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Abstract

In this paper we establish a global existence of weak solutions to
the 2-dimensional Prandtl’s system for unsteady boundary layers in
the class considered by O. A. Oleinik in [5] provided that the pressure
is favourable. This generalizes the local well-posdness results due to
Oleinik [5,6]. For the proof, we introduce a viscous splitting method
so that the asymptotic behavior of the solution near the boundary can
be estimated more accurately by methods applicable to the degenerate
parabolic equations.
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1 Introduction

In this paper, we consider the following initial-boundary value problem
for the 2-dimensional unsteady Prandtl’s system

utudyut+vdyutopp=vdu 0<x<L y>0
Opyu+0yv =0,
(1.1) uli=o = uo(z,y), uly=o =0,
U|y:U = Uo(wiv u|$:0 = Ul(tv y>7
u(z,y,t) = Uz, t), y— +oo.
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where v is a fixed positive constant, and the pressure p is determined by
the so called Bernoulli’s law:

(1.2) wU+UIU+0,p=0,

which corresponds to a plane unsteady flow of viscous incompressible fluid
in the presence of an arbitrary injection and removal of the fluid across the
boundaries. It follows from the physical ground that one may assume that

(1.3) Ulx,t) >0, wug(x,t) >0, wu(y,t)>0, and wvo(z,t)<O0.

It is well-known that small forces of viscous friction may perceptibly affect
the motion of a fluid, so that the solution to ideal inviscid fluid equations
cannot approximate those to the Navier-Stokes system uniformly up to the
boundaries. This gave rise to the theory of boundary layers which was first
proposed by Prandtl in [7 |. The Prandtl’s system, which governs the first
order approximation of the flow velocity in the boundary, serves as a basis
for the development of the boundary layer theory which now is one of the
fundamental parts of the fluid dynamics [8]. There are a lot of literature
on theoretical, numerical and experimental studies on the Prandtl’s system,
see [6,8]. In particular, Oleinik and Samokhin give a systematic exposition
of the main rigorous mathematical results as well as some open problems
in [6]. A relatively deeper understanding has been achieved for the steady
flows, see [6] and references cited there. However, in the case that the flow is
unsteady, very little has been known except the local well-posedness theory
for analytical data [9], the finite time blow-up result in [3], and a series of
important works of Oleinik in [6] dealing with the well-posedness theory of
classical solutions to (1.1) in Holder spaces for the data which are in the
monotonic class in the sense that

(1.4) dyup(w,y) >0, Jyui(x,y) > 0.

The main results of Oleinik and her co-workers can be summarized as
that there exists a unique (for short-time if L is given and fixed, and for



arbitrary time if L is small) classical smooth solution to the initial-boundary
value problem (1.1) provided that the initial data satisfy conditions (1.3)
and (1.4). One of the open problems listed at the end of [6] by Oleinik and
Samokhin is: what are the conditions ensuring the global in time existence
and uniqueness of solution to (1.1) for arbitrary given L7

The main purpose of this paper is to establish the global (in time) exis-
tence of weak solution to the problem (1.1) for arbitrary finite L and data
satisfying (1.3) and (1.4) provided that the pressure is favourable, i.e.,

(1.5) Oy p(x,t) <0 for t>0, 0<uzx<L.

In fluid dynamics, one talks of a boundary layer in a favourable pressure
gradient in the case that (1.5) is satisfied [8]. It is expected that boundary
layers in favourable pressure gradients are relatively thin and thus stable
since the effect of the pressure gradient counteracts the viscous spreading
process. Thus we would expect a long time existence of regular solution to
the Prandtl’s system. On the contrary, for a boundary layer in an adverse
pressure gradient, i.e., 0, p > 0, it is prone to the phenomenon of separation.
Thus, it seems difficult to obtain global in time existence of a regular solution.

To give a precise statement of our results, we use the following Crocco
transformation

(16) T = t, é-: Z, N = %7 w(T7§777> =

ay U(l‘, y7 t)
Uz, 1)

Then the original initial-boundary value problem (1.1) is transformed into
the following initial-boundary value problem

dw 't +nUdw ' +Adyw —Bw ' = —vdiw

(L.7) on Q={E&nT)0<T<00, 0<E<SL, 0<n<1}

_ ‘9y ug — o
w|T:0 - U = wo, w|n:1 = 0
Wle—p = wy, and (vwdy,w — vow)|y—o = a{sz’

where A = (1 —1*)0,U + (1 — n)atTU, B =n0,U+ atTU, and wy(7,n) =
(9y Ul(U,y,t)
T(0,0)



We now can define the weak solution to the initial boundary value problem
(1.7) as follows.

Definition 1.1 A function we BV (Q7) N L®(Qr) (with Q7 = {({,n,7)]0 <
7<T, 0<x<L, 0<mn<l1})issaid to be a weak solution to problem
(1.7) if the following conditions are satisfied:

i) There exists a positive constant C such that

C_l(]' - 77) < w(§7n7T> < C(]- - 77) V(f,ﬂ,T) 6C)T;

ii) w satisfies the partial differential equation in (1.7) in the sense of
distribution;

iii) w,, is a locally bounded measure in Qr;

iv) The initial and boundary conditions are satisfied in the sense of trace.
Then our main result in this paper can be stated as

Theorem 1.1 Assume that the data satisfy the conditions (1.3) and (1.4).
Then there exists a weak solution w e BV (Qr) N L™ (Qr) to the initial-value
problem (1.7) provided that the pressure is favourable, i.e., (1.5) holds for
0<ax<Land, t>D0.

As an immediate corollary, we obtain the global (in time) existence of a
weak solution for the initial-boundary value problem (1.1). In fact, this weak
solution is unique, however, this will be given in a forthcoming paper [11].

Remark: The requirement of monotonic data, (1.4), is crucial for the
validity of Theorem 1.1. Indeed, for a class of data for which (1.5) holds true
but (1.4) fails, then the corresponding classical solutions to the Prandtl’s
system blow-up in finite time in [3]. So the global in time existence of regular
solution becomes impossible.



We now comment on the proof of theorem 1.1. The local well-posedness
for the problem (1.7) has been established by Oleinik by an iteration method
[6]. To obtain the global existence for the data satisfying (1.3) - (1.5), we
need to obtain some global pointwise estimate of w for n — 1 and uniform
gradient estimates on the solutions. So it is crucial in our analysis that w
stays always positive globally with precisely decay rate (1 —7) and admits a
uniform total variation estimate. Our basic idea is using a viscous splitting
method to solve the problem (1.7) in several time steps. In the first time
step, we solve an initial-boundary value problem for a porous media type
equation.

50-w—vw?Rw=0  (0,t;) xQ
(1.8) Wlr—g = Wy or given in the last step
boundary conditions,

and in the next time step, we solve a transport equation,

%87w+77U8§w+Awn—Bw:0 (t1,t2) x Q
(1.9) W=y, = given in the last step
boundary conditions,

where Q = {({,7)] 0 < £ < L, 0<mn<1}. Then we iterate these processes
until ¢, = t. Finally we let n — oo to obtain a solution to the problem (1.7).
The advantage of this splitting method is that the desired a prior estimates
can be obtained more easily for each individual problem in (1.8) - (1.9).

We finish this introduction by outlining the rest of the paper. To simplify
the presentation and avoid the technical details, we will concentrate on the
simpler case that:

(1.10) U(x,t) = d = constant

First, in Section 2, we prove the existence and uniqueness of smooth so-
lutions to the problem (1.8) for the one dimensional porous medium type
equation and derive some uniform estimates. Based on the estimates ob-
tained in Section 2, we can establish the Theorem 1.1 in the special case that



the boundary data w, satisfies some additional constraint in Section 3. This
is done by using the viscous splitting method. To treat the general case,
we need to study solutions for more general porous medium type equation
than the one appearing in (1.8). This is done in Section 4. Then we prove
the Theorem 1.1 in the general case in Section 5. Finally, we point out the
modifications needed for the case that U(x,t) is not a constant in Section 6.

