HEAT KERNELS ON METRIC-MEASURE SPACES AND AN
APPLICATION TO SEMI-LINEAR ELLIPTIC EQUATIONS

ALEXANDER GRIGORYAN, JIAXIN HU, AND KA-SING LAU

ABSTRACT. We consider a metric measure space (M,d, u) such that there exists a heat
kernel pi(x,y) on M satisfying upper and lower estimates (1.4) below, which depend on
two parameters o and 3. We show that these parameters are determined by the intrinsic
properties of the space (M,d,p). Namely, a is the Hausdorff dimension of this space
whereas 3, termed the walk dimension, is determined via the properties of the family of
Besov spaces W> on M.

We prove the embedding theorems for the space W#/%2 and use them to obtain the
existence results for weak solutions to semi-linear elliptic equations on M of the form

—Au+ f(z,u) = g(x),

where A is the generator of the semigroup associated with p.
The framework in this paper is applicable for a large class of fractal domains, including
the generalized Sierpinski carpet in R™ introduced in [3].

1. INTRODUCTION

Let (M,d, ) be a metric-measure space, that is (M,d) be a metric space, and p be
a Borel measure on M. A family {p;},., of non-negative measurable functions p;(z,y)
on M x M is called a heat kernel or a transition density if the following conditions are

satisfied, for all z,y € M and s, > 0:

(1) Symmetry: p(z,y) = pi(y, z).
(2) Normalization:

/ pe(@,y)dp(y) = 1.
M
(3) Semigroup property:
peasles) = [ ol ninta).
(4) Identity approximation: for any f € L?(M, ),

/Mpt<x,y>f(y>du(y>L—2>f(m) ast -0+
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For example, the classical Gauss-Weierstrass function in R"

1z — y|?

(1.1) pi(z,y) = WGXP <—T>

satisfies this definition.
Any heat kernel gives rise to the heat semigroup {T;},., where T} is the operator in
L?(M, ;1) defined by

(1.2) Tyu(x) = /Mpt(x,wu(y)du(y).

The above properties of p; imply that 7} is a bounded self-adjoint operator, and {7}} is
a strongly continuous, positivity preserving, contraction semigroup in L?(M, 1). Another
way of constructing such a semigroup is to set

(1.3) T: = exp (tA),

where A is a non-positive definite self-adjoint operator in L?(M, i) satisfying in addition
the Markov property. Typically, such operators arise as generators of Dirichlet forms. It is
not always the case that the semigroup {7};} defined by (1.3) possesses an integral kernel.
If it does then the integral kernel will be a heat kernel in the above sense (although some
additional restrictions are needed to ensure the normalization condition).

In this note we would like to adopt the axiomatic approach to heat kernels, which
to some extent is opposite to the above scheme. Namely, we will assume that a heat
kernel is defined on a metric-measure space, and show that this implies many interesting
consequences for the analysis on such a space. Similar approach was used in [2] and [15],
although there the notion of a heat kernel was linked to diffusion processes on M, and in
[15] the underlying space M was a subset of R".

Let p; be a heat kernel on (M,d, ). Assume in addition that the heat kernel satisfies
the following two-sided estimate, for all z,y € M and t € (0, 00),

(14) tal/ﬁ 1 (d(x’y)ﬂ> < pilz,y) < tal/ﬁ Dy <d(x’y)ﬁ> ,

t t

where «, § are positive constants, and ®; and ®, are monotone decreasing positive func-
tions on [0, 400); moreover, ®, has to decay sufficiently fast at +oo (see Theorems 3.1,
4.1, 4.2 for the exact conditions).

The Gauss-Weierstrass heat kernel (1.1) satisfies (1.4) with @« =n, 8 =2, and

1 s
Py (s) = Pa(s) = WGXP <_Z) :
The development of analysis on fractals has brought plenty of examples of heat kernels
satisfying (1.4) with functions ®; and ®5 of the form
®(s) = 'exp (—="s7),

where v > 0, and the positive constants ¢’ and ¢ may be different for ®; and ®5. In these
examples the parameters o and # may vary within the following limits:

2<pB<a+1.
In particular, § is typically larger than 2.
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The nature of the parameters o and (3 is of great interest. Although originally they
are defined through the heat kernel, a posteriori they happen to be the invariants of the
space (M,d,u) itself. Indeed, we prove that the measure of any metric ball B(z,r) =
{y :d(z,y) <r} in M satisfies the estimates

(1.5) C™lr® < pu(B(z,r) <Cr% r>0,

where C' is a positive constant (Theorem 3.1). In particular, this implies that « is the
Hausdorff dimension of M (see also [6]).

The nature of the parameter § is more complicated. If the heat kernel p; is the transition
density of a diffusion process Xy on M, then [ is called the walk dimension of X;. This
terminology comes from the following observation: if the heat kernel satisfies (1.4) then
the time ¢ needed for the diffusion to move away at the distance r from the origin is of
the order r° (see [2, Lemma 3.9]).

