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1. Introduction and Main Results

Consider the Dirichlet boundary value problem
—Apu = f(r,u), inQ,
u =0, on 01,

where Q is a bounded domain in RN with smooth boundary 9Q, Ayu = div(| 7 u|P 2 u)
(p>1)and f: QxR — Risa Carathéodory function and satisfies the subcritical growth:

(P)

(f) 1f(z,t)| < c(1+[t]97), ae. z€Q, teR
for some ¢ > 0 and ¢ € [1, p*)wherep*:NN—z)if1<p<Nandp*:+ooifN§p.

Let VVO1 ?(Q) be the usual Sobolev space which is a Banach space endowed with the
1

norm ||ul| = (f;,| v ulPdz)? for u € WyP(Q). Define the functional J : W, *(Q) — R by

J () :%/Q|vu|pdx—/QF(x,u)dx, ue W,P(Q) (1.1)
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where F(z,t) fo z,s)ds. Under the condition (f), J is well defined and is a C*
functional w1th its derivative given by

(J'(u / |VulP2VuVuds — / [z, u)vdz, YV ou, ve W, P (Q). (1.2)

Hence the weak solutions of the problem (P) correspond to the critical points of the
functional J.

Let f(z,0) =0, then the problem (P) has a trivial solution u = 0. We are interested
in finding nontrivial solutions of the problem (P). It follows from the Morse theory that
comparing the critical groups of J at zero and at infinity may yield the existence of
nontrivial solutions to the problem (P)(cf. [8, 22]). The critical groups depend mainly
upon the behaviors of the perturbed function f(z,t) or its primitive F'(x,t) near zero and
near infinity, respectively.

In this paper we will apply the Morse theory to study the existence of nontrivial weak
solutions of the problem (P) by imposed various conditions on f(x,t) or its primitive
F(z,t) near the origin and near infinity.

Let A1 denote the first eigenvalue of the p-homogeneous boundary value problem

{ — Apu = AulP?u, inQ, (P)

u =0, on 0).

It is well-known that A; > 0 is simple and can be characterized as

Alzinf{/ VulPde : ue WIP(Q), /|u|”dm=1}. (13)
Q Q

It is also known that A; is an isolated point of o(—A,), the spectrum of —A,, which
contains at least an increasing eigenvalue sequence obtained by the Lusternik-Schnirlaman
theory. The corresponding eigenfunction ¢1 may be taken positive in 2. Putting

Woe {w e Wi () / o1 [P~% 1 w da = 0}
Q

and V = span{ep; }, we have from the simiplicity of A\; that Wol’p(Q) =V @®W. Since )\

is isolated, the number A = inf,cpn {0y WTJW exists and satisfies A > \;. In addition,

/ | v ulPdz > 5\/ |ulPdz, for ue W. (1.4)
Q Q

When p =2, A = Ao, the second eigenvalue of —A in H} ().

Now we state the assumptions and the main results in this paper. Near the origin we
make the following assumptions:

(fo1)- There exist § > 0 and p € (0, p) such that
flz,t)t >0, for €, 0<|t| <0, (1.5)

pF(z,t) — f(z,t)t >0, for z€Q, |t <. (1.6)



(foz)- There exist § > 0 and A € (A, ) such that

AP < pF(z,t) < AP,  for z€Q, [t <. (1.7)

(fos). There exist § > 0 and A € (0, A1) such that

pF(z,t) < MtPP, for z€Q, |t <o (1.8)

Near infinity we make the following assumptions:

(fso1). There exist M > 0 and 6 > p such that

0<OF(z,t) < f(z,t)t, for z€Q, |t|> M. (1.9)
(foo?)' I
t

pF(,?) = A1, uniformly in z€Q, (1.10)

jtl o0 [

1
‘llim (F(z,t) — 5)\1|t|p) = —o00, uniformly in z € Q. (1.11)

t|—o0

(fso3). (1.10) and

‘t%i_r)noo(f(x,t)t —pF(z,t)) = —oo,  uniformly in z € Q. (1.12)
Our main results are the following:
Theorem 1.1.  Let the function f satisfy one of the following conditions:
(a). (for) and (fxo2); (). (for) and (foo3);
(c). (fo3) and (feo1): (d).  (fo3) and (fso3).