2 A porous Medium Type Equation

In this section, we study an one dimensional porous medium type equation
which is an analogy of (1.8) derived from the Prandtl’s system by a splitting
method as mentioned in the introduction. We shall establish the the existence
and uniqueness of smooth solutions to such equation with appropriate initial
and boundary data, as well as some uniform estimates on the solutions. The
problem under consideration is

up — uty, =0 O<y<d
(2.1) U)y=g = ug > 0

g—Z|y:0 =1y, Uly=q =0.
Here and in the rest of this section, we are using notations which are inde-
pendent of the other sections of the paper. It should be clear that (2.1) is
an analogy of the problem (1.8) in the introduction. It is always assumed
that the initial and boundary data are as smooth and compatible as our
following analysis requires. We assume that vy < 0. One of the difficulties
in the analysis is that the equation in (2.1) is degenerate near the boundary
y = d. This problem can be approximated by the following problem where
the equation is a uniform parabolic equation.

up— (W +e)u, =0 0<y<d
(22) U|t:0 = Uy > 0
g_Z|y:0 = Yo, u|y=d = 07
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where ¢ > 0. It is well known that the problem (2.2) always has a unique
smooth local in time solution which exists globally in time if it is bounded.
Moreover, the solution u remains positive by the maximum principle.

Set, 5 52
e _ 2 .2 -
L = 5 (u +6)ay2,

_0 20

ot 0y?

The following estimate is standard by the maximum principle.

Lemma 2.1 The solution of problem (2.2) satisfies
(23) —|U0|Loo(d—y)+u < man(—|U0|(d—y>+U)|t:0.

The same holds true when the plus sign is replaced by minus sign in front of
w. In particular,
lu(t, y)| < |uo|re + d|vo|ree-

Proof. Set
w=1u— (|vo|pe + £0)(d — y),

where 9 > 0 is a constant. Then it is easy to check that L°w = 0. Applying
the maximum principle to w we deduce that w can only achieve its positive
maximum at £ =0 or y = 0.

If it achieves its maximum at ¢ = 0, then (2.3) is obtained by letting
gg — 0.

If it achieves its maximum at y = 0, then %—Z|y:0 < 0. But a direct
calculation shows that w,|,—¢ is positive, which is a contradiction. This
proves Lemma 2.1.

The result of Lemma 2.1 holds true for the solution to the problem (2.1).
In fact, we can obtain better estimates on the solution.



Lemma 2.2 Let ¢ = e®sina(d —y), where a = 55. Suppose vg < 0. Then
there exist constants [ and Cy which depend only on d, |ug|p~ and |vy|pe,
such that the solution of (2.1) satisfies

(2.4) ul < Co(d —y),

(2.5) u > Boe P,

provided that (2.4) and (2.5) hold true initially, where fp = min 2.

Proof. Let u be a solution of (2.2), and set w = z7¢—. Then

2(u? +¢)

2
wy — (u —|—6)wyy+d+€_y

wy, = 0.

It follows from the maximum principle that |w| can only achieve its nonzero
maximum at y = 0 or ¢ = 0. That is, either

1
lw| < 7 |u|pe < Cy,

+e€

or
|w| < wli=g < Cp.

Then (2.4) follows by letting ¢ — 0.
To prove the second part of Lemma 2.2, we consider the function

w=u—e "o,

where ¢. = e sin a(d + & — y). In the following proof, we omit the subindex
¢ for the sake of convenience. It can be checked easily that

L (u— o "'¢) = Ope (B + (u” + 2)dyy).

Since
by = —e*2a% cos ad + & — y),



then by noticing (2.4), we have for 0 <y < d,
B+ (v + €)Pyy
=[Bsina(d+¢e —y) — 2a*(u? +¢) cosa(d + & — y)]e

> [%(d +e—y) — 2a2C3(d — y)* — 2a’%e]e™.

Then we can choose [ sufficiently large so that

(2.6) Bo+ (U + )by, >0,

where 3 depends only on Cj and d. By the maximum principle, v — 0pe
can only achieve its minimum at ¢t =0 or y =0 or y = d.

If the minimum is achieved at y = d, then (2.5) is proved by letting ¢ — 0.

At y =0,
ow

—|€:0 = Vy — 04906*& < 0.

dy

by the assumption on vy. Therefore y = 0 is not the minimum point.

Since w|i—¢g > 0, then again we obtain (2.5) by letting ¢ — 0. Thus the
proof of Lemma 2.2 is complete.

Next, we consider the estimates of the derivatives of u. Note that u,
satisfies

(2.7) (uy)e = (u® + ) (y) yy — 2ury(uy)y = 0.
Thus
(2.8) L (uy) — 2uuy (uy), = —2(u® + £)ur,.

Set ap = max{|vo|pe, |toy|r~}. Then we have

Lemma 2.3

(2.9) |u§|Loo <aj



Proof. Consider the function u; + du for positive 0. It follows from (2.2) and
(2.8) that

L7 (u} + 0u) = =2(u” 4 &)u?, 4 2uu, (u] + 0u), — 20uu.
Thus
(2.10) L (u? + 6u) — 2uuy(ul, + u), < 0.

By the maximum principle, uz + du can only achieve its maximum at ¢t = 0
ory=0ory=d.

If the maximum is achieved at y = d, then

9,
a_y(uz + 0u)|y=a = (2uytiyy + duy)]y—q 2 0.

But from (2.2) and ul,—q = 0, we deduce wy,|,—¢ = 0, then

9,
a_y(uz + 0u)|y=a = Ouyly=a <0,

which yields a contradiction unless 9, u|,—q = 0, that is a trivial case.

Therefore “12/ + du can only achieve its maximum at y = 0 or t = 0. Then
(2.9) follows by letting § — 0.

Now, we consider the case that the initial and boundary values as well as
the solution of problem (2.1) depend on the parameter x. More precisely, the
initial and boundary values depend smoothly on z, that is, for 0 < x < L

UOZUO(I7y>7 UOZUO(t7x>7
where ug(x,y) and vy(t, ) < 0 are smooth in x as well as in ¢ and y. Let

Q={(z,y)] 0<z<L0<y<d}

First, we estimate u, which solves the following problem.

Ut — (UP + ) Ugyy — 2utyytiy = 0

(211) Ux|t:0 = Uz
8;; |y:0 = Vo,z, ux|y:d =0.

10



Set w = uy,, then (2.11) becomes
wy — (u? + €)wyy — 2uu,w =0
(2.12) Wli=0 = Upx

(?9_1;|y:0 = V0,2, w|y:d =0.

Then we have the following weighted L' estimate on w = u,.

Lemma 2.4 There exists a constant Cy which only depends on |vy .|, such
that

*_lut, )] ¢ _Jw(to, )|
2.1 ) B A L TR B -
I A E Al A el A R

Proof. 1t follows from (2.2) and (2.12) that

w

(2.14) (a2 =
Then
d i |wl
(2.15) E/o 2 +6dy < —fwlyly=0 < [vo.].

We obtain (2.13) from (2.15) with Cy = d|vg »| 1.

Remark 2.1 Let e — 0 in Lemma 2.1 and Lemma 2.3, then we obtain that
the solution of problem (2.1) satisfies

(2.16) vl (y = d) + u(t, ) < max{|vo|re(y — d) + ulto, )},

(2.17) [y (£, )10 < max{|uy (to, ) Lo [vo[ 700},

for t > to. Same estimate holds if the plus sign in front of u in (2.16) is
replaced by minus sign. Unfortunately, the estimate (2.13) is not valid when
e =0, which will be improved later (see lemma 2.6 below).

11



The L* estimate of u, in Lemma 2.2 depends on the same norm at ¢ = ¢,
when we consider it at the time period (to,t). This is however, too strong
requirement on the solutions obtained from the transport step in our splitting
algorithm as we will see later. But we can also obtain the L' estimate of u,.

Lemma 2.5 Suppose vy < 0. Then the solution to the problem (2.2) as well
as (2.1) satisfies for all t > ty,

d d
(2.18) jﬁ luy (¢, 2, y)|dy ggjg Iy (to, 2, y)|dy + ult, 2, 0) — ulto, 2, 0).

In particular,
d d
(2.19) Tyt )ldy < [ Juyto,,p)ldy + 2fulue.

Proof. We may assume vy < 0. Otherwise, one may replace vy by vy — ¢ and
let ¢ — 0. It follows from (2.7) that

d rd d _ .
E/o luy|dy = /0 [(u? + £)Uyyly signu, dy < —(u® + £)Uyy STGNAUY |y=0-

Hence,

d rd .
(2.20) %/0 [uy|dy < —wpsignuy|y—o < wi|y—o-
Then (2.18) follows easily from (2.20).

We can also obtain the L! estimate of u, for the solution of the problem
(2.1).