On the other hand, we prove the following analytic characterization of 3. Following [12],
we introduce on the space (M,d,u) the family W2 of Besov spaces, which generalizes
the Sobolev space W12 in R" (see Section 4). If a heat kernel p; is defined on M then it
induces the energy form £ defined on a dense subspace of L?(M, ). If p; satisfies (1.4)
then W5/22 coincides with the domain D (€) of £ (Theorem 4.1), whereas for any o > (/2
the space W72 consists only of constants (Theorem 4.2).

As a consequence, we see that 3 is the maximal number such that the space W5/2:2 ig
non-trivial. Hence, 8 does not depend on the particular choice of a heat kernel, and it can
be referred to as the walk dimension of the space (M,d, i) itself.

Apart from the aforementioned results, we prove also certain embedding theorems for
Besov spaces. In particular, if o > g then

WOP22(M, p) — L* (M, p)

where
2a
a—f
(see Theorem 4.3 where the case o < 3 is also considered).

We apply the embedding results to treat the following semi-linear elliptic equation on
M

(1.7) —Au+ f(z,u) = g(x),

where A is the generator of the semigroup 7} (the equation (1.7) arises when investigating
the potential u in porous or other irregular domains). We prove the existence and unique-
ness results for weak solutions of (1.7), which in particular imply that for all ¢ > p > 2*,
the equation

(1.6) 2 =

—Au+|ul"Pu=yg

has a unique weak solution u € D (§) NLP N LY, for any g € L, where p’ = pL (Theorem

-1
5.1).
Note that the classical existence results of the equation (1.7) in R*, n > 2, depend on

the critical parameter 2* = 2% (see [13]) that matches (1.6) since « = n and 3 = 2.
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Notation. The letters C, ¢ are used to denote positive constants whose values are unim-
portant but depend only on the hypotheses. The values of C, ¢ may be different on different
occurrences.

For two non-negative functions f(s) and g(s) defined on a set S, we write

f(s) = g(s),

if there is a constant ¢ such that for all s € S

c_lg(s) < f(s) <ecgl(s).

2. SOME EXAMPLES

Let [ > 3 be an integer and let My = [0,1]" (n > 2). We divide M) into [" equal
subcubes. Remove a symmetric pattern of subcubes from My, and denote by M; what
remains. Repeat the same procedure for each subcube in M;: divide each subcube into
[™ equal parts and remove the same pattern from each subcube, and denote by My what
remains. Continuing this way infinitely, we obtain a sequence of sets {My}. Set

. o0
M= M,
k=0
and define
o0 —_—
M=|]Ji"M,
k=0

where we write a K = {az : z € K} for a real number a and a set K.
The set M is called an unbounded generalized Sierpinski carpet (cf. [3]); see Figure 1,
which corresponds to the case n =2 and [ = 3.

Figure 1.



5

The distance d on M is set to be the Euclidean distance, and the measure p is the
Hausdorff measure of the dimension «, where « is the Hausdorff dimension of M. For any
generalized Sierpinski carpet, there exists a heat kernel satisfying the following estimate

z,y)P\ 7T
(2.1) pr(x,y) ~ tal/ﬂ exp (—c (M) B ) ’

which is a particular case of (1.4) (see [3]). There are also plenty of other fractals such
that (2.1) or (1.4) holds, see for example [2], [7].
See also [8, 9], [16] for the heat kernel estimates in the setting of graphs or manifolds.

3. VOLUME OF BALLS

For a metric space (M, d), denote by B(x,r) the metric ball in M of the radius r centered
at the point x € M, that is

B(z,r)={ye M :d(z,y) <r}.

Theorem 3.1. Let (M,d, ) be a metric-measure space, and p; be a heat kernel on M
satisfying (1.4) with function ® such that

& d
(3.1) / 58P, (5) 2 < oo.
s
Then for any ball B(x,r) in M we have
(3.2) Cr® < u(B(z,r)) < Cr®.
Proof. Fix x € M and prove the upper bound for the volume function
(3.3) V(r) = pu(B(x,r)) < Cr®,
for any r > 0. Indeed, for any ¢ > 0, we have
(3.4) / pe(@, y)du(y) < / pe(@,y)du(y) =1
B(z,r) M
whence

-1
Vir) < inf T, .
CE ey

Taking ¢ = 7% and applying the lower bound in (1.4) we obtain

1
1 > _— = -
yeggz,r)pt(x’y) ~ ta/B () =er,

whence (3.3) follows.
Let us prove the opposite inequality

(3.5) V(r) >cr®.
We first show that the upper bound in (1.4) and (3.3) imply the following inequality

(3.6) / (e, y)du(y) < &, Vi< erf
M\B(z,r) 2
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provided that e > 0 is sufficiently small. Setting r), = 2¥r and using the monotonicity of
®,, we obtain

Ca d(z,y)?
/ pe(z,y)duly) < / /P, (7( ty) )du(y)
M\B(z,r) M\B(z,r)

oo

2
>/ N P
k—0 * B,k 1)\B(z,r)

