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Abstract

Let Mn be an n-dimensional complete Kähler manifolds with everywhere nonnegative

or everywhere nonpositive bisectional curvature. In this article, we address the question

of when the universal covering space M̃ of M is holomorphically isometric to Cn−r × Nr,

where N is a Kähler manifold whose Ricci tensor is nondegenerate somewhere. It is

now known that such is the case if M covers a compact Kähler manifold, its bisectional

curvature is everywhere nonpositive, and the metric is real analytic. We prove in this

article that, still with the real analytic assumption on the metric, such a splitting also

takes place if the bisectional curvature of M is everywhere nonnegative but is positive

only rarely.
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1. Background

The uniformization theory for Riemann surfaces states that the only
simply-connected Riemann surfaces are CP1, C, and the unit disc Δ. Any
generalization to higher dimensions would likely require an understanding
of the behavior and structure of compact (or complete) Kähler manifolds
with positive (negative, nonpositive, nonnegative) bisectional curvature.

A condition on the bisectional curvature is weaker than the corresponding
condition on sectional curvature. For complex geometry, however, the former
is the more natural of the two not only because bisectional curvature is
defined directly in terms of the complex structure, but also because sectional
curvature conditions are often too restrictive.

A quick example to illustrate the difference between these two curvature
conditions is the following. It is easy to show that any simply-connected,
complete Kähler manifold with nonpositive sectional curvature must be
Stein ([W1]; or [Z4], p. 182). ¿From the classic Cartan-Hadamard theo-
rem we also know that it is diffeomorphic to R2n. So if Mn is a compact
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Kähler manifold with nonpositive sectional curvature, it must be a K(π, 1)
space and its universal cover is Stein. By contrast, it is still an open ques-
tion whether a compact Kähler manifold with negative bisectional curva-
ture must be simply-connected when the dimension is 2 or higher. Such
a manifold is projective, so by the Lefschetz hyperplane section theorem
and the fact that bisectional curvature decreases on complex submanifolds,
this question boils down to whether there are examples of simply-connected
compact Kähler surfaces with negative bisectional curvature. Note that the
cotangent bundle of a manifold with negative bisectional curvature must be
ample, and for any n ≥ 2, Bun Wong [Wo] has constructed examples of
simply-connected projective manifold with ample cotangent bundle.

A definite answer to this question, either affirmative or negative, would
be very interesting. It involves the subtle difference between the global
condition of an ample cotangent bundle and pointwise conditions such as
negative bisectional curvature of a Hermitian or Kähler metric. It is worth
pointing out that, for negative bisectional curvature, whether the metric
is Hermitian or Kähler makes a difference. For instance, let M2 be any
Kodaira fibration surface, that is, M2 is a holomorphic fibration without
singular fibers over a compact Riemann surface which is not a holomorphic
fiber bundle, in the sense that the fibers are not all isomorphic to each
other as complex curves. In 1985, M. Schneider [S] proved that such a M2

always has ample cotangent bundle and, more interestingly, I-Hsun Tsai [T]
constructed in 1989 a Hermitian metric onM2 which has negative bisectional
curvature. On the other hand, such a surface M2 cannot admit any Kähler
metric with nonpositive bisectional curvature, by a result of Paul Yang [Ya].
The reason is that in the Kähler case, each complex curve (or submanifold)
would minimize the volume within its homology class. So Yang’s variational
formula would force the fibration structure of M2 to be a holomorphic fiber
bundle.

The above discussion is aimed, in some sense, at justifying the focus of our
attention on bisectional curvature, at least in the context of uniformization
theory. But even under the stronger sectional curvature assumptions, there
are still many questions in Kähler geometry that remains open. For instance,
if Mn is a compact Kähler manifold with nonpositive sectional curvature,
and is of general type, then is it always Kobayashi hyperbolic? For n = 2,
the answer was found to be affirmative ([Z3]) by using a result of Lu and
Yau [LY]. For n > 2, it is still unknown. Another example is whether a
complete, noncompact, Kähler manifold of positive sectional curvature is
biholomorphic to complex Euclidean space.

In (high dimensional) uniformization theory, a major objective is to under-
stand complex manifolds in dimension n ≥ 2 which admit complete Kähler
metric with nonnegative (or nonpositive) bisectional curvature, especially
the compact ones.

In the case of nonnegative bisectional curvature, the situation regarding
compact manifolds is well understood as a result of the combined effort of
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Frankel [Fk], Howard-Smyth-Wu [HSW], [W2], Mori [Mo], and Siu-Yau [SY],
culminating in Mok’s solution of the generalized Frankel conjecture [M]. It
turns out that, given any compact Kähler manifold Mn with nonnegative
bisectional curvature, there exists a finite cover M ′ of M such that the
Albanese map π : M ′ → T q of M ′ is a surjective holomorphic fiber bundle,
whose fiber has c1 > 0 and is in fact biholomorphic to a product of irreducible
compact Hermitian symmetric spaces.

For noncompact Kähler manifolds, the situation regarding both every-
where nonpositive and everywhere nonnegative bisectional curvature re-
mains a mystery. In dimension 2, the classification theory for surfaces makes
possible a reduction, namely, ifM2 is a compact Kähler surface with nonpos-
itive bisectional curvature, then either M2 has ample canonical line bundle
(with negative first Chern class), or there exists a finite cover of M2 which
is isometric to either a flat complex torus or the product of an elliptic curve
with a curve of genus at least 2. Of course in the c1 < 0 case we don’t know
much about this M2, e.g., must π1(M) be infinite? must M2 be Kobayashi
hyperbolic? etc.

Dual to the splitting theorem of [HSW] and [W1] in the case of nonnega-
tive bisectional curvature, we do have a conjecture for the nonpositive case.
This conjecture is probably the common belief of many people in the field,
but because we could not find it in written form in the literature, we will
attribute it to S.-T. Yau, from whom the second-named author first learned
of its existence.

Conjecture (Yau): Let Mn be a compact Kähler manifold with nonpositive
bisectional curvature. Then there exists a finite cover M ′ of M such that M ′
is a holomorphic and metric fiber bundle over N , a compact Kähler manifold
with nonpositive bisectional curvature and c1(N) < 0, and the fiber is a (flat)
complex torus.

Here as later, we will call fiber bundle f : M → N between two Riemann-
ian manifolds a metric bundle, if for any p ∈ N , there is a neighborhood
p ∈ U ⊆ N such that the bundle over U is isometric to the product of the
fiber with U .