Lemma 2.6 The solution to the problem (2.1) satisfies

Ji S (d =gy < Ji el (d = y)?dy + d el (= to)
(2.21)

+2 [y Ji luz(s, -)|dyds,
for t > to. Furthermore, if vg < 0, then there exists C's which depends only
on |ug|pe and |vg|p= such that
2

d d d
222) [ et )y < OO0 [ ualto, )y + S lvoali)

12



Proof. We first consider the solution to the problem (2.2). Setting w = u,,
we have from (2.14) that
(2.23)

G d—yPEidy = [i(d = y)(signw)wy,dy

= (d—y)’lwlyl§ +2[5(d — y)lwl, dy

IN

~&|wlyly=0 — 2(d = y)[wlly=o + 2 J§ [w]dy

IN

Pl +2 J¢ Jwldy.

It follows from the assumption and Lemma 2.2 that there exists C5 such
that

(2.24) —(d—y)? <u® < Cs3(d—1y)>
Therefore
03/ (d = y)” | —dy > / wldy > = /d(d gy
Cs3 Jo u?
Integrating (2.23) and letting ¢ — 0, one gets

el d = y)Pdy < 5 SR (d = y)Pdy + dP ool (t = to) +

(2.25)
2 fio I3 (s, -)|dyds.
Then (2.21) follows from (2.25). And (2.24) together with (2.25) implies

fod lw(t,-)|dy < Cs]Cs fod [w(to, -)|dy + d?|vo x| oo (t — to)
(2.26)

+2 fti) fod |w(sv >|dyds]v
which yields (2.22) by the Gronwall’s inequality.

Remark 2.2 The estimates (2.21) and (2.22) are independent of |u,|p~.
They will be used to obtain the estimates for the solutions to the Prandtl’s
equation.

13



Next, we estimate |uy|pe in terms of |ug|pe, |vo|c2 and |uy|p=. To this
end, we set

W= Uy — Vo (y — d)
Then the problem (2.11) becomes

wy — (u? 4 &) wyy = 2utlyyw + 2utlyy vy (y — d) — vo 4 (y — d)
(2.27) 1(;}|t:0 = Upp — Voo(y — d) = wy
a_l;|y:0 =0, w|y:d = 0.

We start with an integral estimate.

Lemma 2.7 Suppose that vy < 0. Then there exist constants Cy and Cs,
which depend only on |u|p=, |vo|c2 and d, such that

d
(2.28) / 2(t, - dy+/ / u? +e)widyds < | C'5+/ ) dyleCr+ad)t,
0

i i dy + [y fy A widyds
(2.29)

2

[C5+f

dy]eC4 1+a0)

where ag 1S given in Lemma 2.5.

Proof. Multiplying w and integrating by parts in (2.27), we obtain
(2.30)
Sai Jo widy + [ (u® + e)wydy

= — [ 2uuww, + 2uy (uw?), + vo . (y — d)w)dy

—2 fod Uy Vo o [u(y — d)w],dy + 2 fo (vo(w? u)y + vovo[u(y — d)wly)dy

Since
6/d| |d < —1 /d 2wd 18/d 2w2d
U, WW u-w + U, W

14



then there exists a constant Cy depending only on |u|p=, |vy|c, and d, such
that

d rd d d
(2.31) %/0 w?dy +/0 (u® + e)widy < Cy+ Cu(1 + |uy|%oo)/0 wdy,

which implies (2.28).

Similarly, one may multiply (2.27) by e and integrate by parts to
get

thfo y, d +f0 y, 26 2d?J

u’+e uw? —d
(232) =-Jf [( + < Jywwy + 2uy((y7d)2+€) + Vo,tx (g(/ d)? )lie

+2qu0$((( +g> ]dy+2f0 UU[( (y— d) +5) +U0$((y( d)? —|—g> ]dy

Since

dey,

d2(u?+¢)(d —y) (u? + e)w? d(u?+¢)(d —y)?
ek “’y'dy<4/ — e oy

2 2

|uuy| w? wlw
of e[y [,

together Wlth (2.24) we deduce
il +Edy+fo “726 ady

< Cs + Co(1 + |uyl7) Jy dy,

v
where Cy and C5 are constants depending only on |u|ze, |vg|c2 and d. Then

(2.29) follows as before.

Remark 2.3 The estimates (2.24) and (2.29) imply that for 0 <t <T

/ / widy ds < eCaliFad)t(Cy +/ dy)

15



Similarly, one can multiply (2.27) by o= to obtain
ot o Ca(14a2)t d w4(0,-

(2.33) / / wrw,dyds < em T (C5+/ ————dy).
0 Jo 0o (y—d

The estimate (2.28), together with (2.24), implies that for 0 < ¢ < T

t pd , d
/0 /0 wPwidy ds < eC4(1+“0)t(C'5+/0 w?(0, )dy),

and

d R d
/ W (t,)dy < eC10+a) (g 4 / w?(0,-)dy).
0 0
Remark 2.4 For fized ko, we can obtain in the similar way that

(2.34) / lw(t, ) [Fotldy < eC0+a)t (O +/ lw(0, ) [FTdy), ¢ >0,

where Cs and Cy depend only on |u|pe, |vo|c2, d and k.

To continue our analysis, we need the following result which can be found in
[1] (Lemma 5.45).

Proposition 2.1 There exists an absolute constant C', such that
d 1
(2.35) [/ wly? dy]3 SC/ —+w)y dy.
0
We are now ready to derive the super-norm estimate on wu,.

Lemma 2.8 Suppose that vy < 0. Then there exists a constant Cg depending

only on T, d, |ugz|pe, |wo|peo, [ty|re, |Vo]c2 and fo ) sdy, such that the
solution to the problem (2.27) satisfies

(2.36) |ua(t,2,y) < Cs

16



Proof. We make use of the Nash-Moser iteration method. For convenience,
changing the independent variable as

y—y—d,
we need only to consider the following problem

wy — (U2 4 &) wyy = 2utyy W — 20y Vo 1Y — VoY
(2.37) Wli=o = wo
Sily=a=0, wly— =0,

|k71

For k > 1, multiplying the equation in (2.37) by |w|* 'w and integrating by

parts yield
rhran 2 ol Py + e 10 + ) [(w] ), Py
(2.38) = — [2,Quuy|w|F ww, + vo y|w|FTw)dy
— ffd 2(uy — vo)[ulw|" + wvg y|w|Fw], dy.
Note that
2| 2wy |w[* wwydy| < gk [0 ((w|F),Pdy + C 12 [w]*dy,
| P avoylwlFtwdy| < C 741+ y*)wl*dy,

[ Pauglwl*dy| < O 2y lw]**dy,

and .
2| J2 g wuy([w]*1),dy]
= (k:-&1)2 fgd uz[(|w|%)y]2d9 +C(k+1)? fgd |w|**tdy;
also

2| fgd uy(UUO,xy|w|k_1w)ydy|

< et L2l ), 2y + CF? 10wl + 1)dy,

where C'is a constant depending only on d, |wp|ge, |uy|r~, and |vg|c2.

17



Substituting these estimates into (2.38) and integrating from 0 to ¢, we
obtain

k41
i L () dy + g fo Loy (] =), P dyds
(2.39)

< Ck+1)2 L0, JwF dyds + 0 JwolFdy + C,

k+1

where C' is a constant with dependence as before. Noting that

0 4
(2.40) // lw[F dyds < ( // |w|3k 2dyds%// il ——dyds)

we have by the Hardy’s inequality that

0 0 .
(2.41) / / lw|*dyds < 4(/ / w3y 2dyds) i ( / / lw|*w,*dyds)7.
0 J—d 0 J—d

It follows from (2.33), (2.39) and (2.41) that for 0 <t < T,

>J>|b—‘

Cy(k + 1) [ [w(t, )| dy + fi [0y (lw] =) 2dyds
(2.42)

< Crk+ 1)*[fy [0 p2|w|3 dyds)t + Co[(k + 1)* + o[£,

Where C’7 is a constant depending on T, d, |wo|re, |tg|re, |ty|re, [vo]c2 and
fo = d ——dy. Note that

0
[ i 0ay < ([ e[ ynuayd,

By the Sobolev inequality and Proposition 2.1, we can obtain from (2.42)
that

fo d?l |w| ) dyds
< Crlk + 1)Y(Jy S22 lw| 5 dyds)T + & 5 [y y? w]** dyds

+(1+ Jwol TN ][sup, <y [0y (s, ) [FFVdy]5,

18



which, together with (2.42) again, shows that

[ S0 42 w] HED dyds) 5o
(2.43)

< CF (k4 D[ 125yl dyds) T 41+ g,
where Cy is a constant depending on T, d, |wp|pe, |tg|re, |ty|re, [vo]c2 and
gy

0 (y—d)?
For convenience, we may assume that

t 0
1+ |wo| e < (/0 [dy2|w|%(k+1)dyds>—4<kin,

otherwise, the proof is complete. Let

t r0 5 1
lolly = ([ [ y*wldyds)s,

then (2.43) can be written as
(2.44) lwllzes1) < (Cs(k + 1)) [w]]4441)-

We choose k so that 5(k+1) = (2)7, j =2,3,---. Then (2.44) implies that

||w||(g)j+1

Since 3.7%(2)" < 0o and 326 8(2)log((2)") < oo, then
(2.45) w] < Cylwl]z)s-

For kg +1 = (3)°, one can deduce (2.34) from (2.33). Then we finished the
proof of Lemma 2.8.
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Similarly we can estimate u;. Indeed, note that wu, satisfies the same
equation as u, does. Thus w = u; solves

wy — (u? 4 &)wyy — 2uu,yw =0
(2.46) Wle=o = (g + €)toyy
g_Z|y:0 = Vot, w|y:d =0.

