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Abstract In this paper, we study the following problem

Agnu—u+u? =0 inH"
u>0 inH"™
u(x) — 0 p(x) — oo
where 1 < p < 8”, Q is the homogeneous dimension of Heisenberg

group H". Our main result is that this problem have at least one
positive solution. For subcritical exponent case 1 < p < 8+§, we
give two methods to prove this. For the critical exponent case
p= 8+2 we first give a Lion’s type concentration-compact Lemma
in the Heisenberg group, then as an application of this Lemma, we
use it to prove our main theorem.
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1 Introduction

Let H" be the Heisenberg group, where Agn = Z(X2 + Y?) is its subelliptic
Laplacian operator, p(x) is the distance function from x to the point 0. Under the

real coordinate (xq,---, Ty, Y1, -, Yn, t), the vector field X; and Y; are defined by
Xi = 3=+ 2y

Y = 2 — 21,5

and the distance function p(x) is defined by

n

plx) = (o (] +yi)* + )1,

=1



It is well known that {X;,Y;} generate the real Lie algebra of Lie group H" and

0

(X3, Y] = 452’3'5,

ivj: 17"'7”'
In this Lie group, there is a group of natural dilations defined by
Sx(z,y,t) = (A, Ay, A*t), A >0

where © = (21, -, 2,),y = (Y1, -, Yn). With this group of dilations, the Lie group
H™ is a two step stratified nilpotent Lie group of homogeneous dimension ) = 2n+2,
and Agn is homogeneous partial differential operator of degree 2. In this paper, we

deal with the existence of the positive solution to the following semi-linear subelliptic

equation
Agnu—u+u? =0 inH"
u>0 inH" (1)
u(x) =0 p(x) — oo

where 1 < p < %

Equation (1) comes from the CR-Yamabe problem (see [14]) and has been studied
by several authors(see [4], [10],[12] and the references therein). In the paper [12],
they studied the problem

{ Agnu+uP =0 inH"™
u>0 inH"
and showed that if the problem’s solution is cylindrical, then it must be 0. In the
works [2] and [4], they have gotten some results on the existence of the boundary
value problem of equation (1) on the bounded domain and unbounded domain with
thin condition, and 1 < p < % In these condition, the corresponding functional
satisfies P.S condition, and the normal variational methods works. In the entire space
H" 1<p< %, we lost the compactness of Folland-Stein-Soblev embedding. The
corresponding functional lost P.S condition. Their methods don’t work. To our
knowledge, in these situation, there exists no report of progress on this problem up
to now.

On the Euclidean space, the similar problem was studied by many peoples(see
[2], [3],[11], and the references therein). In [2], W-Y Ding and W-M Ni gave some
beautiful results on the similar semilinear problem in Euclidean. But for our prob-
lem, as a consequence of [12], it may not have radical symmetry solution. So our
problem is more subtle then them.

Our main result is the following theorem.
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Theorem 1 For 1 <p < Q+ , the problem (1) has a solution u € E.

To proof this theorem, we d1v1ded it by two case, that is the subcritical exponent

Q+2 Q+2
Q-2 Q-2

To begin proof our theorem, we first give some preliminary definition and Lem-

case 1 < p < and the critical exponent case p =

mas. For u € C§°(H™) the C* smooth funciotn with compact support, we define

Jull? = [ 195l + @)
B
where Vg = (Vx,,- -, Vx,, Vv, -+, Vy,). Then we define the Folland-Stein-
Sobolev space by E = C§°(H™), the compactness of C$°(H") under the norm (2).
This is a Hilbert space. For Q C H™, the compactness of C§°(Q2) in E is denoted
by E(Q), it is a Hilbert space too. There space have embedding theorem like the
Sobolev embedding.
Lemma 1.1 VuEEl<q< , we have

Jull e < Cfull (3)

where C'is a constant independent of wu.
Lemma 1.2 Let 2 C H" be bounded smooth domain in H", the embedding

2Q

B(Q) = (@), 1<p< 5y

(4)

is compact.

For the subcritical exponent case, 1 < p < g” we use two methods to solve the
problem (1).

