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Abstract

In this paper we give a partial affirmative answer to a conjecture of Greene-
Wu and Yau. We prove that a complete noncompact Kéahler surface with pos-
itive and bounded sectional curvature and with finite analytic Chern number
c1(M)? is biholomorphic to C2.

§1. Introduction

The celebrated theorem of Cheeger—Gromoll-Meyer [3], [10] states that a
complete noncompact Riemannian manifold with positive sectional curvature
is diffeomorphic to the Euclidean space. It is well-known that there is a vast
variety of biholomorphically distinct complex structures on R for n > 1 ( see
[2], [7] )- To understand the relationship between the Riemannian structure
and the complex structure on complete noncompact manifolds, we restrict at-
tention to Kahler manifolds which has the effect of insuring a closer relationship
between these two structures. In [8], Greene and Wu proved that a complete
noncompact Kahler manifold with positive sectional curvature is Stein. This

fact thus motivated the following conjecture:
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Conjecture ( Greene-Wu [9] and Yau [27] ) A complete noncompact
Kahler manifold of positive sectional curvature is biholomorphic to a complex

Euclidean space.

In [14], among other things, Mok gave the first partial affirmative answer to
the conjecture for complex two—dimensional manifolds with maximal volume

growth.

Theorem ( Mok [14] ) Suppose M is a complete noncompact Kéhler
manifold of complex dimension n = 2. Suppose also M has positive sectional
curvature and satisfies

(7) 0 < scalar curvature <

Y

2(1’@,%)

(i) Volume(B(zgy,r)) > cr’™ 0<r<+oo,

where B(zg,r) and d(zg,z) denote respectively geodesic balls and geodesic

distances, ¢, C are some positive constants. Then M is biholomorphic to C2.

Denote by Ric the Ricci curvature form of M. As remarked in Mok [16],
the conditions (i) and (i) imply that the integral f,, Ric", the analytic Chern
number ¢;(M)", is finite.

In his paper [26], To gave a generalization of the above result to nonmaximal
volume growth manifolds. More precisely, it was proved in [26] that if M is
a complete noncompact Kéhler manifold of positive sectional curvature with
complex dimension n = 2 and suppose for some base point xy € M that there

exist positive constants C7, Cy and p such that



Cy

(7)’ 0 < scalar curvature < (0 7)
(i1)’ / ! dx < Cylog(r +2) 0<r<+4oc0
(1+d(zg, )™ — 2 ’ -
B(zo,r)
(i) / Ric" < +oo,
M

then M is biholomorphic to C?. Moreover in case of p > 2, the result is
valid without assuming condition (ii)’. Also from Yau's theorem (cf.[20]) that
complete noncompact manifolds with nonnegative Ricci curvature have at least
linear volume growth we see that the positive constant p need to be assumed

not less that %

It is likely that the assumption (7ii) is automatically satiafied for complete
Kahler surfaces with positive sectional curvature. The reason is that on a
complete noncompact real four-manifold with positive sectional curvature we

have the generalized Cohn-Vossen inequality
/ 0 < x(RY) < +o0
M

where © is the Gauss-Bonnet-Chern integrand. It is well-known that the inte-
grand © is positive and it seems that the exterior product Ric? is more or less
comparable with the Gauss-Bonnet-Chern integrand ©. Meanwhile in views
of Demailly’s holomorphic Morse inequality [6] and the L?-Riemann-Roch in-
equality in Nadel-Tsuji[18] (see also Tian[25]), the assumption (ii7) is a natural
condition for a complete Kahler manifold to be a quasi-projective manifold.
However the assumptions on the curvature decay and the volume growth are
more problemtic since they demand the geometry of the Kahler manifold at in-
finity to be somewhat uniform. The main purpose of this paper is to show that
the assumption (ii7) alone is sufficient to guarantee that the Kéhler surface is

biholomorphic to C2.



Main Theorem Let M be a complex n—dimensional complete noncom-

pact Kahler manifold with positive and bounded sectional curvature. Suppose
that
/ Ric" < +o0.
M

Then M is biholomorphic to a quasi—projective variety, and in case of dimenion

n = 2, M is biholomorphic to C2.

We remark that there is a more ambitious conjecture due to Yau [27], [28],
i.e., the question is to demonstrate that every complete noncompact Kahler
manifold with positive holomorphic bisectional curvature is biholomorphic to
the complex Euclidean space. But for such a Kéahler manifold with positive
holomorphic bisectional curvature, one doesn’t even know whether the man-
ifold is simply connected. Moreover it is also unknown whether the Kéahler
manifold is Stein, which is a conjecture of Siu [23]. In the companion pa-
per [4], the authors and S. H. Tang gave a partial affirmative answer to the
above Yau's conjecture. We proved that given a complete noncompact complex
two—dimensional Kéhler manifold M of positive and bounded holomorphic bi-
sectional curvature, suppose its geodesic balls have maximal volume and its
scalar curvature decays to zero at infinity in the average sense, then M is
biholomorphic to C2.

The basic idea to approach these conjectures is to compactify the manifold
M as a quasi—projective variety. Siu, Yau [24] and Mok [14] initiated this pro-
gram by first using the L?-method of Andreotti—Vessentini and Hormander to
establish a Siegel’s theorem for a field of meromorphic functions and then desin-
gularizing the “birational” map associated to the Siegel theorem. The crux
is how to choose a subfield of meromorphic functions with suitable estimates
for the desingularization. In [14] Mok solved the Poincaré-Lelong equation to
show that there is plenty of holomorphic functions of polynomial growth and

that the subfield of meromorphic functions arising from quotients of holomor-



phic functions of polynomial growth has the desirable estimates. In [4] the
Ricci flow was used to understand the topology of the manifold and to deduce
that this field generated by holomorphic functions of polynomial growth still
has the desirable estimates. In [16] and [26], the quotient fields were defined
from holomorphic plurianticanonical sections with polynomial growth or sat-
isfying certain integrability conditions associated to the assumptions on the
curvature decay and the volume growth respectively.