Therefore all the estimates for wu, are also true for u;. In particular, we
have

Corollary 2.1 Under the same assumptions as in Lemma 2.6, the solution
to the problem (2. 1) satisfies

Jo St (d = y)*dy

(2.47)
< [t eltodl (d — )2y + d2[ug | oo (t = to) + 2 [, Ji [ue(s, )| dyds.

Moreover, there ezists a constant Cip = Cio(|ug|pee, [vo|p=), such that
d 2C10 t— to 2 d d2

(248) [ fuilt)ldy < e200CE [ unlto, )y + 5 ol ).

The proof is the same as that of Lemma 2.6.

Remark 2.5 As in Lemma 2.8, there exists a constant C11 depending on T,
d, luglc2, |uy|r= and |vo|c2, such that

(2.49) Jus(t, 2, )| < Cha-

Collecting all the estimates we have obtained, we have arrived at the following
conclusion:

Theorem 2.1 Assume that vy < 0 and the data are smooth and compatible.

Then the problem (2.1) has a unique positive bounded smooth solution in
(0,T) x Q. Moreover
u € Lip([0,T] x Q),

and u satisfies the estimates (2.4), (2.5), (2.9), (2.36) and (2.49).
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Proof. The existence and estimates on the solution follow from the above
lemmas and the standard limiting argument. To prove the theorem, it suffices
to show the uniqueness of the solution.

Suppose that there are two solutions u and @. Then their difference
w=u—T1

solves

wy — WPwyy — (u+T)uyw =0,
(2.50) wli=o = 0,

g—?ﬂy:o = 0, w|y:d =0.

Multiplying (2.50) by w and integrating by parts, one gets

1d

5%/@ w2dy+/0 u2w§dy :/0 (vg —Uy)[(u—i-ﬂ)wQ]ydy— 2/0 wteywiny dy.

Since

-2 fod uuywwy,dy < % fod uszdy +2 fod uf/wzdy,

2 [ (vo — uy) (u + Wwywdy < & [FuPwidy + 2 fi (vo — uy)*(1 + Z)*widy.

It follows from (2.24) and (2.9)that there exists a constant C' such that

d rd d
(2.51) —/ w?dy < C’/ wdy.
dt Jo 0

Then the uniqueness follows by (2.51) and w|;—y = 0.

3 Global Existence I, A Special Case

In this section, we will prove the Theorem 1.1 in the simple case that (1.10)
holds and under some additional assumption on the boundary data. For the
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convenience of notations, we take d = 1 and rewrite the initial-boundary
value problem (1.7) in this case as

Uy + YUy — uy,, =0 (0,7) x Q
(31) U|t:0 = Upy U|x:0 = Uy
g_Z|y:0 = Vo, u|y:1 = 07

where Q = {(z,y)|0 < x < L, 0 <y < 1}, up and uy are given in (1.1)
(the correspondence between (1.7) and (3.1) is given by identifying w as u,
T as t, £ as x, and n as y, moreover, we have taken v = 1 for simplicity of
presentation). Oleinik proved the local existence of smooth solution to the
problem (3.1) in [5]. We shall show that under our assumptions (1.3)-(1.5),
the solution to problem (3.1) will remain globally in the class that Oleinik
considered. One of the crucial point in our argument is to obtain uniform
total variation estimates on the solutions. As outlined in the introduction,
this will be achieved by a viscous splitting method (which is motivated by the
numerical method for Navier-Stokes system in [2]). This idea works directly
in some special case. More precisely, setting

32) bt..9) = S 11 = 1)

we assume throughout this section that
b(t,z,y) = 0.

Here £(z) is the nonnegative truncated function which is smooth and mono-
tone non-increasing such that £(0) = 1 and £(£) = 0. The general case will
be treated in Section 4-6. Our assumption implies that

Utyt — U%,yul,yyy =0.
In this case, we shall see that it is easy to match the boundary conditions.

Now let t; = %T, 1 <@ < n, for any given T. We first consider the
problem

Uy — Py, =0 (0,t1] x Q
(3.3) %|t:0 = Ugy, U|y:1 =0
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To simplify the notations we set w; = u;, and %y = ug,. It follows from
Theorem 2.1 that there exists a unique solution u to (3.3). Moreover, u|,—y =
wy by our assumption. Then in next time step, we solve the problem

Uy + Yuy = 07 (tlatQ] x
W=y, = u(t, @, y),  Uly=o = Wi (t,y).

(3.4)

In fact the solution to problem (3.4) can be written down explicitly

u(tl,x—(t—tl) R ) I>(t—t1> ,
u(t,x,y):{gl(t_§7y) nY a;g(t—tl)s.

Suppose that the solution is obtained for 0 < ¢t < ¢;_;. When 7 is odd, for
ti—1 <t <t; we solve

up — uty, =0 (t;i1,ti] x Q
(35> u|t:ti,1 - U(tifl,x, y) u|y:1 — 0
g_Z|y:0 - UO(tv xr, y)

When i is even, for t;,_; <t <'t;, we define

(3.6) u(t, z,y) = {U(tz’—hﬂ? —(t—tic)y,y) x> (t—ti_1)y

w(t—7.y) x < (t—ti)y.

Remark 3.1 The function u constructed above depends on n. We omitted
the index n for the sake of convenience.

We now estimate this approximate solution. We start with the simple uni-
form super-norm estimate.

Lemma 3.1 For 0 <t <T, (z,y) € , it holds that
(3.7) u(t, 2, y)| < [Tolree + 2|vore + [ 1o
Proof. (3.7) is satisfied for 0 < ¢t < ¢; due to Lemma 2.1. It is easy to see

that (3.7) is true for t; < t < t5 by the explicit construction. In both cases
|vo| £ (1 — y)+u is bounded from above by

||U0|Loo(]_—y)$U0|Loo or |E1|L°° +]_|U0|Loo.
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Suppose for 0 <t < t;_;

(3.8)  volree (1 — y)Fu < max{|[[vo| Lo (1 — y)Fuo]| e, W] + |vo| L }-

Now we consider t; 1 <t <t;. When 7 is odd, Lemma 2.1 shows that
Voo (1 = y)Fu < max[|vo|ree (1 — y)Futi 1, -)]-

Therefore (3.8) holds for this case. In the case that i is even, (3.8) still holds
true due to (3.6). Then (3.7) follows easily from (3.8). This proves Lemma
3.1.

This bound can be improved to show that the function u is always posi-
tive.

Lemma 3.2 Suppose vg < 0. Then there exist constants Cy and [ depending
only on |vg|ps, |To|r~ and |@|c, such that

(3.9) u(t, z,y) < Co(1 —y),

(3.10) u(t,z,y) > Ooe o,

where ¢ , and Oy are given in Lemma 2.2.

Proof. When i is odd and t; 1 <t < t;, (3.9) follows from Lemma 2.2 with
Cy = |u|p=~. For i being even and t;_; < ¢t < t;, (3.9) holds true by (3.6)
and Lemma 2.2 with Cy = Cy(|u|re, [T1|c1). This proves the first part of the
lemma.

Next, (3.10) is true for 0 < ¢ < t; by Lemma 2.2. Suppose that (3.10)
remains valid for 0 < t < t,_;. We consider t,_; <t < t;. If 7 is odd, it
follows from Lemma 2.2 that there exists # depending on Cjy, so that

u(t,z,y) S o=Blt=ti-1) 1ip u(ti_1,z,y)

(3.11) o) o)

24



Then (3.10) follows by (3.11) and our induction assumptions. In the case
that i is even, (3.10) is an immediate consequence of the assumption u; > 0
for 0 <y < 1 and @;|,=; = 0. The proof of Lemma 3.2 is complete.