In light of Demailly’s notion of nef-ness for holomorphic vector bundles
over a compact Kähler manifold, and the reduction theorem of Demailly,
Peternell and Schneider [DPS], we propose the following conjecture which
is a slight generalization of Yau’s:

Generalized Yau’s Conjecture: Let Mn be a compact Kähler manifold
with nef cotangent bundle in the sense of Demailly. Denote by κ its Kodaira
dimension. Then there exists a finite cover M ′ of M , such that M ′ is a
smooth fibration over a projective manifold Nκ of dimension κ, and each
fiber is a complex torus, and c1(N) < 0.
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In a recent article ([WZ2]), the authors gave a partial solution to Yau’s
original conjecture:

Theorem 1. Yau’s conjecture is true if the metric on Mn is assumed to
be real analytic.

We believe the additional real analyticity assumption is purely technical,
but we do not know at this point and time how to remove it.

In §2 of this article, we will give an outline of the proof of Theorem 1 and,
in the process, point out certain key steps of the proof which are valid under
the assumption of either everywhere nonpositive or everywhere nonnegative
bisectional curvature. This then sets the stage for the proof of our main
theorem concerning manifolds of nonnegative bisectional curvature, to be
stated presently. Recall that for compact Kähler manifolds of nonnegative
bisectional curvature, the theorem of [HSW] settles the issue of when such
a manifold is holomorphically isometric to a direct product in terms of the
Ricci form. We now pose a conjecture which is the counterpart of [HSW]
for noncompact complete manifolds.

Conjecture. Let Mn be a complete Kähler manifold with nonnegative bisec-
tional curvature. Then its universal covering manifold M̃ is holomorphically
isometric to Cn−r×N r, where r is the Ricci rank, i.e., the maximum rank
of the Ricci form.

In other words, the Ricci tensor will be quasi-positive (i.e., positive definite
somewhere and positive semi-definite everywhere) unless M̃ has non-trivial
flat de Rham factor.

Our main theorem proves the special case of this conjecture when the
Ricci rank is at most 2 and the metric is real analytic. If the Ricci rank
is 1, the conjecture is easily seen to be true (cf. the discussion in §2 below
condition (�)). We will therefore concentrate on the rank 2 case.

Theorem 2. Let Mn be a complete Kähler manifold with nonnegative bi-
sectional curvature and with Ricci rank r = 2. If the metric is real analytic,
then the universal covering space of Mn is holomorphically isometric to a
product Cn−2×N2, where N2 is a complete Kähler manifold of dimension 2
with quasi-positive Ricci tensor.

If an n-dimensional Kähler manifold of nonnegative bisectional curvature
has Ricci rank equal to ≤ 2, then at each point the bisectional curvature can
be positive only within a 2-dimensional subspace; elsewhere it must be zero.
This explains the title of the present article. It should be mentioned that if
nonnegative sectional curvature instead of bisectional curvature is assumed,
then the second-named author has proved elsewhere ([Z3]) that Theorem 2
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holds with no restriction on the Ricci rank. If the analyticity of the metric is
not assumed, then M has at least a local splitting Dn−2 ×N2 at each point,
where D is an open subset of Cn−2. The real analyticity assumption enters
when we try to extend the local splitting to a global one. The idea here is to
apply Nijenhuis’ theorem on the identity of the local holonomy groups of a
real analytic Riemannian manifold with the global holonomy group ([KN1],
p. 101, Theorem 10.8). The proof of Theorem 2 occupies §3.

2. Discussion of the Proof of Theorem 1

The purpose of this discussion is to supplement, rather than repeat the
technical proof given in [WZ2] of Theorem 1 in order to pave the way for
the proof of Theorem 2 in §3. In the process, we also fix the notation and
the terminology.

¿From now on, (Mn, g) will always be a Kähler manifold with everywhere
nonpositive or everywhere nonnegative bisectional curvature. The basic ref-
erence here is [Z4].

Denote by ρ the Ricci (1, 1)-form of M . It is (positive or negative) semi-
definite everywhere on M . Denote by r the maximum of the (complex) rank
of ρ, and by U ⊆ M the open subset where ρ has rank r. We will say that
M has degenerate Ricci, if r < n. That is, if the Ricci tensor is nowhere
negative or positive definite. In this case, denote by L the distribution in U
given by the kernel of ρ.

We claim that the everywhere nonpositivity or everywhere nonnegativity of
the bisectional curvature implies that X ∈ L if and only if R(X, ∗, ∗, ∗) ≡ 0,
where R is the curvature tensor. This fact is used without proof in [WZ2] in
the case of nonpositive bisectional curvature, but we will give the general ar-
gument here. First, observe that if X ∈ L, then R(X,X, T, T ) = 0 for every
vector field T of type (1, 0). Indeed, we may assume |T | = 1, and that locally
there is a unitary frame {e1, e2, · · · , en} satisfying e1 = T . Suppose the bi-
sectional curvature is nonnegative, then by the definition of ρ, ρ(X,X) = 0,
so that

∑n
a=1R(X,X, ea, ea) = 0. Since each R(X,X, ea, ea) ≥ 0, we see

that ρ(X,X) = 0 iff R(X,X, ea, ea) = 0 for all a = 1, . . . n. In particu-
lar, R(X,X, T, T ) = 0. The argument under the assumption of nonposi-
tive bisectional curvature is identical. Next, we show that if X ∈ L, then
R(X, ∗, T, T ) = 0 for any (1, 0) vector field T . Fixing T , we consider the
Hermitian sesquilinear form (U, V ) F→ R(U, V , T, T ) on each tangent space
of M , where U , V are arbitrary vectors of type (1, 0). By the assumption
of everywhere nonnegative or everywhere nonpositive bisectional curvature,
F (U,U) ≥ 0 or F (U,U) ≤ 0, resp., for any U . So F is positive or negative
semi-definite. But for a semi-definite Hermitian form ϕ on a vector space,
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a vector U is in the nullspace of ϕ iff ϕ(U,U) = 0. Since we have seen that
for any X ∈ L, F (X,X) = 0, therefore X is in the nullspace of F for every
X ∈ L, i.e., R(X, ∗, T, T ) = 0 for any X ∈ L. Finally, if S, T are arbitrary
(1, 0) vector fields, let λ ∈ C. Then R(X, ∗, T + λS, T + λS) = 0, i.e.,

λR(X, ∗, S, T ) + λR(X, ∗, T, S) = 0.

Differentiating with respect to λ immediately yields R(X, ∗, S, T ) = 0. This
being true for all S and T , we have proved our claim.

So L is the kernel of the curvature tensor, or more precisely, the kernel
of the mapping X → R(X, ∗, ∗, ∗) from the space of (1, 0) vectors to 3-fold
covariant tensors. Thus L is a foliation whose leaves are totally geodesic,
flat, complex submanifolds of U . By a theorem of Ferus [F], each leaf of L
is complete if M is complete.