Note that one can construct L? holomorphic sections of the plurianticanon-
ical system {K 7, ¢ > 0} without any assumption on the volume growth and
the curvature decay. We observe in the present paper that the space of L2
sections forms a graded algebra. Moreover by using some techniques and es-
timates developed from the Ricci flow, we are able to derive desirable Bézout
estimates for the intersections of the zero divisors of holomorphic L? sections.
Based on these estimates we can bound the Gauss-Bonnet integrals of curves
which are the intersection of zero divisors of L? holomorphic plurianticanonical
sections. The main theorem will then be proved in the following way: we first
use the Bézout estimates to obtain a Siegel type theorem for the field of mero-
morphic functions of M arising from the quotients of the L? sections; we then
get a “meromorphic” map of M into a projective algebraic variety; we next use
the bounds on the Gauss—Bonnet integrals of the “algebraic” curves to show
that the meromorphic map is almost surjective; finally we desingularize the
map into a biholomorphism from M to a quasi—projective variety.

The composition of this paper is as follows. In Section 2 we collect some
basic results and prove the space of L? holomorphic plurianticanonical sections
forms a Z*—graded algebra. In Section 3 we derive the Bézout estimates and
obtain a gradient estimate by using the Ricci flow, and then we bound the
Gauss-Bonnet integrals of the curves cut by L? holomorphic plurianticanonical

sections. Section 4 is devoted to the proof of the main theorem.
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§2. L’ holomorphic plurianticanonical sections

First of all, let us recall the standard L?-estimates of 0 of Andreotti—
Vesentini [1] and Hormander [11] in the case of Hermitian holomorphic line

bundles over Kahler manifolds.

Theorem 2.1 ( Andreotti—Vesentini [1], Hérmander [11] )

Let (M,w) be a complete Kéhler manifold equipped with a K&hler form
w. Let L be a Hermitian holomorphic line bundle on M and denote by C(L)
the curvature form of L. Let ¢ be a smooth function and ¢(x) be a positive

continuous functions on M such that
V—=100p + C(L) + Ric > c(z)w .

Suppose f is a O—closed smooth L—valued (0,1) form such that

2
/ —Hf“ e ¥ < +4o0.
M

Then the equation du = f has a smooth solution with the following estimate

2
/ ||u||2€—¢ S/ ||f|| e ¥
M M C

|

We will need the following sub-mean—value inequality which can be found

in [13]. Actually the sub-mean-value inequality can be obtained directly by



using the Green formula and the standard estimate of the Green function on

a Riemannian manifold with nonnegative Ricci curvature.

Lemma 2.2 Let M be a complete Riemannian manifold with nonnega-
tive Ricci curvature. Suppose f is a nonnegative smooth subharmonic function.
Then there exists a constant €', depending only on the dimension, such that

for any xy € M, we have

1
Vol (B (z0,a)) /B(m,@ f@) s

flxg) <C

for all @ > 0. O

Now let M be a complete Kahler manifold of complex dimension n with pos-
itive Ricci curvature. Denote by K the canonical line bundle and T2 (M, K %)
the space of square-integrable holomorphic sections of the plurianticanonical

line bundle K~%. Here ¢ is a positive integer. Fix a point x € M, sup-

pose {21, -, z,} is a holomorphic coordinate system at x with z;(x) = --- =
zp(x) = 0. Let {s(, - -, s/, } be a system of local holomorphic sections of K~ at
x with sj(x) #0, si(z) =---=¢(r) =0and d(s}/sy) =dz, (i=1,--+-,n),

near x. Without loss of generality, we may assume {i 1) < 1} be a holo-
morphic coordinate ball contained in M. Let p be a SZI:IiOOth cut—off function
on M satisfying p =1 on B (0, %) and p = 0 outside B(0,1). Since the Ricci
curvature is strictly positive everywhere, one can find a positive integer ¢ such

that

(¢ + 1)Ric+ (n +1)v/—190 (plogzn: |z,|2> >0.

i=1
Choose L = K79, o = (n+1)plog % |i|*. By applying Theorem 2.1, we know
=1

1=
that there exist global holomorphic sections ug, uq, - -+, u, of K~ such that

Iu; = 0 (ps;)



and .
, —(nt)plog 37|z
[ il A7 < oo,

fort=0,1,---,n .
Set

, .
8; = ps; — u; 1=0,1,---,n.

Then each s; € T? (M, K~ %) and so(x) # 0, d(s;/so) =dz (i =1,---,n)
near x. This says that the meromorphic functions s;/sq, - -, $,,/So give a local
holomorphic coordinate system at x.

Similarly for arbitrary two points x and y in M, one can choose sg, s; €
2 (M, K™1) with so(z) # 0, so(y) # 0, si(x) # 0, and s;(y) = 0 so that
the meromorphic function f = s;1/s¢ is holomorphic at x and y and satisfies
f(2) # 0 and f(y) =0.

Hence we have showed the space L>JO ['? (M, K~%) gives local holomorphic

q

coordinates and separates points on M. Furthermore, we will show that

U 2 (M, K~9) forms a graded algebra. More precisely, we have
q>0

Proposition 2.3 Suppose M has positive and bounded sectional curva-

ture. Then the space U I'? (M, K~ %) forms a ZT—graded algebra. Moreover if
q>0

s€ U I?(M,K %), then ||s|| is bounded and ||Vs]|| is square-integrable.
q>0

Proof. From the standard Bochner—Kodaira formula,
Allsl* = 1Vsll® = aR |Is[* (2.1)

where R is the scalar curvature of M.
Suppose that the sectional curvature is bounded from above by a positive

constant Ky. It is easy to see from (2.1)

Allsll” = —qn®Ko |||



Let G = V7 Ko7 ||5]|* be a function defined on the product manifold M =
M x R, equipped with the product metric. Let A=A+ 88—7_22 be the Laplacian

operator. It is clear that M has nonnegative Ricci curvature and we have
AG > 0.

