Some Regularity Criteria on Suitable Weak Solutions of the

3-D Incompressible Axisymmetric Navier-Stokes Equations

QUANSEN JIU AND ZHOUPING XIN
Dedicated to Professor Louis Nirenberg for his 75th Birthday

Abstract: This paper is concerned with the partial regu-
larity for the 3-D incompressible axisymmetric Navier-Stokes
equations. It is shown that the gradient of the velocity field
is locally uniformly bounded in L*-norm provided that one
of the following two conditions is satisfied: (1) the scaled L*-
norm of w? (the angular component of the vorticity) is finite
and scaled total energy is small; (2) the scaled L?-norm of w’
and u? (the angular component of the velocity) are both small.
Our results imply that, under one of the above two conditions,
the smooth solutions to the 3-D axisymmetric Navier-Stokes
equations cannot develop finite time singularity and suitable
weak solutions is in fact regular.
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1 Introduction

Consider the Cauchy problem for the three-dimensional (3-D) incompressible
Navier-Stokes equations

ou—Au+ (u-Viu+Vp=0, (x,t)e€ R x(0,T), L)
1.1
div u =0,
with the initial conditions

w(z,t) |i=o= uo(x). (1.2)

For simplicity in presentation, here we assume that the viscosity is unit and
the external force is zero. And the unknown functions are the velocity vector
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u = (uy(x,t),us(x,t),us(x,t)) and the pressure p(x,t). In (1.1), T > 0is a
constant, and div v = 0 means that the fluid is incompressible.

Since Leray and Hopf’s pioneering works (see [9],[7]), the well-posedness
theory for 3-D incompressible Navier-Stokes equations has been a challenging
open problem, even for C'*°-smooth initial data. It is well-known that the
Cauchy problem, (1.1)-(1.2), has global weak solution, but whose uniqueness
and regularity remain to be proved, while the unique and regular solution
exists only locally in time. This can be also shown by the following interior
regularity criterion (see [14], [15], [5]). A weak solution u(z,t) of (1.1) is
regular provided that u € LP([0,T); L*(R?)), where 2/p+3/q¢ < 1, p > 2 and
q > 3. When p = +00, ¢ = 3, one only has uniqueness for weak solutions but
no regularity results at present (see [6]).

The three-dimensional axisymmetric Navier-Stokes equations is an impor-
tant and interesting case. In this case, when u’ = 0 (here u’ is the angular
component of the velocity in the cylindrical coordinate, see Section 2), which
is usually called no swirl, the existence and uniqueness of (1.1) have been es-
tablished ([8], [18]). In the case with swirl, that is, u’ # 0, there are still some
basic open problems including the global existence and uniqueness of the ax-
isymmetric solutions of (1.1). Recently, based on the vorticity equations and
the regular criteria mentioned above, Chae and Lee [3] obtained a regular cri-
terion for Leray-Hopf weak solutions to the 3-D axisymmetric Navier-Stokes
equations by imposing regular conditions on single component w’, the an-
gular component of the vorticity in the cylindrical coordinate. That is, if
w? € LP([0,T); LY(R?)), where 3/2 < ¢ < 00,1 < p < oo and 2/p+3/q < 2,
then the Leray-Hopf weak solution of axisymmetric Navier-Stokes equations
is regular.

In [13], Scheffer introduced the notions of suitable weak solutions and
began to study the partial regularity of such weak solutions. Deeper results
were obtained by Caffarelli-Kohn-Nirenberg in [2], where they showed that,
for any such weak solutions, the singular set has one-dimensional Hausdorff
measure zero. Lin gave a simplified proof of the main results in [10]. By
using more natural scaling quantities and through different approach from
[2], Tian and Xin in [17] obtained some new criteria for the regularity of
suitable weak solutions to Navier-Stokes equations and improved somewhat
the results implied in [2]. The singular set was also studied by Cheo and
Lewis in [4]. Following from these general results, one concludes that singular
points of solutions to 3-D axisymmetric Navier-Stokes equations must lie on
the symmetry axis if there exists one at all.

In this paper, our aim is to improve the known results for the partial
regularity of axisymmetric solutions to the 3-D axisymmetric Navier-Stokes



equations. Motivated by [17], we obtain two criteria for partial regularity of
the suitable weak solutions to the 3-D axisymmetric Navier-Stokes equations.
First, it is shown that if the scaled L?*-norm of w? is finite and the scaled total
energy is small, then the suitable weak solutions to the 3-D axisymmetric
Navier-Stokes equations is regular. In comparison with results in [17], only
the single angular component of the vorticity is needed here. Second, we
prove that the same result holds if the scaled L?-norm of u’ and w? are both
small. In our approach, we obtain that the gradient of the velocity field is
locally uniformly bounded in L*-norm, as what has been done in [17]. In
particular, in our proofs, we establish the gradient estimate of u’ by using the
generalized energy inequality and an estimate on ||ru’||z, which is actually
the maximum principle on ru’.