We will call r the Ricci rank and L the Ricci kernel foliation for Mn.
In general, the complex foliation L may not be holomorphic, i.e., even

though the leaves of L are complex submanifolds, they may not vary holo-
morphically from leaf to leaf. More formally, we say a complex foliation L of
dimension n−r is holomorphic if locally there exist holomorphic vector fields
V1, . . . , Vn−r so that at each point p, the vectors V1(p), . . . , Vn−r(p) form a
basis of the tangent space to the leaf of L at p. Thus L is holomorphic
iff locally there is a holomorphic coordinate system {z1, . . . , zn} so that the
level sets {z1 = constant, . . . , zr = constant} define the leaves of L.

We now give a third formulation of this concept on a Kähler manifold so
that the verification of the holomorphicity of the Ricci kernel foliation to
be given later will be reduced to a computation. We claim that a complex
foliation L is holomorphic iff

(1) ∇Y L ⊆ L for any vector field Y of type (1, 0)

where, by abuse of notation, L is identified with the space of all vector fields
of type (1, 0) tangent to L, and ∇ is the Kähler connection. The fact that
if L is holomorphic then (1) must be true is trivial. We prove the converse
for the case of n = 2 and r = 1 for the sake of notation simplicity; it will be
seen that the general case involves no new ideas.

So we must show that if (1) holds, then locally there is a nowhere zero
holomorphic vector field T which is everywhere tangent to L. Fix a point
p and let z and w be a local complex coordinate system around p so that
z(p) = w(p) = 0 and so that {w = 0} defines the leaf of L passing through p.
Let f and g be C∞ real-valued functions defined in the same neighborhood
of p so that {
z,�z, f, g} (where 
z and �z denote the real and imaginary
parts of z) form a real coordinate system around p, f(p) = g(p) = 0, and the
level sets {f = constant, g = constant} define L. In particular, {w = 0} =
{f = 0, g = 0} in this neighborhood. Because each leaf of L is a complex
submanifold of M , it makes sense to speak of the space of (1, 0) vectors of
L. Let T 1,0

q M and T 1,0
q L be the space of type (1, 0) vectors of M and L,
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resp., at a point q in this coordinate neighborhood, and let Tq{ ∂
∂w} be the

subspace of T 1,0
q M spanned by ∂

∂w . Now at p, T 1,0
p L is the linear span of

∂
∂z (p), so we have a direct sum:

T 1,0
p M = Tp{ ∂

∂w
} ⊕ T 1,0

p L.
By continuity, we may assume that the neighborhood of p is so small that
for every q in this neighborhood, we continue to have a direct sum

T 1,0
q M = Tq{ ∂

∂w
} ⊕ T 1,0

q L.
Thus there is a C∞ (1, 0) vector field T tangent to L, so that

∂

∂z
= h

∂

∂w
+ T.

We claim that T is holomorphic. Indeed, since (1) is true,

∇ ∂
∂w
T = ϕT, and ∇ ∂

∂z
T = ψT

for some C∞ function ϕ and ψ. But

∇ ∂
∂w
T = ∇ ∂

∂w

(
∂

∂z
− h

∂

∂w

)
=
∂h

∂w

∂

∂w
,

whereas
ϕT = ϕ

∂

∂z
− ϕh

∂

∂w
.

Therefore, ∇∂/∂wT = ϕT iff ϕ = 0 and ∂h/∂w = 0. Similarly, ∂h/∂z = 0.
Therefore h is holomorphic and T , being equal to ∂/∂z−h(∂/∂w), is a holo-
morphic vector field. Moreover, T is by definition tangent to L everywhere
and is obviously nowhere zero. The proof of our claim is complete.

It is not difficult to exhibit examples of Ricci kernel foliations whose leaves
are all complex submanifolds but which are nevertheless not holomorphic.
For instance, take any non-holomorphic complex foliation in an open neigh-
borhood of the origin in C2. since the leaves are of complex codimension
one, it is a Monge-Ampere foliation. So by Yau’s result ([Y]), it is defined by
the Ricci tensor of some Kähler metric. That is, it is a Ricci kernel foliation
of some Kähler metric.

The first major step in the proof of Theorem 1 states that, when M
is complete, and the bisectional curvature is everywhere nonpositive or ev-
erywhere nonnegative, the Ricci kernel foliation L is always a holomorphic
foliation.

In case the leaves of L are one dimensional, this is implied by (the com-
pleteness of the leaves and) a result of Burns (Theorem 3.1 and Cor 3.2 in
[B]), where he studied the more general Monge-Ampere foliations. When
M has nonpositive sectional curvature, this was proved in [Z3] (Theorem 3,
in this case the leaves of L actually vary parallelly in a sense to be defined
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below). The proof there also implies that the the same conclusion holds if
the leaves of L are (n−1) dimensional.

The proof in general of the holomorphicity of the Ricci kernel foliation on
a complete Kähler manifold of nonpositive bisectional curvature is given in
[WZ2], Theorem A. It is important to note explicitly that the proof there is
equally valid when the everywhere nonnegativity of the bisectional curvature
is assumed instead. This proof is intricate, so we will skip the technical
details and give only an outline of the ideas. First we need to set up some
notation that will be used also for the proof of Theorem 2 proper in §3.

We will set things up the same way as in Theorem 3 of [Z3]. Denote
by L⊥ the distribution (of type (1, 0) tangent vectors) in U representing
the orthogonal complement of L. (Recall that U is the open set in which
the Ricci form ρ has maximum rank r.) Also denote by F and F⊥ the
underlying real distribution of L or L⊥. F is of real rank 2r.

Recall that the conullity operator of a totally geodesic foliation F in a
Riemannian manifold is defined by (cf. [A2], [DR])

CT (X) = −(∇X T̃ )⊥

where T and X are tangent vectors in F and F⊥, resp., and T̃ is a local
vector field in F extending T . Here Y ⊥ stands for the F⊥-component of
Y . These operators are well defined tensors, and satisfy the Riccati type
equations

∇TCS = CS ◦ CT − C∇T S − {R(T, ·)S}⊥
for any two vector fields T and S in F . Under the assumption of either
everywhere nonpositive or everywhere nonnegative bisectional curvature, the
curvature term R(T, ·)S vanishes because R(T, ∗, ∗, ∗) = 0. If we choose S
to be parallel in each leaf of F , then the above equation becomes

∇TCS = CS ◦ CT

In particular, along any geodesic γ(t) contained in a leaf F of F , one has

(2) ∇TCT = (CT )2

where T = γ′(t).
Since each F is complete by Ferus’ theorem [F], we know that for any

T ∈ F , CT can not have non-zero real eigenvalues at any point of U . As
pointed out in [DR], this fact is implicit in [A2]. Because of its importance for
our purpose, we supply the simple proof here. So assuming the completeness
of M , let γ : R → F be an infinite geodesic and let T = γ′(t) be as above.
Let {ei} be a unitary basis in the tangent space to γ(0) and let {ei(t)} be its
parallel translate along γ(t). Let the matrix of CT relative to {ei(t)} along
γ(t) be A(t). Then (2) implies that

A′(t) = A(t)2.
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Suppose CT has a nonzero eigenvalue λ at γ(0) corresponding to the unit
eigenvector v. We may assume that e1(0) = v. Then A′(0)e1 = λe1, and
λ is a nonzero real number. Let A1(t) be the first column of A(t), say
A1(t) = t[a1(t) a2(t) · · · an(t)]. Then a1(0) = λ and a2(0) = · · · = an(0) = 0.
If α(t) is the (n− 1)× 1 column matrix t[a2(t) a3(t) · · · an(t)] and A0(t) is
the (n− 1) × n matrix obtained from A(t) by deleting the first row, then
the equation A′(t) = A(t)2 implies that

α′(t) = A0(t)α(t), and α(0) = 0.