Then by Lemma 2.2 and the standard volume comparison we have for any

r9 € M,

St S — — U N
: : s .
VanlKy - a Vol (B(xg,a)) JB(xo,a) ’

Isll* (o) < €

for all @ > 0. Since M has positive sectional curvature, it is well-known from
Gromoll and Meyer [10] that the injectivity radius of M at z, satisfies the

following estimate
T

an (M7 $0> > K, .
0

In particular we have the volume estimate

v (o (7)) 2 ()

for some positive constant C' depending only on the dimension. So letting

4 = 57 in (2.2) we conclude

n2 n2
: NE AV
sup |[|s]|” (z) < C'- — ol G /M [s]]* < 400
roEM Tﬂ-

This shows that |[s||* is bounded on M. Thus the space U I'2 (M, K~ ) forms
q>0

a Z*—graded algebra under standard addition and multiplication over the com-
plex numbers C.
We now consider the L? estimate for the gradient of a holomorphic section

s € T? (M, K~%). Suppose r is the distance function from a fixed point x4 on



M. It follows from (2.1) that for any a > 0,

[owst (=0 = [ apsr (-5 v [ e (i- L)

B(xo,a) B(xo,a) B(xo,a)

4 T i

< = [ vslelish (1= 5) + anso [ sI?
a a
B(zo,a) M
1 7\ 2 8

< 5 [ (1=5) 4 (S atss) [ sl
2 a a :
B(z0,a) M

Letting a — 400, we get

/||vs||2 < 2qn2K0/||8||2 < 400 (2.3)
M

§3. Bézout estimates and gradient estimate

Let us first recall a cut—off function constructed in the book of Schoen

and Yau [20] ( see Theorem 1.4.2 in [20] ).

Lemma 3.1 ( Schoen—Yau [20], see also Shi [21] )
Suppose M is a complete Riemannian manifold with nonnegative and
bounded sectional curvature. Then for any xq € M, a > 0, there exists a

positive function ¢,(z) € C*°(M) such that

(@) eXp< ( + >> < @a(7) < exp (— <1+@>> ,
B) Vel << gl
() ViVseala)| < %-mm ,

for all x € M, where C'is a positive constant depending only on the dimension.

|

10



We now state and prove the first Bézout estimate for (J I'* (M, K 9).
>0

Proposition 3.2 Let (M,w) be assumed as in the Main Theorem. Let

q1, -+, qr be positive integers and let s; € I (M, K %), i =1,2,---, k. For a

sequence &; > 0, ¢ =1,---, k, define
C..(s;) = V=100 log (||52||2 + 522) + q;Ric , i=1,--,k.
Then

/ Coo(s)) Ao A, (s1) ARic"F < COqy - -qk/ Ric" < 40, (3.1)
M M
where C' is a positive constant depending only on n.

Proof. We first consider the case k£ = 1. For sufficiently small § > 0
and a > 1, we know {¢, >0} C M is a compact domain with boundary
0{¢a >0} = {p, = d}. The Poincaré-Lelong equation gives, in the sense of
(1,1) currents,

V=199 log||s||” = [s = 0] — qRic
where, by abuse of notation, [s = 0] also denotes the (1,1) current defined by
the divisor [s = 0] counting multiplicity. From the Poincaré-Lelong equation
and the positivity of plurianticanonical line bundles we see from an easy com-
putation that each ¢, (s;) is a closed, nonnegative (1.1) form on M. By Lemma

3.1, we have

W —0)2C.(s) A Ric" !
A%»J¢ )2 C.(s) A Ric

= / (o — 6)* /=100 log (||s||2 + 62) A Ric" ' + / ¢ (o — 6)* Ric"

{99(1>6} {(Pa>(5}
C 2
< —2/ log (1 + ||8|2| ) wARid" " +q Ric"
as J{pa>d} € {pa>0}
Canl
<= [P +a [ Rien
a?s?  Ju M

11



where K is the upper bound of the sectional curvature of M. Here and below
we denote by C various positive constants depending only on n. Then letting

0 = 0 and @ — 400 we deduce that

| ¢y nrie < cq [ Rien

We next consider the case k = 2. By integrating by parts, we get
| (= 9 Cls1) A Gy ls2) A R
{pa>0}
/ (pa — 6)* V=100 10g (||sal* +23) A Gy (1) A Ric™?
{pa>5}

+/ 702G, (s1) A Ric™!
{pa>6}

IN

2
= / log (1 + @) /=100 ((gpa — 5)3) A (., (s1) A Ric"™?
{pa>5}

€3
+/ 28z, (51) A Ric" ™" . (3.2)
{pa>6}

The second term of the RHS of (3.2) is bounded from above by Cq1qs [, Ric"
by the previous estimate for the case k£ = 1. To get the bound on the first term
of RHS of (3.2), we now derive an integral estimate for the gradient. Recall

that for each i,
C..(si) = V—=1001og (||sl||2 + 612) +q;Ric >0 .
Thus we have

2
(¢ — 6)°log (1 + Hi%”) (\/—185 log (||s,||2 + 612) + qiRic> Aw™ 1> 0.
{170 >0) "

Integrating by parts and using Lemma 3.1, we get

2 2
/ (o — 0)° V/—101log (1 + “312“ > A dlog (1 + “822“ > Awn
{a>0} & &
C [l [l
< — (g, —0)1 14+ ——] VI 1+ —— "
< Jona (ba —0) 0g< T og {1+ 75— )|«

2
+/ g; (pa — 6)* log (1 + “8’2“ ) Ric Aw" "
{pa>0} &;

)

12



Recall from Proposition 2.3 that each s; is bounded on M. By using Cauchy—

Schwarz inequality, we get

2
/ (o — 0)* |V log (1 + _||812|| )
{pa>d} ¥
C NN e
< = (log (1+@>> w"+quK0/ log (1+@ w"
a® J{pa>0} (3 {pa>0} €;