Finally, we point out that some other regular criteria for the suitable
weak solutions were presented in [11] and [12]. In [11], it was shown that
the essential boundedness of the Cartesian velocity component ug implies the
suitable weak solutions is regular. While in [12], it was proved that, for the
3-D axisymmetric Navier-Stokes equations, a higher regularity of one of the
velocity component u? implies that the regularity of all components.

This paper is organized as follows. Section 2 contains some the prelimi-
naries and main results, and the proof of the main result is given in Section

3.

2 Preliminaries and Main Results

By an axisymmetric solution of (1.1), we mean a solution (u,p) to (1.1),
which, in the cylindrical coordinate, takes the form that p(x,t) = p(r, x3,t)
and

u(z,t) = u"(r, xs, t)e, +u’(r, xs,t)eq + us(r, vs, t)es,

where
e, = (cosh,sinf,0), ep=(—sinf, cosd,0), e3=1(0,0,1).

Here u’(r,x3,t) is the angular component of u(x,t). For the axisymmetric
velocity field u, the corresponding vorticity w =V X u is given by

w=uw"e, +wley + wW3€3,

where,

W' =0su?, W= 0uP — O, wy = ——Br(rue).
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The 3-D axisymmetric Navier-Stokes equations have the forms

Du’ 2 o2, L ST S i
Dt — (03 +83+;ar)u +u —;(u )°+0,p =0, (2.1)
D 1 1
%—(82+82+ —0p)u’ + —u’ 4 —uu =0, (2.2)
Du 1
7~ @7+ %+ —0)us + 0sp =0, (2.3)
O (ru”) + 03(ruz) =0, (2.4)
where ~
D o0
Di= o +u"Or +usds, 1= (2?4 23)/2

In the following, we set

V = (0,,0).
Now we give the definition of suitable weak solutions (see[2]).

Definition 2.1 A pair (u,p) is called a suitable weak solution of (1.1) if
(1) u € ([0, T); HY(R®) N L=(0,T); I3(R),p € L¥/4([0,T) x RY),
such that for some constants M, and M, the following inequalities hold:

T
sup ||u(-,t)[]? +/0 /R3 \Vul?(x, t)dedt < M, (2.5)

0<t<T

/ / (a, )P/ *dadt < M. (2.6)

(2) (u,p) satisfies (1.1) in the sense of distribution on [0,T) x R?;
(3) For each 0 < ¢(z,t) € CP(R?* % (0,T)), (u,p) satisfies the generalized
energy inequality

T T
2/0 /R3 |VU|2¢)dl‘dt < /0 ‘/Rg |u|2(¢t +A¢)dxdt (2 7)
T .
+/0 /RL,,(|U|2 + 2p)u - Vdadt.

From (1) and (2) above, it is known that u(x,t) is weakly continuous from
[0,T] to L*([0,T]) (see[16]), that is, for any w(z) € L*(R?),

/R3 w(z,t) - w(r)de — /R3 u(z,ty) - wlx)de



ast — tog € [0,T]. Therefore it follows from the generalized energy inequality
(2.7) that

t
/ |u|2¢dx+2// Vu2pdadt
R3x{t} 0 Jrs (2.8)
"I OuP(é+ A ddt+/t/ (Juf? + 2p)u - Vodadt
<[] P+ aoydadt+ [ [ (uf? + 2p)u- Voda

for any t € (0,7).

It is noted that the existence of the suitable weak solution was proved in
[2]. For any smooth function ¢(z,t) = ¢(r, x3,t) € CP(R?*x [0, T)) satisfying
(2, t) |i=0o= 0, the generalized energy inequality for the axisymmetric case
is as follows.

/ ¢dx+2// [(Opu") agu)]qbd:cdt+2// ¢d dt
_// (¢ + 07+ 050+ 5r¢ dxdt+// U0, ¢ + udyp)dadt

) / / Tu’“gz)d:c— 2 / / B, pu” ddxdt,

(2.9)

/ ¢dx+2// [(0,u) agu)]gi)d:cdt—i-Q//

_// (¢ + 020+ 050 + — 3r¢ dxdt+// U0, ¢ + ud30)dadt

—2//—u’"¢d:cdt,
T

(2.10)

/ ¢dx+2// [(0,0%)? + (85u®)]oddt
= [ [0+ 020+ 050 + 3T¢ dedt + [ [ (0,0 + u*oy0)dudt

—2//83pu odxdt.
(2.11)

2T 00 00 T 2
/ dx = / / / rdrdasdd. / / drdt = / / rdrdt
0 —00 J0 0 0

We point out that (2.9)-(2.11) can be deduced from (2.8) by applying
cylindrical coordinate transformation.