We therefore have a first order homogeneous system of ODE with zero initial
data. By the uniqueness of solutions, α(t) ≡ 0 for all t. Thus⎡⎢⎢⎢⎣

a1(t) ∗
0
...

. . .
0

⎤⎥⎥⎥⎦
Making use of the equation A′(t) = A(t)2 again, we obtain a′1(t) = [a1(t)]2,
and this familiar Riccatti equation has an explicit solution a1(t) = λ/(1−λt)
(recall a1(0) = λ). Therfore a1(t) is not C∞ on R, contradicting the fact
that A(t) is so. Hence there is no such eigenvalue λ.

For T ∈ F , extend CT linearly over C to the complexification

F⊥ ⊗ C = L⊥ ⊕ L⊥

Choose a local frame {ei, ei}r
i=1 such that each ei ∈ L⊥. Write CT (ei) =∑

j Aijej +Bijej , then the matrix of CT with respect to the basis {e, e} is

CT =
[
A B
B A

]
, and CJT = JCT =

√−1
[
A −B
B −A

]
where J is the almost complex structure of M . For any real numbers a and
b, write λ = a+

√−1b, we have

CaT+bJT =
[
λA λB
λB λA

]
The above argument says that the matrix CaT+bJT has no non-zero real
eigenvalue for any λ = a+

√−1b at any point of U . We shall refer to this
statement as condition (�) in the following discussion.

We claim that if B = 0, then L is a holomorphic foliation. This is the
reason we are interested in the conullity operators in the present context.
The claim follows easily from the formulation of the holomorphicity of a
foliation in terms of (1) above. For, if B = 0, then for all i and for all vector
field T ∈ F ,

CT (ei) =
∑

j

Aijej and CJT (ei) = −
∑

j

Aijej ,
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so that for any (1, 0) vector field (T −√−1JT ) ∈ L, we have

CT−√−1JT (ei) = 0 for all i.

By the definition of the conullity operator, this means that for all vector
fields Y of type (1, 0),

(∇Y L)⊥ = 0.
Because ∇ preserves type, ∇Y L is a vector field of type (1, 0). Thus

∇Y L ⊆ L.
It follows from (1) that L is a holomorphic foliation.

(As a side remark, when r = 1, it is not hard to see that condition
(�) already implies that A = B = 0, so L is holomorphic in this case
(and its leaves vary parallelly). In particular, if Mn is a complete complex
submanifold of CN with Ricci rank (which equals the Gauss rank) 1, then
it must be a cylinder, this is known as the Abe’s cylinder theorem ([A1]),
which is the complex version of the classical Hartman-Nirenberg cylinder
theorem ([HN])).

The proof of the vanishing of B proceeds by studying the ODEs that
the operators A and B must satisfy along a geodesic γ(t) contained in a
leaf of L. Under the assumption that B �= 0 somewhere, these ODEs can be
partially solved to the extent that a contradiction to the above condition (�)
is exhibited. This means that B must be identically zero and the foliation
L is then holomorphic, by a previous remark. This completes the proof of
the first major step in the proof of Theorem 1.

The seond major step in the proof of Theorem 1 is to use the holomor-
phicity of L to derive a splitting result in the compact case. Again, the
bisectional curvature is allowed to be either everywhere nonpositive or ev-
erywhere nonnegative. To state this result, we introduce some terminology.

We say that the leaves of L vary parallelly if, within each connected
component Ua of U (the open set where the Ricci form has maximum rank
r), parallel translation from one point of M to another maps L onto itself.
We would at times express this fact more informally by saying that the
leaves of L in Ua are parallel to each other. ¿From the definition of the
conullity operator, this is the same as saying that, within Ua, all the conullity
operators of L vanish. In terms of the holonomy group of Ua, this is also
equivalent to the fact that each fiber Lp is an invariant subspace of the
(restricted) holonomy group of Ua. By the de Rham decomposition theorem,
each point of Ua would have a neighborhood which splits holomorphically
and isometrically as L × Y r where L is flat and Y has dimension r if the
leaves of L vary parallelly (cf. the proof of the de Rham decomposition
theorem for Kähler manifolds on p. 172 of [KN2]).

Our principal observation is that if Mn as in Theorem 1 also has bounded
curvature, then the leaves of L vary parallelly. However, we will prove
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something more general as it involves no extra effort. Introduce the following
terminology: A function f on a complete Riemannian manifold M is said
to have sub-k growth, if

lim
i→∞

|f(xi)|
dk(xi, x0)

= 0

for any sequence {xi} in M with the distance d(xi, x0) going to infinity.
Here x0 is a fixed point. If k = 2, then it is more common to say that f
has sub-quadratic growth. The theorem we want to prove can now be stated.
(In [WZ2], this is stated and proved for the case of nonpositive bisectional
curvature as Theorem B.)

If Mn is a complete Kähler manifold with everywhere nonnnegative or ev-
erywhere nonpositive bisectional curvature, with Ricci rank r < n, and with
a scalar curvature s of sub-quadratic growth, then the leaves of the Ricci
kernel foliation L vary parallelly.

The idea of the proof of this theorem is that if l ≥ 0 be the smallest integer
such that C l+1

T = 0 for all conullity operator CT , then we show that the scalar
curvature s cannot have sub-(2l) growth. In particular, if l ≥ 1, then s
cannot have sub-quadratic growth, contradicting the hypothesis. Therefore
l = 0 and all conullity operators vanish. The leaves of L are thus parallel to
each other within each component of U .

Technically, the proof uses the second Bianchi identity to obtain an equa-
tion expressing the covariant derivative of the curvature tensor along a com-
plex line (to be denoted generically by C) lying in L. If z denotes the canon-
ical variable in C, then from R(∂/∂z, ∗, ∗, ∗) = 0, (which is guaranteed by
either the everywhere nonpositivity or nonnegativity of the bisectional cur-
vature), we obtained a system of ODE in ρij (components of the Ricci form
ρ) involving the conullity operator C∂/∂z. This system of ODE turns out to
be explicitly solvable and the solution then exhibits s ≡ trace ρ as a function
that grows at least like |z|2l. But z dominates the distance function on M
up to a positive constant, so we get the desired contradiction.