The first method:

In the Folland-Stein-Sobolev space E, we define the energy functional

J(U):l / |VHu|2—i-u2—L w ue B (5)
2Hn p+1

Let By be the ball B, = {x € H”‘p(x) < k}. Denoted the completion C§°(By) in E

by Ej, then
Ex CE1 CFE

E= U E,
k=1

Set J, = JE , find an element ug € £y C E; C --- C E, C FE, such that
k

J(ug) <0, Jx(up) <0 (6)



Let I', Ty defined by

r={r:[0,1 — E"I‘(O) =0, r(1) = ug, r is continuous}
[y ={r:[0,1] — Ek‘T(O) =0, r(1) = ug, r is continuous}

Define

¢ = min max I(r(t))

_TEF‘ 0<t<1 ’ 8)
¢ = min max I (r(t)).
For I'y C 'y C I, we have
Ck 2 Cpyp1 2> 0 (9)

By mountain-path Lemma, we know ¢ is a critical value of the functional Ij.
Let uy be a critical point of I, corresponding the critical value, that is Ip(ug) = cg
and I} (ug) = 0. By some complex estimates of u, we shall proof ¢ is a critical value
of I, and uy — u in F, u is a critical point and I(u) = ¢. By the maximum principle
we get a positive solution of (1).

the second method:

Define M = {u € E‘ [ |uP** =1} C E. On the manifold, we define
HTL

1
Iw) =5 / IV ul? + o2 (10)
HTL
The main idea is, for I have bounded from below, we define

c= inf I(u) (11)

ueM

Then we prove that the critical ¢ can be arrived by v € M. Then by Lagrane
multiplier method, we know the problem have a positive solution.

For the case p = %, it is more delicate then the subcritical exponent case.
Since the Folland-Stein-Sobolev embedding E () < LQz—??, even () is a bounded
domain, lost compactness. This induce that the functional .J; lost P.S condition, the
mountain path lemma does not work. So the first method to the case 1 < p < %
does not work. But on the manifold M = {u € E‘Hj; |u[PT! = 1}, the functional

I(u) = & [ |Vgul® + u? is bounded below too, so we shall use the second method
Hn

of the case 1 < p < % to solve the problem.
As we know, the embedding E — L2 is the limit case of Folland-Stein-Sobolev

embedding. So there are many interesting phenomena. And it is more complex than



the case 1 <p < % to prove the minimum

c= inf I(u) (12)

ueM

can be arrived in the manifold v € M.
For the second method of subcritical case and critical case, to overcome the diffi-
cult that the functional I lost P.S condition, we give some Lion’s version concentration-

compactness Lemmas. This is one of bones in this work.

For the case 1 < p < %, by our proof we know, for every smooth bounded

domain €2, the Dirichlet problem

2 Aynu —u+uP =0 in Q
u>0 in §2 (13)
u=20 on 02

have a least energy solution w.. Let x. € Q,u(x.) = max u(z), we like J.Wei in the
paper [13], we want to know what is the li_r}r(1) dist(x., 02). In one of our preparing
£

works, we shall proof that
dist(x., 0Q) — max d(x,09), =0

and we shall publish this result elsewhere.

2 The subcritical exponent case, 1 < p < %

2.1 The first method
In this subsection, we shall use the mountain-path lemma and domain extension
Q+2

method to proof the Theorem in the subcritical exponent case 1 < p < o3 But

more, we get that the problem have a least energy solution, and proof that

¢ = inf max J(rt)
rer 0<i<1

can be arrived by a path ry € I'. This is the foundation of our paper [1].

For the Folland-Stein-Sobolev embedding Ej, «— LPT' 1 < p < % is compact
[5], by the standard method we have the following lemma.

Lemma 2.1 For £ € IV, the functional J, defined in the Hilbert Ej satisfies
P.S condition.

