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Abstract: We consider the three dimensional axisymmetric
incompressible Euler equations without swirls with vortex-
sheets initial data. Two kinds of approximate solutions gener-
ated by smoothing the initial data and viscous regularization
respectively are discussed. It is proved that both kinds of ap-
proximate solutions converge strongly in L2([0, T ];L2

loc(R
3))

provided that they have strong convergence in the region away
from the symmetry axis respectively, without the restriction
on the signs of initial vorticity. This means that if there would
appear singularity or energy lost in the process of limit for
both approximate solutions respectively, it then must hap-
pen in the region away from the symmetry axis. Moreover,
one sufficient condition to guarantee the strong convergence
in the region away from the symmetry axis is given. And a
higher decay rate for maximal vorticity function in the region
away from the symmetry axis is obtained for non-negative
initial vorticity. In order to exclude the possible concentra-
tions on the symmetry axis, we use the special structure of
the equations for axisymmetric flows and careful choice of test
functions.
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1 Introduction

Consider the 3-D incompressible Euler equations in R3

∂tu+ (u · ∇)u+ ∇p = 0, (x, t) ∈ R3 × (0, T ),

div u = 0, |u| → 0 as |x| → +∞,
(1.1)

with initial conditions
u(x, t) |t=0= u0(x). (1.2)

The equations (1.1) describe motions of incompressible homogeneous in-
viscid flows. The unknown functions here are the velocity vector u = (u1(x, t),
u2(x, t), u3(x, t)) and the pressure p(x, t). T is a fixed positive constant.

As is well-known, the global solvability of system (1.1)-(1.2) is still an
outstanding open problem in the mathematical theory of fluid mechanics.
The local existence and uniqueness of the classical solutions and the various
criteria for development of singularities were shown in [1],[12] and [26] for Ω =
R3 and bounded domain respectively. Even for the axisymmetric case, there
is still no global solvability for (1.1)-(1.2), except for investigations of the
possible development of singularities presented in [2], [3] and the references
therein, which is similar to the general case.

We are concerned with the axisymmetric solutions of (1.1)-(1.2) in this
paper. The cylindrical transformation in R3 is usually defined as

π : R̄+ × [0, 2π) ×R −→ R3,

(r, θ, z) �−→ (x1, x2, x3),

x1 = r cos θ, x2 = r sin θ, x3 = z.

(1.3)

By axisymmetric solutions of (1.1), we mean that, in the cylindrical coor-
dinate system, the unknown functions u(x, t) and p(x, t) do not depend on
θ-variable, that is,

u(x, t) = ur(r, z, t)er + uθ(r, z, t)eθ + uz(r, z, t)ez,

p(x, t) = p(r, z, t),

where

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1)

is the standard orthogonal bases in the coordinate system. In this case, the
Euler equations (1.1) can be written as

D̃ur

Dt
− (uθ)2

r
+ ∂rp = 0, (1.4)
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D̃(ruθ)

Dt
= 0, (1.5)

D̃uz

Dt
+ ∂zp = 0. (1.6)

∂r(ru
r) + ∂z(ru

z) = 0. (1.7)

In the equations (1.4)-(1.6) and in the following, we denote

D̃

Dt
=

∂

∂t
+ ur∂r + uz∂z, r = (x2

1 + x2
2)

1/2.

When uθ ≡ 0, The equations (1.4)-(1.7) are called 3-D axisymmetric
Euler equations without swirls. In this case, the vorticity of the velocity has
a simple expression,

ω = ∇× u = ωθeθ,

where ωθ = ∂ru
z − ∂zu

r. It is an important fact that ωθ/r satisfies the
following transport equation,

D̃

Dt

(
ωθ

r

)
= 0. (1.8)

Due to this conservation property for ωθ/r, global existence and unique-
ness of regular solutions for 3-D axisymmetric Euler equations without swirls
have been proved by Majda, Saint-Raymond, and Shirota and Yanagisava in
[21], [25] and [27] respectively. For less regular initial data, i.e., if u0 ∈ L2,
ω0, ω0/r ∈ Lq ∩ L∞ for some q < 3, the global existence and uniqueness
have also been established in [25]. If the initial data becomes more singu-
lar such as , ω0, ω0/r ∈ L5/6 ∩ Lp(p > 3) or even weaker, u0 ∈ L2, ω0/r ∈
L1 ∩ L(log+ L)α(α > 1/2), which is an Orlitz space, one only has global
existence of weak solutions (see [4], [5] and the references therein).

Our main interest here is to study the solvability of (1.4)-(1.7) with
vortex-sheets initial data. To this end, we first recall the definition of the
weak solutions to the 3-D Euler equations (1.1) in R3 with initial data (1.2):

Definition 1.1. Suppose that u0(x) ∈ L2
loc(R

3). For all T > 0, u(x, t) ∈
L∞([0, T ];L2

loc(R
3)) is called a weak solution to (1.1)-(1.2), if

i) ∀ψ ∈ C∞
0 (R3 × [0, T )), div ψ = 0,

∫
R3
ψ(x, 0)u0(x)dx+

∫ T

0

∫
R3

(ψt · u+ ∇ψ : u⊗ u)dxdt = 0; (1.9)
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ii) ∀φ ∈ C∞
0 (R3 × [0, T ]),

∫ T

0

∫
R3

∇φ · udxdt = 0;

iii)
u(x, t) ∈ Lip([0, T ];H−s

loc (R
3)) for some s > 0,

In (1.9), u ⊗ u means a matrix (uiuj) and A : B =
∑

i,j aijbij for two
matrixes A = (aij) and B = (bij).

Vortex-sheets problem, roughly speaking, is the solvability problem for
the Euler equations under the assumption that the initial data is a vortex-
sheets data, i.e. , the initial vorticity is a finite Radon measure and the initial
velocity is locally square integrable. More precisely, in the 2-D case, the
problem is to obtain global existence of weak solutions and their structures
to the Euler equations with initial vorticity ω0(x) = curlu0(x) satisfying

ω0 ∈M(R2) ∩H−1
comp(R

2), (1.10)

Here M(R2) is the space of finite Radon measures and H−1
comp(R

2) is the dual
space of usual Hilbert space H1(R2) with compact support. Such initial
data arises in the evolution of vortex sheets (see [9], [21] and [23]). Vortex-
sheets problem is a hard and open problem for both two-dimensional Euler
equations and three-dimensional Euler equations. Only partial results are
available. Indeed, observing the important fact that the key to the existence
of classical weak solutions to the 2-D vortex-sheets problem is the vorticity
concentrations instead of the energy concentration, Delort obtained the first
existence of a global classical weak solution to the 2-D vortex-sheets problem
with the additional assumption that the initial vorticity ω0 is of one-sign by
showing the convergence of the approximate solutions constructed by regu-
larizing the initial data [6]. Furthermore, for the one-sign initial vorticity,
the convergence to classical weak solutions of the vortex-sheets problem of
the approximate solutions generated either by viscous regularization or vor-
tex methods has been established respectively by Majda [22] and Liu-Xin
in [19] and [20] by considering uniform decay of the vorticity maximal func-
tions. In these contexts, the readers are referred to [11] and [28] for more
simplifications and clarifications.

In the case that the vorticity may change signs, then the fluids with
different directions of rotations may interact and interwine and thus produce
complicated flow patterns, the only known results are due to Lopes Filho-
Nussenzveig Lopes-Xin in [18], where they established the global existence of
a classical weak solution to the 2-D vortex-sheets problem for initial vorticity
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with reflection symmetry. Their results are based on the fact that there are
no vorticity-concentrations occuring even for flows which allow interactions
of fluids with different signs of vorticity but no interwining [18].

The global existence of classical weak solutions to the 3-D Euler equa-
tions remains to be one of the biggest challenges in the mathematical theory
of fluid dynamics. This is so even for smooth initial data. For the ax-
isymmetric 3-D flows without swirls, the well-posedness theory and analysis
are similar to those of 2-D flows for regular initial data due to the conser-
vation property (1.8). However, surprisingly, this parallelness breaks down
for vortex-sheets initial data in that for one-sign initial vorticity there is no
concentration-cancellation occuring for axisymmetric flows, as was observed
by Delort in [7]. Precisely, Delort proved that, if the vortex-sheets initial vor-
ticity has distinguished sign, the sequence of approximate solutions obtained
by smoothing the initial data either converges strongly in L2

loc(R
3× (0,+∞))

or converges weakly in L2
loc(R

3 × (0,+∞)) to a limit which is not a classical
weak solution to the Euler equations in the sense of distribution [7]. This
is in sharp contrast to the 2-D theory. Still, the existence of classical weak
solutions to the vortex-sheets problem for axisymmetric 3-D Euler equations
without swirls has not been established yet.

Our main concerns in this paper are structures and convergence properties
of the sequences of approximate solutions to the vortex-sheets problem for ax-
isymmetric flows without swirls. We study approximate solutions generated
by both regularizing the vortex-sheets initial data and solving Navier-Stokes
equations respectively. Our main results in this paper show that for approx-
imate solutions to the vortex-sheets problem, generated either by smoothing
the initial data or by viscous approximation, if they converge strongly in L2

over the region outside the symmetry axis, then they must converge strongly
in L2([0, T ];L2

loc(R
3)). This implies that for the 3-D axisymmetric Euler

equations without swirls, if there would appear energy concentration in the
process of limit for both kinds of approximate solutions, the set of energy-
concentration must contain points in the region outside the symmetry axis.
It should be pointed out that there is no restriction on the signs of the
initial vorticity in our theory. Our analysis is based on some concentration-
compactness arguments. To exclude the possible energy concentrations of
the approximate solutions to the vortex-sheets problem on the symmetry
axis, we make full use of the integral equations satisfied by the weak limits of
|uε|2 in the sense of measure and carefully construct various special test func-
tions. It should be noted that although similar concentration-compactness
arguments were used in [13] and [17] for solving nonstationary axisymmet-
ric and general stationary compressible Navier-Stokes equations respectively,
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their arguments are based on the a priori bound on the space-time integral
of |∇uε|2, which can not hold to be true for approximate solutions to the
vortex-sheets problem. So the weak limit of |uε|2 in M(R3 × [0, T ]), the
space of Radon measures, may have more generic and complicated struc-
tures on their singular part, compared with the counterparts in [13] and [17].
Our approach to overcome these difficulties is to make use of the special
structures of the equations for axisymmetric flows, and take into account the
assumption that no energy concentrations occur in the region away from the
axis of symmetry, and then choose carefully the test functions to obtain more
cancellation-combinations which yield the strong convergence in the whole
space, for details, see Section 3.