So far we have not invoked the assumption of real analyticity on the
metric. Assume now the metric is real analytic in the preceding theorem.
Then within each component Ua of U , the holonomy group Ha of Ua leaves
each fiber of L in Ua invariant. Then the local holonomy group of M in
Ua in the sense of Nijenhuis (cf. [KN1], p. 94) is reducible, so that —
because the metric is real analytic — the holonomy group of M coincides
with the local holonomy group in each Ua and therefore also leaves each
fiber of L invariant (cf. Theorem 10.8 on p. 101 of [KN1]; this is a theorem
of Nijenhuis). Therefore by the de Rham decomposition theorem for Kähler
manifolds ([KN2], Theorem 8.1 on p. 172), we have proved:
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Let Mn be a complete Kähler manifold with everywhere nonpositive (resp.,
everywhere nonnegative) bisectional curvature so that its scalar curvature is
of sub-quadratic growth. Furthermore, let the Ricci rank of M be r < n. If
the Kähler metric is real analytic, then the universal covering manifold M̃ of
M is holomorphically isometric to Cn−r ×N r, where N r has quasi-negative
(resp., quasi-positive) Ricci curvature.

Note in particular that if M is compact, its scalar curvature is bounded
and therefore the scalar curvature of M̃ must have sub-quadratic growth.

Finally we come to the proof of Theorem 1 proper. So let M be a com-
pact Kähler manifold with nonpositive bisectional curvature (note that at
this point we no longer allow the bisectional curvature to be nonnegative)
and the metric is real anlaytic. By the preceding theorem, the universal
covering manifold M splits holomorphically and isometrically as Cn−r ×N r,
where N is an r-dimensional simply-connected Kähler manifold of quasi-
negative Ricci curvature. Let π : M → M be the covering map, then the
critical argument here is to show that π(N) is actually compact in M . As
in the case of the Eberlein theory for Euclidean de Rham factors of compact
Riemannian manifolds with nonpositive sectional curvature (e.g., [E1]-[E2]),
the key is to establish the fact that the projection onto the N factor of the
deck transformation group Γ ofM is a discrete subgroup of the group of holo-
morphic isometries of N . In Eberlein’s case, this was achieved by utilizing
the properties of the action of Γ on the infinite space M(∞), especially the
so-called duality condition. In our case, since the assumption was not made
on the sectional curvature, that argument cannot be applied or modified to
be applicable here. We use instead the partial stability of the tangent bun-
dle and the maximum principle to prove the discreteness of this projection.
We refer the reader to [WZ2], Theorem E for the details.

3. Proof of Theorem 2

We use the terminology and notation of §2. From now on, we assume
that Mn is a simply-connected complete Kählar manifold with Ricci rank
r = 2 < n, and with nonnegative bisectional curvature.

In the open subset U ⊆ M where the Ricci form ρ has maximum rank
equal to 2, we have the holomorphic, totally geodesic foliation L whose leaves
are complete and flat of codimension 2. We now recall that the conullity
operators CT are nilpotent matrices and that so is any linear combination
of them ([A2], see also the discussion in [WZ2]). In our case, these conullity
operators are 2×2 nilpotent matrices, which are unique up to scalar multiples
at each point (since otherwise some combination would not be nilpotent).
In particular, the subspace {CT (L⊥) : T ∈ L} in the tangent space at each
point is one-dimensional.
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Denote by V ⊆ U the open subset where CT �= 0 for some T . Note that
V = φ would mean that U is (locally) isometrically and holomorphically a
product, thus when the metric is real analytic, M itself would be a product
Cn−2×N2. (See the discussion of the proof of the second major step in §2
above.) So in the following we consider the case when V �= φ and deduce a
contradiction, which would then complete the proof of Theorem 2.

Denote by L̃ the distribution in V spanned by L and the image distribu-
tion {CT (L⊥) : T ∈ L} of all the (nonzero) CT ’s. We claim the following

Proposition 1. Let Mn be a complete, simply-connected Kähler manifold
with Ricci rank r = 2 < n and with either nonpositive or nonnegative bisec-
tional curvature. Denote U , L, V , L̃ as above. Then in V , L̃ is a totally
geodesic, holomorphic foliation with flat leaves.

Proof. Fix any p ∈ V , take a local unitary frame {e1, e2, . . . , en} such that
eα ∈ L for each 3 ≤ α ≤ n, the eα’s are parallel along L, and e1 is in the
image space of CT for some T . Note that e1 is then in the kernel and the
image space for any nonzero CS . Also, e1 and e2 are unique up to scalar
multiples (of norm 1).

Denote by {ϕ1, . . . , ϕn} the dual coframe of (1, 0) forms. Denote by θ,
Θ the matrices of connection and curvature under the frame e. For each
3 ≤ α ≤ n, the conullity operator Cα = Ceα satisfies

Cα(e2) = −λαe1, Cα(e1) = 0

by our choice of the frame. Thus we have

(3) θα2 = 0, θα1 = λαϕ2

for any 3 ≤ α ≤ n. Note at least one λα will be nonzero.
We have the structure equations dθab =

∑n
c=1 θac ∧ θcb + Θab for all

a, b = 1, · · · , n, where Θ denotes the curvature form, i.e.,

Θab ≡
∑
c,d

Rabcd ϕc ∧ ϕd.

where
Rabcd ≡ R(ea, eb, ec, ed).

Because R(eα, ∗, ∗, ∗) = 0, we have

(4) Θα∗ = 0 for all α = 3, · · · , n.

It follows that the structure equation

Θα2 = dθα2 −
n∑

b=1

θαb ∧ θb2

simplifies to λαϕ2 ∧ θ12 = 0. Thus

(5) θ12 = μϕ2
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where μ is the complex-valued function θ12(e2) = 〈∇e2(e1), e2〉. This says
that L̃ is a holomorphic, totally geodesic foliation, for the following reason.
Recall that L̃ is the linear span of L and e1 at each point of V . Because
∇Z e1 =

∑n
a=1 θ1a(Z)ea for any vector Z, (3) and (5) imply that

∇L̃L̃ ⊆ L̃ and ∇Y L̃ ⊆ L̃
for any vector Y of type (1, 0). Therefore L̃ is totally geodesic and holomor-
phic (for the latter, see (1) in §2).

To see that the leaves of L̃ are flat, we only need to prove that L̃ has zero
holomorphic (sectional) curvature. Because of (4), it suffices to prove that
R1111 = 0. Let us use the second Bianchi identity

dΘαb =
n∑

c=1

(θαc ∧ Θcb − Θαc ∧ θcb).

Then for any 3 ≤ α ≤ n and any 1 ≤ b ≤ n, this equation simplifies
drastically to the following on account of (3) and (4):

ϕ2 ∧ Θ1b = 0.