Now we consider the estimates of the gradient of u. We can show that
the function u is C'* smooth except at the origin of the space. Moreover, we
can prove that its W norm is uniformly bounded.

Lemma 3.3 Suppose that vy < 0. For any fived o and n, there exists a
constant C' = C(gg,n), such that

(3.12) [uy| + |uy| < C,

Jor0<t<T, (z,y) € Q\{(z,y)|x +y < 20}, and,

(3.13) lu| < C,

for0<t<T, (z,y) € Q\{(z,y)|r+y<ey y<1—¢ep}.

Proof. For 0 <t < ty, (3.12) follows from Lemma 2.3 and Lemma 2.8, while
(3.13) is a consequence of Remark 2.5.

Suppose that (3.12) and (3.13) hold for 0 < ¢ < t; ;. We consider
ti_y <t <t;. For 1 odd, both estimates remain true again by Lemma 2.3,
Lemma 2.8 and Remark 2.5. While for even i, the desired estimates follow
by (3.6) through direct computations.

Remark 3.2 The constant C' in Lemma 3.3 may depend on n, so we cannot
obtain a Lipschitz estimate for solutions of (3.1). But the estimates (3.7),
(3.9) and (3.10) are independent of n.

Corollary 3.1 The function u is continuous in t, x and y in Q\ (0,0), and
takes on the initial and boundary data in the sense that

(3.14) limu(t, z,y) =T(r,y),  (v,y) €9,
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(3.15) ll/l_}rr{ u(t,z,y) =0, (t,x) € (0,T] x (0, L],

Moreover, by (3.6), Theorem 2.1 and our assumption b(t,z,y) = 0 we have
(3.16) lim u(t,z,y) = (t,y) (t,y) € (0, 7] x (0,1].

And for t,_ 1 <t <t;, i is odd, we have by Theorem 2.1 that

(3.17) Zl/lg(l] uy(t,x,y) =vo(t,z) € (0,L]

Now we consider the L' estimates of |u,| and |u,|, which are crucial in our
analysis.

Lemma 3.4 There exists a constant C3 depending on |tUg|pe, |vo|p=, and
[T1| o1, such that
(3.18)

L 1
[ [ et iz dy < 51 [ [ (Clouliardyt Slunaloe 5 [ 20
Q Q 2 2Jo wy

) dy]

Proof. For 0 <t <y, (3.18) follows from (2.22). Moreover, in this case, one
gets from (2.21) that

I Ja |Z§ 7 ( - ?J)Q dydr < f(ffo[|vU,x|L°° + 2|u.||dx dy ds
(3.19)

+ [ Jo LG (1 — y)? dw dy.

For t; < t < ty, one calculates from (3.6) that
(3.20)
|ua(t, )| > Lot > |ua(ts, -)
1—y)? da dy < / Mty aya // [, 7)1
/ 1=y dedy < | | = (1-y) dyds+ [ | (.

1—y)? dx dy.
o w2t y)" drdy

~~

In general, for t;_y <t <t,;, if 7 is odd, then

[ o S (1 —y)2 dudy < [L [ Jollvowlie + 2Ju,|Jde dy da

(3.21)

+ [ Jo M=l (1 — y)? i dy;
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while for even i,

[ M8 (= y)? dedy < JL, f (1= y)? dyds

(3.22)

+ [ Jo B (1 = y)? dady.
Therefore for t,_1 <t < t;, it holds that
(3.23)
[ I (1 — )2 dady < Ji f (1= y)? dyds + Jj [ follvoslo= + 2luslJde dy ds

+ [ Jo G (1 — y)? d dy.

By Lemma 3.2, there exists C5 depending on |vg|p~ and [Ty|ct such that

1

(3.24) 03(1 —y)? <u? < O5(1 —y)*
Hence,

(3 25)

& Lo et dedy <[5 B 10— y)? dyds + [ [ Jollvoslie + 2lus[de dy ds

U

Then (3.18) follows from (3.25) and the Gronwall inequality.

Corollary 3.2 For any 0 < 2’ < 2" < L, it holds that for sufficiently large

n7
/ / luy(t,-)|de dy < ec?’t/ / (C3o..| + = |U0x|Loo)dafdy

Proof. In fact, in the proof of Lemma 3.4, if 2/ > %, then the term from

boundary at = 0 vanishes in (3.20) and (3.23). Thus the proof of Corollary
3.2 follows easily.

Lemma 3.5 It holds that for 0 <t <t;,
(3.26)
S Sy (8, ) dy < fi fo [, | + Te)dy ds + 2 f fu(-, 2, 0)[p=da

+ [ Jalltoy| + 5 Sh=r Jua(ty, ) ldu dy.
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Proof. (3.26) follows from (2.19) for 0 < ¢t < t;. For t; <t <5, (3.6) shows
I Jo luy(t,-)|d dy
= [ Jos(imtyyy (Wt w — (= t)y, y) (0 — 1) +uy(tr, o — (E = 1)y, y)|de dy
I Jocryy [Tyt = 5,y) + 01 (t = 5, y)(—3)|da dy.
Then

I Joluy(t ) dy < ff fo 1, |+ T2 dy ds
(3.27)

+ [ Jolluy (b1, ) + 5 fua(tr, ) [Jda dy.

And also by (3.6),
u(ty, x,0) = u(ty, z,0).

In general, for t; |,t < t;, when 7 is odd, we have by Lemma 2.5 that
(3.28)

// (£, |d:cdy<// Juy (£ 1,-)|d:vdy+/ (t,2,0) — u(t; 1, ,0)]dz,

while in the case that 7 is even,

I Jo luy(t)dedy < [ folla ) + T2d)dy ds
(3.29)

+ffﬂ[|uy(ti*17 >| + %|Ux(ti717 )”dl' dy;

(3.30) u(t;, z,0) = u(t; 1,2,0).

Then (3.26) follows from (3.28), (3.29) and (3.30), which proves Lemma 3.5.

Corollary 3.3 For any 0 < ' <" < L, if n is sufficiently large, then

/ /|uy |dydx</ /|u0y|+ Zm . |]dyda:—i—2/ oo da.
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Proof. Note that in the proof of Lemma 3.5, if 2/ > %, then the term from
the boundary at x = 0 vanishes in (3.27) and (3.29). Then the corollary
follows easily from the proof of Lemma 3.5.

Now we can give the main results of this section. Let u"(¢,x,y) denote
the function obtained through (3.3) to (3.6). Let BV () denote the space of
function of finite total variation on €.

Theorem 3.1 Assume that (1.3), (1.4), and (1.10) hold and b(t,x,y) = 0.
Then the problem (3.1) has a weak solution
ue L>®(0,7; BV(Q)) N BV((0,t) x Q),

which satisfies the estimates (3.7), (3.9) and (3.10). Furthermore, its deriva-
tives satisfy (3.18) and

(3.31)

// |y (2, |dxdy<// |U1y|dyd5+2L|U|Loo+// |u0y|d:cdy+/ // |wa (s, -)|dx dy ds,
fo|ul‘( )|d£€dy< fo[ + tLy]dy

(3.32)

+ Iy [volt, )da + [ fo [uy(t, -)|dz dy.
Proof. Let Y be the dual space of H(Q2). We claim

(3.33) || ( " >||L oy) < C,

where () is independent of n.

In fact, if 7 is odd, then
2
S SRR ds = [ 11((1 = y))umyy |1} ds

= fttf,l SUP||¢||H3(Q§1U Jo(1 = y)Zunyyﬁb dx dy)* ds

<O, ()l dt,
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with an uniform constant C' depending only on L.

When i is even,

2
o NGO dt = fi 11— y)?)ure |}

< Jit, Llun(t, )2 dt.

Then (3.33) follows easily.

As a consequence of Lemma 3.2, Lemma 3.4 and Lemma 3.5, we know

(1-y)?

o € L*(0,T; Wh'(Q))

and

1— 2
(334) ||( ny) ||L2(O,T;W1’1(Q)) S 05,

where Cj is independent of n. By the Theorem 2.1 of [10, Chapter III], we
conclude that {(1;—3)2} is in a compact set of L2((0,7) x Q) (note X € L*).
Therefore one may assume
1—vy)? 1—y)?
1-y°  (A-y
u" U

strongly in  L*((0,T) x €,

n

u"t — u a.ein (0,7 x €.
In particular,
u" — u strongly in  L*((0,7) x Q).