It follows from our main results that the key to the existence of classical
weak solutions to the vortex-sheets problem for axisymmetric flows without
swirls is whether energy concentrations occur in the region outside the axis
of symmetry in the limit of approximate solutions. Following the approach of
DiPerna and Majda in [9] for the 2-D Euler equations, we derive a sufficient
condition in terms of uniform decay of the vorticity maximal function to
guarantee the strong convergence of the velocity fields in the L2− norm in the
region outside the axis of symmetry for both kinds of approximate solutions,
see Theorem 4.1. We also obtain an uniform decay estimate for the vorticity
maximal function of the approximate solutions to the vortex-sheets problem
for axisymmetric flows without swirls with one-sign vorticity in the region
away from the symmetry axis, which is,

max
x0∈ΩK

δ
,0≤t≤T

∫
BR(x0)

|ωε(x, t)|dx ≤ C(K, δ)R log(
1

R
)−

1
2 , (1.11)

where BR(x0) = {x : |x − x0| < R}, 0 < R << 1}, and ΩK
δ = {x ∈ R3 |

0 < δ <
√
x2

1 + x2
2, |x| < K < +∞}. Although this decay rate is not

higher enough to get the strong convergence of our approximations solutions
sequences in the region away from the symmetry axis and it is obtained
only for the vorticity with distinguished sign, we notice that it is higher
than that in general case, which is due to the axisymmetric property of
the solution. There is still a gap between this decay rate and the sufficient
condition mentioned above.

The rest of this paper is organized as follows. In Section 2, we construct
sequences of approximate solutions to vortex-sheets problem for axisymmet-
ric flows without swirls by smoothing the initial data and by viscous ap-
proximations, which are solutions of corresponding Navier-Stokes equations.
Some properties and preliminary uniform estimates on the approximate solu-
tions are also given here. Section 3 contains the main arguments to prove the
strong convergence in L2 of the velocity fields of the approximate solutions in
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the whole space provided that they do converge in the region away from the
symmetry axis. In Section 4, we give a sufficient condition in terms of the
decay of the vorticity maximal function to guarantee the strong convergence
in the region away from the symmetry axis. Finally, we obtain a decay rate
for the vorticity maximal function in the region outside the symmetry axis
and in the case of one-sign vorticity in Section 5.

2 Approximate Solutions

For the 3-D axisymmetric Euler equations without swirls, the vortex-sheets
initial data with non-negative initial vorticity can be described in the follow-
ing way (see [7]).

Assumptions (A): Suppose that ωθ
0 = ωθ

0(r, z) is a positive finite mea-
sure with compact support on {(r, z) ∈ R2 | r ≥ 0}, and that the initial
vorticity ω0(x), x ∈ R3, defined by ω0dx = π∗(rωθ

0(r, z)eθdθ), belongs to
H−1(R3), which guarantees that the initial velocity u0(x) = −
−1∇×ω0(x)
belongs to L2(R3).

Here π∗ is the measure image induced by π which is defined in (1.3), i.e.,
assume that dμ is a measure on (r, θ, z)-space, then π∗dμ is a measure on
(x1, x2, x3)-space defined by∫

Ω
g(x)(π∗dμ) =

∫
Ω̃
g ◦ πdμ, (2.1)

where g(x) ∈ C0(Ω) and Ω = π(Ω̃).
The initial data given in Assumptions (A) can be regularized through the

usual way.

Proposition 2.1.(see [7]) (1) There exists a smooth sequences {(ωθ
0)

ε(r, z)}
such that (ωθ

0)
ε ≥ 0, (ωθ

0)
ε ∈ C∞

0 ((0,+∞) ×R), and∫ +∞

−∞

∫ +∞

0
(ωθ

0)
εdrdz ≤ C,

(2) Let ωε
0(x) = (ωθ

0)
εeθ. Then ωε

0 ∈ C∞
0 (R3\{r = 0}) and ωε

0 is uniformly
bounded in H−1(R3) ∩ L1(R3), and

ωε
0 ⇀ ω0

weakly in H−1(R3).
(3) Let uε

0 = −∇ × 
−1ωε
0. Then uε

0 ∈ C∞(R3), and uε
0 is uniformly

bounded in L2(R3), and uε
0 is axisymmetric. Furthermore, we have (uε

0)
θ ≡ 0

and
uε

0 ⇀ u0 = −∇×
−1ω0
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weakly in L2(R3).

Proof. To be self-contained, we outline the proof here. The details can
be found in [7].

Step 1. Cutting off ωθ
0 near the axis

Let Ψ = Ψ(s) ∈ C∞
0 (R) be a smooth function satisfying 0 ≤ Ψ(s) ≤ 1

and Ψ ≡ 1 for |s| ≤ 1. Let

ωδ
0dx = π∗((1 − Ψ( r

δ
))Ψ(δr)Ψ(δz)rωθ

0eθdθ)

(1 − Ψ(
x2
1+x2

2

δ
))Ψ(δ(x2

1 + x2
2))Ψ(δx3)ω0dx.

Then it can be seen easily that ωδ
0(x) converges to ω0(x) in the sense of

distributions as δ → 0. Furthermore, it can be proved that ωδ
0 is bounded in

H−1(R3) and so ωδ
0(x) converges weakly in H−1(R3) to ω0(x).

Step 2. Regularizing the initial data

Suppose that ρ ∈ C∞
0 (R) is a smooth function satisfying 0 ≤ ρ ≤ 1 and∫

ρ(t)dt = 1. Suppose that ρε(s) = (1/ε)ρ(s/ε) is the standard mollifer for
s ∈ R and 0 < ε ≤ 1. Define

(ωθ
0)

ε,δ(r, z) =
1

ε2

∫
ρ

(
ln r − ln r′

ε

)
ρ(
z − z′

ε
)(

1

r′
)dωδ

0(r
′, z′),

ωε,δ
0 dx = π∗(r(ωθ

0)
ε,δeθdrdzdθ).

Then it is clear that for any ε, δ > 0, when ε < δ small enough, (ωθ
0)

ε,δ

belongs to C∞
0 (R+ ×R) and is uniformly bounded in L1(R+ ×R; drdz), and

ωε,δ
0 is a smooth function with compact support in R3\{r = 0}. Furthermore,

we claim that for any δ > 0 small, ωε,δ
0 dx is uniformly bounded in H−1(R3)

and converge to (ωθ
0)

δ weakly in H−1(R3) as ε → 0 and this convergence is
uniformly on δ. In fact, for any ϕ ∈ C∞

0 (R3), it suffices to prove that for
0 < ε < δ small enough,

|
∫
ϕ(x) · (ωθ

0)
ε,δ(x)dx |≤ C‖ϕ‖H1 , (2.2)

where C does not depend on (ωθ
0)

ε,δ and δ. To this end, we rewrite the left
hand of (2.2) as ∫

ϕ(x) · (ωθ
0)

ε,δ(x)dx =
∫
ϕε · (ωθ

0)
δ,

where

ϕε(r′ cos θ, r′ sin θ, z′)

=
∫ +∞

0

∫
R

r

r′2
ρ

(
ln r − ln r′

ε

)
ρ(z − z′)ϕ(r cos θ, r sin θ, z)drdz

≡ Iε(r′, z′, θ).
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Therefore, to get (2.2), it suffices to prove that the L2(r′dr′dz′dθ)− norms
of Iε, ∂r′I

ε, (1/r′)∂θI
ε and ∂z′I

ε are all bounded by C‖ϕ‖H1 , where C is a
constant independent of ωδ

0 and δ. These estimates are routine and we omit
the details here.

It follows from the existence and uniqueness of the classical solutions to
the 3-D axisymmetric Euler equations without swirls established in [21], [25]
and [27], one can construct the approximate solutions by regularizing the
initial data:

Proposition 2.2. (see [7]) Under the assumptions (A), there exist
smooth approximate solutions (uε, pε) to the 3-D Euler equations (1.1) with
initial data presented in Proposition 2.1 such that for any T > 0,

(i)
uε(x, t) is uniformly bounded in L∞([0, T ];L2(R3));

(ii) uε is axisymmetric, i.e.

uε(x, t) = (ur)εer + (uz)εez;

(iii)

ωε = ∇× uε = (ωθ)εeθ, (ωθ)ε = ∂r(u
z)ε − ∂z(u

r)ε ≥ 0;

(iv) (ωθ)ε is uniformly bounded in L∞(R;L1(R̄+×R, (1+r2)drdz)) ( Here
R̄+ is the set of [0,+∞)), that is

max
0≤t≤T

∫ +∞

−∞

∫ +∞

0
(ωθ)εdrdz ≤ C;

max
0≤t≤T

∫ +∞

−∞

∫ +∞

0
(ωθ)εr2drdz ≤ C,

where C is a constant independent of ε and T .

Proof. Under Assumptions (A), the regular initial data are constructed
in Proposition 2.1. Then for any ε > 0, there exists a unique smooth ax-
isymmetric solutions (uε, pε) of (1.1) with initial condition uε

0(x) ([21], [25],
[27]). And standard energy estimate gives (i) of the proposition. Since uε is
axisymmetric, it can be expressed as

uε(x, t) = (ur)εer + (uz)εez.

So the vorticity ωε = ∇ × uε has only one non-vanishing component (ωθ)ε,
i.e., ωε = (ωθ)εeθ. Furthermore, (ωθ)ε satisfies⎧⎪⎨

⎪⎩
(
∂

∂t
+ (ur)ε∂r + (uz)ε∂z)(

(ωθ)ε

r
) = 0,

(ωθ)ε |t=0= (ωθ
0)

ε,
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from which, we get that (ωθ)ε ≥ 0 and

∫ +∞

−∞

∫ +∞

0
(ωθ)ε(r, z, t)drdz =

∫ ∫
(ωθ

0)
εdrdz ≤ C.

On the other hand, the following well-known conserved integral quantity for
smooth solutions of the 3-D Euler equations (1.1) ([21])

∫
R3
x× ω(x, t)dx =

∫
R3
x× ω0(x)dx, x ∈ [0, T ],

implies

∫ +∞

−∞

∫ +∞

0
ωθ(r, z, t)r2drdz =

∫ +∞

−∞

∫ +∞

0
ωθ

0(r, z)r
2drdz, t ∈ [0, T ].

Noting that in our case, (ωθ
0)

ε has uniform compact surpport on ε, we obtain

max
0≤t≤T

∫ +∞

−∞

∫ +∞

0
(ωθ)εr2drdz ≤ C.

The proof of the proposition is finished.

For general vortex-sheet initial data, we may assume

Assumptions (A′): Suppose that ωθ
0 = ωθ

0(r, z) is a finite measure with
compact support on {(r, z) ∈ R2 | r ≥ 0}, and that the initial vorticity
ω0(x), x ∈ R3, defined by ω0dx = π∗(rωθ

0(r, z)eθdθ), belongs to H−1(R3),
which guarantees the initial velocity u0(x) = −
−1∇ × ω0(x) belonging to
L2(R3).

In a similar way as for the proof of Proposition 2.1 and Proposition 2.2,
one can show that

Proposition 2.1′. Under Assumptions (A′), the following statements
hold

(1) There exists a smooth sequence {(ωθ
0)

ε(r, z)} such that (ωθ
0)

ε ∈
C∞

0 ((0,+∞) ×R), and

∫ +∞

−∞

∫ +∞

0
|(ωθ

0)
ε|drdz ≤ C.