For an element e € By C By C E, ||e]| = 1,Vk € IN, we have

2t
Jilte) =5 = / e+ d (14)
p
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For p+ 1 > 2, we have the following Lemma 2.2.
Lemma 2.2 There exists an element u € ( oﬁ Erx) N E, such that
k=1

[k(U()) < 0, J(U[)) <0 (15)
For ||u|| = 1, we have
t2 tp+1 ot
J(t / 16
0 =5 =557 [ (16)

By the Lemma 2.1, there is a positive constant C' > 0 independent of u, such that

[lul*t<c (17)

Combine the inequality (17) and the formula (16) we have

2 p+1
J(tu) > = —
2 p+1

(18)

Since p+ 1 > 2, we have the following Lemma 2.3.
Lemma 2.3 There is a neighborhood Uy of 0 respectively in Fj, and a neigh-
borhood U of 0 in E, such that

Je(u) > a, J(u) > « (19)

for all u € Uy or u € U respectively, where a > 0 is a positive constant.
From mountain path lemma and the above Lemma, we have the following Lemma

2.4.

Lemma 2.4 The value ¢; is a critical value of functional I, and more we have
k> >c>a>0 (20)

Suppose uy is a critical point of .J; corresponding the critical value ¢;. Then we

have
Ty = Nl = [ Jup*? (21)
HTL
wa—nwn—g——/|u“P—%>a (22)

From (21) and (22), we have

C1>

Tl = e > a (23)



That is to say {u} is a bounded point set in E. So there is a subset of {uy}, we

still denote it by {u}, and a point @ € F, such that

and w > 0 is a weak solution of
Agru—u—+u? =0 inH".

By the method of Ding and Ni(see [2]), If we can prove @ % 0, then @ is a critical
of functional .J, and

J(@) = c.

Then by maximum principal, we know % is a positive solution of problem (1), and
it is a positive least energy solution of it. So if we can prove @ # 0, our theorem is
proved. Next we locus on this problem.

For u;, € E is a solution of
Agnu—u+uf =0 mH",
we have
/|VHnUk|2 +uf — /uiJrl =0.
Then we have
/uz(uz—l 1) = / IV g2 > 0.

Since ug Z 0, there must be exists & € H", such that
(&) = mAaX uy >1 (25)

We claim that {&;} is a bounded subset of H™. This is our next lemma.
Lemma 2.5 The subset {¢;} defined by (25) is a bounded subset of H".
Proof. For wu; is bounded subset of F, by some standard estimates and the
Folland-Stein-Sobelev embedding theorem, there is a positive constant «, such that
sup ug < a.
I

So there is a large enough 5 > 0 such that

—Agug + fug =ul, — (B —1)up <0 (26)



Define function v = ce=®)_ where ¢ and § are positive number which shall be
determined.

For Ay is a 2 order operator. So Agxv is a -1 order function. Then there are
large positive numbers Ry, and 6 > 0, such that for all £, p(§) > Ry, and large

positive number ' such that
—Agv(&) + Bv(€) > 0. (27)

Choose large positive number Ry, for all £, p(§) = Ry, we have

(v—u)(§) =0 (28)
Set " = max{f, #'},, then by (26, 27, 28)we have

—Apn(v—u)+p"(v—u) >0 inH™\ Bg,(0),
v—u>0, ond(H™\ Bg,(0)

By the maximum principle, this implies that for all £ > Ry, , for any £,

uy, < ce 0P (29)

The inequality implies that & is bounded.

For the Folland-Stein-Sobolve spaces have similar embedding theorems with the
Sobolev embedding and the Sub-Laplacin operator have similar characters with the
Laplacin operator(see [5]), so by the method of Noussair, Ezzat S. and Swanson,
Charles A(see [13]), we have the following lemma.

Lemma 2.6. There is a subsequence of u; we still denote it by uy, such that for
any bounded domain €, uy — u in C?7*(Q), where a is a positive number. That is
up — W in CoE(H™).

From Lemma 2.5 and Lemma 2.6, we have the following Lemma.

Lemma 2.7. The functional defined by (24)

u Z 0.

Proof. For & is bounded, so we may assume that there is a & € H*, such that

&k — €. So we have
uk (&) = (o).