C 2 2 o Cqky 2
< oo () [ st SR s
i \ M {@a>6} € {¢a>0}

2

2
W

Thus letting 6 — 0 and @ — 400 we deduce the integral estimate

2\ |2 -
: CqK
/ HVlog<1+“8“>H W< 24 0/ ]| w™ (3.3)
M M

& &

Then the first term on the RHS of (3.2) can be estimated as follows,

sl N
/{%>6} log (1 + 2 —100 ((@a — (5) ) A Cal(sl) A Ric

2

< ||82||2 _ ) ,
=@ o= 0)log {1+ "5 | -v/-1001
- a2 {pa>0} (90 )0g< + 8% \/_ 0g(||51|| +51>
et g S0 RY—
Aw A Ric"™" + —= (o —06)log [ 14+ —F5— | wA Ric
a”  J{pa>d} 22
CKSL_Q ||52||2 2 9 " CKSL_Q
< SR o (14 L) g () o CHE
Jioy (o= ¥ 108 (st 4 )] - [V o (ool + <3) | "
CQIK[?_I/ ||82||2
T2 a_5 1 1+ n
a? {pa>0} (v ) log 2 w
2
CKSL_Q ||52||2 C[(gb—Z CKSL—Q
= log (14 15200} |
a a? /{wa>6} ( 08 ( + e2 w" + 3 + =

Jiownsy (08 (Ul )[4 [t (el ) )

Cq Ky~ 52|
+7/ log [ 1+ w"
a? {¢a>0} & €3

13




CK} ? CKy 2 1
B sup (1og (1 + 250 )) [ e+ SR (140
a3e3 2 a a

{pa>6}
2 2
Bk 521" n
Viog [1+ — +|[Viog | 1+ — w
{0a>0} €1 €2
Cq Kyt 2

e 3 Y
222 Josny [ 52" w (3.4)

Letting 6 — 0 and a — +o00, we obtain from (3.2), (3.3), and (3.4) that

/ G, (51) A Cy(s2) A Ric™ 2 < CQ1QQ/ Ric" .
M M

For the general case & > 2, by inducting on k and integrating by parts, we

have
/{w =4} (Yo — 5>k+1 Cor(s1) Ao NGy (s1) A RicvFk

2
= / (pq — 5)k+1 V=100 log (1 + @) ACy(st) AN NGy (Sk—1)
{pa>0d} €

k

ARic" ™% + ¢ / (pq — 5)k+1 Co(st) Ao ANy (s621) A Ricvk+1
{pa>6}
< ST e o (1 Y ey A A G (i) 4
= 2 (ousd) % 1 k—1
Ric"™* 4+ q (00 — O) T (51) Ao Aoy, (sp—1) A Ric"F+
{pa>6}
C ko1 [EAls || spl”
< ) (@a_(s) IOg 1+—2 vV — 8810 — | A
a= J{pa>o} €k k1
Co(st) Ao ANy, (Sk—2) Aw A Ric"F
O / k—1 || k“
+ w—0 log - - A
pranl A (90 = 0) Cer (51) A
Copn(Sk—2) AW A Ric" ™' 4+ Cq1 - - qi / Ric"
M
C -
< = )k
S s (¢a —9)

2

2
+ HVlog (1 + HSkZH )
€k

14

2
HVlog (1 + “8’;—1“ )
€k—1

i [EAls
s
+10g<1—|— kZ ))
k



NGy (51) A A Cop (S12) AW 2 4 Oy - - i /M Ric® . (3.5)

Here and below we denote by C' various positive constants depending only on
2 2 and K
nvglv"'7€k7QI7"'7kasJL\1/[p||Sl|| 7"'7511‘1[p||8k|| and fio.

We now show that the following two estimates

f,
M
and
2
skl
Viog 1+ —
M Ck—1

hold by induction. The estimate (3.3) tells us that these integration are finite

|| H > CEI( > A Cak_Q(sk—Q) AW R < +00 (36)

Cel (31) ARRRRA Cek,2(5k72) A Wnik+2 < 400 (37)

for the case £ = 2. Since

2
S
/ (‘foa - 5)2 log (1 + H k2|| > C&l (31) JANRIERIVAN C&k—2(sk*2) A wnik+2
{pa>0} 5k

z 3 [oee ()

— (@a - 5) log (
a J{pa>d}

Coy(51) A -+ Aoy s (Sk3) Aw™ kT3

2 2
Vlog (1 + —||Sk2|| ) | -1V log (1 + 7”%272” )H
€k €k—2

Coy(51) A -+ - Aoy o (Sh3) Aw™ kT3

+i2Ko | <soa—6>1< ”’“”)ch) A

{pa>6}

Cek,;; (Skf?)) A wn7k+3 )

+ (@a - 5>2
{pa>6}

it follows (3.6) directly by induction on the both estimates. To get (3.7), we
recall that

Copy(S621) = v/ —100log (||s;c,1||2 + az,l) + q_1Ric>0.
Thus

/{W ) (pa — 6)?log (1 s 6’“ Il ) (V=100 1log (|lsk-1]” + % 1)

2
-
+qr—1 Ric) A (51(31) Ao Aoy (Sh2) AR >0

15



Integrating by parts we have

2
/ (9o — 6) \/_810g< “ e 1§ >A510g <1+7”8’“;1” )/\
{pa>6} €h_1
Car(51) A v A Gy (S > Wt

C || || [k

¢ (¢a — 8) 10 ( 1+

a J{pa>5} €k—1
NGy (Sp2) AW 2 4 C]kql\o .