Here



As we mentioned previously, the singular points in axisymmetric case can
only possibly appear on z-axis. So we concentrate on the regularity at the
point @ = (0,0, x3,t). We will use the following notation: the parabolic ball
centered at @ with radius R will be denoted by Pr(Q) = Bgr(z) x (t — R*,1),
which will be denoted by Pg if there is no danger of confusion. The scaled
total energy, scaled L?-norm of vorticity and other scaled quantities are to
be defined to be the following dimensionless quantities

E(R) = %//PIJ (z,t)|*dadt
W(R) = %//PR IV x )P,
Ei(R) = swp [ |ule,t)2dedt, (2.12)

Es(R) = E// Vu(z, t)|2ddt

Es( RZ// u(z,t) 3d:cdt

It was shown in [17] that the local behavior of the solution to the Navier-
Stokes equations can be dominated by the above sealed quantities in (2.12).
Indeed, the main results in [17] (Theorem 3.1 in [17]) are

Proposition 2.1 There exists an absolute constant ¢ > 0 with the fol-
lowing property. Let (u,p) be a smooth solutions to (1.1)-(1.2) satisfying the
bounds (2.5) and (2.6). Assume that there exists a Ry > 0 such that one of
the following three conditions hold

(1) Either supy.p<p, E1(R) < 400 or supg. g g, £2(R) < +00 and

// (e, D)|?dedt < ¢ for all R< Ry,

(2)
sup W(R) <e,
(3)

sup By(R) <,
0<R< Ry

then

sup  |Vu(z,t)| <CR? for R<R
(z,t)EPR/2
for some R; < Ry with C being an absolute constant.
Remark. In (1), supy_p<p, E2(R) < 400 can be replaced by supy_ g, W(R) <
+00.



For axisymmetric flow, we introduce the following dimensionless quanti-

_1 [4 2
-}gg/iﬁm|u (2, )| dudt,
_1 r 2
=5 | [, o nPdrt
1
3 _ 3 2
<R)::jg;/:£%|u (2, )| dadt,

ﬂmE%/LMWﬁWWWﬁWWv
WOR) =7 [ [ 1) P,

i (2.13)
EY(R) = _sup [u’ (z,t)[2dadt,

// |V (x,t)|Pdadt
Eﬂizﬁ/ﬂJVuxﬁP+Wﬁ@JWMﬁ
1 0
E§/AJ%V@%
i
EE/AJ?VMﬁ

In the following, we will use C' to denote an absolute constant which may
be different from line to line unless otherwise stated.

ties:

Our main results are as follows

Theorem 2.1 Suppose that ug(z) € L?*(R?) and ruf(x) € L*®(R*) N
LP(R3) (p > 2). There exists an absolute constant ¢ > 0 with the following
property. Let (u,p) be a smooth solution to (1.1)-(1.2) satisfying the bounds
(2.5) and (2.6). Assume that there exists a Ry > 0 such that one of the
following two conditions holds

(I) supge p<p, W#(R) < +00 and

// w(w,t)|?dedt < = for all R < Ry,

(1)
WYR)<e, E°R)<ce for all R<R,,

then

sup  |Vu(z,t)| <CR?* for R<R, (2.14)

(z,t)EPR/2

where Ry < Ry is a positive number.



Remarks. 1. The conditions of (I) and (II) can be written as limsup,_,E(R) =
0 and limsupp ,,W?(R) = 0, limsupg_,,E?(R) = 0 respectively.

2. Just as shown in [2] and [17], the estimate (2.14) implies that (x,t) €
Pr/» is a regular point and the set of sigular points for a suitable weak solution
to the Navier-Stokes equations is one-dimensional Hausdorff measure zero.

3 Proof of Theorem 2.1

First, we give the L™ estimate of ru? which is actually the maximal principle
for the equation on ru’ (see also [3]).

Lemma 3.1 Suppose that u is a smooth axisymmetric solution of the
Navier-Stokes equations with initial data uy € L2(R?). If ru$ € L N LP for
any p > 2, then ru’ € L>=([0,T) x R*) N LP,and

17u’ () || 2o ey < [IPugllpoorey,  (ru’ (O] zocrey < [lruglloeire)

Proof. It follows from (2.2) that

2 (ru) = (@2 + 3 + 0,)(ru) + 20, (ru) = 0.
Let £(z) = &(R) € CP(R?*),0< €< 1,&(R)=10on R <1 and suppé C
{R < 2}, where R? = 2% + 235 + 22 = r? + 23. Let A\(R) = \(R) = £(R/s).
Multiplying the both side of the above equation by |ru’|P=2(ru’)\P* with
k > 3 an integer and integrating over R*, we obtain

1d
pdt R3
= k/ u" O N rul N P22 (u?) 2 A\ — 2/ (ru?) 0, N¥ | ruf \F P2yl \e d

sp-1) [ < .
ru APz 4 2P 1) [Vl X
p?