00 Tf
CYEE: Tgtgﬁa/ﬂép2 ';?

k=0

ky. a/B k)P
- o2 (%) - (%)
/8, ()%
= C/B/Zt (I)Z()S’

where the last inequality is proved as follows: setting zj = (2¥r)”/t and using the mono-
tonicity of ®5, we obtain

o0 d
/ 50y (5) =
v /(2t) g

xo
_ / /81, (s)ds +
x0/2

IN

IN

oo

Tr41
Z/ s*0=1,(s)ds
Tk

k=0

> gq)z(xo) ( o/ﬂ (20/2) a/ﬂ> g; (Zh+1) (fﬁkiﬁl — xZ/ﬁ)

o
> c@z(wo)xg/ﬁ +c Z <I)2(:1:k):1:z/ﬁ.
k=1
Thus, by (3.1), the integral

/ pe(, y)dps(y)
M\ B(z,r)

can be made arbitrarily small, in particular smaller than 1/2, provided B /t is large enough.
From the normalization property and (3.6), we conclude that for such r and ¢

(3.7) /B(x,r) pe(z,y)du(y) > % ,

whence

yeB(z,r)

-1
V(r) > %( sup pt(%@/)) :

Finally, choosing t := er® and using the upper bound
pi(w,y) <0 Py(0) = Cr e,



we obtain (3.5). m

Note that the method we have used in the proof is close to the one used in [9].

4. BESOV SPACES
Let (M,d, ) be a metric-measure space. For any ¢ € [1,400], set L? = LY(M, i) and
lullg = llwllza(as,p)-

Fix a positive number pg, and for any o > 0 define the non-negative functional W, (u) on
measurable functions on M by

o
p(B(z,r))

In particular, if the condition (3.2) is satisfied then for any 8 > 0

(4.1) Wy (u)? := sup 7’_2‘7/
0<r<pg M

/f |u(y)——u(zn2du(y4 ().
B(z,r)

w?~ sup r P u(y) —u(x x).
(4.2) W2 (u)® p /M [/B(l_’r)l (y) —u( )IQdM(y)] du(z)

0<T<p0
Define the space W? as follows:
W2 =Wo*(M,d,p) = {u € L* : W, (u) < 0o} .

It is easy to see that W, is a semi-norm in W2, and W2 is a Banach space with the
norm

[ullo2 := llullz + Wo (u)

(see for example [12]). The space W72 is one of the family of Besov spaces; it is similar
to the space that was denoted by Lip(o,2, 00) in [12].

4.1. The Laplace operator. Define by (1.2) the semigroup {T}},., in L?, and consider
its infinitesimal generator A defined by

(4.3) Avy := lim

where the limit is taken in the L?-norm. It is natural to refer to A as the Laplace operator
of the heat kernel p;. The domain of the Laplacian A is the space of functions u such that
the limit in (4.3) exists. Since {7}} is a strongly continuous contraction semigroup, the
domain dom(A) of A is dense in L? (see [20, Theorem 1, p.237]), and A is a self-adjoint,
non-positive definite operator.

4.2. The Dirichlet form. For any ¢ > 0 define the quadratic form & on L? by

(4.4) & [u] = <“ _tTt“,u> ,

where ( , ) is the inner product in L?. An easy computation shows that & can be
equivalently defined by

(4.5 il = 5; [ ] (ule) — ) *pilo )ty auta).
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In terms of the spectral resolution { E)\} of the operator —A, & can be expressed as follows

00 1 _ ,—tA
€ u] = / L= Byl
0 t

which implies that & [u] is decreasing in t (see also [4]). Let us define the Dirichlet form
& by

(4.6) Elu] :== tgr(ﬂ &t [u]

(where the limit may be +oo since & [u] > & [u]) and its domain by
DE):={ue L?: [u] < oo}.

It is known that D(£) is dense in L2.
By the standard procedure, the quadratic form & [u] extends to the bilinear form & (u, v).
Then the space D(€) is a Hilbert space with the inner product

(4.7) [u,v] := (u,v) + & (u,v).
Clearly (4.3) and (4.4) imply that

(4.8) E(u,v) = (—Au,v),
for all u € dom(A) and v € D ().

4.3. Besov space as the domain of the Dirichlet form. The domain D(€) of the
Dirichlet form is identified by the following theorem.

Theorem 4.1. Let p; be a heat kernel on (M, d, 1) satisfying (1.4). Assume in addition

that the function s'+%/Pdy(s) is monotone decreasing in [sg, +00) for some so > 0, and
that

(4.9) /000 31"'0‘/’8(1)2(5)% < 00.

Let € be the Dirichlet form defined by (4.5) and (4.6). Then
D(E) = Wh/22

and for any u € D (&)

(4.10) Eu] ~ Wﬂ/z(u)2.

Proof. Since the expressions & [u] and Wpg/o(u) are defined for all u € L?, it suffices to
show that (4.10) holds for all v € L? (allowing the infinite values for both sides). Note
that the hypotheses of Theorem 3.1 hold so that we have the estimate (3.2) of the volumes
of balls.