For any ¢ € C§°((0,T) x ),
(3.35)

///Q prdlax v Wdfcdde— Z / // uyy+y ), |0 de dy ds.

This and Corollary 2.1 lead to
(3.36)

/// un (e +ydu)dr dy ds = Z / // u"thyy + %)dxdyds
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Let n — oo, because t; — t,_1 = %, we have

(3.37) // Qu¢t+y¢x dxdyds—Q/// Wy + wx)dxdyds

Then u satisfies the equation of problem (3.1) in the sense of distribution by
a suitable rescaling of the ¢ variable. The estimates (3.7), (3.9), (3.10), (3.18)
and (3.31) follow easily by letting n — oo. Finally, (3.32) can be obtalned
from the equation of problem (3.1) directly by multiplyin

ating with respect to t, and applying the standard L! estlmate techmques to
the resulting equation.

Now we check the boundary and initial conditions. It follows from Lemma
3.2 that
lim u(t,z,y) =0. aein (0,7) x (0,L)

y*)

Thanks to (3.7),(3.18), (3.31) and (3.32), we can deduce that

%1_% |, ) — uoy ()| 2() = 0.

The boundary condition of u at v = 0 equals u;, in the sense of trace of u
(see Theorem 4.11.5 and Theorem 6.5.4, in [4]). The boundary condition of
u, at y = 0 is in the sense that for any

b€ CR((0.T) x (0,L) x (~1,1))

and ¢y|,—o = 0, it holds that
(3.38)

/ / [ = (i) do dy dt = 2/ // wyy (L)) de dy dt— / / VoWl zodz dt.
Then we finished the proof of Theorem 3.1.

Remark 3.3 It can be proved that the solution is smooth in short time. In
fact, we can obtain the L™ gradient estimate of u in space variables in short
time. Then the initial condition is satisfied in the sense

%%U(t,x,y) = ﬂﬂ(x7y>'
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4 More on Porous Medium Type Equations

In order to treat the general case without the assumption that b(t,z,y) = 0,
we will show in this section that most of the results in section 2 are still
true for more general porous medium type equations. With these results, we
are able to show the global existence of Prandtl’s equation for more general
boundary conditions. Thus we consider the following problem

up = uuy, + b(t, x, y)u (t,x,y) € (0,T) x Q
(41) U|t:0 = U,y > 0
g—Z|y:0 = Yo, U|y:1 =0,

where €, up, and vy < 0 are the same as in section 3, and b(t, x, y) is defined
by (3.2) in section 3. We shall assume that there exists a constant B so that

(4.2) |b(t, z, y)| < B.
The problem (4.1) is approximated by

up = (U +e)uyy +bu  (tx,y) € (0,T) x Q
(43) U|t:0 = U,y > 0
3_y|y:0 = Vg, u|y:1 - 07

It is well known that the problem (4.3) has a smooth solution when it is
bounded. Then the solution of the problem (4.1) can be obtained by letting
¢ — 0. For convenience, we will omit the subindex £ when we mention the
solution to the problem (4.3) in the following discussion. The first estimate
is obtained by the maximum principle, which is parallel to that of Lemma
2.1.

Lemma 4.1 The solution of problem (4.1) satisfies
(4.4) [0 o0 (1 = ) Fue ™" < max(fvo| (1 — y)Fue™ )|,
where to <t < T'. In particular,

[u(t, )| < e [[u(0, )]z + 2lvo|ze].
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Proof. We first consider the solution of problem (4.3). Let
wr = (Jvo|ze +£0)(y — 1)Fue P
As in the proof of Lemma 2.1, one can check by (4.2) that
Lfwr+ (B — b)wg = (b— B)(|vg|p= +20)(1 —y) <0,

here L¢ is defined in section 2. By the maximum principle and similar rea-
soning as in the proof of Lemma 2.1, one may deduce (4.4) by letting ¢ — 0.
This proves Lemma 4.1. The following result is parallel to Lemma 2.2.

Lemma 4.2 There exist constants 3 and Cy depending on B, |ug|p~ and
|vo| Lo, such that the solution to the problem (4.1) satisfies

(4.5) lu| < Co(1 — y)eBt,

(4.6) u > e 7o,

where 0y = min,, U?Ty and ¢ s given in Lemma 2.2 with d = 1.

Proof. The proof of (4.5) is similar to that of Lemma 2.2. To prove (4.6), we
first show that the solution to (4.3) is positive, i.e.,

(4.7) u>0 on (0,7)x K.

In fact, it follows from L¢(e P'u) + (B —b)e B'u = 0 that u can only achieve
its negative minimum at y = 0. Then at this points, g—z > 0. We may assume
that vy < 0, otherwise we replace it by vg —¢y. Then g—Z|y:0 = vg < 0, which
gives a contradiction. Therefore (4.7) is true by letting ¢ — 0.

Now, direct calculation shows that

L (ueP' — e ) = (B+Db)ePlu+ e P (8o + (u? +2)dyy)
> Ooe P (Bd+ (U +2)dyy).
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Then as in the proof of Lemma 2.2, we can prove that (4.6) is true by letting
¢ — 0. The details are omitted.

Now we consider the estimates of the derivatives of u. For the estimate
of u,, unlike the case that b = 0 where u, can be estimated by using the
maximum principle, we need to use the Nash-Moser iteration method. We
first derive an L? estimate. Note that u, solves

(Uy)t - [(U2 + 5)Uyy]y - (bu>y =0
(4.8) Uy|t:0 = Uo,yy
uy|y=0 = Yo, uyy|y=1 =0.

Set,
w=u, — (1 — )2 v
Then (4.8) becomes
(4.9)
wy = [(u? + &) (w, +2(y — D) vg)], + (bu), — (L —y)?v, O<y<l1

Wm0 = ugy — (1 — y)*vg = wy
wly=0 =0, tyly=1 = 0.

Lemma 4.3 There exist positive constants Cy and Cy depending only on B,
|vo|cr and |u|pe, such that

(4.10) /Od o(t,- dy+/ / u? +e)up, dyds < 02+/ - )dyleSr,
(4. 11) -

! U £) 1 ui 0, - o
/0 (y—l // y—1+ ydyd5§[02+/() L

Furthermore, for fized ky > 1

(4.12) / [y (£, ) [+ dy < [Cs + / 1y (0, ) [Fo L dy)eCrt,

The proof of Lemma 4.3 is similar to that of Lemma 2.7, so we omit the
details.
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As in the proof of Lemma 2.8, we can make use of the Nash-Moser itera-
tion method to obtain the L*> estimates of u,, which is given below without
proof.

Lemma 4.4 There exists a constant Cy independent of €, such that the so-
lution to (4.3) as well as (4.1) satisfies

(4.13) luy (t, 2, y)| < Cy,

for (t,z,y) € (0,T) x €.

Next, we turn to the estimate on wu,. Set w = u, as before. Then

wy — (u? + £)wyy — 2ut,w — bw = byu
(414) w|t:0 = Uo,zy
(?9_1;|y:0 = Vo,x, w|y:1 = 07

This is a slighter modification of the problem (2.12). The same estimates in
Lemma 2.7 and Lemma 2.8 hold. similar analysis goes to u;. Here we give
the L estimates without the proofs.

Lemma 4.5 There exists a constant Cs independent of €, such that the so-
lution to (4.3) as well as (4.1) satisfies

(4.15) |ua(t, 2, )|+ Jue(t, @, y)| < Cs,

for (t,z,y) € (0,T) x €.
Summing up the estimates we have got thus far, we arrive at

Theorem 4.1 Suppose that vy < 0 and the data are smooth and compatible.
Then the problem (4.1) has a unique positive bounded smooth solution and

u € Lip([0,T] x Q).
Moreover the solution satisfies (4.4)-(4.6), (4.13) and (4.15).

35



The proof is the same as that of Theorem 2.1.

Remark 4.1 As a corollary of the uniqueness result, u is continuous in x,
in particular, it holds that

(4.16) lim u(t, z,y) = uy,(t, y).

z—0

In fact, by the definition of b(t,x,y) (see (3.2)), we know that uy, is a solu-
tion to the problem (4.1) with the parameter x = 0. Then (4.16) follows by
the uniqueness of solution to (4.1).

The following two lemmas are parallel to Lemma 2.5 and Lemma 2.6.
These estimates enable one to obtain the total variation estimates of the
solutions to the Prandtl’s equation.