Then the problem (P) has at least one nontrivial weak solution in I/VU1 P(Q).

Theorem 1.2. Let f satisfy (fo2) and (fso2). Then the problem (P) has at least two
nontrivial weak solutions in Wol’p(Q).

Remark 1.1. Now let us give some remarks about the conditions given above

(i). Tt is easy to see that the conditions (fo1) and (fs1) imply, respectively, that

. pF(x,t) . pF(z,1)
lim = 400, im
t—0  |t]P lt|soo  [t]P

— too. (1.12)

In the case p = 2, (fo1) and (fs1) mean that the function f is sublinear near zero and
superlinear at infinity.

(ii). The condition (fp2) means that the problem (P) is resonant near the zero
at the first eigenvalue A\ from the right side. It is clear that (fp2) contains the case

limy o pF(z,t)/|t|P = A € (A1, A). But here we do not need to assume that the limit
exists.



The condition (fp3) is a nonresonance condition. It should be pointed out that in the
case p = 2, we may allow that A = Ay which means that the problem (P) is resonant near
0 at A1 from the left side.

(iii). (foo2) means the problem (P) is resonant near infinity at A; from left side and
(foo3) means the problem (P) is resonant near infinity at A; from right side. In Theorem
1.2, the more interesting case is that near the zero and near infinity the problem (P) is
resonant at the same eigenvalue ;.

Remark 1.2. The problem (P) has been studied by many authors. Most of them
treated the problem (P) by using directly variational methods or the minimax method
such as the well-known Saddle Point Theorem or Mountain Pass Theorem([4, 24]). Under
various conditions imposed on f(z,t) or F(z,t), solvability results for one solution or one
nontrivial solution were obtained. Let us mention some of previous results. In [3], the
authors treated the resonance case at infinity when the function g(z,t) := f(z,t)— A1 [t[P~%t
was bounded and satisfied the well-known Landesman-Lazer condition(cf.[13]). In [10], the
authors got the existence of at least one nontrivial solution for the case

F(x,t
lim sup pi(x, )

F(z,t
< o<\ <f<limintPEE®Y
10 |t|p |t|—o00

——= a.e. €.
2f”
They also treated the resonance case at infinity under the condition:

(F%)  liminge @0 —PF@ D)

[t} =00 It

) > a >0, for some 7 > 0, uniformly a.e. z € Q.

In our results, we do not assume the boundedness of g(z,¢) and it is easy to see that
(FZ) implies (1.11) and (1.12). In [11], the authors applied the Mountain Pass Theorem
to get the existence of one positive solution and one negative solution to (P) for the case
(foo1) and (fo3). For other existence results obtained by minimax methods, one refers to
[1, 2, 12, 15, 16, 25] and the references therein.

Theorem 1.2 is a slight generalization of a result in [20] where the Morse theory was
applied to get the multiple solutions of the problem (P) when f satisfied (fo2), (1.10)
and the condition limy;_,(f(7,t)t — pF(x,t)) = +o00 which implies (1.11) by a directly
calculation. In [19], the author applied the Morse theory to study the case where (fp2)
and (feo1) held. When p = 2, the conditions (fo;) and (fs1) were used in [21] and [26],
respectively. Hence our existence results are new. These existence results are even new for
the linear case p = 2 because we only require that f(z,t) is a Carathédory function and
has subcritical growth. Under these conditions, the corresponding functional J defined by
(1.1) is only of C'* and no Morse indices are concerned.

As we have mentioned, we will use the Morse theory to prove our main existence
results. Let us now collect some concepts and results that will be used below.