We first prove that

(4.11) Eu] > cWgy (u)?,
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using the approach o the lower bound 1n and using the monotonicity of ¢,
g the approach of [15]. By the 1 bound in (1.4) and using th icity of @1,

we obtain from (4.5) that for any r > 0 and t = 77,

> 5 ] (W) = uw) e, v)d)dta)
255 ), o ()~ )i
0™ ey Lpr-rsons
<I>

e [ / - ()2 dpu() ().

This combines with (4.2) to yield (4.11).
Let us now prove the opposite 1nequahty, that is

Eu] < CWgpp (u)”.

For any ¢ > 0 we have

Eilu] = / / )P, y)dp(y)dp(x)

_ () — 20, (x .
S {/M /M\B(CE,I)+/M /B(:v,l)}( () = () pe(z, y)dp(y)du(z)
A(t) + B(t)

(4.12) =:
For z € M we obtain, using (3.2),

1

Jots du(y)

1
/M\B(w,l) d(z,y

—————=du(y
/B(w,2k+1)\B(w,2k) d(x’y)oHrﬂ )

u(B(z, 2k+1))2—k(a+,6')

M

ES
Il

0

e

i

0
o]

S ot

k=0

IN A
Q Q

(4.13)
By the hypothesis, the function
pls) 1= 5" TPy (s)

is monotone decreasing in [sg, +00) and

o0
d
/ go(s)—s < 00,
0

s
which implies that
(4.14) lim ¢(s) =0.

§—00
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Using the elementary inequality (a—b)? < 2(a? +b?), the upper bound in (1.4), and (4.13),
we obtain that, for small £ > 0,

1
B ﬂ/ /M\B (1) (u(@) = u(y)*pe(, y)du(y)dp(x)
- t/ /M\B (2,1) )+ u(y)*)pulw, y)dp(y)dp(w)

2 /M u(z)? /M\B(a:,l) d((II,;)CH—ﬁ(p (d(x;y)»B) dp(y)dp(z)

2 (%> /M u(z)” /M\B(a:,l) Wdu(y)du(x)

1
oo (3) Il
whence by (4.14)

(4.16) Jm A(f) =

IN

IN

(4.15)

The quantity B(t) is estimated as follows: using (4.2) and (4.9), we have that

2t/ / " w(y)*pe(ee, y)du(y)dp(z)

2
Z/ / B(z,2-k=D)\ B(z,2- k)( u(z) —u(y))“pe(z, y)du(y)du(z)

S (1) e (EE) [ 0 st

0 so—kp\ 1te/b o—kp3
<owney (5) ()

k=1

< CWypo(u)? / SHalB, (5%
0
(4.17) < CWpya(u)’.

ds
S

It follows from (4.12), (4.16) and (4.17) that
— 2
(4.18) Elu] = tgrgl+ & [u] < CWgjo(u)*,

which finishes the proof. m

As we see from the proof, the inclusion D () € W#/?2 was obtained using only the
lower estimate in (1.4), whereas the opposite inclusion was obtained using only the upper
estimate in (1.4).
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4.4. Characterization of § in terms of Besov spaces. The next theorem explains
the parameter [ (the walk dimension) from the viewpoint of the scale of the Besov spaces
(see also [11]).

Theorem 4.2. Let p; be a heat kernel on (M,d, ) satisfying the upper bound in (1.4).
Assume in addition that s*t/P®y(s) is bounded on [0,400) and

o ds
(4.19) / s 8Py (s)— < oo.
0 S

Then, for any o > 3/2, the space W2 contains only constants.

Remark. Observe that the hypotheses that are imposed on ®5 in Theorems 3.1, 4.1, 4.2
become stronger each time. Certainly, every function of the form

Dy (s) = exp (—cs7)

satisfies all the hypotheses for ¢ > 0 and v > 0.

Proof. The proof is similar to that of Theorem 4.1. Fix some function u € W2, We will
show that &[u] = 0, which implies that & [u] = 0 for all ¢ > 0 and hence u is constant on
M.

Choose some ¢ € (0,1) so small that
(4.20) 20 —(1+¢)B>0,
and we prove that
& [u] < CF ([lull3 + Wo(w)*),
which gives & [u] = 0 by letting t—0+.

To see this, using the notation A(t), B(t), and ¢(¢) introduced in the previous proof,
rewrite the estimate (4.15) for A(t) as follows

_ 1 1
reAt) < O (1) Il
By the hypothesis, the function
s“p(s) = 5770 By (s)

is bounded on [0, +00), whence we obtain

(4.21) EEA() < Cflul.
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Let us estimate B(t). Similar to (4.17), but using W, instead of W/, it follows from
(4.20) and (4.19) that

B0 = g [ [ ) )y

_ b . w(z) — u(y))’pi(x x
S ) ) BN ROl On e

1 00 1 1+e+a/B 2—k,6‘ )
<5>(:) ()] [ (u(z) — uly))*du(y)duz)
=1 M J B(z,2=(k=1))
%) 2—kﬁ 1+e+a/B 2—k,6‘
< 2 —(20—(1+€)B)k
< C Wy(u) ];2 — (=
ds

< CWo(u)? / stretalBg, (s)—

0 s
(4.22) < CW,(u)2
Therefore, we obtain from (4.12), (4.21) and (4.22) that

Eful = A(t) + B(t) =t° (t “A(t) +t °B(t)) < Ct° (|Jul|3 + Wy (u)?).
|

Let us mention that Theorems 4.1 and 4.2 were obtained by Jonsson [12] for the case
of the Sierpinski gasket in R", but starting from the Dirichlet form rather than from the
heat kernel.