2
St
wa—®%%(1+”21”)@xaw»~A@Fx%4>Aw%“?

&1
(0o >0} -l

CEI (81) A

Applying Cauchy-Schwarz inequality, we get

2
Y log (1 + —”'5’3‘1” )
€k—1
{pa>0}

C ENEAN
< _2/ (10g (1 + || k2 1“ >> Cal(sl) A A <€k_2(sk_2) /\wn—k:-i-Z
{pa>0}

k-1

2
Cal (81) JARERFA C-Ek_z(sk—Q) A wn_k+2

(@a - 6)2

(a0 (14 D) ¢ oy n s an

2
k—1

c -
< (? + C) /M log (1 + “ik H ) Co(st) A= Aoy y(SK—2) A Wk

ko
Hence we obtain (3.7) by using (3.6).
We thus let 6 — 0 and @ — 400 in (3.5) and use (3.6) and (3.7) to obtain
the desired estimate (3.1). O

We will need to bound the Gauss-Bonnet integrals of curves which are the
intersection of zero divisors of sections in |J T'? (M, K 7). To this end we want
to establish the associated Bézout estima?czoover projectivized tangent bundle.

We denote by 7 : PT'M — M the projectivied tangent bundle and L the

tautological line bundle. Fix a point xy € M, let {z1,---, z,} be a holomorphic

16



coordinate system at xp with z;(zg) = -+ = 2,(x9) = 0. For any tangent

vector v = 013%1 + ---+vn% with v, # 0, let uy = 2 - - up_y = 24
Then {z1,--, zp, U1, -+, up_1} forms a local holomorphic coordinate system
on PTM at (mo, [ai . 81]) Equip PTM and L with the induced metric

from M. Then a direct computation ( see [15] ) gives
a(l)=—V=1 Y ddAdi'+V-1 Y R zdz' AdZ (3.8)
I<y<n—1 1<i,j<n
where ¢;(L) is the first Chern form of the tautological line bundle. Since the
sectional curvature of M is positive, we thus have

—ci(L) 42 (7" Ric) > Y du’ Adu'+ Y Rsdz'Adz >0. (3.9)

1<y<n-1 1<i,j<n
Hence L* @ 7* K~%is a positive line bundle over PT'M with bounded curvature
for p > 2.
Set
v=—c(L)+2- (7"Ric) .

Now v is a positive, closed (1.1) form on PTM. Thus, v can be regarded as a
( possible incomplete ) Kdhler metric on PT M.

Recall that ¢, is the cut—off function in Lemma 3.1. Now we choose 7%,
as a cut—off function on PTM. We remark that in the proof of Lemma 3.2
the main ingredients are the boundedness of the L? norm and L>™ norm of the
section s. So one can proceed exactly as in the proof of Proposition 3.2 to

obtain the following Bézout estimate.

Proposition 3.3 Let (M,w) be assumed as in the Main Theorem. Let
s; €2 (PTM,7*K 7)), i=1,---,k, p1,---,pr > 2and t; € P*(PTM,L* ®

T K~%), j=1,---,1, q1,---,q > 2. Suppose also that all ||s;|| and ||¢;|| are
bounded. For any sequence ¢; >0, ¢ =1,---,k + [, define

(o (si) = V=100 log (“82'“2 + sf) + (w*K‘pl‘) , i=1, .k,

17



and
Nz, (1) = V=100 log (||tj||2 + s§+k) + ¢ (L* ® n*K*%‘) L oj=1,-0,

where ¢; (7*K7P¢) and ¢; (L* @ 7*K~%) are the first Chern forms of the cor-

responding line bundles. Then

/PTM Coy(s1) A ANy (s6) A ngkﬂ(tl) A Ay, (t)) A B

< Cpl"'kaI"'QZ/ A (3.10)
PTM
where C' is a positive constant depending only on n. O

We remark that PT M has finite volume with respect to the Kahler metric

/ pint o< Const-/ </ wpg) Ric"
PTM M \JPT, M

< Const- Vol (P"_1> / Ric" < +o0, (3.11)
M

v, 1.€.,

where we denote by wpg the Fubini-Study metric on P" 1.
We are ready to derive an estimate for the Gauss-Bonnet integrals of curves

which are the intersection of zero divisors of section in U I'? (M, K1),
>0

For any smooth holomorphic curve S on M, let 6 :S — PTM denote the
lifting of S to PTM defined by 0(x) = [1,5] for 2 € S, where [I,,S] denotes the
element in PTM defined by T, 5. Let S denote the image 6(S). Suppose S lies
in the intersection of zero divisors of n — 1 holomorphic sections tq,- -, t,_1,
where t; € T? (M, K 9) ( for some positive integer ¢ > 2 ). Without loss of
generality, we may assume that ¢ is sufficiently large. By L?-estimate of O-
operator as in Section 2, we can choose an L? holomorphic plurianticanonical
section t, of the same degree ¢ such that ¢y does not vanish identically on each
zero divisor of holomorphic section ¢;,1 <7 < n —1. As shown in Section 4 of
[15], all d (t;/t)-ts = toVt;—t;Vty are holomorphic sections of L*@7* K27 over

PTM fori=1,---,n—1, and S lies in the intersection of 2n — 2 zero divisors

18



of 7T*t1, ML 7T*tn_1, tOVt1 - t1Vt0, ML tOth_l - tn_1Vt0. In order to apply
Proposition 3.3, we will show that all ||V#;]||, i =0,---,n—1, are bounded on
M. Now we use the Ricci flow to get the following gradient estimate for L?

holomorphic plurianticanonical sections, which has its own interest in analysis.

Proposition 3.4 Suppose M has positive and bounded sectional curva-

ture. Let s be a holomorphic section belonging T'? (M, K~%). Then ||Vs]|| is
bounded on M.