(2) Let ωε
0(x) = (ωθ

0)
εeθ. Then ωε

0 ∈ C∞
0 (R3\{r = 0}) and ωε

0 is uniformly
bounded in H−1(R3) ∩ L1(R3), and

ωε
0 ⇀ ω0

weakly in H−1(R3).
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(3) Let uε
0 = −∇ × 
−1ωε

0. Then uε
0 ∈ C∞(R3), and uε

0 is uniformly
bounded in L2(R3), and uε

0 is axisymmetric. Furthermore, we have (uε
0)

θ ≡ 0
and

uε
0 ⇀ u0 = −∇×
−1ω0

weakly in L2(R3).

Proposition 2.2′. Under the assumptions (A′), there exist smooth ap-
proximate solutions uε, pε of 3-D Euler equations (1.1) with initial data pre-
sented in Proposition 2.1′ such that for any T > 0,

(i)
uε(x, t) is uniformly bounded in L∞([0, T ];L2(R3));

(ii) uε is axisymmetric, i.e.

uε(x, t) = (ur)εer + (uz)εez;

(iii)
ωε = ∇× uε = (ωθ)εeθ, (ωθ)ε = ∂r(u

z)ε − ∂z(u
r)ε;

(iv) (ωθ)ε is uniformly bounded in L∞(R;L1(R̄+ ×R, drdz)), that is

max
0≤t≤T

∫ +∞

−∞

∫ +∞

0
|(ωθ)ε|drdz ≤ C;

where C is a constant independent of ε and T .

Remark 2.1 Since (ωθ)ε may change sign in general, although we can
obtain the uniform estimate of ωε/r in L∞([0, T ];L1(R3)) under Assumptions
(A′), yet uniform estimate on (ωθ)ε in the same space is not clear.

Now we construct the viscous approximations through Navier-Stokes equa-
tions. We start with the case of Assumptions (A), where the initial vorticity
is non-negative. Consider the following problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu+ (u · ∇)u+ ∇p = ε
u, (x, t) ∈ R3 × (0, T ),

div u = 0,

u(x, t) |t=0= uε
0(x),

(2.3)

Here uε
0 is the smooth initial data stated in Proposition 2.1. It is known

that there exists a unique smooth solutions u, p to (2.3) (see [15]), and u is
axisymmetric with uθ ≡ 0. Furthermore, the corresponding vorticity ω =
ωθeθ satisfies
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tω + (u · ∇)ω − (ω · ∇)u+ ∇p = ε
ω, (x, t) ∈ R3 × (0, T ),

div u = 0,

ω |t=0= ωε
0(x),

(2.4)

and

⎧⎪⎨
⎪⎩

D̃
Dt

(
ωθ

r

)
= ε(∂2

r + ∂2
3 + 1

r
∂r)

(
ωθ

r

)
+ ε2

r
∂r

(
ωθ

r

)
, (r, z) ∈ R+ ×R,

ωθ

r
|t=0=

(ωθ
0)ε

r
,

(2.5)
Here ωε

0 and (ωθ
0)

ε are also the smooth initial data given in Proposition
2.1. It follows easily then

(ωθ
0)ε

r
≥ 0,

(ωθ
0)ε

r
−→ 0 as r → 0.

(2.6)

Moreover, since ω = ωθeθ is the smooth solutions of (2.4), one can show
easily that ωθ(r, z, t) |r=0= 0 and ∂k

rω
θ(r, z, t) |r=0= 0 for any k ≥ 1. There-

fore, we can obtain that

ωθ

r
−→ 0 as r → 0, (2.7)

(in fact, one can obtain that ωθ/rk → 0 as r → 0 for any k ≥ 1). We denote
by {uε, ωε} the smooth solutions to the problems (2.3) and (2.4), which are
our viscous approximations for Cauchy problem of (1.1). Then we have

Proposition 2.3 The results of Proposition 2.2 still hold for the viscous
approximate solutions uε and ωε, which solve the problems (2.3) and (2.4)
respectively.

Proof. It suffices to prove the property (iv) presented in Proposition 2.2
and

(ωθ)ε = ∂r(u
z)ε − ∂z(u

r)ε ≥ 0, (2.8)

for our viscous approximations, since the other statements clearly hold true.
First (2.8) can be proved by the maximum principle. Indeed, if (2.8) is

not true, then it follows from (2.6) and (2.7) that (ωθ)ε/r must achieve its
least negative value in an interior point (r0, z0, t0) ∈ (0,+∞)× (−∞,+∞)×
(0, T ] ≡ ΩT . Let

(ωθ)ε

r
= ξεeλt,

12



where λ > 0 is some constant. Then ξε = ξε(r, z, t) satisfies the following
equation,

D̃

Dt
ξε + λξε − ε(∂2

r + ∂2
3 +

1

r
∂r)ξ

ε − ε
2

r
∂rξ

ε = 0, (r, z, t) ∈ ΩT . (2.9)

Noting that at the minimum point (r0, z0, t0) ∈ ΩT ,

∂tξ
ε ≤ 0, ∂rξ

ε = 0, ∂zξ
ε = 0,

and
∂2

r ξ
ε ≥ 0, ∂2

zξ
ε ≥ 0,

We evaluate the equation (2.9) at the minimum point (r0, z0, t0) to get a
contradiction. This shows that there is no negative value of (ωθ)ε/r in the
interior point of ΩT . In view of (2.6), (2.7), and the fact that (ωθ)ε/r is also
zero at infinity, the non-negativity of (ωθ)ε/r is established.

Next, we prove the property (iv) in Proposition 2.2. It is noted that our
solutions here are all smooth solutions and (ωθ)ε/r tends to zero as r → 0
and as |x| → +∞. So multiplying r on both side of the equation (2.5) and
integrating on (0,+∞)× (−∞,+∞) with respect to (r, z) variable, we easily
get

max
0≤t≤T

∫ +∞

−∞

∫ +∞

0
(ωθ)εdrdz ≤ C,

where C is a constant independent of ε.
On the other hand, as in the case of 3-D Euler equations, we observes

that the quantity
∫
R3 x × (ω)εdx is also conserved for our smooth solutions

ω(x, t) of the equations (2.4). In fact, it follows from integration by parts
and divu = 0 that

d

dt

∫
R3
x× ωεdx =

∫
R3
x× ((ωε · ∇)uε − (uε · ∇)ωε + ε
ωε)dx = 0.

Therefore, ∫
R3
x× ωεdx =

∫
R3
x× ωε

0dx.

In particular, for axisymmetric solutions without swirls, one obtains

∫ +∞

−∞

∫ +∞

0
(ωθ)εr2drdz =

∫ +∞

−∞

∫ +∞

0
(ωθ

0)
εr2drdz.

Since ωθ
0 has compact support in {(r, z) ∈ R2 | r ≥ 0}, so (ωθ

0)
ε has uniform

compact support on ε. Moreover,∫
R3

(ωθ
0)

εdx ≤ |ω0|.

13



So we finally get ∫ +∞

−∞

∫ +∞

0
ωθr2drdz ≤ C,

where C does not depend on ε.
The proof of the Proposition is finished.

The conclusions of Proposition 2.2′ are true for the viscous approxima-
tions, i.e.,

Proposition 2.3′ The results of Proposition 2.2′ still hold for the viscous
approximate solutions {uε, ωε}, which are solutions to the problems (2.3) and
(2.4) respectively.

Now we state some simple temporal estimates.

Proposition 2.4 Suppose that uε(x, t) and pε(x, t) are the approximate
solutions stated in either Proposition 2.2 or Proposition 2.3. Then

∂uε

∂t
∈ L∞([0, T ];H−s

loc (R
3))

for some positive number s ≥ 3.

Proof. For the approximate solutions {uε, pε} obtained by smoothing
the initial data, the proof of the Proposition is given in [5]. The proof is
based on the equation (1.1) and the representation of the pressure,


pε = −div (uε · ∇)uε, x ∈ R3.

For the viscous approximate solutions generated by solving the Navier-Stokes
equations, the proof is completely similar. So we omit the details of the proof
here.

Corollary 2.5 Let uε be an approximate solution as in Proposition 2.4.
The the vorticity ωε = ∇× uε admits the following estimates:

∂ωε

∂t
∈ L∞([0, T ];H−s−1

loc (R3));

ωε ∈ Lip([0, T ];H−s−1
loc (R3)).

(2.10)

Here s ≥ 3 is some positive number.

The following is a proposition needed later, which is due to D. Chae and
O. Y. Imanuvilov (see [4] for details).

Proposition 2.6 ([4]) Let {uε} and {ωε} be the approximate solutions
constructed in Proposition 2.2′. Then, for any T > 0,∫ T

0

∫
R3

1

1 + x2
3

(
uε

r

r
)2dxdt ≤ C(‖uε

0‖2
L2 + ‖ω

ε
0

r
‖L1), (2.11)
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where C = C(T ) is a constant which does not depend on ε.
Proof. For convenience, we omit the supscript ε here. The vorticity

ω = ωθeθ satisfies the following equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D̃

Dt

(
ωθ

r

)
= 0,

ωθ

r
|t=0=

ωθ
0

r
.

(2.12)

Set ρ(x3) =
∫ x3
−∞

1
1+τ2dτ .

Multiplying 2πrρ(x3) on both sides of (2.12) and integrating with (r, z, t)
over (0,+∞) × (−∞,+∞) × [0, T ], we obtain

0 =
∫

R3

ρωθ

r
dx |T0 −

∫ T

0

∫
H

2πρ′u3ω
θdrdx3dt

=
∫

R3

ρωθ

r
dx |T0 −

∫ T

0

∫
H

2πρ′u3(∂ru3 − ∂3ur)drdx3dt

=
∫

R3

ρωθ

r
dx |T0 +

∫ T

0

∫ +∞

−∞
πρ′u2

3(0, x3, t)dx3dt

−
∫ T

0

∫
H

2π(ρ′′u3ur + ρ′ur∂3u3)drdx3dt.

(2.13)

Here H = {(r, z) ∈ R×R | r ≥ 0}. And in the above equation, we have used
the integration by parts, which can be justified easily, for instance,

∫ T

0

∫
H

2πρ′u3(∂ru3 − ∂3ur)drdx3dt

= lim
rk→+∞ 2π

∫ T

0

∫ +∞

−∞

∫ rk

0
ρ′u3∂ru3drdx3dt

− lim
bk→+∞

2π
∫ T

0

∫ bk

−bk

∫ ∞

0
ρ′u3∂3urdrdx3dt

= −
∫ T

0

∫ +∞

−∞
πρ′u2

3(0, x3, t)dx3dt+ lim
rk→+∞

∫ T

0

∫ +∞

−∞
πρ′u2

3(rk, x3, t)dx3dt

− lim
bk→+∞

∫ T

0

∫ +∞

0
2πρ′u3urdrdt |bk

−bk

+ lim
bk→+∞

∫ T

0

∫ bk

−bk

∫ +∞

0
2π(ρ′′u3ur + ρ′ur∂3u3)drdx3dt.