Let X be a real Banach space and J € C'(X,R), K = {u € X : J'(u) = 0}. Let
u € K be an isolated critical point of J with J(u) = ¢ € R, and U be a neighborhood of u,
containing the unique critical point, the group Cy(J,u) := Ho(J°NU,J°NU \ {u}),q € Z
is called the g-th critical group of J at v where J¢ = {u € X : J(u) < ¢} and Hy(-,-) the
g-th singular relative homology group with integer coefficients. Let a < inf J(K). We call
the group Cy(J,00) := Hy(X, J?*), q € Z the critical groups of J at infinity.(cf [6, 8, 22]).



In Morse theory, the functional J is always required to satisfy the so-called deformation
condition (D)([6, 9]).

Definition. The functional J satisfies (D.) at the level ¢ € R if for any € > 0 and any
neighborhood N of K., there are ¢ > 0 and a continuous deformation n: X x [0,1] - X
such that

(i) n(u,t) =u for either t =0 oru & J~lc —&,c+ ¢];
(ii) J(n(u,t)) is non-increasing in t for any v € X;
(iii) n(JTE\N) C Jo=.

J satisfies (D) if J satisfies (D.) for all ¢ € R.

In applications, we always require the functional J to satisfy the following compactness
conditions.

Definition. The functional J satisfies the (PS). condition at the the level ¢ € R if
any sequence {u,} C X satisfying J(uy,) — ¢, J'(up) = 0 in X*, the dual space of X, as
n — 00, has a convergent subsequence. J satisfies (PS) if J satisfies (PS). at any ¢ € R.

Definition. The functional J satisfies the Cerami condition[7] at the the level ¢ € R
(C. in short) if any sequence {u,} C X satisfying that J(un) — ¢, (14+||un|) || (un)||x< —
0 as n — oo has a convergent subsequence. J satisfies (C) if J satisfies (C)¢ at any ¢ € R.

We note that the (C) condition was introduced by Cerami[7] and is a weak version of
(PS). If J satisfies the (PS) condition or the (C) condition, then J satisfies the deformation
condition(cf. [5, 9]).

Let J satisfy the (D) condition and u = 0 is a critical point of J. The Morse theory|[8,
22] tells us that if £ = {0} then Cy(J,00) = Cy(J,0) for all ¢ € Z. It follows that if
Cy(J,0) 2 Cy(J,0) for some ¢ € Z then J must have a nontrivial critical point. So one
has to compute these groups to get the nontrivial critical point. This is the basic idea to
be used to prove our main results.

We refer the readers to [6, 8, 22] for more information about the Morse theory. In Sec-
tion 2, we compute the group Cy(J,0). In Section 3, we verify the compactness condition
and compute the group C,(J,00). The proof of main results will be given in Section 4.

2. Critical Groups at Zero

In this section we compute the critical groups of J at zero. Assume that the problem
(P) has finitely many solutions. Hence u = 0 is an isolated critical point of J and the
critical group of J at zero is defined.

Proposition 2.1. If f satisfies (fo1), then we have
C,(J,0)20, V qeZ. (2.1)



Proof. By definition we write Cy(J,0) := H,(B, N J° B, N J°\ {0}), where B,(0) =
{u € Wol’p(Q) : |lu|l < p} and p > 0 is to be chosen later. We will get (2.1) by constructing
a deformation mapping for the topological pairs (B,, B,\{0}) and (B,NJ° B,N.J%\{0}).
For this purpose we need to analyze the local properties of J near zero.