The next Corollary states that both parameters «, 3 in (1.4) are uniquely determined
by the space (M, d, u) itself.

Corollary 4.1. Let pgi) (i = 1,2) be two heat kernels on (M,d, ) satisfying (1.4) with
the parameters oy, 3; and the functions q)gz),fﬁ'g), respectively. Assume that CI)g) (1=1,2)
satisfy the same hypotheses as in Theorem 4.2. Then a1 = ag and B, = B,.

Proof. By Theorem 3.1, p (B(z,)) satisfies (3.2) for both oy and «g, for all » > 0, whence
we obtain a; = ag. If 8, > 5 then set o = (3;/2 so that by Theorem 4.2 applied to the

heat kernel p§2), the space WF1/22 = W2 contains only constant functions. However,

this contradicts the fact that the heat kernel pgl)(., y) is in WP1/22 for allt > 0 and y € M.
Similarly, 8 > (3, is impossible. m

4.5. Embedding theorems. In addition to the spaces L? and W2 defined above, we
introduce the Holder space C* = C*(M, d, j1) as follows: we say u € C* if

ju(z) — u()
lullcr :==  p-esssup ———=7
“ T,y €M d((II,y))‘

0 < d(z,y) < po

< 0.

Theorem 4.3. Let (M,d, ) be a metric-measure space with a heat kernel satisfying (1.4),
and assume that the function ®o satisfies the same hypotheses as in Theorem 4.1. Then
the following is true.
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(1) If a« > (3 then for any 2 < q < 2*

(4.23) Wh/22 e 19,
where
2" 1= 2a .
a—p
That is, uw € WB/22 implies u € LY and
(4.24) ully < Cllullg/z,z-

(i) If a = B then the embedding (4.23) holds for any 2 < q < co.
(¢43) if o < B then

Wh/22 <y 0A
where
80—«
A= .
2
That is, u € WP/22 implies u € C* and
(4.25) lullox < Cllullgya,o-

Remark. Observe that the definitions of the function spaces W5/22 4. C* involved in
the embedding theorems do not depend on a heat kernel. However, the proof of the parts
(i) and (i7) uses the existence of a heat kernel satisfying the estimate (1.4).

Proof. By Theorem 4.1, we have W#/22 = D (€) and
1/2
lullgjzs = llullz + € [ul /2,
for any u € WP/%2. Hence, in parts (i), and (ii), it suffices to prove that
D (&) — L
(where 2 < g < 2* in the case (i) and 2 < ¢ < oo in the case (i7)), and

(4.26) Jully < € (Jlullz + € [u]"/?)

for any u € D (€).
Proof for the case (i), « > 3. The upper bound in (1.4) implies that

(4.27) sup py(xz,y) < Ct /7.
ryeM

Using the definition (1.2) of the semigroup 7}, the Cauchy-Schwartz inequality, and the
normalization property of the heat kernel, we obtain that for any v € L?, z € M, and
t>0

Tou(s)| < /Mpt(x,ynu(y)w(y)

{/Mpt(g”’y)“(y)Zdu(y)}I/2 {/Mpt(f’fay)du(y)}l/2

C't % |lullo.

IN

(4.28)

IN
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Therefore, for any v > 2¢, we have that

(4.29) I Tulloo < Ct i flully forall 0<t< 1.

Hence, the heat semigroup {T}} is L? — L ultracontractive for 0 < t < 1. Since a > 3,

we see that v > 2a/f > 2, and so by [5, Theorem 2.4.2, p.75] (or [4], [19]), D (£) — L%,
that is, for any u € D (£)

(4.30) a2 < CE u] + Collull;.
When v varies in [%a,wLoo), the exponent ¢ = 2% varies in (2,2*]. Therefore, (4.30)

implies (4.26) for all 2 < ¢ < 2*. For the remaining case ¢ = 2, (4.26) is trivial.
Note that if v = %C“, then (4.29) holds for all ¢ > 0, which implies (4.30) with Cy = 0
(see [5, Corollary 2.4.3]), that is

(4.31) |ul|3. < CE&[u).

Proof for the case (ii), a = . The proof is the same as above, with the following
modification. Since (4.29) holds for all v > 2a/f = 2, we see that (4.30) holds for all
v > 2. Therefore, ¢ = % takes all the values in (2,4+00), whence the claim follows.

Proof for the case (iii), « < 3. For any x € M and r > 0, set

1
(B(r)) /B@,r) wlE)du(c)-

We claim that for any w € W5/22 and for all z € M, 0 < r < Po>
(4.33) lugy () — up(z)| < Cr* W3 /o(u).