Note that∫ T

0

∫
R3

|u|2dxdt = 2π
∫ +∞

0
(
∫ T

0

∫ +∞

−∞
|u|2dx3dt)rdr

= 2π
∫ +∞

−∞
(
∫ T

0

∫ +∞

0
|u|2rdrdt)dx3 < +∞,
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we can find a sequence rk → +∞ and bk → +∞ such that

lim
rk→+∞

∫ T

0

∫ +∞

−∞
ρ′u2

3(rk, x3, t)dx3dt→ 0,

lim
bk→+∞

∫ T

0

∫ +∞

0
2πρ′u3urdrdt |bk

−bk
→ 0.

Substituting

∂3u3 = −ur

r
− ∂rur,

into (2.13), we have

0 =
∫

R3

ρωθ

r
dx |T0 +

∫ T

0

∫ +∞

−∞
πρ′u2

3(0, x3, t)dx3dt

−
∫ T

0

∫
H

2π(ρ′′u3ur + ρ′ur(−ur

r
− ∂rur))drdx3dt.

(2.14)

Since ρ′(x3) > 0, |ρ(x3)| < C for all x3 ∈ R1, applying integration by parts
again, we obtain from (2.14) that

2π
∫ T

0

∫
H
ρ′

(ur)
2

r
drdx3dt ≤ 2π

∫ T

0

∫
H
|ρ′′u3ur|drdx3dt+ C‖ω0

r
‖L1

≤ 2π(
∫ T

0

∫
H
ρ′

(ur)
2

r
drdx3dt)

1/2(
∫ T

0

∫
H
u2

3

ρ′′

ρ′
rdrdx3dt)

1/2 + C‖ω0

r
‖L1 .

By Cauchy-Schwartz inequality, we obtain (3.2) and the proof of the propo-
sition is finished.

Finally, we point out that for the viscous approximations given in Propo-
sition 2.3′, a similar result as Proposition 2.6 can be established, which is

Proposition 2.7 The results of Proposition 2.6 holds for the viscous
approximations uε and ωε(0 < ε < 1) presented in Proposition 2.3′.

Proof. Similar to Proposition 2.6, we define ρ(x3) =
∫ x3
−∞

1
1+τ2dτ .

Multiplying 2πrρ(x3) on both sides of (2.5), integrating with (r, z, t) over
(0,+∞) × (−∞,+∞) × [0, T ], noting that for our viscous approximations,
the integration by parts make sense, we have

∫ T

0

∫
H
∂r(

ωθ

r
) · 2πρ(x3)drdx3dt = 0,

∫ T

0

∫
H
∂2

r (
ωθ

r
) · 2πrρ(x3)drdx3dt = 0,

∫ T

0

∫
H
∂2

3(
ωθ

r
) · 2πrρ(x3)drdx3dt = 2π

∫ T

0

∫
H
ωθρ′′(x3)drdx3dt.
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Applying the approach in Proposition 2.6, we obtain that for 0 < ε < 1,

2π
∫ T

0

∫
H
ρ′

(ur)
2

r
drdx3dt ≤ 2π

∫ T

0

∫
H
|ρ′′u3ur|drdx3dt+ C‖ω0

r
‖L1

≤ 2π(
∫ T

0

∫
H
ρ′

(ur)
2

r
drdx3dt)

1/2(
∫ T

0

∫
H
u2

3

ρ′′

ρ′
rdrdx3dt)

1/2 + C‖ω0

r
‖L1 .

By Cauchy-Schwartz inequality, we obtain (3.2) and the proof of the Propo-
sition is finished.

3 Strong Convergence

For the approximate solutions {uε} constructed in section 2, it follows from
Propositions 2.2-2.4 that

uεj ⇀ u weakly in L2([0, T ];L2(R3)) (3.1)

for some subsequence {uεj} of {uε}. One of the main concerns is whether
such a weak convergence becomes strong. Along this line, Delort gives the
following interesting result.

Proposition 3.1 ([7]) Suppose that assumptions (A) hold. Let {uε} be
the approximate solutions constructed in Proposition 2.2. Then

u
εj

1 u
εj

3 ⇀ u1u3,

u
εj

2 u
εj

3 ⇀ u2u3,

(u
εj

1 )2 + (u
εj

2 )2 − (u
εj

3 )2 ⇀ (u1)
2 + (u2)

2 − (u3)
2,

in the sense of distributions.
Furthermore, if the weak limit u(x, t) in (3.1) is a solution of 3-D ax-

isymmetric Euler equations in the sense of distributions, then uεj converges
strongly to u in L2([0, T ];L2

loc(R
3)).

Thus, by Proposition 3.1, the key to the existence of classical weak so-
lutions to the vortex-sheets for 3-D axisymmetric flows lies in whether the
weak convergence (3.1) becomes strong. Further investigations on the prop-
erties of the approximate solutions are desired. For axisymmetric flows, it is
usually the case that the solutions are more singular near the axis of symme-
try if there is any singularity at all. However, in this section, we will prove
that if a sequence of approximate solutions converges strongly in the region
away from the symmetry axis, then it has a subsequence which converges
strongly in the whole space. This means that if there are energy defects in
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the limiting process of the approximate solutions, then they must appear in
the region away from the axis. We note that this result is true for general
initial vorticity, not only for one sign initial vorticity.

For concise presentations, we call the term α1(u
ε
1)

2+α2(u
ε
2)

2+α3(u
ε
3)

2 (αi ∈
R, i = 1, 2, 3) the cancellation combinations of uε if

α1(u
ε
1)

2 + α2(u
ε
2)

2 + α3(u
ε
3)

2 ⇀ α1u
2
1 + α2u

2
2 + α3u

2
3

in the sense of distributions.
Now we consider the approximate solutions obtained through smoothing

the initial data under Assumtions (A′), which are given by Proposition 2.2′.
Our main result of this section is stated as

Theorem 3.2 For the approximate solutions {uε} constructed in Propo-
sition 2.2′, if there exists a subsequence {uεj} ⊂ {uε} such that for any
Q ⊂⊂ R3\{x ∈ R3|r = 0},

uεj −→ u strongly in L2([0, T ];L2(Q)), (3.2)

then there exists a further subsequence of {uεj}, still denoted by itself, such
that, as εj → 0,

uεj −→ u strongly in L2([0, T ];L2
loc(R

3)). (3.3)

Proof. The proof is decomposed into the following steps.

Step I. Test Functions and the Integral Equations for the Weak Limit

It follows from the assumption (3.2) that there exists a subsequence
{uεj} ⊂ {uε} such that, for any Q ⊂⊂ R3\{r = 0},

uεj −→ u strongly in L2([0, T ];L2(Q)), as εj → 0, (3.4)

where u = u(x, t) is the weak limit of uε, satisfying |u|2 ∈ L1(R3 × [0, T ]).
We denote the subsequence of uεj by itself in the following. Then it is clear
that

uεj −→ u a.e. (x, t) ∈ R3 × [0, T ], as εj → 0, (3.5)

which implies that there are no osillations in the limit process. On the other
hand, using the energy estimate we directly get that {|uεj |2} (its subsequence
actually) converges weakly in the sense of measure, that is, as εj → 0,

(u
εj

i )2dxdt ⇀ μi weakly in M(R3 × [0, T ]) (3.6)
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for i = 1, 2, 3, where M(R3 × [0, T ]) is the space of finite Radon measures,
μi ≥ 0. By the Lebesgue decomposition and the Radon-Nikodym theorem,
there exist fi(x, t) ∈ L1(R3 × [0, T ]) and γi ∈M(R3 × [0, T ]) such that

μi = fi(x, t)dxdt+ γi, i = 1, 2, 3, (3.7)

where γi ⊥ dxdt, i.e., γi and dxdt are mutually orthogonal, and γi is the
singular part of μi (i=1,2,3). Thanks to (3.4) and (3.5), one concludes that
fi = |ui|2 (i = 1, 2, 3) and the support of γi, denoted by Supp{γi} (i = 1, 2, 3),
is contained in the set {(x, t) ∈ R3 × [0, T ] | r = 0}, which will be denoted
by {r = 0} in the following. In other words, as εj → 0, we have

(u
εj

1 )2dxdt ⇀ u2
1dxdt+ γ1,

(u
εj

2 )2dxdt ⇀ u2
2dxdt+ γ2,

(u
εj

3 )2dxdt ⇀ u2
3dxdt+ γ3,

(3.8)

weakly in M(R3 × [0, T ]). In (3.8), γi(i = 1, 2, 3) are non-negative Radon
measures satisfying

Supp{γi} ⊆ {r = 0}, |γi| < +∞, i = 1, 2, 3. (3.9)

Here |γi| means the total variations of γi(i = 1, 2, 3).
By construction,

∫
R3
u

εj

0 (x)Φ(x, 0)dx+
∫ T

0

∫
R3

(uεjΦt + uεj ⊗ uεj : ∇Φ)dxdt

=
∫

R3
uεj(x, T )Φ(x, T )dx,

(3.10)

for all Φ ∈ C∞
0 (R3 × [0, T ]) satisfying divΦ = 0.

Note that

|
∫

R3
uεj(x, T )Φ(x, T )dx| ≤ (

∫
R3

|uεj |2dx)1/2(
∫

R3
|Φ(x, T )|2dx)1/2

≤ C(
∫

R3
|Φ(x, T )|2dx)1/2,

where C is a constant independent of ε. This, together with (3.10), implies

∫
R3
u

εj

0 (x)Φ(x, 0)dx+
∫ T

0

∫
R3

(uεjΦt + uεj ⊗ uεj : ∇Φ)dxdt

≤ C(
∫

R3
|Φ(x, T )|2dx)1/2.

(3.11)
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Our first aim is to show that (u
εj

1 )2 + (u
εj

2 )2 − 2(u
εj

3 )2 is a cancellation
combination of uε. To this end, the major step is to construct the test
function Φ = (Φ1,Φ2,Φ3) ∈ C∞

0 (R3 × [0, T ]) satisfying divΦ = 0 and

maxr≤h,t∈[0,T ],x3∈R |∂iΦk(x, t)| → 0, h→ 0, (3.12)

for i, k = 1, 2, 3, i �= k.

For such test functions, we obtain from (3.8) and (3.11) that as εj → 0,

|
∫ T

0

∫
R3
∂1Φ1dγ1 +

∫ T

0

∫
R3
∂2Φ2dγ2 +

∫ T

0

∫
R3
∂3Φ3dγ3|

≤ |
∫

R3
u0(x)Φ(x, 0)dx| + |

∫ T

0

∫
R3

(uΦt + u2
1∂1Φ1 + u2

2∂2Φ2 + u2
3∂3Φ3

+u1u2∂1Φ2 + u1u3∂1Φ3 + u2u1∂2Φ1 + u2u3∂2Φ3 + u3u1∂3Φ1

+u3u2∂3Φ2)dxdt| + C(
∫

R3
|Φ(x, T )|2dx)1/2.