Thus R1a1b = 0 for any a, b. In particular R1111 = 0. This proves our
claim. �

More generally, let us denote by I =
∑

Im(CT ) and K = ∩ ker(CT ) the
total image space and the common kernel of all the conullity operators,
resp., and analogously, let V ⊆ U be the open subset where the dimension
of I is maximum and the dimension of K is minimum. Then I and K are
distributions in V . By an argument similar to the above, one can show that

If I ⊆ K, then L̃ = L⊕I is a holomorphic, totally geodesic foliation with
flat leaves, and L ⊕K is also a totally geodesic foliation.

This was observed in [WZ1] in the case when M is a complex submanifold
of the complex Euclidean space, where L ⊕ K is called the ruling Gauss
foliation and L̃ is called the image distribution. Note the the condition
I ⊆ K is equivalent to CTCS = 0, namely, the composition of any two
conullity operators is zero everywhere. When the (maximum) dimension of
I is 1, this is the case since all CT are nilpotent. This special case also
includes the Ricci rank 2 case.

Now let us return to our discussion in the r = 2 case. A local unitary
tangent frame e = {e1, e2, . . . , en} in an open subset W ⊆ V is called an
adapted frame, if e1, e2 ∈ L⊥ and e1 ∈ L̃. e is called a special adapted frame,
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if it is adapted and

(6) ∇eiej = ∇eiej = 0 for any i, j ∈ {1, 3, . . . , n}.
Note that given any p ∈ V , there always exists a specially adapted frame in
a neighborhood of p. We can take a piece of holomorphic curve S through
p that is transversal to L̃, and an adapted frame e along S , and then in
a small neighborhood W of p, we extend e along the leaves of L̃ so that
{e1, e3, . . . , en} are parallel in each leaf in W .

Notice that for two special adapted frames e and e′, e′1 = fe1 for some
function f with |f | = 1 which is locally constant in each leaf of L̃.

Under an adapted frame e, we denote by ϕ, θ, Θ the dual coframe, matrix
of connection or curvature as in the proof of Proposition 1. We have, from
(3) and (5), that for each 3 ≤ α ≤ n,

θα2 = 0, θα1 = λαϕ2, θ12 = μϕ2.

Also write

B = R1122, and λ =
n∑

α=3

|λα|2.

We claim that B and λ are well defined, positive functions on V (μ on the
other hand is only a locally defined function which depends on the choice of
e1.) The fact that B is well defined is because it is the bisectional curvature
in the direction of e1 and e2. To see that λ is well-defined, recall that if ϕ
is a linear map between inner product spaces S and T , then its L2 norm is
defined to be ‖ ϕ ‖≡ √∑

i |ϕ(si)|2, where {s1, . . . , sn} is any orthonormal
basis of S. Now we may regard, at each point p of V , the conullity operator
CT as a linear map Λ between inner product spaces Lp −→ End(L⊥

p ,L⊥
p ),

where End(L⊥
p ,L⊥

p ) denotes the space of endomorphism of L⊥
p equipped with

the obvious inner product, so that Λ(T ) = CT . Then λ is exactly the L2

norm of Λ. So λ is also well-defined.
To see that B and λ are positive, first observe that in view of (4) and

R1111 = 0, the Ricci curvature would be 0 if B = 0. This would contradict
the fact that we are inside U (recall V ⊆ U). The fact that λ is positive is
because V is the open set where at least one conullity operator is nonzero.
The proof of the claim is complete.

Fixing a special adapted frame e in W , we claim that relative to e:

(7) e1B = −2μB and eαB = 0 for 3 ≤ α ≤ n.

We have the structure equations

dϕa = −
n∑

b=1

θba ∧ ϕb

for a = 1, . . . , n. Because θα2 = 0 for 3 ≤ α ≤ n (by (3)),

dϕ2 = −θ12 ∧ ϕ1 − θ22 ∧ ϕ2.
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Using (5), we obtain

dϕ2 = μϕ1 ∧ ϕ2 − θ22 ∧ ϕ2

so that
d(ϕ2 ∧ ϕ2 = (μϕ1 + μϕ1) ∧ ϕ2 ∧ ϕ2.

By the second Bianchi identity,

dΘ11 =
n∑

a=1

(θ1a ∧ Θa1 − Θ1a ∧ θa1)

so that

(8) dΘ11 = θ12 ∧ Θ21 − Θ12 ∧ θ21,

where we have made use of (4). However, we also have

Θ11 = R1122 ϕ2 ∧ ϕ2 = B ϕ2 ∧ ϕ2

because we have seen that R1a1b = 0 (see end of proof of Proposition 1),
and that R11αb = Rα11b = 0 for 3 ≤ α ≤ n (by (4)). Therefore,

dΘ11 = dB ∧ ϕ2 ∧ ϕ2 +Bd(ϕ2 ∧ ϕ2)
= dB ∧ ϕ2 ∧ ϕ2 +B(μϕ1 + μϕ1) ∧ ϕ2 ∧ ϕ2

= (dB +B[μϕ1 + μϕ1]) ∧ ϕ2 ∧ ϕ2

Moreover,
Θ21 = R2112ϕ1 ∧ ϕ2 +R2122ϕ2 ∧ ϕ2,

because R1a1b = 0 for all a, b, Rαabc = 0 for all a, b, c, and finally Rabcd =
Rcdab = Rdcba for all a, b, c, d. So

Θ21 = Bϕ1 ∧ ϕ2 +R2122ϕ2 ∧ ϕ2.

Substituting these expressions of dΘ11 and Θ21 into (8), while making use
of (3), (5), and the fact that θab = −θba and Θab = −Θba, we obtain:

dB ∧ ϕ2 ∧ ϕ2 = −2B(μϕ1 + μϕ1) ∧ ϕ2 ∧ ϕ2.

Evaluating both sides on (eα, e2, e2) and (e1, e2, e2) in succession yields (6).

Still referring to the special adapted frame e, we next claim:

(9) e1(|λα|2) = −μ |λα|2 and eβ(|λα|2) = 0 for 3 ≤ α, β ≤ n.

Indeed, we have the structure equation

dθα1 =
n∑

b=1

θαb ∧ θb1 + Θα1

=
n∑

b=1

θαb ∧ θb1 by (4))

= λαϕ2 ∧ θ11 +
n∑

γ=3

λγθαγ ∧ ϕ2 (by (3))
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We also get by differentiating θα1 = λαϕ2 (see (3) again) that dθα1 = dλα ∧
ϕ2 + λαdϕ2. Replace the last dϕ2 by making use of the equation dϕ2 =
μϕ1 ∧ ϕ2 − θ22 ∧ ϕ2 obtained earlier, we arrive at a second expression for
dθα1:

dθα1 = dλα ∧ ϕ2 + λα(μϕ1 ∧ ϕ2 − θ22 ∧ ϕ2).
Equating these two expressions of dθα1 yields:(

dλα + λαμϕ1 − λαθ22 + λαθ11 −
∑

γ

λγθαγ

)
∧ ϕ2 = 0.