By the inequality (25), we have u(&;) > 1. That is to say u # 0. #
2.2 the second method



In this subsection, we shall use the constraint functional method to study the

problem. First we defined the manifold
M= {ueE| / ufPtide = 1) (30)
On this manifold, define a functional
I(u) = %/IVHuIZ fu, YueM (31)

It is obviously that the functional I is bounded from below. We shall study whether
the functional defined by (31) arrive its minimum on the manifold M. That is we

want to find a ug € M, such that

I(up) =minI(u) = « (32)

ueM

For the embedding F — LPT'(H™) lost compactness, so the functional I does

not satisfy P.S condition. To overcome this difficult, we first transplant the Lion’s
concentration-compactness Lemma([6,7,11]) to Heisenberg group case.

Lemma 2.2.1 Let (p,,)m>1 be a sequence in L'(H") satisfying:

pm > 01in H", /pmzl (33)
HTL

Then there exists a sequence (pp, )i>1 satisfying one the following three possibilities:

(i) (Compactness) There exists a sequence z; € H" such that p,, () is tight, i.e

Ve > 0,3R < oo, / Pn(2)dz > 1 — ¢ (34)
2p+BR
(ii) (Vanishing) lim sup [ p,,(2)dz = 0,, for all R < oo;
k—o00 yEBR

(iii) (Dichotomy) There exists a € (0,1) such that for all £ > 0, there ky > 1
and py, pi € L1 (H") satisfying for k > ko,
100, = (o + PRl < &
(35)
| [ pidz—a|<e
HTL
and dist(supppj, suppp:) — +00, k — +oo, where dz = dxdydt.
For the measure dxdydt on H", it has translation invariant and it is a homoge-
neous on dilations §y like the measure on R*>"*!. That is for u € L'(H"), 2 € H",

[ u(z)dz = [ u(z-z5")dz

" i(ere)ds TA@ [ () (36)
H™ Hn
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Where A > 0. So, just like P.L.Lions[6,7], we can prove this lemma. We omit its
proof here.
Let {u,} C M, I(u) — Hélﬁ I(u) = a,m — oo. By the Folland-Stein-Sobolev

and there exists a constant ¢ > 0, such that
Jull, < cllull, VueE (37)

So o = min I (u) > 0.
ueM

Lemma 2.2.2 For the sequence {u,,}, there is a positive number {R,,}, for the

function
_1
Vm(2) = B um(0_L () (38)
such that
1
sup || (w)dw = = = / |V |Tdw (39)
zEH™ 2
Bl(z) 31(0)

Proof. For u,, € {u,},r >0,z € H", we define
= 1 (61 (2 - 5,) (40)
From (36), we have
Jlllr =" [ Jun@ (2 )1 = [l =1 (41)
So there exists a R,,, for every z/ € H,,
1
[P |9dz = / Uy |?dz = 3 (42)
Bi(21,) BRy, (0)

Define v, (z) = R;f/”um(él% z). From the formula (42), we have

1
sup |V |da = / |V |Tda = = #.
z€H™ 2
Bl (Z) Bl (0)
Let pp = |vm|4, then p,, € L'(H"), and [ p, = 1. From Lemma 2.2.2, we know
Hn
case (ii) in Lemma 2.2.1 can’t occurs. We declare that the case (iii) can’t also. That
is our following lemma.
Lemma 2.2.3 For the function p,, € L'(H") defined above, there is z,, € H",
such that pp,(z - z,,!) is tight, i.e. there exists a number R > 0 large enough, such

that
/ pm(2)dz >1—¢ (43)

Zm~BR(0)
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Proof. By th Lemma 2.2.1 and Lemma 2.2.2, we only need prove the case(iii) in
Lemma 2.2.1 does’t occur. On contrary, there is a number g € (0, A) such that for

all £ > 0, there exist mo > 1 and p. , p2, € L'(H") satisfies for m > my,
lpm — (p}n + p$n>||m <e

| ] pmdz = fl << (44)

Iﬁfnfp?ndz—(l—/ﬂlés

and dist(suppp},, suppp?,) — +oc.