(3.13)
In the limit process above, we have used the following facts∫ T

0

∫
R3
u

εj

i u
εj

k ∂iΦkdxdt −→
∫ T

0

∫
R3
uiuk∂iΦkdxdt, εj → 0 (3.14)

for i, k = 1, 2, 3, and i �= k. Indeed, for any h > 0, by the assumption (3.2),
one has∫

{r≥h}
u

εj

i u
εj

k ∂iΦkdxdt −→
∫
{r≥h}

uiuk∂iΦkdxdt, εj → 0. (3.15)

While, it follows from (3.12) that

|
∫
{r≤h}

u
εj

i u
εj

k ∂iΦkdxdt| ≤ C max
r≤h,t∈[0,T ],x3∈R

|∂iΦk(x, t)| → 0, h→ 0, (3.16)

for i �= k (i, k = 1, 2, 3). Moreover, it is clear that

|
∫
{r≤h}

uiuk∂iΦkdxdt| ≤ C
∫
{r≤h}

|u|2dxdt→ 0, h→ 0, (3.17)

since u ∈ L2
loc([0, T ] ×R3).

Thus (3.14) follows from (3.15), (3.16) and (3.17). We now separate the
two cases depending on whether

⋃3
i=1 Supp{γi} lies in a bounded set or not.

Step II.
⋃3

i=1 Supp{γi} Is Finite

Now we suppose that
⋃3

i=1 Supp{γi} has a compact support in {r = 0}.
Let Ω = {(x3, t) ∈ (−∞,+∞) × [0, T ] | x2

3 + t2 < R} ⊂ {r = 0} be an open
set with smooth boundary satisfying

3⋃
i=0

Supp{γi} ⊆ Ω̄.
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In this case, we define the test functions Φ = (Φ1,Φ2,Φ3) as follows

Φ1(x, t) = −1
2
x1χ( r

δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ2(x, t) = −1
2
x2χ( r

δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ3(x, t) = [χ( r
δ
) + r

2δ
χ′( r

δ
)](x3 − x0

3)g(x3, t)I
δ̃
Ω.

(3.18)

Here δ > 0 is small and δ̃ > 0 is arbitrary. The function χ = χ(s) is a
smooth function satisfying χ(s) = 1 for |s| ≤ 1 and χ(s) = 0 for |s| ≥ 2.
And g = g(x3, t) and Iδ̃

Ω = Iδ̃
Ω(x3, t) are also smooth functions which will be

determined in the sequel.
Denote by diam(Ω) the diameter of Ω. For any large positive number

δ̃ > diam(Ω) , let Iδ̃
Ω = Iδ̃

Ω(x3, t) be a smooth function satisfying

0 ≤ Iδ̃
Ω ≤ 1,

Iδ̃
Ω(x3, t) ≡ 1, (x3, t) ∈ Ω,

Iδ̃
Ω(x3, t) ≡ 0, |x3| > δ̃,

|∂x3I
δ̃
Ω(x3, t)| ≤ C

δ̃
,

(3.19)

where C is a constant independent of δ̃.
For any f(x3, t) ∈ C∞

0 (Ω̄), we define a smooth function g = g(x3, t) ∈
C∞((−∞,+∞) × [0, T ]) satisfying

g + (x3 − x0
3)∂x3g = f in Ω,

g(x3, t) = 0, |x3| > K
(3.20)

for large enough K > diam(Ω) > 0. In (3.20), x0
3 ∈ (−∞,+∞) is any fixed

real number such that (x0
3, t) �∈ Ω for t ∈ [0, T ].

It can be verified directly that the test functions given by (3.18), (3.19)
and (3.20) satisfy

Φ = (Φ1,Φ2,Φ3) ∈ C1
0(R3 × [0, T ]), divΦ = 0,

and the restrictions (3.12) are satisfied. Thus the integral inequality (3.13)
holds for the test functions defined by (3.18).
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Note that

∂1Φ1 = [−1
2
χ( r

δ
) − x2

1

2δr
χ′( r

δ
)]{[g(x3, t)

+(x3 − x0
3)∂x3g(x3, t)]I

δ̃
Ω + (x3 − x0

3)g(x3, t)∂x3I
δ̃
Ω},

∂2Φ2 = [−1
2
χ( r

δ
) − x2

2

2δr
χ′( r

δ
)]{[g(x3, t)

+(x3 − x0
3)∂x3g(x3, t)]I

δ̃
Ω + (x3 − x0

3)g(x3, t)∂x3I
δ̃
Ω},

∂3Φ3 = [χ( r
δ
) + r

2δ
χ′( r

δ
)]{[g(x3, t)

+(x3 − x0
3)∂x3g(x3, t)]I

δ̃
Ω + (x3 − x0

3)g(x3, t)∂x3I
δ̃
Ω}.

(3.21)

So
∂1Φ1 |r=0,(x3,t)∈Supp{γ1}= −1/2f(x3, t);

∂2Φ2 |r=0,(x3,t)∈Supp{γ2}= −1/2f(x3, t);

∂3Φ3 |r=0,(x3,t)∈Supp{γ3}= f(x3, t).

(3.22)

Substitute these test functions Φ = (Φ1,Φ2,Φ3) into the integral inequality
(3.13) to lead to

|
∫ T

0

∫
R3
f(x3, t)(−1

2
dγ1 − 1

2
dγ2 + dγ3)|

≤ |
∫

R3
u0(x)Φ(x, 0)dx| + |

∫ T

0

∫
R3

(uΦt + u2
1∂1Φ1 + u2

2∂2Φ2 + u2
3∂3Φ3

u1u2∂1Φ2 + u1u3∂1Φ3 + u2u1∂2Φ1 + u2u3∂2Φ3 + u3u1∂3Φ1

+u3u2∂3Φ2)dxdt| + C(
∫

R3
|Φ(x, T )|2dx)1/2

≡ I1 + I2 + I3.
(3.23)

We now estimate the terms on the right hand side of (3.23). Noting that for
any fixed δ̃ > 0, we have

|[g(x3, t) + (x3 − x0
3)∂x3g(x3, t)]I

δ̃
Ω + (x3 − x0

3)g(x3, t)∂x3I
δ̃
Ω| ≤ C(δ̃).

So we get the estimates of the right hand side of (3.23) as follows

|I1| ≤ C(δ̃)
∫
{|r|≤2δ,|x3|≤K}

|u0(x)|dx,

|I2| ≤ C(δ̃)[(
∫ T

0

∫
{|r|≤2δ,|x3|≤K}

|u|2dxdt)1/2

+
∫ T

0

∫
{|r|≤2δ,|x3|≤K}

|u|2dxdt],

|I3| ≤ C(
∫
{|r|≤2δ,|x3|≤K}

|Φ(x, T )|2dx)1/2.

(3.24)
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For any fixed δ̃ > 0, letting δ → 0, we get

∫ T

0

∫
R3
f(x3, t)(−1

2
dγ1 − 1

2
dγ2 + dγ3) = 0, (3.25)

for all f(x3, t) ∈ C∞
0 (Ω̄).

It is noted that the Radon measure γi = γi |Ω̄∈ M(Ω̄), where γi |Ω̄ is
the restriction of γi on Ω̄ (i = 1, 2, 3). Since the conjugate space of M(Ω̄) is
C(Ω̄), by approximation, we get from (3.25) that

γ1 + γ2 − 2γ3 = 0. (3.26)

Combing (3.26) with (3.8), we get

(u
εj

1 )2 + (u
εj

2 )2 − 2(u
εj

3 )2 ⇀ u2
1 + u2

2 − 2u2
3, (3.27)

weakly in M(R3 × [0, T ]). This means that (u
εj

1 )2 + (u
εj

2 )2 − 2(u
εj

3 )2 is a
cancellation combinations.

Step III.
⋃3

i=1 Supp{γi} Is Infinite

Now we consider the case that
⋃3

i=1 Supp{γi} is infinite. Let

Bk = {(x3, t) ∈ (−∞,+∞) × [0, T ] | x2
3 + t2 ≤ k}, k ∈ N,

where N is the set of natural number. Let

Q1 =
⋃3

i=1 Supp{γi} ∩B1,

Q2 =
⋃3

i=1 Supp{γi} ∩B2 −Q1,

· · ·
Qk =

⋃3
i=1 Supp{γi} ∩Bk −Qk−1,

· · ·
Then

3⋃
i=1

Supp{γi} ⊆ ∪∞
k=1Qk, Qi ∩Qj = ∅, for i �= j, i, j ∈ N.

Define
γ

(k)
i = γi |Qk

, k ∈ N, i = 1, 2, 3.

Then
γ

(k1)
i ⊥γ(k2)

i , k1, k2 ∈ N, k1 �= k2, i = 1, 2, 3,
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and

γi =
∞∑

k=1

γ
(k)
i , i = 1, 2, 3.

Clearly, we have γ
(k)
i = 0(i = 1, 2, 3) if Qk = ∅ for some k ∈ N . Then the

integral inequality (3.13) becomes

∣∣∣∣∣
∞∑

k=1

(∫ T

0

∫
R3
∂1Φ1dγ

(k)
1 +

∫ T

0

∫
R3
∂2Φ2dγ

(k)
2 +

∫ T

0

∫
R3
∂3Φ3dγ

(k)
3

)∣∣∣∣∣
≤ |

∫
R3
u0(x)Φ(x, 0)dx| + |

∫ T

0

∫
R3

(uΦt + u2
1∂1Φ1 + u2

2∂2Φ2 + u2
3∂3Φ3

+u1u2∂1Φ2 + u1u3∂1Φ3 + u2u1∂2Φ1 + u2u3∂2Φ3 + u3u1∂3Φ1

+u3u2∂3Φ2)dxdt| + C(
∫

R3
|Φ(x, T )|2dx)1/2.

(3.28)
Suppose that Ql �= ∅ for some l ∈ N . Let Ωl ⊂ {r = 0} be an open bounded
set with smooth boundary satisfying ∪l

k=1Qk ⊆ Ω̄l. For any δ̃l > diam(Ωl) >

0, define Iδ̃l
Ωl

to be a smooth function satisfying

0 ≤ Iδ̃l
Ωl

≤ 1,

Iδ̃l
Ωl

(x3, t) ≡ 1, (x3, t) ∈ Ωl,

Iδ̃l
Ωl

(x3, t) ≡ 0, |x3| > δ̃l,

|∂x3I
δ̃l
Ωl

(x3, t)| ≤ C

δ̃l
,

where C is a constant independent of δ̃l. Similar to the previous step, for any
fl(x3, t) ∈ C∞

0 (Ω̄l), we define a smooth function gl(x3, t) ∈ C∞((−∞,+∞)×
[0, T ]) satisfying

gl + (x3 − xl
3)∂x3gl = fl in Ωl,

gl(x3, t) = 0, |x3| > Kl.
(3.29)

Here Kl > diam(Ωl) > 0 is a large positive number and xl
3 ∈ (−∞,+∞) is

any fixed number with (xl
3, t) �∈ Ωl for t ∈ [0, T ].

Now we choose the test functions Φ(x, t) = (Φ1,Φ2,Φ3) in (3.18)with g

and Iδ̃
Ω being replaced by gl and Iδ̃l

Ωl
respectively.