A direct calculation by using (1.5) and (1.6) shows that there exists a constant ¢y > 0
such that
F(z,t) > ¢ |t|F, for z€Q, |t| <0. (2.2)

It follows from (f) and (2.2) that
F(z,t) > colt|* —1]t]?, z€Q, teR (2.3)

for some ¢ € (p,p*) and ¢; > 0. Hence for u € Wol’p(Q) and s > 0, we have

J(su) = %sp/ |Vu|pd$—/F($,su)dx
Q Q
PP 1 q (2.4)
< Fllull? = f (colsul" = erfsul?)dz '
Q
P
< SlullP —co s lullp, +er s? JullZ,-

Here and in the following we denote by ¢;, (i = 0, 1,---) various positive constants. Since
u<p<q, for given u € WOI”’(Q) with u # 0, there exists a sg = so(u) > 0 such that

J(su) <0, V 0<s<sg. (2.5)

Let u € Wy*(Q) be such that J(u) = 0. Then

A Jsu)l iy = (), 0)

— /Q|Vu|pdx—/ﬂf(x,u)udx
= =8 [varde+ [ (u Faw) = floud (2:6)

> (1= ) P~ [ ultds (for some g € (p.p") by ()
> (1= ) Jul — s flull? (by the embedding W, (%) < LI(€)).

One concludes that there exists a p > 0 such that

d
T (su)ls=1 >0, Yue WP (Q) with J(u) =0 and 0 < |lu| < p. (2.7)

Now we fix p > 0. Then it follows from (2.7) that
J(su) <0, for se(0,1),for ue WyP(Q) with J(u) <0 and [lu]| < p. (2.8)

In fact if ||u|| < p and J(u) < 0 then there exists a 7 € (0,1) such that J(su) < 0 for
all s € (1 —7,1) by the continuity of J. Suppose that there is some sy € (0,1 — 7] such
that J(spu) = 0 and J(su) < 0 as sg < s < 1. Denote ug = sou. Then by (2.7) we have



%J(su0)|s:1 > 0. But J(su)—J(spu) < 0 implies that %J(suﬂs:s0 = %J(suoﬂs:l <0.

This contradiction shows that (2.8) holds.
Now define a mapping T": B,(0) — [0, 1] as

T(u) = 1, foru e B,(0) with J(u) <0,
YW=s, forue B,(0) with J(u) >0, J(su) =0, s < 1.

By (2.5), (2.7) and (2.8), the mapping 7' is well-defined and if J(u) > 0 then there exists
an unique T'(u) € (0, 1) such that

J(T(u)u) =0, J(su)<0, V s€(0,T(u)) and J(su)>0, V s€ (T(u),1). (2.9)

It follows from (2.7), (2.9) and the Implicit Function Theorem that the mapping T is
continuous in u. Define a mapping 7 : [0,1] x B,(0) — B,(0) by

n(s,u) = (1 —s)u+sT(u)u, s€(0,1], ue B,(0). (2.10)

It is easy to see that the mapping 7 is a continuous deformation from (B,, B, \ {0}) to
(B,NJ% B,NJ°\ {0}). By the homotopy invariance of homology group, we have

Cq(J,0) = Hy(B, N JOva nJe \ {0}) = Hy(By, B, \ {0}) =0, VgeZ

since B,(0) \ {0} is contractible. The proof is completed. O
Proposition 2.2. Suppose that f satisfies (fo2). Then C1(J,0) % 0.

Proof. Using the condition (fy2) we can prove that the functional J has a local linking
property at zero with respect to the splitting Wol’p(Q) = V@ W, that is, there exists p > 0
such that

J(u) <0, for uweV with ||u]| <p, J(u)>0 for ue W with 0 < |u/l <p. (2.11)

(See [20] for details of the proof.) Notice that k¥ = dimV = 1, it follows from [18] that
Cl(J, 0) 20. 0

Remark 2.1. Proposition 2.2 holds in one of the following cases:

: f(ﬂ?,t) _ 3 : :
(1). T A € (A1, A) uniformly in z € Q.
F B
(ii). lim 2 (z,1) =X € (A1, A) uniformly in z € Q.
t=0 |t
en . F(x,1) ) )
(iii). %n% i = \; uniformly in z € Q, pF(z,t) > \|t|P for z € Q and [¢| small.
—

If p = 2 then we can allow that A\ = Xy, the second eigenvalue of (—A, H}()). In fact
in the case p = 2, we can replace (fo2) by

NP < pF(a,t) < MenltP, ¥ z€Q, V<6
where A, and A\, y1 are two consecutive eigenvalues of (—A, Hj (2))(cf. [20]).