Therefore, for some function f ,

(10) λα + λαμϕ1 − λαθ22 + λαθ11 −
∑

γ

λγθαγ = fϕ2.

Evaluating both sides of (10) on eβ for 3 ≤ β ≤ n, we get

eβ(λα) − θ22(eβ) + λαθ11(eβ) −
∑

γ

λγθαγ(eβ) = 0.

But

θ11(eβ) = 〈∇eβ
e1, e1〉 = 0 and θαγ(eβ) = 〈∇eβ

eα, eγ〉 = 0

on account of (6), so eβ(λα) = λαθ22(eβ). Hence,

eβ(λα)λα = θ22(eβ)|λα|2.
Similarly, evaluating (10) on eβ gives eβ(λα) = λαθ22(eβ), so that (noting
θ22 = −θ22),

eβ(λα)λα = −θ22(eβ)|λα|2.
It follows that eβ(|λα|2) = 0, thereby proving the second part of (9). If
we now evaluate both sides of (10) on e1, then the same reasoning leads to
e1(|λα|2) = −|λα|2μ. (9) is completely proved.

Finally, we claim that relative to e,

(11) e1μ = −μ2, and e1μ = −B
This is because

dθ12 =
n∑

a=1

θ1a ∧ θa2 + Θ12.

But

Θ12 =
n∑

a,b=1

R12abϕa ∧ ϕb = Bϕ2 ∧ ϕ1 +R1222ϕ2 ∧ ϕ2

for the usual reasons, so

dθ12 = θ11 ∧ θ12 + θ12 ∧ θ22 +
n∑

α=3

θ1α ∧ θα2 + Θ12.
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Because of (5) and dϕ2 = μϕ1 ∧ϕ2 − θ22 ∧ϕ2, the left side equals dμ∧ϕ2 +
μ2ϕ1∧ϕ2−μθ22∧ϕ2. Hence we obtain (dμ+μ2ϕ1−μθ11+Bϕ1+R1222ϕ2)∧
ϕ2 = 0, which means that for some function g,

dμ+ μ2ϕ1 − μθ11 +Bϕ1 +R1222ϕ2 = gϕ2.

Evaluating both sides of this equation on e1 and e1 in succession, we obtain
(11).

Note that (11) (unlike (7) and (9)) is valid only relative to the chosen
special adapted frame e.

We now put (7) and (9) to use in the following way. From (9), we get

e1λ = −μλ and eαλ = 0 for 3 ≤ α ≤ n,

where we recall that λ =
∑n

α=3 |λ|2. From (7) we also get

e1B = −2μB and eαB = 0 for 3 ≤ α ≤ n.

Together, we see that in each leaf of L̃,

e1

(
λ2

B

)
= eα

(
λ2

B

)
= 0 for 3 ≤ α ≤ n.

It follows that in each leaf of L̃, λ2/B is a positive constant c.

Now we know that L̃ is flat, and L is a holomorphic and totally geodesic
foliation inside L̃. The orthogonal distribution of L in L̃ — which would
be the linear span of e1 at each point — is therefore also totally geodesic
and holomorphic. Fix a point p ∈ V and let Y be the leaf of the this
orthogonal distribution in L̃ passing through p. Let D be the maximal star-
shaped region around the origin in the tangent space to Y at p, TpY = C,
(which is the linear span of e1 in the tangent space of M at p,) so that the
exponential map expp : D → Y is defined. We claim that D is all of C. Once
this is proved, we shall deduce that, one way or another, there would be a
contradiction. Therefore V must be empty and the the proof of Theorem 2
is concluded.

Suppose then γ : [0, a] → M is a unit speed geodesic such that γ(0) = p
and γ([0, a)) ⊂ Y . We want to show that at the end point q = γ(a), the
rank of the Ricci tensor is still 2 (thus q ∈ U), and some conullity operator
is non-zero at q (thus q ∈ V ), therefore q ∈ Y . This would show that, since
M is complete, the whole semi-infinite geodesic γ([0,∞)) lies in Y , thereby
proving that γ is defined on all of [0,∞) and D is C.

Let z be the standard complex Euclidean coordinate in D. We may
assume that we have chosen a special adapted frame e in some neighborhood
of expp(x) and (expp)∗x( ∂

∂z ) = e1. We can lift the functions λ, B and μ to D,
where μ is the function defined by (5) relative to e, i.e., μ = 〈∇e2e1, e2〉. Now
we are in D ⊆ C, with positive functions B and λ, and complex function
μ. The functions B and λ are defined in D, but μ is defined only where



KÄHLER MANIFOLDS 19

the special adapted frame e is defined. We know that λ2 = cB, c > 0
is a constant. Also, denoting the derivative with respect to z and z by a
subscript as usual, we have from (7) and (11) that

(12) Bz = −2μB, μz = −μ2, and μz = −B.
By the third equation of (12), we know that the open subset D′ = {μ �=
0} ⊆ D is dense in D. By the second equation of (12), we have ( 1

μ −z)z = 0,
so that

(13)
1
μ

= z + f

where f(z) is a holomorphic function in D′. Note that z + f is never zero
in D′ because 1

μ is never zero there. Let us write

Q =
1√
B
> 0.

By the first equation of (12), we have μ = (logQ)z, so that by (13),
(logQ)z = 1/(z + f). So for any given point x ∈ D′, there exists a small
neighborhood Wx in which

∂

∂z
(logQ− log(z + f)) = 0.

Hence
logQ = log(z + f) + g

where g is a holomorphic function in Wx and the log on the right hand side
is a branch of the logarithm function. From this we get

Q = z α− β

in Wx, where α, β are holomorphic functions in Wx and α is nowhere zero.
We shall subsequently exploit the fact that α is nowhere zero.

Now Q is a real-valued function. The following lemma shows that α and
β must be linear polynomials.

Lemma. Suppose Q is a real-valued function defined in a neighborhood W
of a point z0 ∈ C. Suppose further that Q = z α− β for some holomorphic
functions α and β defined in W . Then α and β are linear polynomials and
Q is a real quadratic polynomial.

Proof. Let Q0(z) ≡ Q(z + z0). Then Q0 is defined in a neighborhood
W0 ≡W − z0 of 0 so that

Q0(z) = z α0(z) − β0(z),

where α0(z) = α(z+z0) and β0(z) = −z0α(z+z0)+β(z+z0), an both α0 and
β0 are holomorphic functions defined in W0. Q0(z) is real-valued. Suppose
we can prove that α0 and β0 are linear polynomials, then obviously so are
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α and β. Therefore it suffices to prove the lemma for the case z0 = 0 ∈ C
and W is a neighborhood of 0. Assume henceforth that such is the case.