We also define

γ̃i
(l) = γi − γ

(l)
i , i = 1, 2, 3. l ∈ N.
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Then from (3.28), after letting δ → 0, we have

|
∫ T

0

∫
R3
fl(x3, t)d(−1

2
γ

(l)
1 − 1

2
γ

(l)
2 + γ

(l)
3 )|

≤ |
∫ T

0

∫
R3

(x3 − xl
3)gl(x3, t)∂x3I

δ̃l
Ωl
d(−1

2
γ̃1

(l) − 1

2
γ̃2

(l) + γ̃3
(l))|.

(3.30)

Note that γi, γ̃i
(l)(i = 1, 2, 3) are finite Radon measures. From (3.29), (3.30),

it yields

|
∫ T

0

∫
R3
fl(x3, t)d(−1

2
γ

(l)
1 − 1

2
γ

(l)
2 + γ

(l)
3 )|

≤ C

δ̃l
(|γ1| + |γ2| + |γ3|),

where C is a constant independent of δ̃l. Due to the arbitrariness of δ̃l > 0,
we have ∫ T

0

∫
R3
fl(x3, t)d(−1

2
γ

(l)
1 − 1

2
γ

(l)
2 + γ

(l)
3 ) = 0

for any fl(x3, t) ∈ C∞
0 (Ω̄l). Consequently, one has

γ
(l)
1 + γ

(l)
2 − 2γ

(l)
3 = 0.

Therefore,
+∞∑
l=1

(γ
(l)
1 + γ

(l)
2 − 2γ

(l)
3 ) = 0,

which leads to
γ1 + γ2 − 2γ3 = 0,

So (3.27) holds true even when
⋃3

i=1 Supp{γi} is infinite.

Step IV. Other Cancellation Combinations

In Step II and Step III, we have obtained that (u
εj

1 )2 + (u
εj

2 )2 − 2(u
εj

3 )2

is a cancellation combinations of uε. In this section, we will use Proposition
2.6 to yield other types of cancellation combinations. In particular, we will
show that (u

εj

1 )2 + (u
εj

2 )2 − (u
εj

3 )2 is a cancellation combinations of uε. Here
we just consider the case that ∪3

i=1Supp{γi} is a compact set in {r = 0}.
When ∪3

i=1Supp{γi} is an infinite set, it can be dealt in a completely similar
way as presented in Step III.

The key element in showing that (u
εj

1 )2 + (u
εj

2 )2 − (u
εj

3 )2 is a cancellation
combinations of uε is that (uε

1)
2 + (uε

2)
2 = (uε

r)
2 has a better estimate near

the symmetry axis, i.e. Proposition 2.6. Indeed, we rearrange the integral
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equations (3.10) so that

|
∫ T

0

∫
R3

(2(u
εj

1 )2∂1Φ1 + 2(u
εj

2 )2∂2Φ2 + (u
εj

3 )2∂3Φ3)dxdt|

≤ |
∫

R3
u

εj

0 (x)Φ(x, 0)dx| + |
∫ T

0

∫
R3

[uεjΦt + +u
εj

1 u
εj

2 ∂1Φ2 + u
εj

1 u
εj

3 ∂1Φ3

+u
εj

2 u
εj

1 ∂2Φ1 + u
εj

2 u
εj

3 ∂2Φ3 + u
εj

3 u
εj

1 ∂3Φ1 + u
εj

3 u
εj

2 ∂3Φ2]dxdt|

+|
∫ T

0

∫
R3

((u
εj

1 )2∂1Φ1 + (u
εj

2 )2∂2Φ2)dxdt| + C(
∫

R3
|Φ(x, T )|2dx)1/2.

(3.31)
Set

G(x3, t) = [g(x3, t) + (x3 − x0
3)∂x3g(x3, t)]I

δ̃
Ω + (x3 − x0

3)g(x3, t)∂x3I
δ̃
Ω.

Let the test functions be defined as in (3.18). In view of (3.21), we get by
using Proposition 2.6 that

|
∫ T

0

∫
R3

((u
εj

1 )2∂1Φ1 + (u
εj

2 )2∂2Φ2)dxdt|

≤ 1

2
|
∫ T

0

∫
R3

[(u
εj

1 )2 + (u
εj

2 )2]χ(
r

δ
)G(x3, t)dxdt|

+|
∫ T

0

∫
R3

[(u
εj

1 )2 · x
2
1

2δr
+ (u

εj

2 )2 · x
2
2

2δr
]χ′(

r

δ
)G(x3, t)dxdt|

≤ 1

2
|
∫ T

0

∫
R3

1

1 + x2
3

(
u

εj
r

r
)2(1 + x2

3)r
2χ(

r

δ
)G(x3, t)dxdt|

+|
∫ T

0

∫
R3

[(u
εj

1 )2 · x
2
1

2δr
+ (u

εj

2 )2 · x
2
2

2δr
]χ′(

r

δ
)G(x3, t)dxdt|

≤ C(δ̃)δ2 + |
∫ T

0

∫
R3

[(u
εj

1 )2 · x
2
1

2δr
+ (u

εj

2 )2 · x
2
2

2δr
]χ′(

r

δ
)G(x3, t)dxdt|.

(3.32)
Substituting (3.32), (3.22) and (3.24) into (3.31), letting εj → 0, we have

|
∫ T

0

∫
R3
f(x3, t)(−dγ1 − dγ2 + dγ3)|

≤ C(δ̃)
∫
{|r|≤2δ,|x3|≤K}

|u0(x)|dx

+C(δ̃)[(
∫ T

0

∫
{|r|≤2δ,|x3|≤K}

|u|2dxdt)1/2

+
∫ T

0

∫
{|r|≤2δ,|x3|≤K}

|u|2dxdt]

+C(
∫
{|r|≤2δ,|x3|≤K}

|Φ(x, T )|2dx)1/2 + C(δ̃)δ2

+C(δ̃)
∫ T

0

∫
{|r|≤2δ,|x3|≤K}

|u|2dxdt.

(3.33)
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For any fixed δ̃ > 0, letting δ → 0, we obtain

∫ T

0

∫
R3
f(x3, t)(−dγ1 − dγ2 + dγ3) = 0,

for all f(x3, t) ∈ C∞
0 (Ω̄). This implies that

(u
εj

1 )2 + (u
εj

2 )2 − (u
εj

3 )2 ⇀ u2
1 + u2

2 − u2
3, (3.34)

weakly in M(R3 × [0, T ]). So (u
εj

1 )2 + (u
εj

2 )2 − (u
εj

3 )2 is a cancellation combi-
nations of uε.

Combining (3.27) with (3.34), we obtain that γ1 = γ2 = γ3 = 0, and so

|uεj |2 ⇀ |u|2,

weakly in M(R3 × [0, T ]) as εj → 0. As a result, we have

‖uεj‖L2
loc

(R3×[0,T ]) −→ ‖u‖L2
loc

(R3×[0,T ]), εj → 0. (3.35)

Recalling that
uεj ⇀ u

weakly in L2(R3 × [0, T ]), we obtain the desired strong convergence (3.3).
The proof of the theorem is proved.

Remark 3.1 Under the assumptions of the strong convergence in the
region away from the axis, we can actually obtain more cancellation combi-
nations by using the tricks of Step II-III. In fact we can prove that

α1(u
εj

1 )2 + α2(u
εj

2 )2 + α3(u
εj

3 )2

are cancellation combinations for α1 + α2 + α3 = 0, αi ∈ R(i = 1, 2, 3) by
choosing the test functions in Step II-Step III as

Φ1(x, t) = −α1x1χ( r
δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ2(x, t) = −α2x2χ( r
δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ3(x, t) = [α3χ( r
δ
) +

α1x2
1+α2x2

2

δr
χ′( r

δ
)](x3 − x0

3)g(x3, t)I
δ̃
Ω.

(3.36)
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Remark 3.2 In Step II-Step III, choosing the test functions as, for ex-
ample,

Φ1(x, t) = −x3
1χ( r

δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ2(x, t) = −x2χ( r
δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ3(x, t) = {[3x2
1χ( r

δ
) + χ( r

δ
)] +

x4
1+x2

2

δr
χ′( r

δ
)}(x3 − x0

3)g(x3, t)I
δ̃
Ω,

(3.37)

we can obtain that γ2 = γ3. Similarly, we can also obtain that γ1 = γ3.
Therefore, using similar method given in Step II and Step III, we can obtain
that γ1 = γ2 = γ3 and (u

εj

1 )2 − (u
εj

2 )2, (u
εj

2 )2 − (u
εj

3 )2 and (u
εj

1 )2 − (u
εj

3 )2 are
all cancellation combinations.

Remark 3.3 We can also obtain that

u
εj

1 u
εj

2 → u1u2,

u
εj

1 u
εj

3 → u1u3,

u
εj

2 u
εj

3 → u2u3

(3.38)

in M(R3 × [0, T ]). Actually, from Remark 3.2, we have

(u
εj

1 )2 − (u
εj

2 )2 → u2
1 − u2

2,

in M(R3 × [0, T ]. So the first convergence in (3.38) can be obtained by
rotation change. In order to obtain the second convergence in (3.38), we use
the test functions defined by

Φ1(x, t) = −x3
1χ( r

δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ2(x, t) = −1
2
x2

2χ( r
δ
){[g(x3, t) + (x3 − x0

3)∂x3g(x3, t)]I
δ̃
Ω

+(x3 − x0
3)g(x3, t)∂x3I

δ̃
Ω},

Φ3(x, t) = {[3x2
1χ( r

δ
) + x2χ( r

δ
)] +

x4
1+x3

2/2

δr
χ′( r

δ
)}(x3 − x0

3)g(x3, t)I
δ̃
Ω.

And the third convergence in (3.38) can be established similarly.

Remark 3.4 Using the tricks of Step IV, in which Proposition 2.6 has
been used , we can prove that

α(u
εj

1 )2 + α(u
εj

2 )2 + β(u
εj

3 )2
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are cancellation combinations for α, β ∈ R. This is enough to obtain the
strong convergence of uεj in L2

loc(R
3 × [0, T ]). However, in Step II-III, it is

not needed to use Proposition 2.6.

Remark 3.5 As described above, under the assumptions of Theorem 3.2,
we have obtained more cancellation combinations of uε and more convergence
in a different way, comparing with Proposition 3.1. It is also noted that
Theorem 3.2 is proved for general initial vorticity, with distingushed sign or
not.

As a direct corollary of Theorem 3.2, we have

Theorem 3.3 Under assumptions Theorem 3.2, there exists a global
weak solutions of Cauchy problem for 3-D axisymmetric Euler equations
without swirls.

Theorem 3.4 The results of Theorem 3.2 still hold for viscous approxi-
mations presented in Proposition 2.3′.

Proof. Firstly, from the assumptions of Theorem 3.2, we know that
there exits a subsequence {uεj} converges to u strongly in L2(Q× [0, T ]) for
Q ⊂⊂ R3\{x ∈ R3|r = 0} outside the axis. Then similar to Step I-Step
III in the proof of Theorem 3.2, we obtain that (u

εj

1 )2 + (u
εj

2 )2 − 2(u
εj

3 )2 is
a concellation combinations. Finally, using Proposition 2.7, we can obtain
that (u

εj

1 )2 + (u
εj

2 )2 − (u
εj

3 )2 is a concellation combinations, similar to Step
IV in Theorem 3.2. So one concludes that {uεj} (subsequence if necessary)
converges to u strongly in L2

loc(R
3 × [0, T ]). The proof of the theorem is

finished and we omit the details here.