Proposition 2.3. Suppose that f satisfies (foz3). Then Cy(J,0) =2 64,07 for all g € 7Z.
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Proof. For any u € I/VU1 P(Q), it follows from (fo3), (f) and the Sobolev embedding
theorem that

J(u) = 2%/9|vu|pdx—/QF(x,u)dx

= %/ |Vu|pdx—/ F(x,u)dx—/ F(z,u)dz
Q ful<d ful>3 (2.12)

A
%/ |vu|pdm—/ —|u|pdx—/ P (2, 0)|d
Q lu|<s P |u|>d

> 3= )ull? —cllul?, (p<q<p*=Np/(N-p)).

Y

Hence u = 0 is a local minimizer of J and so Cy(J,0) = §,,07Z for all ¢ € Z. This completes
the proof. O

Remark. 2.2. For the case p = 2, we can replace (fo3) by
pF(z,t) < A\i|t]P, for z€Q, [t| <4

In this situation, u = 0 is still a local minimizer of the functional J. This fact can be
proved by using the nice decomposition property of Hg(Q)(cf. [20]).

3. Compactness and Critical Groups at Infinity

In this section we verify the compactness condition for the functional J and com-
pute the critical groups of J at infinity. Since the perturbed function f(x,t) satisfies the
subcritical growth condition (f), a standard argument(cf.[3, 20]) shows the following

Lemma 3.1. Let f satisfy (f). Then any bounded sequence {u,} C Wy (Q) such
that J'(uy,) — 0 in (Wol’p(Q))* as n — 0o, has a convergent subsequence.

Proposition 3.1. Let f satisfy (foo1). Then
(i). The functional J satisfies the (PS) condition;
(it). Cy(J,0) =0, V q€ Z.

Proof. This proposition was proved in [26] for p = 2 and in [19] for p # 2. Here we
give the key steps of the proof for the reader’s convenience.

(i). Let {u,} C Wy”(Q) be such that
J(up) = c€R,  J'(up) =0, in (WyP(Q))*, as n — oc. (3.1)
By (f), (foo1) and the embedding theorem, we have that
Oc+o(1) +o([lunll) = 0T (un) + (J' (un), un)

> (G- Dfulpr - C



for some constant C' € R. Since 6 > p > 1, it follows from (3.2) that {u,} is bounded in
W, (). The (PS) condition follows from Lemma 3.1.

(ii). Let S*° be the unit sphere in Wol’p(Q). By (foo1) we see that J(su) — —oo
as § — 4oo for any u € S®. Now using (fw1) again and by a careful calculation, we

have that there is a constant A > 0 such that for any a > A, if J(su) < —a for some

s > 0 and u € S* then %J(su) < 0. Hence for any fixed a > A, there exists an

unique 7" := T'(u) > 0 such that J(T(u)u) = —a for u € S*°. By the Implicit Function
Theorem, T is a continuous function from S* to R. Therefore the deformation retract
7 :[0,1] % (Wy P (2)\B®) — (W, ?(€2)\ B®) defined by n(s,u) = (1—s)u+sT (u)u satisfies
n(0,u) = u, n(1,u) € J ¢ for a large enough, where B = {u € Wol’p(Q) Dul] < 1} Tt
follows that

Cy(,00) = Hy(Wy"(2),J7%) = Hy(Wy ™" (©2), Wy (2) \ B))
= H,B™>,8*)=0, Vq¢eZ
The proof is completed. O
Proposition 3.2. Let f satisfy (foo2). Then
(i). The functional J satisfies the (PS) condition;
(it). Cy(J, 00) =2 0407, ¥ q € 7.