To see this, denoting by By = B(z, ), By = B(z,2r), we have that
1 1
wle) = s [ w©du©) = s [ wdu©dut,

and a similar expression for us,(2). Applying the Cauchy-Schwartz inequality, (3.2) and
(4.1), we obtain

() — o) = { 31 (B2) /B/B du(é)du(n)}Z
31 (By) /B1 /Bz )? dpu(€)dpu(n)

e _ u(€) — u(n))?
<ore [ s /B GG du(f)] dutn)
< Cr P Wy o(u)?,

(4.32) up(z) ==

proving (4.33).
In the same way, we have

|ugr (z) — ur(y)| < Cr? W /2(u)
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for all z,y € M such that r := d(z,y) < p,. Therefore, for such z,y we obtain
(4.34) Jur () = ur ()] < Jup(x) = wze (@)] + Juzr () = ur(y)| < C 1t W po(u).

Let z,y be fixed Lebesgue points in M with r := d(z,y) < po. Set ry = 27%r for all
k=0,1,2,.... Then (4.33) implies

0() = (&) = lim [ur, (2) = ury (@)

< Z |Urk (z) — urk+1(x)|
k=0

e A
< CWyp(0) Y (551
k=0

< Cr Wi a(u).
Similarly, we have

lu(y) — ur(y)] < Cr*Ws(u),
which, together with (4.34), yields (4.25). m

The method we used in the proof of part (7i¢) is similar to the one used in [10, 14]. Note
that in this part we have not used explicitly the heat kernel, although the proof does use
the relation p(B(x,r)) ~ r* that holds by Theorem 3.1.

Theorem 4.4. (Compact embedding theorem) Let (M,d, ;) be a metric-measure space
with a heat kernel satisfying (1.4). Then for any bounded sequence {uy} in D(E) in the
norm (4.7), there exists a subsequence {uy, } that converges to a function u € L*(M, i) in
the following sense:

|k, —ullL2(B,u) — 0,
for any bounded set B C M.

Proof. Let {uy} be a bounded sequence in D (£). Since {uy} is also bounded in L?, there
exists a subsequence, still denoted by {uy}, such that {u;} weakly converges to some
function u € L2. Let us show that in fact {uy} converges to v in L?(B) = L?(B, u) for
any bounded set B C M.
For any t > 0, we have that, using the triangle inequality,
lue — ullz2my < llwk — TourllL2an) + 1 Thwk — Tewll 2 sy + [|Thw — ull L2 ar).-

For any function v € L? we have

o=t = [ ([ o) - v(y))pm,y)du(y))Zdu(x)

IN

/M {/Mpt(x, y)dp(y) /M(v(x) — v(y))*pe(=, y)d,u(y)} dyu(z)

= 2t gt [’U]
2t E[v].

IN
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Since € [ug] is uniformly bounded by the hypothesis, we obtain that for all £ and ¢ > 0
lug — Truglla < CVE.

Since {uy} converges to u weakly in L? and py(z,-) € L?, we see that for any z € M

Tyug(z) = /Mpt(x,y)uk (v)duy) "=F /Mpt(x,wu(y)du(y) = Tyu(a).
Also, we have by (4.28)

| Tyulloo < O35 [jug
so that the sequence {Tuj} is uniformly bounded in k for any ¢ > 0. Since {Tjuy}
converges to Tiu pointwise, the dominated converegnce theorem gives that
Tyu, — Tyu in  L*(B),
as k—oo. Hence, we obtain that, for any ¢ > 0,
limsup |lug — ullz2(p) < CV't + || Tyu — ulo.

k— o0

Since Tyu — u in L?(M) as t — 0, we finish the proof by letting t — 0. m

Corollary 4.2. Under the hypotheses of Theorem 4.4, there ezists a subsequence {uy,}
that converges to a function v € L?(M, 1) almost everywhere.

Proof. Fix a point x € M and consider the sequence of balls By = B(x, N), where N =
1,2, .... By Theorem 4.4 we can assume that the sequence {uy} converges to u in L?(By)
for any N. Therefore, there exists a subsequence that converges almost everywhere in Bj.
From this seqeunce, let us select a subsequence that converges to u almost everywhere in
Bs, and so on. Using the diagonal principle, we obtain a subsequence that converges to u
almost everywhere in M. m

5. SEMI-LINEAR ELLIPTIC EQUATIONS

As above, let (M, d, ;1) be a metric measure space which possesses a heat kernel satisfying
(1.4). In this section we show the existence of generalized solutions of the equation

(5.1) —Au+ f(z,u) = g(x),

where A is the Laplace operator in M defined by (4.3) or (4.8). More precisely, we say
that v € D(€) is a generalized solution of (5.1) if the following identity holds

(52) ewo) + [ fou@)@idne) ~ [ g@la)du) =0,
for any test function v from a certain class to be defined below.
Fix a couple p,q € (1,00), set
EP1:=DE)NLPNLI,

and define the norm in EP>? by

lull := llully + lullg + € [u]"/2.
Clearly EP-? is a Banach space, and its dual is

(BP9Y* = Ep’,q’,
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where p' and ¢’ are the Holder conjugates to p and ¢, respectively.
We assume throughout this section that

(5.3) gerL”
and
(5.4) |f(z,u)] < Clult™" + fo(z), forallz € M and u € R,

where fp is a non-negative function in L7,

Let us show that all the terms in (5.2) make sense if u € D(£) N L7 and v € EPY.
Indeed, & (u,v) is defined as u,v € D (£), and the other two terms are finite by the Holder
inequality:

(5.5) \wasmwm<m
and
60 |[ swodd <1 lololl < (Clly” + 1ol ol < .