4 A Sufficient Condition Guaranteeing Strong

Convergence in Region Away From the Axis

In this section, we give a sufficient condition which guaranteeing the strong
convergence in the region away from the axis. A similar condition was given
in [9] for 2-D Euler equations.

Set
Ωδ ≡ {x ∈ R3 | r > δ > 0},

ΩK
δ ≡ {x ∈ R3| r > δ > 0, |x| < K < +∞},

where 0 < 2δ < K < +∞.
Our main result of this section is stated as follows
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Theorem 4.1 Suppose that {uε} and {ωε} are the approximate solutions
constructed in Proposition 2.2′ or Proposition 2.3′, and there exists a number
β > 1 such that

max
t∈[0,T ]

∫
|x−x0|≤R

|ωε(x, t)|dx ≤ C(K, δ)R
(
ln(

1

R
)
)−β

, x0 ∈ ΩK
δ (4.1)

for all 0 < R < min{1
2
, δ2

4
}. Then there exists a subsequence {uεj} of {uε}

such that for all ρ(x, t) ∈ C∞
0 (R3\{r = 0} × (0, T )), we have

∫ ∫
ρ|uεj |2dxdt −→

∫ ∫
ρ|u|2dxdt, j → +∞. (4.2)

To prove this theorem, we first introduce the potential functions and
derive some estimates.

Using the vector identity

∇×∇× A = −
A+ ∇(∇ · A),

one can introduce a potential vector Ψε(x, t) satisfying the following Possion
equation

−
Ψε = ωε, (4.3)

and
div Ψε = 0, uε = ∇× Ψε.

It then follows from the standard elliptic regularity and Corollary 2.5 that

Ψε is uniformly bounded in L∞([0, T ];H1
loc(R

3)),

∂
∂t

Ψε is uniformly bounded in L∞([0, T ];W−2,2
loc (R3)).

(4.4)

Thus, there exists a subsequence {Ψεj} of {Ψε} such that

Ψεj(x, t) −→ Ψ(x, t) strongly in L2([0, T ];L2
loc(R

3)), (4.5)

and u = ∇× Ψ.
Next, we show that Ψε is uniformly continuous in space. For convenience,

we omit ε in supscript of the approximate solutions in the following estimates.

Lemma 4.2 Suppose that the conditions in Theorem 4.1 are satisfied.
Then, for any x1, x2 ∈ ΩK

δ and for any t ∈ [0, T ], it holds that

|Ψ(x1, t) − Ψ(x2, t)| ≤ C(K, δ)

(
ln(

1

|x1 − x2|)
)−β+1

(4.6)
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for 0 < |x1 − x2| < min{1
2
, δ, δ2

4
}.

Proof. The solution to (4.3) can be represented as

Ψ(x, t) = − 1

4π

∫
ΩK

δ

1

|x− y|ω(y, t)dy + g(x, t), x ∈ ΩK
δ ,

for any t ∈ [0, T ], where g(x, t) is a harmonic function in x-variable in ΩK
δ .

So

|Ψ(x1, t) − Ψ(x2, t)| ≤ 1

4π

∫
ΩK

δ

| 1

|x1 − y| −
1

|x2 − y| ||ω(y, t)|dy
+|g(x1, t) − g(x2, t)|.

It follows from the Minkowski’s inequality that

‖
∫
ΩK

δ

1

|x− y|ω(y, t)dy‖L2(ΩK
δ

) ≤ (
∫
|x|≤2K

1

|x|2dx)
1/2‖ω‖L1(R3) ≤ C(K).

In view of (4.4), one has g(x, t) ∈ L∞([0, T ];L2(ΩK
δ )). By the standard ellip-

tic regularity arguments, it is easy to get that g(x, t) ∈ L∞([0, T ];H3(ΩK
δ ))

and therefore g(x, t) ∈ L∞([0, T ];Cα(ΩK
δ )) for some α > 0. So in order to

prove the lemma, it suffices to prove

I ≡
∫
ΩK

δ

| 1

|x1 − y| −
1

|x2 − y| ||ω(y, t)|dy ≤ C(K, δ)

(
ln(

1

|x1 − x2|)
)−β+1

.

(4.7)
To this end, we decompose I as

I = I1 + I2 + I3,

where

I1 =
∫
|x1−y|≤ |x1−x2|

2

| 1

|x1 − y| −
1

|x2 − y| ||ω(y, t)|dy;

I2 =
∫
|x2−y|≤ |x1−x2|

2

| 1

|x1 − y| −
1

|x2 − y| ||ω(y, t)|dy;

I3 =
∫
|x1−y|≥ |x1−x2|

2
,|x2−y|≥ |x1−x2|

2

| 1

|x1 − y| −
1

|x2 − y| ||ω(y, t)|dy.

Step 1. |x1 − y| > |x1−x2|
2

and |x1 − y| > |x1−x2|
2

.

In this case, we have

∣∣∣∣∣ 1

|x1 − y| −
1

|x2 − y|

∣∣∣∣∣ ≤
⎧⎪⎨
⎪⎩

|x1−x2|
|x1−y|2 , if |x1 − y| < |x2 − y|,
|x1−x2|
|x2−y|2 , if |x2 − y| < |x1 − y|.

31



Without loss of generality, we consider the case of

∣∣∣∣∣ 1

|x1 − y| −
1

|x2 − y|

∣∣∣∣∣ ≤ |x1 − x2|
|x1 − y|2 .

The other case can be estimated similarly. Define

m(R, y, t) =
∫
|z|≤R

|ω(z + y, t)|dz.

Then for any y ∈ ΩK
δ and t ∈ [0, T ], by assumptions, one has that

m(R, y, t) ≤ C(K, δ)R
(
ln(

1

R

)−β

for 0 < R < min{1

2
,
δ2

4
}.

In the following, we use m(R) instead of m(R, y, t) for simplicity. Choosing
0 < λ = λ(δ) < δ, one has

I3 ≤ |x2 − x1|
∫
|x1−y|> |x1−x2|

2

1

|x1 − y|2 |ω(y, t)|dy

≤ 4

λ2
|x2 − x1|‖ωθ(t)‖L1 + |x2 − x1|

∫
|x1−x2|

2
<|x|< λ

2

|ω(x1 + x, t)|
|x|2 dx

=
4

λ2
|x2 − x1|‖ωθ(t)‖L1 + |x2 − x1|

∫ λ
2

|x1−x2|
2

1

R2
dm(R)

≤ 4

λ2
|x2 − x1|‖ωθ(t)‖L1 + |x2 − x1|m(R)

R2
|λ/2
|x1−x2|/2

+2|x2 − x1|
∫ λ/2

|x2−x1|/2

m(R)

R3
dR

≤ C(δ)|x2 − x1| + C(K, δ)

(
ln(

2

|x1 − x2|)
)−β

+C(K, δ)|x2 − x1|
∫ λ/2

|x2−x1|/2

1

R2

(
ln

1

R

)−β

dR.

(4.8)
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Note that

|x2 − x1|
∫ λ/2

|x2−x1|/2

1

R2

(
ln

1

R

)−β

dR

≤ |x2 − x1||
∫ λ/2

|x2−x1|/2

(
ln

1

R

)−β

d
1

R
|

≤ |x2 − x1| 1
R

(ln
1

R
)−β |λ/2

|x1−x2|/2

+ β|x1 − x2|
∫ λ/2

|x2−x1|/2

1

R2

(
ln

1

R

)−(β+1)

dR

≤ C(δ)|x2 − x1| + 2

(
ln(

2

|x1 − x2|)
)−β

+ β|x1 − x2|
(
ln

2

λ

)−1 ∫ λ/2

|x2−x1|/2

1

R2

(
ln

1

R

)−β

dR.

Choosing 0 < λ = λ(δ) < δ small enough such that

β
(
ln

2

λ

)−1

≤ 1/2,

we obtain

|x2 − x1|
∫ λ/2

|x2−x1|/2

1

R2

(
ln

1

R

)−β

dR

≤ C(δ)|x2 − x1| + 4

(
ln(

2

|x1 − x2|)
)−β

.

(4.9)

Substituting (4.9) into (4.8) leads to

I3 ≤ C(K, δ)

⎡
⎣|x2 − x1| +

(
ln(

2

|x1 − x2|)
)−β

⎤
⎦ . (4.10)

Step 2. |x1 − y| ≤ |x1−x2|
2

or |x2 − y| ≤ |x1−x2|
2

.
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When |x1 − y| ≤ |x1−x2|
2

, then |x2 − y| ≥ |x1−x2|
2

. I1 is estimated as

I1 ≤ |x1 − x2|
∫
|x1−y|≤ |x1−x2|

2

1

|x1 − y||x2 − y| |ω(y, t)|dy

≤ 2
∫
|x1−y|≤ |x1−x2|

2

1

|x1 − y| |ω(y, t)|dy

= 2
∫
|y|≤ |x1−x2|

2

1

|y| |ω(x1 − y, t)|dy

≤ C
∫ |x1−x2|/2

0

1

R
dm(R)

≤ C
m(R)

R
||x1−x2|
0 +C

∫ |x1−x2|/2

0

m(R)

R2
dR

≤ C

(
ln(

1

|x1 − x2|)
)−β

+ C

(
ln(

1

|x1 − x2|)
)−β+1

≤ C

(
ln(

1

|x1 − x2|)
)−β+1

,

(4.11)

for |x1 − x2| < 1/2. Similar proof gives

I2 ≤ C

(
ln(

1

|x1 − x2|)
)−β+1

. (4.12)

Thanks to (4.10), (4.11) and (4.12) , the estimate (4.7) is obtained. The
proof of the lemma is finished.

Next, we show that the potential function is uniformly bounded, i.e.,
Lemma 4.3 For any t ∈ [0, T ] and x ∈ ΩK

δ , we have

|Ψ(x, t)| ≤ C(K, δ). (4.13)

Proof. As before,

Ψ(x, t) = − 1

4π

∫
ΩK

δ

1

|x− y|ω(y, t)dy+g(x, t) ≡ J(x)+g(x), t ∈ (0, T ), x ∈ ΩK
δ ,

where g(x, t) is a harmonic function in x− variable in ΩK
δ . Same arguments

as in Lemma 4.2 for g(x, t) and Sobolev embedding theorem give

|g(x, t)| ≤ C(K), t ∈ [0, T ], x ∈ ΩK
δ . (4.14)
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On the other hand, direct estimate gives

|J(x, t)| ≤ 1

4π

∫
|x−y|<δ/2

1

|x− y| |ω(y, t)|dy +
1

4π

∫
|x−y|≥δ/2

1

|x− y| |ω(y, t)|dy

≤ 1

4π

∫
|ỹ|<δ/2

1

|ỹ| |ω(x− ỹ, t)|dỹ +
1

2δπ
‖ω(t)‖L1

≤ C(δ)
(
1 + (ln

2

δ
)−β+1

)
(4.15)

for all t ∈ [0, T ] and x ∈ ΩK
δ . In the last inequality above, similar way in Step

2 in the proof of Lemma 4.2 has been used. Combining (4.14) with (4.15),
we get

|Ψ(x, t)| ≤ C(K, δ), t ∈ [0, T ];x ∈ ΩK
δ .