Proof. (i). We will show that under the condition (fo2) J is coercive on Wol’p(Q), ie.
J(u) = 400 as ||u|]| = oo. Hence the (PS) sequence of J must be bounded. Denote

Glat) = F(z,1) — 2|tP.
p

Then (1.11) implies

lim G(z,t) = —oo, wuniformlyin =z € Q. (3.3)
[t|—o00
Rewrite J as
1
J(u) = ) / (|7 ulP = A |ulP)dx —/ G(x,u)dz, ue W,"(Q). (3.4)
Q Q

Assume that J is not coercive on WO1 P(Q), then there is a sequence {u,} C VVO1 P(Q) such
that

||| = 00, as n — oo but J(u,) < C (3.5)
for some C' € R. Denote u
Vp = n €N
[[un|

Then ||v,|| = 1. We may assume that there is a vy € Wol’p(Q) such that

vp, — Vo, weakly in W, ?(),
Uy — Vo, strongly in LP((2), (3.6)
vp(z) = vo(z), for a.e. z € Q.



Now by using (3.3) and (3.5) we deduce

C J(up) _ 1 / Ci
> > 2 [ (gl = Monl?) do — S (3.7)
lunll” — llunll” — p Ja " " [un
for some C; > 0. It follows from (3.5)-(3.7) that
limsup/ | V op|Pdz < >\1/ |vg|Pd. (3.8)
n—00 O Q

On the other hand, we have by using the Poincaré inequality and the lower semicontinuity
of the norm that

Al/ |vo|Pdx < / | v volPdx < liminf/ | V vp|Pdz. (3.9)
From (3.8), (3.9) and the uniform convexity of WO1 P(Q) we have
vy, — v in Wol’p(Q) and / | v volPdz = )\1/ |vo|Pd. (3.10)
Q Q

Hence ||vg|| = 1 and so vy = 1. Take vy = @1, then u,(z) = 400 a.e. in Q. (1.3), (3.3)
and the Fatou lemma imply that

C> 5 [(VunP = Mlunl? o — [ Gloun(a))ds
Q Q

Y

—/ G(z,up(z))dz — 400 as n — oo.
Q

This contradiction shows that J is coercive on I/VU1 P(Q) and then satisfies (PS).

(ii) Since J is coercive and is weakly lower semicontinuous, .J is bounded from below.
By (i) we have that Cy(J, 00) = 64,07 for all ¢ € Z. O

Proposition 3.3. Let [ satisfy (foos). Then
(i). The functional J satisfies the (C) condition;
(7). Cy(J,0) # 0.
Proof. (i) Let {u,} C W, ” () be such that
J(up) = c€R, (1 + JJun DIl (un) ]« — 0, as n — oco. (3.11)

By Lemma 3.1 we only need to prove that {u,} is bounded. Assume that ||u,| — oo as
n — oco. We still denote v, = u,,/||u,|| and may assume that there is some vy € Wol’p(Q)
satisfying (3.6). By (1.10) we see that for any given € > 0 there is M, > 0 such that

1
|G(z,t)] < = € [t[’, uniformlyin z€ Q, |t > M..
p

10



Hence we have by (f) and (3.11) that

W) + [P

_ J(un)
Tunl?

1

= B 7 = dde = [ Glengs

= P — Ao —/ G(x,uy)dz
BT ne = [ G

(3.12)
—W/ G(z,uy)dr
Un ™ S (z)| <M.