Lemma 4.6 There exists a constants Cg depending on B, T, and |u|pe,
such that the solution to the problem (4.1) satisfies

Jo luy(t,)|dy < B0 [ fuy (to, )| dy + Cs(t — to)
(4.17)
+u(t,z,0) — u(ty, x,0),

for (t,z) € (0,T) x (0,L).
Proof. Note that u, satisfies
tye = (Wt )y + (bu),y.
Multiplying the above equation by sign u, and integrating by parts yield
4 Iy luyldy = fo[(vPuyy), signu, + (buy, + byu)sign u,]dy
< —(WPuyy signuy)ly—o + Jo B(Jul + |uy|)dy

Replacing vy by vy — £ and letting ¢ — 0 if necessary, one may assume that
Uyly=0 = vo < 0 as before. It follows from the equation in (4.1) that

d rt 1
= [ sl < (= bw)lyo + [ Blul + Juy )y,
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or

Jo Tuy(t, )l dy < [y |uy(to, -)|dy + u(t, ,0) — u(to, x,0)
(4.18)
+B [} Jy luyldy ds + C(t — ty),

where C'is a constant depending only on T" and |u|g~. Hence,

Jo luy(t,)|dy - < eBE [ |uy (t, <) |dy + C(t — to)]
(4.19)

+u(t,x,0) — u(ty, 2,0) + C(t — to).

Then (4.17) follows from (4.19).

Lemma 4.7 The solution to (4.1) satisfies
(4.20)
o St =y dy < Jo SRS — g dy + i, J3 (2 + S5 ualdy ds

0

+ fiollvoz Lo + Jo Bluy dylds.

Hence there exists a constant C7 depending on Cy, 0y, and T, such that
1

(4.21) / o (t, ) |dy < eC7-10) [02/ o (to, -)|dy + Ca(t — to)],

for (t,z) € (0,T) x (0, L).

Proof. As in the proof of Lemma 2.6, u, satisfies

by  buy
(4.22) (3)e = Uayy + == 5

Multiplying (4.22) by (1 — y)?signu, and integrating by parts, one gets
% fol(l - )ﬂuﬂdy

(423) = (1= y)?lualyly=o + Jo[2(1 = y)lusly + (2)a(l — y)* signug]dy

< |vo.| + f01[2|ux| 4 B(lfg;);mﬂ " B(lzy)Q]dy_
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Then (4.20) follows from (4.23).

It follows from Lemma 4.2 that there exists a constant C'5 depending on
T, Cy and 6, such that

2
1 _(0-y
Cg_ u?

(4.24) < Cs.

Then (4.20) becomes
Jo lua(t.)ldy < C3 Jy [ua(to, )ldy + Cs(2+ C3B) Ji, o luz(s, )| dy ds

+Cs(t — ty),

with Cg being a constant depending on C3, B, |vg|c1 and |u|z~, which implies
(4.21) immediately.

Remark 4.2 Similar estimates hold for uy, i.e., in (4.20) and (4.21), u,
can be replaced by u,.

5 Global Existence II, General Case

In this section, we modify the arguments in Section 3 to establish the global
existence of solutions to the problem (3.1) without the assumption b(t, z,y) =
0.

For given T" > 0 and t; = %, t = 1,---n, we consider the following
problem in the first time step
Uy = Uy, + bu (0,t,] x Q
(51) 7;9L|t:0 = Uy, U|y:1 =0
3_Z|y:0 = p.

The choice of b(t,z,y) enables us to match the boundary condition for the
solution to (5.1) at & = 0 (see Remark 4.1). In the next time step, we solve
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the problem

(52> { ut+yux+bu:0 (tl,tg] x €2

u|t=t1 = u(tla x, y) u|$=0 = (ta y)
Where in (5.1) and (5.2), @ = ug,y and u; = uy,y as in section 3.
Again the solution of problem (5.2) can be written down explicitly

t
wlty,x — (t = t)y,y)e o bsa—(t=s)yy)ds > (t—t)y
u(t,z,y) =

u(t — ivy)e*fo =g sy)ds x < (t—=t)y.

Suppose that we have obtained u for 0 < ¢t < t;. For odd z, we solve the
following problem:
up = uPuyy +bu (t,tipq] x Q
(53> u|t:ti = u(tiv x, y) U|y:1 =0
@| = Un:
oy 1y=0 05
while for even 7, we set

(5.4)

— f:l b(s,x—(t—s)y,y)ds

u(ty, x — (t—t)y,y)e x> (t—1t;)y

u(t,z,y) =
Ty (t — g,y)e_fo yb= s w)ds r < (t—t)y.
Remark 5.1 The function u given by (5.4) is the solution to

{ wp+ yuy +bu =0 (t;,t;01] x Q,

5.5 _
(5:5) Ui, = ults 2,y), oo = Tt y).

u may depend on n in general. But for convenience, we omit the index n.

To estimate this approximate solution, we start with the L> estimate of w.
The following two lemmas are parallel to Lemma 3.1 and Lemma 3.2.

Lemma 5.1 The function u obtained in the above process satisfies
(5.6) Ju(t, ,y)| < e ([@o|ze + 2[vo| e + [T]ree), 0n (0,T) x

where B is given in (4.2).
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Proof. By lemma 4.1, (5.6) holds for 0 < ¢ < ¢;. It is easy to check that (5.6)
remains true for ¢; <t <t by (5.4). In both cases, it holds that

lvg| oo (y — 1) Fue Bt
S max{|¢u0 + |U0|Loo(y — ]_>|Loo, |E1|L°° —+ |U0|Loo}.

Suppose that for 0 <t < t;_;, we have
(57) |U0|L°° (y — 1)1166731‘ S max{|1u0 + |’UU|Loo (y — 1)|Loo7 |ﬂ1|L°° + |UO|L°°}-

We will show that (5.7) remains true for ¢;_; <t < ;. For odd i, Lemma 4.1
implies that

(5.8) [vo|poo (y — 1)Fue B! < max[Fu(t; 1, )e Bt + |vp|pe(y — 1)],
therefore (5.7) is valid. When i is even, it follows from (5.4) that
[vo| Lo (y — 1) Fue Bt
< max{[Fu(ti-1, )™ + ol oo (y = 1)]zoe, [Tn] oo + [vo] ==}

Then (5.7) is also true in this case. Hence (5.7) holds for all ¢ < T. Lemma
5.1 is proved.

Lemma 5.2 There exist positive constants Cy and B depending on B, [To|p,
|vo|zeo and |G|, such that u satisfies

(5.9) u < CoePl (1 —y),

(5.10) u > boe e,

where ¢ and 0y are given in Lemma 2.2.

By using (5.4) and Lemma 4.2, one can prove this lemma in a similar way
as for Lemma 3.2.

The next lemma is a counterpart of Lemma 3.3 and can be proved by
using Lemma 4.4 and Lemma 4.5. We give it here without proof.
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Lemma 5.3 For any ¢y > 0 and fized n, there exists a constant C' such that
(5.11) Jua(t, 2, y)| + [uy (E,2,9)] < C,

for (t,z,y) € (0,T) x Q and x +y > 9. And |u(t,x,y)| admits the same
bounds for (t,z,y) € (0,T) x Q, y <1 —¢ey and x +y > 2.

Remark 5.2 For fized n, the function u is continuously differentiable. There-
fore the initial and boundary conditions are satisfied in the sense of (3.14)-
(3.17).

Next we consider the L' estimates of u, and u,. These estimates are
independent of n therefore give us some kind compactness as well as the L'
estimates to its limit.

Lemma 5.4 There exists a constant Cy depending on T, Q, B, |vo|p,
[To| 1 and |@ |1, such that

(5.12) // lu(t, |d:cdy<ecgt// |To| + Coldz dy,

fort <T.