Proof of Theorem 4.1. It follows from the construction of the approx-
imate solutions that

uεj(x, t) ⇀ u(x, t) weakly in L2([0, T ] ×R3);

uεj(x, t) ⇀ u(x, t) weak − ∗ in L∞([0, T ];L2(R3));

ωεj(x, t) ⇀ ω(x, t) weakly in M([0, T ] ×R3).

(4.16)

Here T > 0 is any positive number. Furthermore, ω(x, t) ∈ L∞([0, T ];M(R3))
and ω = ∇× u.

Note that the vector potential Ψε(x, t) satisfies

−
Ψε = ωε, uε = ∇× Ψε.

Integrating by parts yields∫ ∫
ρ|uε|2dxdt =

∫ ∫
ρΨε · ωεdxdt−

∫ ∫
(∇ρ× Ψε) · uεdxdt. (4.17)

From (4.5), it is clear that∫ ∫
(∇ρ× Ψεj) · uεjdxdt −→

∫ ∫
(∇ρ× Ψ) · udxdt, j → +∞. (4.18)

where Ψ and ω are the vector potential and vorticity respectively correspond-
ing to the velocity u.

Suppose that the supp{ρ(x, t)} ⊂ Ω × [t0, t1], where Ω ⊂⊂ R3\{x ∈
R3|r = 0} is an open set and t0 ≥ 0, t1 ≤ T . We also assume that the
distance between Ω and the axis {r = 0} is δ > 0. Then we utilize Lemma
4.2 and Lemma 4.3 to conclude that

ρΨε is uniformly bounded in C([0, T ];Cγ
0 (Ω)),
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where Cγ(Ω) is the Hölder space of functions with modulus of continuity
defined by γ(|x− y|) = | ln( 1

|x−y|)|−
1
2 . Since the injection i : Cγ

0 (Ω) → C0(Ω)

is compact and ρΨε is uniformly Lipschitz in H−2
loc (R

3) (see (4.4)), by the
Lions-Aubin lemma, we get

ρΨεj −→ ρΨ uniformly in C([0, T ], C0(Ω)), as j → +∞.

In view of (4.16), it follows that

∫ ∫
ρΨεj · ωεjdxdt −→

∫ ∫
ρΨ · ωdxdt, j → +∞. (4.19)

Substitute (4.18) and (4.19) into (4.17) to get

∫ ∫
ρ|uεj |2dxdt −→

∫ ∫
ρΨ · ωdxdt−

∫ ∫
(∇ρ× Ψ) · ωdxdt, j → +∞.

(4.20)
Using standard approximate function uτ (x, t) = ρτ ∗ u(x, t) of u(x, t),

where ρτ (x) = 1
τ3ρ(

x
τ
), ρ(x) ∈ C∞

0 (R3), ρ ≥ 0 and
∫
ρ(x)dx = 1, we can prove

easily that

∫ ∫
ρ|u|2dxdt =

∫ ∫
ρΨ · ωdxdt−

∫ ∫
(∇ρ× Ψ) · udxdt.

Due to (4.20), we finally get

∫ ∫
ρ|uεj |2dxdt −→

∫ ∫
ρ|u|2dxdt, j → +∞.

The proof of the theorem is completed.

As a direct corollary, we have

Corollary 4.4 Under the assumptions in Theorem 4.1, there exists a
subsequence {uεj} ⊂ {uε} such that, for any Q ⊂⊂ R3\{x ∈ R3|r = 0},

uεj −→ u strongly in L2([0, T ];L2(Q)), as j → +∞.

We conclude this section by pointing out that the above procedure is ap-
plicable to the approximate solutions generated by the corresponding Navier-
Stokes systems.

Theorem 4.5 The results of Theorem 4.1 and Corollary 4.4 still hold for
the viscous approximations {uε} and {ωε} constructed in Proposition 2.3′.
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5 Decay Rate for Maximal Vorticity Func-

tion in Region Away From the Axis

Our purpose in this section is to get an estimate on the rate of decay rate of
the maximum vorticity function defined as in the left side of (1.11). We still
omit ε in the approximate solutions in our following estimates. Let

H = {(r, z) ∈ R̄+ ×R| r ≥ 0}; Hδ = {(r, z) ∈ R̄+ ×R| r ≥ δ > 0}.
Also define

ζ = (r, z), ζ0 = (r0, z0), for (r, z), (r0, z0) ∈ R̄+ ×R.

We start with the estimate of the decay rate in (r, z)-plane of the vorticity
as an axisymmetric function, whose proof is similar to 2-D case indicated in
[22], [28] and [19].

Lemma 5.1 Under the Assumptions (A), we have, for any δ > 0, ζ0 ∈ Hδ,

max
t∈[0,T ]

∫ ∫
|ζ−ζ0|≤R

ωθ(ζ, t)drdz ≤ C(δ)
(
ln(

1

R
)
)− 1

2

(5.1)

for all 0 < R < min{1
2
, δ2/4}.

Proof. Choose 0 < η with
√
η < min{1

2
, δ/2}. Define χη(ζ) as

χη(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, |ζ| ≤ η,

ln(
√
η/|ζ|)

ln(1/
√
η)

, η ≤ |ζ| ≤ √
η,

0; |ζ| ≥ √
η.

Direct computation gives

‖∇(r,z)χη‖L2 =
(∫ ∞

0

∫ ∞

−∞
|∇χη(r, z)|2drdz

) 1
2 ≤ C√

ln(1/η)
.

For any ζ0 ∈ Hδ, noticing that ωθ = ∂ru
z − ∂zu

θ, we have∫ ∫
χη(ζ − ζ0)ω

θ(ζ)dζ

=
∣∣∣∣
∫ ∫

(ur(ζ, t), uz(ζ, t)) · (−∂z, ∂r)χη(ζ − ζ0)dζ
∣∣∣∣

≤
(∫ ∫

|ζ−ζ0|≤√
η
|ũ|2dζ

) 1
2

‖∇(r,z)χη‖L2 ,

(5.2)
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where ũ(ζ, t) = (ur(ζ, t), uz(ζ, t)). From |ζ − ζ0| ≤ √
η, one has

δ/2 ≤ r ≤ |r0| + √
η.

So ∫ ∫
|ζ−ζ0|≤√

η
|ũ|2drdz ≤ 2

δ

∫ ∫
{δ/2≤r≤|r0|+√

η}
|ũ|2rdrdz ≤ 1

δπ

∫
R3

|u|2dx.

Consequently, in view of (5.2) and ωθ(ζ, t) ≥ 0 for a.e. ζ ∈ H, one has

∫ ∫
|ζ−ζ0|≤η

ωθ(ζ, t)drdz ≤ C(δ)

(
ln(

1

η
)

)− 1
2

,

which is ∫ ∫
|ζ−ζ0|≤R

ωθ(ζ, t)drdz ≤ C(δ)
(
ln(

1

R
)
)− 1

2

for all 0 < R < min{1
2
, δ2/4}.

The proof of the lemma is finished.

Then we obtain the decay rate of the maximal vorticity function on ΩK
δ

as follows

Theorem 5.2 Under the Assumptions (A), we have that for any x0 ∈ ΩK
δ ,

max
t∈[0,T ]

∫ ∫ ∫
|x−x0|≤R

|ω(x, t)|dx ≤ C(K, δ)R
(
ln(

1

R

)− 1
2

(5.3)

for all 0 < R < min{1
2
, δ2

4
}.

Proof. For x0 = (x01, x02, x03) ∈ ΩK
δ , x = (x1, x2, x3) ∈ R3, let ζ = (r, z)

and ζ0 = (r0, z0) be the corresponding values in (r, z)-plane respectively,
where r2 = x2

1 + x2
2, r

2
0 = x2

01 + x2
02. Then it is clear that the volume of the

set {x ∈ R3 | |ζ − ζ0| ≤ R} is

|{x ∈ R3 | |ζ − ζ0| ≤ R}| =
∫ ∫ ∫

|ζ−ζ0|≤R
dx = 2π

∫ ∫
|ζ−ζ0|≤R

rdrdz.

Noting that r0 ≥ δ and R < min{1
2
, δ2/4}, one gets easily that r ≥ max{δ −

1/2, δ − δ2/4} ≡ m(δ). So

|{x ∈ R3 | |ζ − ζ0| ≤ R}| ≥ 2πm(δ)
∫ ∫

|ζ−ζ0|≤R
drdz = 2π2m(δ)R2.

While for x0 ∈ ΩK
δ , one has

|{|x− x0| ≤ R}| =
4

3
πR3.
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So |{|x− x0| ≤ R}|
|{|ζ − ζ0| ≤ R}| ≤

2R

3πm(δ)
.

Due to the axisymmetric property of ω(x, t), it deduces that∫ ∫ ∫
|x−x0|≤R

|ω(x, t)|dx ≤ 4R

3m(δ)

∫ ∫
|ζ−ζ0|≤R

ωθ(r, z, t)rdrdz

≤ 4KR

3(δ)

∫ ∫
|ζ−ζ0|≤R

ωθ(r, z, t)drdz

≤ C(K, δ)R
(
ln(

1

R
)
)− 1

2

.

The proof of the theorem is finished.

Remark 5.1 In general, for axisymmetric flows without swirls in the
whole space, one can obtain that

max
0≤t≤T,x0∈R3

∫
|x−x0|≤R

|ωε(x, t)|dx ≤ CR−β (5.4)

for some 0 < β < 1/2.
This can be deduced in a direct way. Choose a smooth function χδ(x) ∈

C∞
0 (Bδ1/s(0)) (s > 1, 0 < δ < 1), where Bδ1/s(0) is the ball centered at the

origin with radius δ1/s, such that

χδ(x) ≡ 1, x ∈ Bδ(0); χδ(x) ≡ 0, x ∈ R3\Bδ1/s(0),

and

|∇χδ(x)| ≤ C

δ1/s − δ
.

Then one has (∫
δ≤|x−y|≤δ1/s

|∇yχδ(x− y)|2dy
)1/2

≤ Cδ
1
2s .

Noting that
∇× ũε = ωθeθ,

we get∫
R3
χδ(x− y)eθ(y) · (ωθ)εeθ(y)dy

=
∫

R3
χδ(x− y)eθ(y) · ∇ × ˜u(y)εdy ≤ |

∫
R3

∇× (χδ(x− y)eθ(y)) · ˜u(y)εdy|

≤ |
∫

R3
∇× χδ(x− y) × eθ(y) · ˜u(y)εdy| + |

∫
R3
χδ(x− y)∇× eθ(y) · ˜u(y)εdy|

≤ ‖∇χδ(x− y)‖L2‖ ˜u(y)ε‖L2 ≤ Cδ
1
2s ,
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which leads to (5.4).
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