1 € C
> = V. p—>\ v 7/ dﬂf —_—
2 p/qu nl” = Aufoal")de el S T e

1
> L P — A|on|P) / dz
2 p/qu nl” = Afon)d pu P el nup
> L[ (w0l = Milual)ds
Q

zx ||un||”

where C' > 0 is a constant. Letting n — oo and using (3.6), we see that

limsup/ |Vop [Pdz < Al/ |vg|pda:—i-i
Q Q AL

n— 00

which implies (3.8) because of the arbitrariness of e. Now using(3.8) and (3.9), we still
have (3.10). Hence ||vg|| = 1 and vy = +¢1. Take vg = 4¢1; then u,(z) — +oo a.e.
z € Q. It follows from (1.12) that

lim (f(z,un(x))un(z) — pF(x,up(x)) = —o0,  uniformly in z € . (3.13)

n—oo

which implies that
/(f(x,un)un —pF(z,up))dr - —oco as n — oo. (3.14)
Q

On the other hand, (3.11) implies
pJ (un) — (J'(un),un) — pc  as n — oo.
Thus
/Q(f(x,un(x))un(w) —pF(z,up(z))de — pc as n— oo
which contradicts to (3.14). Hence {u,} is bounded.

(ii). We still write G(z,t) = F(x,t) — %|t|”, g(z,t) = f(z,t) — M [t|P~2t. Then (1.10)
and (1.12) imply that
pG(z,t)

|00 [E[P

=0 (3.15)

11



and
lim (g(x,t)t — pG(x,t)) = —o0 (3.16)
[t| =00
respectively. It follows from (3.16) that for every M > 0, there is T' > 0 such that
g(z,t)t —pG(x,t)) < —M, YteR |t|>T, ae. €. (3.17)

For 7 > 0, we have

d [Glz,7)] _ g(z,7)7 — pG(z,7)
R (3.18)
Integrating (3.18) over [t, s] C [T, +00), we obtain that
G(z,s) G(x,t) M, 1 1
— < — —). .19
sP  —p (sp tp) (3:19)

Letting s — +oo and using (3.15), we see that G(z,t) > %, forteR t>T, ae x €.
A similar way shows that G(z,t) > %, forteR, t < -T, a.e. z € Q. Hence

lim G(z,t) = +oo a.e. xz €. (3.20)

[t|—o00

By the variational characterization of A; and (3.20) we get that

T(v) = %/Q|Vv|pdx—/QF(x,v)dx

(3.21)
= —/ G(z,v)dr — —oo for v € V. with [|v| = oo.
Q
It follows from (1.10) and (f) that there is some A € [A\;,A) and C > 0 such that
1
F(z,t) < 1—9)\|t|7’J +C.

Hence for w € W, we have by (1.4) that

J(w) = / |Vw|pdx—/F(m w)dx
> / |\Vw|Pdx — —)\/ |w|Pdz —
(3.22)
> 31 =M/ [lw]? -
— 4oo for weW with [|w| — cc.

Since J is weakly lower semicontinuous and is coercive on W, J is bounded from below
on W. By Proposition 3.8 of [6], we have C(J, co) % 0 since dimV = 1. The proof is
completed. O
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4. Proof of Main Results

In this section we give the proofs of our main existence results.

Proof of Theorem 1.1. Case (a). By Proposition 3.2 we have that Cy(J,00) =
dq,0Z, ¥q € Z and so J has a critical point u* with Cy(J,u*) = §,0Z. In fact u* is a global
minimizer of J. By Proposition 2.1 we have C,(J,0) = 0, Yq € Z. Hence u* # 0 and the
problem (1.1) has at least one nontrivial solution u* € VVO1 P(Q).

Case (b) follows from Propositions 3.3 and 2.1.
Case (c) follows from Propositions 3.1 and 2.3.
Case (d) follows from Propositions 3.3 and 2.3.
The proof is completed. O

Proof of Theorem 1.2. Proposition 3.2 tells us that J has the deformation property,
is bounded from below and has a global minimizer. By Proposition Since C1(J,0) # 0, 0
is not the minimizer of J and is homological nontrivial. It follows from Theorem 2.1 of
[20] that J has at least two nontrivial critical points. The proof is completed. O
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