Now we can give a precise definition of a generalized solution of (5.1).

Definition 1. Assuming that f and ¢ satisfy (5.3) and (5.4), we say that u € EP? is a
generalized solution of (5.1) if the identity (5.2) holds for all v € EP1.

Let E be a Banach space and I : E — R be a functional on E. Recall that I is Fréchet
differentiable at u € F if there exists an element in the dual space E* of E, denoted by
I'(u), such that for all v € E

I(u+tv) = I(u) + tI'(u)v +o(t) ast— 0.

The functional I'(u) is termed the Fréchet derivative of I at point u. We say that I is
continuously Fréchet differentiable if I is Fréchet differentiable at any v € FE, and the
mapping u — I'(u) is a continuous mapping from E to E* (see for example [13, 17]).
Finally, we say that u is a critical point of I if I'(u) = 0.

We will show that a generalized solution of (5.1) may be obtained as a critical point of
a functional I (u), where I (u) is defined by

(5.7) Iw) = 5€ [+ [ Plau@)inte) - [ glo)utaduto)
and

(5.8) F(z,u) / f(z,s)d

Let us show that the functional I defined by (5.7) is continuously Fréchet differentiable
for suitable f and g.

Proposition 5.1. Assume that f(x,u) is continuous in u € R for all z € M and satisfies
(5.4), and g satisfies (5.3). Then I defined as in (5.7) is continuously Fréchet differentiable

in EP1. Moreover, we have

(5.9) I'(w)o = E(u,0) /fwu () dp(z) — Aﬁwmmwm»
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for all u,v € EP1.
Thus, u is a generalized solution of (5.1) if and only if u is a critical point of I.

Proof. The proof follows the same line as in [13]. For completeness, we sketch the proof.
It is easy to see directly from the definition that the functional

) = 560 = [ glaule)dn(o)

is continuously Fréchet differentiable at any point v € EP? and

Ty = (o) = [ gla)o@in(o)

Let us show that the remaining part of I, that is the functional

I = [ Pl u(@)duto)

is also continuously Fréchet differentiable, and
(5.10) v—/ F (o, u(z))o(@)du(z).

Indeed, taking (5.10) as the definition of J', we have for all u,v € EP? and —1 <t < 1
u+tv
T(u+tv) — J() — 7wy = / [/ i, 8)ds — £ (2, u(z))o(z) | du()
M U
=t [ (Flou ) = fla.w) o@)duo)

where
0 =0(z,t) €[0,t] C (—1,1).
By (5.6) we have f(-,u)v € L'. By (5.4) and (5.6) we obtain similarly
£ (w4 00)] < Clut 00" + fo < C(|ul + o))" + fo € L',

Since f(z,u+60v) — f(z,u) ast — 0, we conclude by the dominated convergence theorem
that

J(u+tv) — J(u) —tJ' (u)v = o(t) ast— 0,

proving that J is Fréchet differentiable.
It remains to show that J'(u) is continuous. For any uy, us,v € EP7, we have

T (ur)o — " ‘ [ o) - fa @)oo

< FCun) = FEu)llgllvllg
< CGwn) = G u)llglloll zra,

whence

1 (1) = J"(u2) | (moays < [1F(un) = u2)lly-
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Note that the Nemytsky operator Fu := f(z,u(z)) is continuous from L7 to LY, pro-
vided that f satisfies (5.4) (see [18, Theorem 19.1]; for a bounded domain, see [1, Theo-
rem 2.2]). Indeed, if Fu is not continuous, then there exists a sequence {uy} such that
|ug, — ul|;—0 but

(5.11) | Fur, — Fully > €

for all k and some e > 0. Since {uy} converges to u in L?, there is a subsequence {uy; }
of {uy} such that {uy;} converges to u almost everywhere in M. Fix some R > 0 and
set Br = B(xo, R) for a fixed point zp € M. By (5.4) and the dominated convergence
theorem, we have

ti [Py, =l =l {1 = fCldut [ 1fCu) = el da
Br M\Bpg

< C lim (Juy 17 + [u]? + [fol© )dp
J—00 M\BR

= C lim (Ju, —u+wl? + |ul? + | fol7 )dp
J—00 M\BR

< C (Jul” + | fol*)dp
M\Bpg

Choosing R large enough we can make the right-hand side arbitrarily small, which con-
tradicts (5.11). Hence, Fu is continuous from L? to L?. Therefore, J'(u) is continuous.
|

By Proposition 5.1, in order to prove the existence of a generalized solution of (5.1), it
is enough to show that the funcitonal I defined by (5.7) has a critical point in EP*9; this
in turn will follow if I has a minimum point in EP¢. The following statement provides the
conditions, which ensure that a functional on a Banach space has a minimum point.