Choose ry,, > 0, such that supppl, C B, (0), suppp?, € H"\B,, (0), and r,, —
+00 as m — +00. Set p € C§°(Bs(0)) such that ¢ =1 in B1(0),1 < » <1 and let
¢m(;=). Decompose

Um = OmVm + (1 - @m)l/m
Then
L Vil = [ (Faomn) P+ S Goim)® + [ V(1= )i
+Hj;(1 — Pm)Vm)? + QHJ;L Vi (@mVm) - (1 = @m)vm)
+2/ @ml/m(l - @m)’/m
Hn
(45)
Next we estimate the last two terms in formula (45) respectively.
an vH(@me) : VH((I - ¢m>y>
2 _an IV (emtm) - V(1 = om)vm)]

> = [ Valenvm) IV a((1 = on)vm))|
== | AVaemrm)IVa((1 = om)vm)]
B2ry, (0\Brpy, (0)
>3 1 Vel P+ T V(1= pw)va)P]
B27‘m (0)\B7‘m (0) BQT‘m (0)\37‘711 (0)
=—3 J {IVa(enVE + 2V aom - Vit - mtm + 02 Vit )]

B27‘m (0)\37‘711 (0)
+ [ ViemlPv2 = 2V aom - Vavm « @mVm + (1 — @m)2|vmum|2}

> —¢ [ v+ |V |?
B2, (0)\ Bryy, (0)

>c / |Vm|p+1
B27‘m (0)\37‘711 (0)

11



Then we have

[ Vulemvm) - (1= omvm) + [ onvm=onlvm>—c [ ol (46)

Bary, (0)\Brp, (0)

From the proof of Lemma 2.2.1, we have Ve > 0, 3my, such that for m > my,

[ Pt <8

BTm (0)
(47)
N e e
H™\Br, (0)
So by the inequalities of (44) and (47), we have
[l <l ol = [l o mt) e (48)

Bary 0\ By (0) i i
The inequality (48) means that

[l =o() (49)

B27‘m (0)\37‘711 (0)

where o(1) — 0, m — +00.
Combine the formula (49),(45) and the inequality (46) we have

/ Vil + [l = lomvim|* + 11 = @m)vimll* + o(1) (50)
Hn

By the Folland-Stein-Sobolev embedding and formula (50), we have
[Vml* = llomviml® + (1 = om)vmll* + o(1)
2 2
> S(lemVml grer + (1= om)vim[[77) 4 0(1)
. L (51)
>SS )7+ (] p)7%) +0(1)
Hr Hr
> S(B7T + (1= B)71) +o(1)
By the define of o and the independence of domain of the best Folland-Stein-

Sobolev constant we know S = a. And by the define v,, we have ||v,,]|> = a(m —

o0). So by the inequality we have
a 2 a(FF 4 (1- §)7) (52)

For z% < 1,0 < B <1, we get @ > «, that is a contradiction. So the case (iii)

of Lemma 2.2.1 can’t occur.
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Theorem 2.2.1 There is a subsequence of {v,,}, we still denote it by {v,},

there exists a point vy € M, such that v,,, — 1 in E, and
[(l/g) =«

Proof: For {v,,} is bounded in E, we have a subsequence of it, and we still denote
it by {v,}, and there exists a £,y € E such that v, — 1. For ¢ < %, and Lemma
2.1.2, we get (2, - Br(0)) N B1(0) # 0, so the points sequence {z,,} is a bounded
set. That is implies that tere is a subsequence of {z,,}, we still denote it by {z,,}

and a point zy € H", such that z,, — 2y, (m — 00). Then we have

/ P > 1 — ¢ (53)

20-B142r(0)

From the Folland-Stein-Sobolev emedding, we know there is a subsequence {v,,}

we still denote it by {v,,}, such that v, — vy, m — oo in H"?(By5£(0)) and

/ Pt > 1 — e (54)

20-B142r(0)

From the Fatou Lemma we know
/ rol*! < lim / P =1 (55)
Hn Hn
Combine the inequalities of (54) and (55), we have
[ ot =1 (56)
HTL
This implies that v,, — 19, m — oo in E. So we have

I(y) = nl}i_r}nool(ym) =«
By the Lagrange multiplier, there is a positive number, such that
Apgnvyg — vy + Al =0
Set 1y = AP~ 'u, then we have

Apntg — ug +ub =0

By the maximum principle, we get our our main theorem 1.1.
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3 The critical exponent case

In this section, we set p = % In this case, even in the bounded domain case,

2
the Folland-Stein-Sobolev embedding is not compact. So the first method of the
subcritical exponent case does not work.