—/ I*(NEY | rul Nk~ Z(Tue)\k)ruadx—i-/ (AR (ru?) [rul NP2 (ruf Y de

—/ O (rul N [ru NP2 (ru \eYdae = Iy + I + Is + I + 1.
(3.1)
Noting that ru’\¥ is an axisymmetric smooth function which vanishes at
infinity and on the x3-axis, we obtain

—4
Is = 7r/ / Oy |ru’ \¥|Pdrdas = 0.

Then, letting s — oo in (3.1), one gets

1d

4p—1 ~ P
p |ru0|pdx + M /3 IV |ru|2|*de = 0
p p R



Thus, one concludes that for any large p,

4(p —1 T ~ P
/ |ru9|pd:c+ M/ / |V|ru0|5|2da: < / |rug|pdx.
R3 D o Jr3 R3

Therefore,
7w’ ()| orey < llruglLeces)-

After letting p — oo, we arrive at the desired estimate

|7’ () || (r3) < [[Pug | oo (re)-

The proof of the lemma is finished.

Set @ = u"e, + ue3. Then it is easy to get
div it =0,V x @t = w’ey. (3.2)

We now prove Thoerem 2.1. We start with the estimate on E,(R).

Lemma 3.2 There exists an absolute constant C' such that for any A €
(0,1/2], R = Ap, and p < Ry, one has

1

E5(R) < T2)\2Ey(p) 4+ C(8\* + X

W (p). (3:3)

Proof. The proof is similar to what has been done for Lemma 3.3 (ii)
in [17], so we just give a sketch of the proof here. By (3.2), we have the
following representation

Vi(x,t) = /B Vi (2 —y) x W(y, t)epdy + W’ (x,t)eg + Ho(z,t),  (3.4)

for all (z,t) € P,, where Hy(z,t) is a harmonic function in x € B, for each
fixed t € (—p?,0), and T'() is the standard normalized fundamental solution
of Laplace’s equation in R®. The integral on the right hand side of (3.3)
is in the sense of the Cauchy principle value. Then by Calderon-Zygmund
singular integral estimate and mean value property for harmonic function,
one can derive the desired estimate (3.3). For details, see Lemma 3.3 in [17].

As a consequence of (3.3), one has

Lemma 3.3 (i) For any § > 0, there exists a positive number ¢, such
that if WY(R) < g, for all R < Ry, then EQ(R) < § for all R < Ry, where
Ry < Ry is a positive number;

(ii) If there exists a constant C' such that W?(R) < C for all R < Ry,
then Fy(R) < C for all R < R,.



Proof. (i) In (3.3), we set = 72A% and C(\) = C(8)\* + §). Fix
0 < A < % such that g = 72X* < 1. Thanks to (3.3), by iteration, we get

“kC(A)sO, (3.5)

- - 1—
Ey(MRy) < pFEy(Ry) + .

Now for any 0 > 0, we choose £y small so that

1 Ad
ﬂC()\)SO < ?

And then we choose an integer K, to get

. A0
/LAOEQ(R()> < ?

Define R, = A*°R,. For any 0 < R < R, there exists a k& > K so that
MRy < R < MRy Thus

. 1 - 1~
- \/ < _
EQ(R) )\k+1R0>3 /./P)\kRO | U| dxdt ~ )\EQ(/\ R())
1

(MI(OEN'Q(R()) + HC()\)&)) < 6.

IN

~~

<

IN - =

(ii) When W¥(p)
AO0< AL,

C for R < Ry, it follows from (3.3) that for any fixed

N - 1 — u*
Es(\Ry) < 1" Es(Ro) + 1_’; () < CON).

For any 0 < R < Ry, there exists a integer k > 0 so that MW" 1Ry < R < ARy,
and

. 1~
E>(R) < 7 E>(A*Rp) < C(N).
The proof of the Lemma is finished.

In the following, for any fixed positive numbers R and p satisfying 0 <
R < ip and p < Ry, we set R, = 2R < %p. We also denote by fr the average
of f on the ball By, i.e. fp = ﬁfBﬁ fdx. Let ¢(x,t) = ¢(r,x3,t) be a
smooth axial function such that 0 < ¢ < 1, ¢ = 1 on Pg and supp(¢(x,t))
is Pr, and

C C
10,0] +1050| < —, |00| +[070| + |05 <

- = (3.6)
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Then, (2.10) shows

/B gbda:—l—?// [(0u?) 33U)]¢da:dt+2// )2 pdadt
_//PR ¢t+32¢+8§¢+ r¢d dt—i—//R . r¢+u383¢)dxdt

—2// " ddadt,

Pg,

< R2 // |u9 2dxdt—i——// — (u?)%_||a|dxdt
+C// o' |dxdt.

Consequently,

E{(R) + E3y(R) + F'(R) < CE"(R.)

)2 (3.8)
32//R* )2 Wi ||u|dxdt+R //R o |dadt.