Proof. Let (z1,--+,2,) be a local holomorphic coordinate system and

N ENCAL
N 821 8zn

locally for some holomorphic function f. Then A = det (gag)q is the Hermitian
metric on K¢ and C(L) = —/—=18dlogh = qRic is the curvature form of

L = K~7 with respect to the coordinates zy,---, z,. The covariant derivative

write

of s is given by

af 0 0 o\’
= —— logdet (g3 dz; AN N=—1] . 3.12
Vs <8zi +Qf82i og de (%ﬁ)) ®dz; ® (8,2,- azn> (3.12)
We use the Bochner trick to bound Vs. Let (21, - - -, 2,) be a normal holomor-

phic coordinate at a fixed point. We compute

i (90f d of 0
IVs]|* = g¥ (8—zi +af 5 -log det(m)) (a_zj + qfa_zj log det(ga3)> det(g,7)"

19



= s
8 (3 vt )

ad 3
+%ﬁlaﬂ>g’ (g—i + qf— log det (%5)) (38—2]; + Qfaizj log det (%B))

log det (ga5)> (% + qf% log det (%B)) det (gaﬁ)q
J

(0133 |
( o et (ga5)>

( a+af a:;l log det (g,5) + qg—fla% log det (9a3)> det (9.5)"
and

azfzaz, v

~ Ry ( gf (9a5)> (3_2 tq fa%_ log det (ga3)> det (gag)q
# (2;: 0) (35 + 15 e 0

+gi3 <q8_f 82_ log det (gag) + qfai_3 log det (%E)) X

8zk 821621 azlazlazk
(ﬁ + qf— log det ( )) det (gag)q
0z; 2
_ 92
+g" (qf i log det (ga§)> (qf azf;z- log det (ga§)> det (gag)q
7 7

A O*f of 0 82
+g" <52i32k +q 5—%8— log det (gaﬂ) + qf log det (%5))
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*f 02 9F 0
(02]- a7, +qf 92,07 log det (%B) + qa—zla—zj log det (%B)) det (gaﬁ)q

= (0f 0
) —
g (8% af 0z; log det (gaﬁ )> .

a 82 83
(05 g oot (5) + 0 g o (0,5 ) et (5)°

Thus we obtain

A|Vs|)? = Hv2sH2+Ric(vs,vs>—tmce C(L) Vs> + lC@)])® - |Is))?
+2Re (Vs,V (trace C(L)) @ s) —2C(L) (Vs,Vs) .

Suppose the sectional curvature is bounded by a positive constant Ky. Thus

the above Bochner formula simplifies to

AIVs|® = ~CqFo |Vs|® = Cq||Vsl - llsl| - [ VR
> —CIVs|” ~|Is|” - IIVRI . (3.13)

From Proposition 2.3 we know that ||s|| is bounded and ||Vs| is square—
integrable. But the term containing |[[VR|| cause the difficulty to derive a
pointwise estimate for ||Vs|| by using the mean value inequality since at a pri-
ori we have no control on ||[VR||. To overcome the difficulty we consider the

Hamilton’s Ricci flow equation on M,

0g=(x,t
M:—sz(ﬂ?,t% reM, t>0,

ot (3.14)
97(x,0) = gz(x) reM .

We may assume that the curvature tensor R,, is also bounded by the positive
constant Ky. From [21] we know that there exists a constant § > 0, depending
only on Ky and the dimension n, such that the Ricci flow equation (3.14) has

a solution g(z,t) on M x [0, 4] with the following estimates

1

59i70) < 950 1) < 29;5() , (3.15)
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[ R (-, )], < 2Ko (3.16)

v 7], < 5 (3.17)
where ||-||, and V' are the norm and the covariant derivature with respect to
the metric g;z(-, ), the constant C' depending only on Ky and the dimension.

Denote by By(xg,1) the geodesic ball of radius 1 and Voly(By(xg,1)) its
volume with respect to the metric g;(-,7). Since the sectional curvature is
positive and bounded at t = 0, this implies that the injectivity radius has a

positive lower bound and then we have the following estimate

Vol (BO (xg, %)) >[5>0

for some positive constant depending only on K and n. By using (3.15), it is

easy to see

Vol(Bi(xo, 1)) = [ () ¢ (950-0)
0 l’o,ﬂ

- L)

B
o

Furthermore, we know from [21] that the positivity of holomorphic bisectional

> (3.18)

curvature is preserved under the Ricci flow (3.14). In particular, the Ricci
curvature is positive for ¢ € [0, 4].

Note that ||s|| is bounded and square—integrable. The estimate (3.15) sim-
ply says that the metrics g;5(-, t) are equivalent for ¢ € [0, d]. It follows that s is
still bounded and square—integrable holomorphic section of K¢ for t € [0, d].

Then Proposition 2.3 gives us the L? gradient estimate

Hvts < +00 . (3.19)

L (gij_‘("t))
On the other hand, by (3.13), (3.16), and (3.17), we have

] N I R
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for some positive constant B, where A\, is the Laplacian operator of the
metric g;(-,0). Consider M equipped with the metric g;z(0) and let G =
eVBT <HV‘58 ‘z + 1) be a function defined on the product manifold M = MxR,
equipped with the product metric. Let A = N5+ 59—722 be the Laplacian oper-

ator. It is clear that M has nonnegative Ricci curvature and we have
AG>0.

From (3.18) and (3.19), by using the mean value inequality for the subharmonic
function G on M exactly as in the proof of Proposition 2.3, we see that

sup HV‘sst (r) < +o00 . (3.20)
xe

By (3.12) we have

o det(g,5(-9)) 9 9\
Vis—Vs = ¢ lo —dzi®<—/\---/\—>
fazi & det (ga (-, O)) 021 0z,

= q0F ® s,

isS)

S|

where F' = logdet (gag(-,5)> — log det (gag(-,0)>. By using the Ricci flow
equation (3.14) one readily sees that

5
ﬂ%ﬂ:—/R@ﬁﬁ.