Proposition 5.2. ([13, Theorem 2.5, p.14]) Let I be a real-valued functional in a reflezive
Banach space E satisfying the following conditions:
(2) I is bounded below; that is

inf I(u) > —oo.
uck

(73) I is coercive; that is for any real a there exists b such that I(u) < a implies ||u|| < b.
i11) Any sequence {uy} that converges to u weakly in E has a subsequence {uy, } such tha
i) A that t kly in E h b . h that

liminf I'(ug,) > I(u).
11— 00
Then I has a minimum point in FE.
Now we prove the main result of this section.

Theorem 5.1. Assume that M admits a heat kernel satisfying (1.4) with « > 3, and let
the function ®y satisfy the same hypotheses as in Theorem 4.1 (or 4.3). Fiz two numbers
p,q such that

2
a—f3

(5.12) q>p>2 =
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Let g € L¥', and f(x,u) be a measurable function on M x R that is continuous in u for
any x € M and satisfies (5.4). Moreover, assume that for all z € M and u € R

(5.13) F(z,u) = /qu(x,s)ds > clul? + Fy(z),

where Fy € L*. Then (5.1) has a generalized solution u € EP¥.

Remark. Here is an example of function f that satisfies all the hypotheses of Theorem
5.1

F () = Jul* 2.
Hence, the equation
(5.14) —Au+ul” Pu=yg
has a generalized solution u € EP4 for any g € LP provided p and ¢ satisfy (5.12). We will

see below that this solution is unique.

Proof. Tt suffices to show that the functional I defined by (5.7) satisfies the conditions
(i) — (#1) of Proposition 5.2.
Condition (i) - I is bounded below. By (5.12) there exists 6 € [0,1] such that

1 0 1-46

TR
whence, for any u € EP?,

0 —0
2% U||¢11

lully < llu
by using the Holder inequality. By (4.31), we see that
lullor < CE ',

which implies

lull, < CE@ uly™
(5.15) < C(Jlully + £ ['?).
From (5.7), (5.13), (5.5) and (5.15), we obtain that, for any u € EP*Y,
1
I(u) 2 3€ [u] + (clully = [ Follr) = lglly llull,
1
> 2€ [ul + cllullf = o]l = Cllgly (lully + € [u]*/?)
1
> |31 CE ] + [elul - Clluly] - ¢
1
(5.16) = [532 - C’s] + [ct! - Ct] - C,

where s := &(u,u)"/? and t := ||ul|,. By ¢ > 1 the value of each square bracket is bounded
below, whence we conclude that I is bounded below.
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Condition (i7) - I is coercive. If I(u) < a for some a, then by (5.16)

a> [%32 - C’s] + [ct?! — Ct] - C,

which implies that s and ¢ must be bounded. Together with (5.15) this implies that u is
bounded in EP+.

Condition (iii). Let a sequence {uy} converge to u weakly in EP. Since g € LF' C
(EP9)* | we have

(5.17) lim gu dp :/ gu dp.
k—o0 M M
Since u € D (£) C (EP9)*, we have
lim & (ug,u) =€ [u].

k—oc0
Applying the inequality
€ [ug] = 2& (ug,u) — € [ul,
we obtain
(5.18) likrgiorgf Elug] > Eu].
We are left to verify that there exists a subsequence {uy, } such that
(5.19) liirgcigf /M F(-, ug,)dp > /M F(-,u)dp.

The sequence {uy} is bounded in D (£). Therefore, by Corollary 4.2 there exists a sub-

sequence {uy, } that converges to u almost everywhere in M. Therefore, we have also

F(-,ug,) = F(-,u) almost everywhere in M. By (5.13), we have F(-,uy,) > Fy € L', and

(5.19) follows by Fatou’s lemma. Combining (5.17)-(5.19), we complete the proof. m
Finally, we complement Theorem 5.1 by the uniqueness result.

Proposition 5.3. Let the function f(z,u) be strictly monotone increasing in u for every
x € M. Then the equation (5.1) has at most one generalized solution v € EP4.

Hence, the equation (5.14) has exactly one generalized solution in EP:1.

Proof. Let u; and uy be two generalized solutions of (5.1). Then for any v € EP? we have
from (5.2)

E(uy — un,v) + / (f (1) = F(u)) v da = 0.

M
Substituting v = u; — us, we obtain

€ [ur — ua] + / (f(yu1) = £ um)) (g — ) da = 0.

By the monotonicity of f(z,u) in u, the both terms here are non-negative, whence each
of them must vanish. In particular, we obtain

(f(yu1) — f(r u2)) (ur —ug) =0

almost everywhere, which by the strict monotonicity of f implies u; = us. =
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