Proof. For ty < t < ty, (5.12) can be deduced from (4.21). Moreover, it
follows from (4.20) that

(5.13)

[l (L= y)? dedy < [ fo 5l (1= ) dody + f5* [ fo(2 + 57

+ Jo [L|vo,s | oo +fo (1= y dxdy]ds

For t; < t < ty, (5.4) implies that
(5.14)
[ I el (1 —y)? dedy < PUT[f fo il (1 — )2 dwdy

+ s (L — y)?dsdy

+(t = t) ([}, Jy Shdsdy + [ fo S da dy)).
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For t;_; <t <t;, one again deduces from (4.20) that for odd i,
(5.15)
[l 81—y dedy < ] el — y)? dudy

tzl

+ft lff9(2+ (1 y By \uy|dx dy ds

+ftl Loz |z + [ ), 2 luy dx dy)ds;

while for even 4, (5.4) shows that
(5.16)
Sl (1 —y)? dedy < POt fo el (1 — y)2 dw dy

tll

+ftl 1 ) %(1 —y)* dsdy

+(t =t 1) (i, o S25dsdy + [ fo s da dy)

By Lemma 5.1 and Lemma 5.2,

2
10—y
03 - uz(t7'> N

where Cj is a constant depending on T', 2, B, |vg|p, |t~ and [uy|c1. We

(5.17)

may also assume

e
IN
g
s
=

We thus have shown that for t; 1 <t <t;_q,
(5.18)

|ua(t,-)] 2 B(t—t; |ua (ti-1, )]

PeAn Ty dr dy < (ttzfl)/ oAz 701 )2 do d F,
/ o u(t, gz LTy drdyse U Jo a2 L) drdy £ E,

t
(519) R g/t_ //9(2+B03)|ux|da:dyds+0m(t—t,-,l),

where Cy is a constant depending on 7', 0, B, |vg|pe, |Uo|r= and [@y|c1. It
follows from (5.18) and induction that
(5.20)

u(t, )| 2 Bt/ |, (0, -)| 2 L b
1— dr dy < — (1 dx d E - (1=3+1) p.
/ O U(t, .>2 ( y) ray = € o U(O, .>2 ( y) € y+j:16 7
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This, together with (5.19), shows

[ Jo it (U =y dudy < P'[[ fo Lo (1 = y)? der dy
(5.21)
+Jo [ (2 + BCs)|ug|dx dy ds + Ciot]

Now, (5.12) follows from (5.21) and (5.17). Then we have proved Lemma
5.4.

Lemma 5.5 There exists a constant Cyy depending only on T, Q, B, |vy|p,
[To| = and |@ |1, such that for n sufficiently large

(5.22) // luy (2, |d:vdy<eBt// ([0, + — Zlux 1)) dedy + Cyy.

Proof. For 0 < t < ty, (5.22) follows from (4.21). For t; <t < t5, using (5.4),
one may deduce as in (3.27) that

(5.23)

[ o Ly (8, ) dirdy < PO i ( + F5)dy ds

+ [ Jo (G lua(tr, )+ Juy (tr, ) )da dy

+B(t — 1) ([ Jo Eluy(tr, ) |de dy) + [}, fy [m](2 + 1)dy ds],
and

(5.24) u(ts, ,0) = u(ty, z,0)e Jon Lm0

In general, for t; | <t <t;, we have by Lemma 4.6 that
(5.25)
S o luy(t, ) |de dy < ePUt=0) [ folluy (81, )| + Co(t — ti-1)]dx dy

+f0L[u(t,a:,0) —u(t;_y,,0)]dx
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for odd i, and when i is even, (5.4) implies that
J Joluy (8, ) dw dy < PO [ ([ + TR dy ds
(5.26) + [ o (G lua(tion, ) + Juy (i, )] da dy]
+eBU=ti-) Oy (t — ;)2
where (5 is a constant with dependence as C;1, and

(5.27) w(ts,z,0) = u(ti1, 7,00 I bs.z.0)ds.

Therefore for t,_y <t <'t;, it holds that

//|uy e dy < eBl—ti-v) //|uy i1, e dy + Fi] + Giy,

where

T bt T'u r.T
Fiv= [ [ ~ualtion, dwdy+ [ [ (ml+ Tl gy ds(Cor a2 L
an ti_1 Jo n n'’'n

" — [fi=1 5,x s
Gi_l - / [u(tlv z, 0) - u(ti—Q, xZ, 0)6 fti—Q b(s,x,0)d ]d.’L’
0

for odd 7, and G;_; = 0 when 7 is even.

Hence,

[ fo luy(t, )|de dy < B[ fo |uy(0,)|da dy + i, e 7=V F;_,
(5.28)

Jj<i— BT (;_j41
Z even € n( )G]

Note that

¢
2BT —ft?’k""l bds

E]<leven BT(Z ])GJ < Ek lfL BT (i=2k- 2)(eT — € 2k )|u(t2k,x,0)|ds

+ J5 (€5 [u(0,2,0)| + [ulty, «, 0) ),
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where [£] is the largest integer less than or equal to i. Then for n sufficiently
large, we have

7 en € ONG < S Bty 2, 0) 45T do
(5.29)
+ Jy (P! u(0, 2, 0)| + [u(ti, x,0)|)da.
And
4BT
(5.30) Z/ B u(tyy, 2, 0)| = dr < 4Bt L™ |ulio

We also have as before
S e CIE < o kS Jus(tior, e’ O D da dy
(5'31) +eBt fot f01(|ﬂl,y| + %|E1,t|)dy ds

+Cﬁt€Bt + ClgtBBt% .

Then (5.22) follows from Lemma 5.1 and (5.28) - (5.31). We finished the
proof of Lemma 5.5.

Remark 5.3 The corresponding results in Corollary 3.2 and Corollary 3.3
are also valid here.

Now we state the main theorems of this section.

Theorem 5.1 Under the assumptions (1.3), (1.4) and (1.10), the problem
(3.1) has a solution

we L°(0,T; BV(Q) N BV((0,T) x Q)

satisfying (4.4)-(4.6). Furthermore, its derivatives are estimated by (5.12),
(3.32) and

(5.32) // |y (2, |d:cdy<eBt// |u0y|+/ |uz|ds]dx dy + Chy,

where Cq is the constant given in Lemma 5.5.
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The proof of Theorem 5.1 is similar to that of the Theorem 3.1 with the
aid of lemmas in section 4. We omit the details of the proof.

This also completes the proof of Theorem 1.1 in the simpler case that
(1.10) holds.

Remark 5.4 The corresponding results of Corollary 3.4 also hold under the
assumptions of Theorem 5.1.

Remark 5.5 The weak solution to the (3.1) is unique. This fact will be
proved in a forthcoming paper [11].

6 Global Existence of the Prandtl’s System

In this section, we indicate that the weak solution w to the problem (1.7),
which we constructed in the previous sections, can be transformed to a weak
solution to the problem (1.1) in some sense. We then point out that the
general case (1.5) can be treated by modifying slightly the analysis for the
special case (1.10).

First, by abusing the notations, we let w(t, x, ) denote the weak solution
to (1.7) constructed in the previous section (under the simplifying assumption
that (1.10) holds). We then define u(t,z,y) by

(6.1) y:/ou%.

Since

d—n
Vs

then u — d as y — oo. It is easy to see that u > 0 when 0 < y < oo and

< w(tvxvn) < \/53(61_ 77)7

U|y:0 =0.
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The initial condition u|,—g = ug is satisfied by Remark 3.3 and Remark
5.3. The boundary condition u|,—o = u; is fulfilled by virtue of the condition
w|y=p = u1, in the sense of L' and the estimate (3.39)

The function u has derivatives u, = w, u,, = ww, and

(t
(6.2) ut—w/ w; xn 7,
w ta:n
uw,(t, x,n)
6.3 - / Lol D) i,
(6.3) =y w2t
Now we set
(6.4) U:—ut—uux+uyy‘

Uy
Then the first equation in (1.1) is satisfied. Since u|,—o = 0, then

Uyy )

U|y=0 = (— u |y 0= wn|n=0 = Yo,

Y

in the sense of (3.38).

Finally we check that v satisfies the second equation in (1.1). In fact, by
(6.1)-(6.4) and the equation in (1.7),

- _f()u wt(t,x,n);kuz;g:?%ww(t,x,n)dn_|_wn

u(t,z,y)—njwe (t,x,n)

= —fo w2t$77 d77+U0

Integrating by parts

uthaz,n nwz
0 w2 tajn +f0 w2 d877|0

v = —U

=1 s n Wtz e )dsdn—i-vo

w2(t
R fu uz(t,x,n)d
0 0 w(tz,n) n
= Vg — f[%/ ux(t,:c,y)dy
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Or
Uy + vy = 0.

Moreover u, u, and u, € L™ by (4.5) and (3.39). We thus have obtained a
weak solution to the problem (1.1).

Next, we note that all our analysis has been carried out under the simple
assumption (1.10). However, the essential ingredients for the general case ,
i.e. (1.5), are similar to this special case. Indeed, under the assumption (1.5),
one can see the a priori estimates (5.9) and (5.10) in Lemma 5.2 still hold
true for the solutions of (1.7). With these precise bounds, one can check that
the other estimates can be obtained by modifying the analysis in Section 5
accordingly. We omit the details of the analysis. The proof of Theorem 1.1
is considered complete.

Remark 6.1 We believe that the weak solution constructed here is in fact
smooth. However, this is left for the future.
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