) I
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we can apply the results of Section 2: in fact,
0 1

5 @i (0. () = = ({1i(a), A@, 07 ) 1) -
1

C; (’a, 0, )\Z(ﬂ,)) ’

1
2
I3

(1@, A, 0)ri(®) = Xi(@)) i

C

because (l;(@),7; ) = 0.

3.2. Relaxation schemes. Consider the relaxation problem

{ ur + A1 (u, v)up + Ar2(u, v)v, 0

(320) v + A21 (fu,’ ’U)’U/m + A22 (’U,, ’U)'Uz = Q(’U,, ’U).

where u, v are n-dimensional and k-dimensional vectors, respectively.
The equation for travelling profiles is the ordinary differential equation

{ (All(u,v) — aI)uz + A (u,v)v, = 0
Asq (u,v)ug + (AQQ(U,U) — O'I)Ux = Q(u,v).
We assume that the condition @(u,v) = 0 uniquely determines v as a function of u, i.e. a manifold of
equilibria v = h(u).
The linearization in the equilibrium (%, = h(u)) gives the linear system

(3.21)

(3.22) (A11(a,0) — ol)uy + Ar2(a,0)v, = 0
' A21 (ﬂv ’D)uz + (A22 (ﬂ, ’D) - UI)'Um = Qu(ﬂ) TJ)’U‘ + Qv(ﬂ) TJ)’U.
As in [10], we assume that there is an invertible (n + k) x (n + k) invertible matrix P(u,v) such that
0 0 . To o
(3.23) P(u,v) { Qul,v) Qu(u,v) }P (u,v) = [ 0 S(u,v) } ,

where S is strictly definite negative. With a linear change of coordinates v — Lu + v for some n x n
matrix L, we can set P(u,7) = I. We can thus rewrite (3.22) as

(3 24) (All(ﬂ, ’l_)) — O'I) Uy + A12(’L_L, TJ)’UE = 0

: Aoi (@, 0)ug + (A22(w,0) —ol)v, = S(a,v)v.
We assume that Ay, (@, ) is strictly hyperbolic and denote with X;(u) its i-th eigenvalue, and let 7;, I;
be its left and right eigenvectors, respectively.

The non characteristic condition says that A — \;(u)I is invertible, so that, for o; close to A;(u), the
system (3.21) can be written as

(3.25) ( Z; ) = (o) —ad)” ( Q(S,U) )

Oz = 0

)

whose linearization around (&, 0, A;(@)) is

(3.26) ( . ) = (@) -o1)” < 5(11(,)17)1; )

Oi.x = 0

In [10] it is shown that, under the assumptions that

(Adw,0) = NI) ™" [ g 5(1‘?,17) ]

has no nonzero purely imaginary eigenvalues, and that the following stability condition holds
(3.27) (T, Ava(7,)S ™ (7,5) A7) < 0,
then there exists an invariant n + 2-dimensional space M; of (3.26),

(3.28) M; = span{ﬁ,S_I(G,E)Am(a,ﬁ)ﬁ},
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and by the center manifold theorem there is an invariant manifold C; tangent to M;(u) in (&,9), which
can be parametrized by u, a scalar component «; and the speed ;. Since all the equilibria v = h(u)
belong to C;, we can write

(3.29) v = h(u) + a;g;(u, a;,0;),
with g; (1,0, \;(2)) = S~ (u,v)As1 (@, 0)7; and h(w) = v, Dh(u) = 0. The last conditions follow from the
tangency of C; with M.

Using the non characteristic condition, one see immediately that the equations on C; can be written
as

Uy = oifi(u, ,0;)
(3.30) Qip = oidi(u,;,04)
g; = 0

for some functions 7#; and ¢;. In fact for a; = 0 we are on the equilibrium manifold v = h(u), and then
Uy = a; o = 0. We can also assume that (I;,7;) = 1. Because C; is tangent to M;, we obtain the relations

Moreover a simple computation shows that
- 1
(332) iqﬁl(ﬂ, 0, /\z) = 5 <0,
o <li, A12(a,@)S—l(a,ﬁ)Agl(a,@)m>

by (3.27).
3.3. Semidiscrete schemes. Consider the semidiscrete scheme
(3.33) uf + f(u™) = fw™ ) =0,

where for linear stability we assume that X;(u) > 0.
The equation for travelling profiles is the Retarded Functional Differential Equation (RFDE)

(3.34) —ou' (&) + f(u(€)) — f(u(¢-1)) =0.
In [1] it is shown the existence of a center manifold C; of dimension n + 2 in C*([—1,0]; R"), which can
be parametrized by u, v; = u;z = ([;(4), uz), 0; (see [2]):
(u,v5,04) = (- u,v5,0;) € C*((=1,0],R?),  $(0) = u, $;(0) = v;.

In particular, since for (ug,v; = 0,0;) we obtain the equilibria v = wup, from the map (u,v;,0;) —
o(+,u,v;,0;) one can deduce the two functions

d d
(335) Uz = d_¢(0a u, vi, Ui) = Uifi(u) Vi, Ui): vi(_]-) = <ll(ﬂ)) d_¢(_1; u, vi, UZ)> = v;p; (uv Vi, Ui) .
T T

The function 7; gives direction of the derivative u, once we know the i-th component v; = u; , while
v;P; gives the value of the i-th component of the derivative at £ = —1, i.e. u; ,(—1).

The equation for v; can be obtained from (3.34): in fact, differentiating w.r.t. z and taking the scalar
product with I;(a@), it follows

—0Via + Ni(u, 05, 0)v; — X (u(—1), vipi, 07) vipi (u, vi, 05) = 0,
where u(—1) can be computed from
—ow; + f(u) — f(u(-1)) =0,
and where \; is given by
(3.36) Xi(u, v, 05) = (l; (@), A(u)7; (u, vi, 04)).
Thus we obtain that on the manifold C; the RFDE (3.34) takes the form of the system of ODE
Uy 0T (U, v;, 0;7)

(3.37) vie = vi(Nilwvi00) = A (u(=1), vipi,00) i) [
Oix = 0

)
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Since C; is tangent in u(z) = @ to the manifold (see [2])

o; 1—e"

& Ai(u) Bi

M; = {u-f-vieﬁiri(ﬂ) ’ ;€€ (_1,0]} € Cl((_l’o]’R2)7

we deduce that

(338) T (ﬂ, 0, \; (ﬂ)) =7r; (ﬂ), 5\1 (ﬂ, 0, \; (ﬂ)) =\ (ﬂ)

Using the fact that in all points u(z) = u sufficiently close to @ the center manifold C; is also tangent to
the set

o; 1—e¢

& Ai(u) Bi

M; = {u + vieB"ri(u)
in [2] it is shown that
(3.39) Di (u,O,ai) =e B,

where f3; is given by the dispersion relation

Bi
ce <—1,01} € C'((~1,0L,B),

o  l—eF
Ai(u) Bi
Let ¢; be the function
1 /. -
(3.40) di(u,vi,04) = — (Ai(U,Ui,Ui) -\ (U(—l)aUipi,Uz’)pi(U,Ui,Ui))-
oi
Using (3.38) and (I;(@),7;,+) = 0, we obtain that
and
0 _ _ Op; 1 6»26_6i 2
42 A Pill, 7Ai = - = — . ) = N\
(8.42) 0, 1 0N = 50 = X TF B =1, ~ N
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