We need to estimate the last two terms on the right hand of (3.8). First,
we have

Lemma 3.4 For 0 < i < p/2, it holds that

—// [(u®)2 — (u?)2 || daclt

sﬂﬁ()ﬂﬂ%ﬁ@@%@ﬂﬁ@) (3.9)
+ap%ﬁﬁu@ﬁuw%<>

Proof. Applying the Holder, Poincare, and Sobolev-Poincare’s inequali-
ties, we obtain

// [(u)? = ()2 ||| ddt

SC/mWMmMWMmMWWWwdt
O At 13 L. 0 0
SC[MMMWMWWMB+;ﬂwmmMUMWMWMW@ﬂt
0 1 1
<113 ~ 1% 0 0
< C [ Nl 18] o [ 2 90 205,

c oo
I /#2 1/l 2 ) 1’ 2, 1 V6l 223,

= ]1 + ]2.
(3.10)
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Furthermore,

M

0 R 1 0 0 5 1
B Nl 1o em0d0 ([ 190 ) (1 9ln,))*
0 L0 _ 1,0 1
<O IV ey @3 ([ IVl d) () liles, d)?
—p —p —p
swp ([ [’ [Fdr)?
—p2<t<0 /By
< Cp2(BY)} () (Bo)* () (EX)} (1) (E)

And similarly, it holds that

NI

(k).

|

Iy < %</_°M (P PR N e AR
< O (B (1) (B)? (1) (D)3 ().

Consequently (3.9) is obtained by putting I; and I, into (3.10). The proof
of the Lemma is finished.

w’;

Next, the last term on the right hand of (3.8) can be estimated as follows.
Lemma 3.5 Suppose that |[ru’|[,~ < C. Then for 0 < p < £, we have

vl
wl'—‘

LI R < O DL G

Proof. It is clear that

0\2
// |Mu’"|dxdt
P, r
< IOl [ 1= Pazant([ [ 1 Pdode)?
B b P, T P, T

< CulF(1))? (Ea(u))?,
where (2.4) has been used in the second inequality. The lemma is then
proved.

Finally we estimate E(u) as follows.

Lemma 3.6 For 0 < p < p/2, we have

M=

E(p) < <”><E1>%<><E>%<p>+c<§>%<m>%< PE)i(p)(Ex)3(p).  (3.12)

P
Or

M=

E(u)éc(g)Z(El) () (E)* (p >+c<§> 1(p). (3.13)
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Here the notations E, E; and F5 are same as in (2.12).

Proof. The proof of (3.12) can be found in [17] (p:244). Now we give
the proof of (3.13).
It follows from Poincare’s inequality that for almost all time,

/ lul?de :/ (Jul? - dx+/ (u)2dx
Bu
</ ul? — 2|da:+/ (u)2de
gcp/ |u||Vu|da:+C’(—)/ u|2da.
B, P B

P

Thus . i
| luPdr < CREL()([ | [VuPdr)? + O 0B (o)

Integrating from —pu? to 0 with respect to the time variable, and applying
the Holder inequality, we get

/ / lu|*dxdt

< Cp3E:(p )/ (/ Vul2dr)® dt+C(%
C(

*p1* Ex(p)

)’ p1”Er(p),

< Cp3E?(p) / / Vul2dzdt)? +

which yields (3.13) of the lemma.

Proof of Theorem 2.1 (I) Under the conditions of the theorem, one
has from Lemma 3.1 that

lru’ ()| < C.
And (ii) of Lemma 3.3 shows that
Ey(R) < C, (3.14)

for all R < Ry and some constant C. According to Proposition 2.1 (and its
remark), we only need to prove that

E!(R) < o0, (3.15)

for all R < R; with Ry < Ry a constant.
For any = Ap,0 < A < 1/4 and 5, = 2n < £, in view of (3.8), one has

EY(n) 4+ E3(n) + F’(n) < CE’(n.)

// )2 — (P ||| dadt + — // o |ddt.
P
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Due to Lemma 3.4-Lemma 3.6, in which u is replaced by 7, one concludes
that

EY(n) + E5(n) + F°(n)
< CA(BD)E (p)(E*)2 (p) + CAT2(ED)3 (p)(E) 1 (p) (ES)% (p)
+CA2(E)%(p)(E2)5(p) (D)2 (p)(E) 7 (p) (3.16)
+CAT5(ED)2 (p)(E)% (p)(EY): (p)
+CA™Y(F?(p))* (Ea(p))?.

M|,_. ~—

Let
v(n) = E(n) + E3(n) + F ().
Noticing that E(p) < C and Fy(p) < C (by (3.14)) for all p < Ry with C

an absolute constant, one can employ Young’s inequality to get the following
iteration form

Y(n) < CAp(p) +C(N),

where C'(\) denotes a constant depending on A. Using the same iteration
method as in Lemma 3.3, we obtain that there exists a constant Ry < Ry
such that

»(R) <C

for all R < Ry, where C' is a constant. Therefore (3.15) is proved and the
proof of part (I) of the theorem is finished.