0

Thus by combining (3.15) and (3.17), we have

d
10Fll, < V2 [ |VRC.0)), dt
e
< \/5/ —dt
< const.

which implies that
HVds - VSHO < const. ||s|, ,
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and then

[Vslly < HV(SS_VSHU—’_ HV%HO
< const.||s||, + 2" HV(SSH(S
< +oo

by (3.15) and (3.20). Therefore we have completed the proof of the proposition.
O
We now can apply Proposition 3.3 to the smooth holomorphic curve S
which lies in the intersection of the zero divisors of the n — 1 holomorphic
sections ty,+ -+, t,_1, where t; € T?(M, K~9).
By using Proposition 3.3 and (3.11) we see that

/ <€1 (7T*t1) VANRIVA Canfl(ﬂ-*tn—l) A Ney, (tOVt1 - t1Vt0)
PTM

AN Ay (6VE, 1 —t, 1 Vi) Av < C qzn’z/ Ric",
M
and by Fatou’s Lemma and the Poincaré-Lelong equation,
/Ay < CqZ”’Z/ Ric" < +00 .
S M

On the other hand, a calculation as in Mok [15] easily leads to the following

/Ay:—/l((x)+2/Ric,
S S S

where K (z) is the Gaussian curvature of S. Hence we have

/K(x) > —C’qZ"_Q/ Ric" |
s M

where (' is a positive constant depending only on n. Thus we prove the follow-

formula

ing result.

Proposition 3.5 Let M be assumed as in the Main Theorem. Suppose

S is a smooth holomorphic curve which lies in the intersection of n — 1 zero di-

visors of ty,--+,t, 1 € [*(M,K~%), (¢ > 2). Then the Gauss-Bonnet integral
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satisfies,
/K(x) > —C’qZ"_Q/ Ric" (3.21)
S M

where C' is a positive constant depending only on n. O

§4. Proof of the Main Theorem

This section is devoted to the proof of the Main Theorem in the introduc-
tion. Let M be assumed as in the Main Theorem. From Section 2 we know
that the space (U I'* (M, K~9) forms a Z*-graded algebra, gives local holo-
morphic coordirgges at any point in M and separates points of M. Applying

Fatou’s lemma to Proposition 3.2 with £ =1, we have

Ric" ' <liminf | (.(s) A Ric" ! < Cq/ Ric" (4.1)
M M

[5=0) £=0
for any s € I'* (M, K~ 7), where C is a positive constant depending only on n,
and [s = 0] denotes the zero divisor of s counting multiplicity. Fix a point
xog € M. Since the Ricci curvature is positive, it follows from (4.1) and the

inequality of Bishop-Lelong that the multiplicity estimate
mult ([s = 0], x) < Ciq

holds for all s € I'> (M, K 9), where the positive constant C'; may depend on
xo but independent of s and ¢. Then it follows from a standard argument by
considering the local Taylor expansion of s € I'? (M, K~ %) at the fixed point
xo (c.f. the proof of Proposition 5.1 in [14] ) that

dime I (M, K—q) < O™ (4.2)

where C} is independent of .
Denote by R (M, K~') the subset of meromorphic functions on M obtained

by taking quotients in (J I'? (M, K~9) of the same degree, i.e.,
q>0

R(M,KY) = { ;

s, t €T? (M,Ix’”q), where ¢ €ZT and t #0 } .
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Since U I'? (M, K9) forms a graded algebra under addition and multiplica-
tion, iqt>(t)hus is easy to see that R (M, K™ !) forms a subfield of the field of
meromorphic functions on M. Let sq, s1,---, s, be n+ 1 holomorphic sections
in ['* (M, K~9) ( for some ¢ > 0 large enough ) constructed in Section 2 such
that s1/so, -+, sn/So give a local holomorphic coordinate system at x¢. By the
estimate (4.2), the classical argument of Poincaré-Siegel ( c.f. e.g. Mok [14] )
shows that R (M, K1) is a finite extension field over C (i—;, e z—z> And by

the primitive element theorem, the subfield R (M, K ') is given by

_ S1 S
R(MvK 1) =C <_7"'7_nvg> )
So So
where ¢ is some meromorphic function in R (M, K~') and is algebraic over
C (i—;, el Z—Z) Also by taking common denominators we may assume g =

Sni1/S0, where sg, 81, , Sp, Spy1 € I? (M, K%) for some ¢ > 0 large enough.

Now consider the mapping F : M — P"*! defined by
F(I> = [30(I>,31($),"',Sn(1’)], fO’I" r e M.

Since g is algebraic, the minimal equation satisfied by g over C (i—é, e Z—z)

can be given by
s Sn\ s
gp_|_ E: Rj<_17"'7_>g]:07

0<j<p—1 50 50
where R;, 1 < j <p —1, are rational functions of n variables. After clearing

denominators, we see that sg, sy, -+, s,41 satisfy a homogeneous equation
P (so, 81, ,Sns1) = 0.
Let Zy be the hypersurface of P"*! defined by
Zy = { (50,51, Spg1] € P ‘ P (so,81,+"*,Sns1) =0 } ,

and let Z be the connected component of Z, containing F' (M\Q) where @Q is

the set of indeterminancy of F.
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In the following we will show that F'is an “almost injective” and “almost
surjective” map to Z and we can desingularize F' to obtain a biholomorphic
map from M onto a quasi—projective variety by adjoining a finite number of
holomorphic plurianticanonical sections.

First of all, we claim that Z is irreducible and F' is “almost injective”,
i.e., there exists a subvariety V of M such that F|yny : M\V — Z is an
injective locally biholomorphic mapping. Indeed, take V' to be the union of
the branching locus and the base locus of F and F~1(Sing(Z)), here Sing(Z)
denotes the singular set of Z. It is clear that F'is locally biholomorphism on

M\V. That F is also injective there follows from the fact that J I'* (M, K9)

q>0
separates points and s;/sg,  + *, $n/So0, Sny1/50 generate R (M, K~ 1). To see the

irreducibility of Z, note that M\ (QU(SingZ)) is connected since QU (SingZ)
has real codimension 2. Here F' (M\(Q U (SingZ))) is irreducible ( as its set
of smooth points is connected ). Since F' (M\Q) C F (M\(Q U (SingZ))), by
the definition of Z, it must be irreducible.