We may write

α(z) = a0 + a1z + z2f(z), β(z) = b0 + b1z + z2g(z),

where a0, a1, b0, b1 are complex constants and f , g are holomorphic functions
in W . Then

Q(z) = (−b0) + (a0z − b1z) + (a1|z|2 + |z|2 zf(z) − z2g(z)).

We see that −b0 and a0z − b1z are the zeroth and first order terms of the
power series expansion of the real analytic function Q(z) around 0. Each of
−b0 and a0z − b1z is therefore a real-valued polynomial for all z. It follows
that b0 is a real number. Moreover, letting z = 1 and z =

√−1 in a0z− b1z
shows that both a0 − b1 and (a0 + b1)

√−1 are real. This is possible iff
a0 = −b1. Thus

Q(z) = b+ 2
(ξz) + (a1|z|2 + |z|2 zf(z) − z2g(z)),

where 
 denotes the real part of a complex number, b ≡ −b0 is real, and
ξ ≡ a0 ∈ C.

Now consider the real analytic function F (z) ≡ a1|z|2+|z|2 zf(z)−z2g(z).
We will show that in fact a1 is real and f = g = 0. Once this is proved, we
would be able to write (after a slight change of notation for future conve-
nience):

α(z) = ξ + az (a is real)
β(z) = −b+ −ξz (b is real)

so that
Q(z) = b+ 2
(ξz) + a|z|2 (a, b real).

The proof of the lemma would be complete.
To show f = g = 0, let

f(z) =
∑
n

Anz
n and g(z) =

∑
n

Bnz
n

be the power series expansions of f and g around 0. Then the real anlaytic
function F (z) has the following power series expansion around 0:

F (z) = a1|z|2 +
∑

An|z|2zn+1 −
∑

Bnz
n+2

= a1|z|2 +B0z
2 +

∞∑
n=0

(An|z|2 −Bn+1z
2)zn+1

Because the second order term a1|z|2 + B0z
2 must be real for all z, letting

z = 1 we get a1 − B0 is real, and letting z =
√−1 we get a1 − B0 is real.

This is possible iff a1 and B0 are both real. Now let z = exp(−√−1(π/4)),
we get a1 −B0

√−1 is real. Thus B0 = 0.
Next we show that An = Bn+1 = 0 for all n ≥ 0. We know that

(An|z|2 −Bn+1z
2)zn+1, being the term of order (n+ 3) in the power series
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expansion of the real analytic function F (z), must be real for all z. Letting
z = 1 and z = −√−1 in succession in this expression yields that An−Bn+1

and (An + Bn+1)(
√−1)n+1 is real. Letting z = exp(−√−1 π/(2n + 2)),

we get that
√−1(An − Bn+1 exp(

√−1 π/(n + 1)) is also real. It is then
elementary to show that, under the circumstance, (An|z|2 − Bn+1z

2)zn+1

can be real for all z iff An = Bn+1 = 0 for all n ≥ 0. Thus f = g = 0. �

Now we return to the function Q = 1/
√
B = z α− β above. The lemma

implies that for some constants k, a, b and ξ, we have α(z) = k + az and
β(z) = −b− ξz, so that

Q(z) = b+ (kz + ξz) + a|z|2.
Because Q is real, then arguing as in the proof of the Lemma leads to the
fact that, necessarily, k = ξ and that both b and a must be real. Thus we
have

(14) Q(z) = b+ 2
(ξz) + a|z|2 (a, b real)

This expression for Q is valid in Wx, but the constants a, b and ξ being
clearly independent of x, this expression exhibits Q globally as a quadratic
function on all of D.

We are now in a position to prove that D = C. Recall that we have a
unit geodesic γ : [0, a] → M , where γ0 ≡ γ([0, a)) ⊆ Y . We can choose our
frame e so that e2 is parallel along γ0, thus e2 (and e1) can be defined at
q = γ(a). Because when approaching any finite z, the quadratic function Q
of (14) stays finite, so B = 1/Q2 is not zero at q, meaning that the Ricci
tensor has rank at least 2 at q, so q ∈ U . On the other hand, by the fact
that λ2 = cB in D with c > 0 a constant, we know that λ(q) > 0 as well,
that is, q ∈ V . Thus γ0 can be extended beyond [0, a] and therefore γ is
defined on [0,∞). We have proved that D = C.

We can now deduce the desired contradiction to close out the proof of
Theorem 2. We have previously observed that the holomorphic function α
in Q(z) = z α(z) − β(z) is zero-free. Since D = C, Q is now a quadratic
polynomial in C, and so are α and β. But α, being a linear function, cannot
be zero-free on C unless it is a constant. Thus a = 0 and α(z) = ξ in the
notation of (14). But then (14) shows that

Q(z) = b+ 2
(ξz),

so that B = 1/Q2 = 1/(b + 2
(ξz))2. Since B is a curvature function and
must be defined in all of C (i.e., all of Y ), we must have ξ = 0. But then
α = 0, contradicting the fact that α is zero-free.

An alternate way to reach a contradiction is to observe that μ = Qz/Q,
so that by (12),

(15) −B = μz =
Qzz

Q
− QzQz

Q2
=
ab− |ξ|2
Q2
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But by (14), b+ 2
(ξz) + a|z|2 is a positive quadratic function on all of C.
Hence ab− |ξ|2 > 0, which implies that −B > 0, or B is negative. Contra-
diction. �

Remark. The last argument points to the philosophical underpinning of why
it is impossible to have V �= φ when D = C. For, another way to express
(15) is Δf = e2f , where f = logQ on all of C. This implies that the Hermit-
ian metric e2fdzdz on C has Gaussian curvature −1, which is impossible.
(This is classical, and one way to see it quickly is to realize that C is not
Kobayashi hyperbolic.)

Incidentally, the proof we gave above concerning L̃ being totally geodesic
and holomorphic is valid verbatim for the case of nonpositive bisectional
curvature. We can elaborate on it slightly to arrive at

Proposition 2. Let Mn be a complete Kähler manifold with nonpositive
bisectional curvature and with Ricci rank r = 2. If the metric is real analytic,
then either the universal covering space of Mn is holomorphically isometric
to the product Cn−2×N2, or it is foliated by a holomorphic, totally geodesic
foliation with complete, flat, codimension 1 leaves.

For the proof, notice that, in the real analytic case, the open subset
V , if not empty, would be dense in M . So for any q ∈ M \ V , the limiting
position of the leaves of L̃ would give flat, complete, totally geodesic complex
hypersurface of M through q. Such a limit must be unique for dimensional
considerations. Thus L̃ can be extended to Mn. In this case, the universal
covering of M would be the total space of a holomorphic vector bundle over
a Riemann surface (see [WZ1] for the extrinsic case). It would be highly
desirable to have a precise description of the metric in this case, and we
intend to pursue this on another occasion.
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