To prove the second part of the theorem, we first recall the Hardy in-
equality (see [16], p:176):

+o00
/ 1 205) 2 g <2/ s)[2ds,for  (s) € C(0, +00).  (3.17)
0

Consequently,

Lemma 3.7 Suppose that u(z) = u(r,z3) € H'(R?) is an axial function.
Then

u
||;||%2(R3) < 4/10,u|72(ps), (3.18)
and for every p > 0,
U 16
||;||i2(3ﬂ) < EHUH%?(BQ,L) + 8||8ru||i2(32u). (3.19)
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Proof. For u € C{°(R?), we have from (3.17) that

+00
| wUrTs) g < 2/ o, (rru(r,zy)) |* dr
0 r (3.20)
1 +0o 1 9 +0o0 9
= —/ rul dr+2/ u@rudr+2/ |0y u|“rdr.
2 Jo 0 0
So .\
/ | “(T ) 12y < 4/ 10, u|?rdr, (3.21)
0

which implies (3.18). Moreover, for every pu > 0, let ¢ = ((x) € C°(R?) be
a smooth function satisfying

((z) =1,2 € B,,((z) = 0,7 € R*\ By, V(| < 2/p. (3.22)

Then it follows from (3.21) and (3.22) that

7 +oo (2
/ |g|2rdr < / |—u|27“d7“
o T

< 4/ 0, (CPul*rdr
16 p

< —2/ |u|2rdr+8/ |0, ul*rdr,
) 0

which yields (3.19) immediately. The proof of the lemma is finished.

Lemma 3.8 Under the conditions (IT) in Theorem 2.1, if E3(R) < C' <
+o0o for all R < Ry, then (2.14) holds.

Proof. Assume that the conditions (II) in Theorem 2.1 are satisfied.
Applying (i) of Lemma 3.3, we obtain that, for any § > 0, there exists a
positive number R; such that

Ey(R) <6, R<R,.
Due to (2) of Proposition 2.1, it suffices to prove
EJ(R) <6 (3.23)

for some sufficiently small 6 > 0 and for all R < Ry < R;.
Instead of (3.8), one can get from (2.10) that

EY(R) + EY(R) + FY(R) < CE’(R,)

¢ oW 8 " (3.24)
+R§//PR*|U|(|T|+| dzdt + // drdt

EJ1—|—J2+J3

15



for R, = 2R > 0. The estimates of J; and J; are as same as before. To
estimate the term .J5, we first use Holder inequality to obtain

T, < (E")3(R l // |—| 2drdt)t + // |—|2dxdt ]
Pg, Pg,
(3.25)
Then, (2.4) yields
1 u" |, ~
— —|"dxdt < Ey(R,). 3.26
[ [ 15 Pdedt < By(R.) (3.26)
Thanks to (3.19) of Lemma 3.7, one may conclude that
u? 16
||7||%2(BH*) < R—*2||u3||%2(323*) + 8110,1% |72y ) -
Therefore,
1 ud 3 .
—// 1 2dwdt < C(E*(2R.) + Es(2R.)). (3.27)
R, Pr, T
Combining (3.25)-(3.27) with (3.24), one has
E(R ) + Eﬂ(R) + FY(R) < Jy + Js
+C(E?)2(R,) [(B2)? (R.) + (B2 (2R.) + (E2)* (2R.)] (3.28)
<Ji+Js+ C(E"( R.))?

for all 2R, < Ry, where one has used Lemma 3.3 and the assumption F3(R) <
C for R < Ry. Then for any n = Ap,0 < A < 1/4, using Lemma 3.5 and
Lemma 3.6 we get an iteration form as follows,

E}(n) + ES(n) + F’(n)

< ONE)E (p)(E°)? (p) + O3 (B (p) (E?) T (p)(ES)? (p)
(3.29)

+ONH(EF(p)7 (Ea(p))

[NIES

+C [MED)2 (p)(E*)2 (p) + CA™2 (E)7 (p) (E")7 (p) (E3)* (p >]%

Let
W(n) = E{(n) + E3(n) + F’(n).

Noticing that E?(p) < e and Ey(p) < ¢ (by Lemma 3.3 (i)) for all p < R,
and employing Young’s inequality, we deduce

Y(n) < CXp(p) +C(A)e,

16



where C'(\) denotes a constant depending only on . Using the same iteration
method as in (i) of Lemma 3.3, we obtain that for any 6 > 0, there exists a
constant R; < Ry such that

U(R) <0

for all R < Ry. The proof of the Lemma is complete.

Lemma 3.9 If W/(R) < C < +oo forall 0 < R < Ry, then E°(R) is
bounded if and only if £3(R) is bounded, where 0 < R < R and R < R, is

some constant.