We now make a remark for the subvariety Z. We have seen that F'is a
biholomorphic embedding from M\V into its image F' (M\V) in Z. As in
Mok [15], F' is a birational mapping from M to Z with respect to the subfield
R(M,K™'), ie., the rational function field over Z is isomorphic to R (M, K ')
via the pull back F*. Therefore for any projective desingularization 7 : Z' —
Z, where Z' is a smooth projective variety, 71 o F is still a birational mapping
from M to Z' with respect to R (M, K~!'). Since 7! is a birational map ( in
the usual sense ), the composition 7! o F' is easily seen to be defined by
sections in T'? (M, K~%) for some large positive integer. Henceforth at each
step when we desingularize F' by adding plurianticanonical sections, we may
assume Z is smooth.

Next, we come to the “almost surjectivity” of F, i.e., the image F' (M\V)

contains a Zariski-open subset of Z. Since the sectional curvature of M is
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positive, by the result of Greene and Wu [8], M is Stein. Thus as in Mok—
Zhong [17] ( see also To [26] ) by using Simha’s criterion [22] for a domain
of holomorphy contained in the unit polydisc to be Zariski open, the proof of
the “almost surjectivity” of F' is reduced to show that the cardinality of the
intersections of the complement of F'(M\V') with the generic curves obtained
by intersecting Z with (n — 1) hyperplane sections of P"™! are bounded. The
following argument is basically due to Mok—Zhong ( see Proposition (2.2.2)
and Proposition (2.2.3) in [17] ).

Let Sy C Z be a curve obtained by intersecting Z with (n — 1) hyperplane
sections, which correspond to (n — 1) holomorphic sections, say t,- -, t,_1, in
2 (M, K~ %). Assume that the hyperplane sections and Z intersect at normal
crossings at () € Z and denote by S the irreducible component of Sy containing
Q). Let D denote F (M\V)NS and assume that D is nonempty for the generic
S. Define ¥ to be the closure of F~!(D) on M and f to be the meromorphic
extension of F|F71(D) to ¥. In order to prove that the cardinality of S\D is
bounded, we proceed to prove that f(X)\D and S\ f(X) are finite set of points,
giving estimates of cardinality of these two sets at the same time. Note that
S\f7Y(D) lies in the intersection of the zero divisors of ti,---,t, 1 and V,
and V is clearly contained in a divisor determined by the sections sg, s1,- - -, S,
which define the mapping F'. Applying Fatou’s lemma to the Bézout estimate
(3.1) in Proposition 3.2 we see that X\ f~'(D) consists of a finite number of
points and the bound on the cardinality is independent of ¥. This gives an
upper bound for f(X)\D. To get an upper bound for S\ f(X) one can pass
to a normalization o : S’ — S and prove the corresponding statement for S’
and the Riemann surface D' = ¢~'(f (X)), which is equipped with the induced
( possible degenerate ) Hermitian metric (f~'oo)" (w]g). The degeneracies
occur at some points corresponding to singularities of ¥. Such singularities

can either come from singularities of D itself or from the intersection of ¥
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with V. The first set is finite since Z is algebraic, and the second set is also
finite by the Bézout estimate (3.1) in Proposition 3.2. Thus (ftoo)" (w]s)
is degenerate at at most a finite set of points {p;}._,. Modify the metric in
small compact neighborhoods of these points to get a smooth metric . Then

the Gauss-Bonnet integrals of these two metrics are related by

| awm=[ o e (D17 00) (wh) -

where c; is denoted by the associated Chern form. Recall that the estimate

(3.21) in Proposition 3.5 says

! -1 * 2m—2 . n
Jiy @ (0 (5 H00) @ls)) = —Cg [ Ri”
which implies that
/ (D' p) > —-C
D
for a constant C' independent of the choice of hyperplane sections. By the
well-known result of Huber [12] we have

1
2genus(S’) + card (S"\D') — 2 < —— / , ca(D'p)<C.

2

This gives the upper bound for the number of points in S’\D’ and hence
of S\f(X). Thus we obtain the uniform upper bound for S\D. Therefore
F(M\V) is Zariski open in Z.

Now we are in position to desingularize F' to a biholomorphism from M to a
quasi—projective variety. Recall that for any fixed point xy € V, one can choose

n + 1 holomorphic plurianticanonical sections sj, s}, --,s), € T'? (M, K*q'>

’ren
which give the holomorphic coordinate at xy. Although the integer ¢’ may
be different from the integer ¢ in the mapping F', we can add the sections
S, Sty -+, s to F to get a birational map F' by composing the sections and
F with a Veronese map as done in [17], [26]. Denote by V' the union of the

C
branching locus and the base locus of F'. Then V' # V. If for each such a
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birational map, the union of the branching locus and the base locus has only
finite number of irreducible components of maximal dimension, then it is clear
that the birational map F' will become a biholomorphism after adding a finite
number of holomorphic plurianticanonical sections in J I'* (M, K9).

Recall a result of Demailly [5] which states that ?f>0dimV < p, then the
relative cohomology group H*™=P)(M, M\V,R) is isomorphic to R”, where .J
is the number of irreducible components of dimension p in V. As a conse-
quence, if H*™P)(M,R) and H*"P~1(M\V,R) are finite dimensional, then
the number of irreducible branches of V' of complex dimension p is finite. In
our case, M is diffeomorphic to R** and M\V is Zariski open in an algebraic
variety. So M\V is of finite topological type. Hence we can desingularize
the map F' into a biholomorphism from M to a quasi—projective variety.This
proves the first assertion of the Main Theorem.

To prove the second assertion of the Main Theorem we recall a theorem of
Ramanujam [19] which states that a quasi—projective variety homeomorphic
to R* is biregular to C?. Thus M is biholomorphic to C? when the complex

dimension n = 2.

Therefore the proof of the Main Theorem is completed. O
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