2Q_
Like the second of the subcritical exponent case, denote M = {u € ‘ [ |ule—2 =
HTL

1} and I(u) = [ |Vjul? +u?. Define
H’rL

o= ulgj\f/[ I(u) (57)
Assume {u,,} C M, and
I(up) = a, m— +oo (58)

Like the Euclidean case, we have the following limit case of concentration-
compactness Lemma. Next we shall use {u,,} to construct a solution of the problem
(1).

Lemma 3.1 Suppose u,, — u weakly in E and p,, = Vgun,|*dr + u?, —
Uy Vm = |um|?dz — v weakly in the sence of measures pu and v are bound non-
negative measures on H™. Then we have

(i) There exists at most countable set .J, a family {#V);j € J}, distinct points
in H", and a family {¢#V);j € J} of positive numbers such that

v = ||lul|'de + > 195, (59)
j€d
Where ¢, is the Dirac mass of mass 1 concentrated at x € R".
(ii) In addition, we have
> |VguPde + 30 096, + ul? (60)
jed
for some family numbers {p9);i € J}, ul9) > 0 satisfying

(]

< oo, forall jeJ (61)

In particular, 3 (WD) 58 < 0.

This LemII]lZ{S proof is just like the proof of the corresponding Lemma of Lion’s
([8,9,11]), So we omit it here. The only need to say is that in the proof, we must
use the invariant Harr measures of H" to institute Legbesgue measure of R", and

carefully to estimate the term u2, in the measure fi,,.

14



Thanks to this Lemma, we have our theorem.
Theorem 3.1 In the manifold M, the minimum can be arrived.

Proof. For the sequence {u,,} in (58) satisfies
/|um|6?2_?2da: =1

and notice the proof of Lemma 2.2.2 and Lemma 2.2.1 don’t dependent of p, so we
can define a sequence {v,,} and a sequence {z,} like in the proof of Lemma 2.2.1,

such that

/ |,,m|c§—?221_5 Ve > 0,3R < oo (62)
2m Br(0)
and
/ plvm|? = % (63)
B1(0)

From (60) and (61), for ¢ < 3, (2, - Br(0) N B1(0) # 0. So we have
29
/ ]2 > 1 — ¢ (64)
Br(0)
From the construction of {v,,}, we have

I(V) — a,m — +00

2Q_
[ |vm|?2dz =1
HTL

(65)

So the measure |1/m|622—?2, |V 5V |? are bounded and {v,,} are bounded in E. Then

we know that there are nonegtative measure v, i are vy € E such that
20
|Um |22 = v, m — 00, as measure
IV gvm|? = 1, m — 0o, as measure (66)

Vypy — Vg In B

By the estimate (62), we have
/ v=1 (67)

From Lemma 3.1 we know, there exists {2/ € H",j € J},J is at most countable,
and two families {v\7), j € J},{u"),j € J}, such that
v = |vp|tdx + ¥ 95, (5)
jeT _
p > \VawlPde + 5 196,(5) + [l
jer

and p9), v0) satisfies the estimate (61).
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From (65), we know
a+o(l) = [|Vavn|*+v2
= [ tm
HTL
= [ p++o(1)
Hn

> IVavl* + P pt?) +o(1)
Q

> wm2Q+z< 75377 + o(1)

> QQ )25 1
> a([[v]] PRy 7)) +o(1)
[ Q@-2 JeJ

:afyg—l—o(l):a—i—o(l)
Bn

where o(1) — 0 as m — oo. From the above and the formula (67), then we have

N 2(Q-2) . 2(Q72)
[V11* 2q +> (W) ||v||QzQ + > vy (68)
LQR-2

Le- Jje€J Jje€J

It is well known that the equality is right if and only there is only one of the

terms ||v/| 29 ,vU) j € J is nonzero. but from the construction v, we know that

V) <= forall jeJ (69)

So v\ =0,Vj € J, and
) 20, =1 (70)
This implies that v, — v strongly in E.
For the definition of v, we knows v, € M, and I(v,) — min,epn I(u), so we

have

I(v) = min I (u).

ueM

Then by the Lagrange multipler, we get our proof of Theorem 1.1 in the case of

critical exponent case.
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