Proof. As was proved before, it follows from W?(R) < C' < +oo for all
R < Ry that )

for all R < Ry < Ry. If E*(R) < C < +oo for all R < Ry, then in view of
(3.24)-(3.27), a similar argument as the proof of Lemma 3.8 gives

EY(R)+ ES(R) + F'(R) < C

for all R < Ry < Ry and with a constant C'. Using (3.12) (Lemma 3.6), we
get
E’(R) < C < 4o

for all R < f%, where R < Ry is some constant.
Conversely, if WY(R) < C' < +o00, and E(R) < C < +oo for all R < Ry,
we will prove

E*(R) < C < 400 (3.30)

for all R < R.
From (2.9)-(2.11) one has

/B |u|2d:c+// IVl ¢dxdt+2//P d:vdt+2//P J2dudt
< ﬁ// |u|2dxdt+// (") + ()] (a8, + 13Dy ) dudt
+// WB,G + uPDs) dxdt+2// WrO,G + uPdsd)dudt,

(3.31)
which implies that
E\(R) + E>(R) + F*(R) + F'(R) < CE(R // (@)%, |||dwdt
i // V(ju"| + [u?|)dudt + —// Ip |l dwdt
:J1—|—J2—|—J3+J4.
(3.32)

17



Now we first consider the term .Jy. For any p > 0, it follows easily from
the Holder’s inequality that

! i L° ~ 16 s s :
= _2// |pl|@|dedt < —2/ / |a|°da / Ip|3dx) dt.
1% Py 1% —u? B, B,

Using the interpolation inequality, we have

(f, et < c(f) IVaPant+ = jakant.

w

Consequently,

1
2

£ (o) (o)
) ()

([, [, i) ([ (], wlfantar)
S [ (/ ot dx)gdt

= Bt (L, aniar)
it S ([ witar)

Next we estimate the pressure. It is known that

+

|\

_c
S
C
13
_c
S

(3.33)

M

Ap=—div (u-V)u in B,

from which one can obtain the representation
plat) = [ VaL(a =y V)uly)dy +pole. 1)
”w

where pg(x,t) is a harmonic function in B, for a.e. t. Note that in the
axisymmetric case,
r 1 0 3 r 0 3
(u-Vu(y) = (u 8,«+;u Op +u’0s) - (u"e, +u’eg + u’es)

= (u"O,u" e, + (u"0,u’)eq + (u"0pu)es — (luau Jep — (lugug)er
r r

+(uP0su" Ve, + (uP0su’)eg + (uPsu®)es.

18



Therefore,

r r 3 1 0, r 1 0,0
plx,t) —/ V.I(z = y)[(u"0yu")e, (u@ru)eg—(;uu)eg—(;uu)er
(u383u Jer + (u 83u3)63]dy+/ Vo.I'(x —y)[(u"0u’)eq

Bu
+(uP03u’)eg)dy + po(w, t)

1 1
<| /B V.l (z —y)[(w0u")e, + (v 0u)es — (;uou’")eg — (;ueuo)er

(WP Ve, + (U303 )es)dy| + | /B 0,V (z — o) (" u’)eq
+0; V. T(z — y) (wPu?)eg]dy| + |(uu’ + uu?)| + |Ho(x, 1]

= H(x,t) + Hy(x,t) + H3(x, t) + |Ho(x, 1),

(3.34)
where Hy(x,t) is a harmonic function in B, for a.e. t and the integrals above
are in the sense of the Cauchy principle. It follows from Young’s inequality
that

||/ V.[(x —y)(u"0pu )erd$|| 5,)

S CM ||U aru ||L1 (By)
l T T
< Cpz||u|| 2 ) 100u" || L2(B,)-

Other terms in Hy(z,t) can be estimated similarly. Thus we get

0
Lo~ = u
Iy < CrElalleam IVl + - el e,
0
u
+||7||L2(Bu)||ue||L2(B,L))-
Consequently,

0 ~ 1 ~ 1 1 1
[ Ol de < BN (B () +Coid (F) () (B () +(E)
Furthermore, we have
0 2
| NGOl
<O [ N ¥ + 1 Bl s
2 u u r u u
0

u
e 1422, )t

< CulEr(n //B|Vu|2dxdt+0u (ET (1) + EX(u //B|—|2dxdt
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and

(IO ,, d0F < OBy

L5 (By)

(1) (B2)* () +Cp2[(B}) % (1) +(B}) 2 ()] (F?)* ().

[SIE

By using the classical Calderon-Zygmund singular integral estimate and the
interpolation inequality, we get

(R QO

~8, g8 5 ~ 9 0 ~
sy SO TalF o)t = Clland g | < Ol s, Ilsas,y

S CHueHLz(B,u) [(/B |V1j|2d:c)z(/B

So,

. 1 1 . 1
ja2dx)t + W(/B |u|2dx)2].

m

0 5 1
L N0 < O (B ) ()

(1) (B)E (1) +C a2 (E®)2 (1) (E)* (1)

e
N

IS
=
_|_
5
ol
=

(/-O,ﬂ MBI, d0F < Cud (B (W)I(E2) (u)(E)

Moreover, one can estimate Hz(z,t) similarly to get

. 1 - 11 - 1
V(o) ) < Nl [, VP ([ faPdryie ([ Jafdn)?)

/ IHs( )l g, A < O ()7 () (Ba) S (1) (B) S () +Cpe2 (B2 (1) (B)2 (1),

H(x,t) = Hy(x,t) + Hy(2,t) + Hs(x, ).
Then collecting all the estimates above, we arrive at

NGO d < CHEEN () (B () + (F)HE (o

H(FO)R(E™)E (1) + (B2 (1) (B)7 (1) (E2) T ()

and

(f IHC DI g, dF < Cutl(B)? () (B2)® () + (FO)2 (u)(B])? ()



Finally, since Hy(x,t) is a harmonic function, the mean value property of a
harmonic function gives

H\3
|Ho(w, Dl g, < CO IHs(@ D)5,
s 3
= C(;> Hp(x’w“L%(Bp) +O(;) ||H(x’t)||L%(Bp)

for any 0 < p < p. Consequently,

[ VHC Dl
Hyg [0 Hyg [0

<O [ 60l g i+ O [ NHC D,

SOCP [ I+ CEPOIE () (Bo) o) + (F)H () (B )

+(F)3 () (E")3 () + (E")? (o) (E>) (o) (E)¥ (p) + (E")? (p)(E)* (p)],

and thus,

0
2
(0, )

M

<CEP([ 60l ,, dF + O IOy, @}
<c<;>3</_°u2 IpC, 0125, 0%+ CEY 1B (p) (B’ (o)
+(F?)2 () (EY)2 (p) + (F*)2 (p)(E])% (p) + (EY)? (p) (E2) ¥ (p) ()3 (p)
+(E) (p)(E)? (p)]
Denote . . ) 5
P = [, WolEdn)tar
P = (5 [, nfEanfan
Then

5 0 0
WA PL() g/_uz ||H(.,t||Lg(Bu)dt+/_M2 1Ho (- tll gt

~ 1

< C(%)3 /_12 IG5 08+ Cru?[(E)2 (1) (B2)? (1)

1

[(B)Z(p)(E2)7 (p) + (F°)2 (p)(E")? (p)



+H(E)3 (1) (E)E ()] + C(E)3[(E)? (p)(E2)7 (p) + (FO)% (p) (E")? (p)
+(F?)3(p) (E)3 (p) + (E?)3 (p) (E2) 5 (0)(E)T (p) + (E”)3 (p)(E)? (p)].
Similarly, one can derive that
i) = ([ (] plFde)Fan?
< O |H( D2y, A7+ ([ 1Ho( 1) 2 )3
< Cpi[(E ><>< Ey) (1) + (F7)2 (1) (B9)2 (1) + (F)2 () (E})* (1)
En) (1) + (BY)% (1) (B)% (1)

<oty [ ||p(',t)||ig(3p)dt)% + OB o) (B )

+(F)2 (p)(ED)2 (p) + (F*)2 () (EY)? (p) + (EY)? (p) (E2) T (p)(E)1(p)
+(ED)? (p)(E)? (p)]
and
Pou) < C(EVPalp) + CLB) ) (B)* () + (F)H (1) (B () + (F) () (B (1)
+(E? Y

1 ~

+(F")2 (p)(E])2 (p) + (F)2 (p)(EY)Z (p) + (V)2 (p)(E2) 7 (p)(E)7(p)

Note that (3.33) gives
To(u) < C(Ey)* (1) Pa(p) + (Ey)* (1) Py (p).

So the estimates on P; and P, above give an iteration on Jy(u). Noticing
that
E’ (1) + E" () + E*(1),

) =
and after employing (3.13) in Lemma 3.6, we get
Ti(p) < C(2)(E))?(p)(ES)* (p) + C(4)E (p)
+C(2)2(E1)% (p)(E2)2 (p) + C(4)*E\(p).

E(u
13
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Moreover, a similar argument as for Lemma 3.4 leads to the estimate of .J,
as follows

It follows from (3.25)-(3.27) that

[SIE

Ta(p) < C(E")3 (200) [(B2)2 () + (B*)2 (2p1) + (B)? (2p1)] .

Applying the above estimates on .J1,.Js,.JJ3 and J;, and using Young’s in-
equality, we eventually obtain an iteration form for ®(u) = Ey (1) + Eo(p) +
F(p) + F7 () as

(1) < AD(p) +C(N),

where 1 = Ap,0 < XA < 1/4, and C(A) is a constant depending on A. A
similar proof as for Lemma 3.3 gives

®(R) < C

for all R < R. Here R < Ry and C are some constants. Thus, (3.30) is
obtained. And the proof of the lemma is finished.

Proof of Theorem 2.1 (IT) Now this becomes a clear consequence of
Lemma 3.8 and Lemma 3.9, and so we finish the proof of the theorem.
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