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Abstract
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and further to establish the local existence of phase transition sclutions.
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1. Introduction and Main Results

Phase transitions are important phenomena in physics, mechanics and fluid dynarnics,
such as in a van der Waals fluid and elastic-plastic materials. To study these phenom-
ena, one should investigate boundary value prablemns for partial differential equations which
change types. There has been rich literature devoted to the existence and stability of phase
transitions in one space variable, of. [1, 5, 6, 8, 9, 10, 14| and references therein. Tn partic-
ular, in [14], Slemrod proved that phase transitions are excluded in weak solutians of the
ahe dimensional p-system only under the viscasity admissibility eriterion, which is hawever
sufficient to determine the classical shodk wave solutions in the p-systern when the presure
law » = p{p) is strictly increasing. Furthermare, he had studied the ane-dimensional phase
boundaries in a van der Waals fluid under the viscosity-capillarity eriterion.

However, few rigarous result is known far multidimensional phase transitions except
for Benzani-Gavage's recent warks. In [2], she had obtained the weakly linear stability of
multidimensional subsonic phase transitions in a van der Waals fuid under the capillarity
admissibility eriterian, which is equivalent ta a generalized equal area rule, and she observed
there is a surface wave violating the uniformity of the stability. Tn her secand paper [3], she
further tried ta study the influence of viscosity an the stability of phase transitions. By the
made analysis and some technique of complex analysis, she obtained a sufficient candition
an the unperturbed planar phase transition to guarantee that the Lopatinski determinant
assaciated to a linearized initial-boundary value problem derived from the planar phase
transition is nonzero under the viscaosity-capillarity eriterian and some constraints on the
states of phase transitions.



The purpose of this paper is to study the stability and existence of the subsanie phase
transition under the viscasity-capillarity criterion {[3, 14]). By directly computing the asso-
ciated Lapatinski determinant, we shall prove that the subsanic viscosity-capillarity admis-
sible phase transition is uniformly stable in a van der Waals fluid without any restriction
of Benzoni-Gavage an the states of the phase transition. These uniform stability estimates
enable us to madify the techniques of Majda [12] to establish the local existence of multi-
dimensional subsanic phase transitions under viscasity-capillarity criterion.

The precise statement of prablems and main results will be given in next subsections.
Detail praafs of the stability and existence of multidimensional phase transitions will be
presented in §2 and §3 respectively.

1.1 Formulation of Problems

For simplicity of natations, we shall study problems only in two space variables, and it
is easy to see that whole discussion is valid alsa in the case of higher dimensions.
Cansider the following Euler equations:

pe+ (pWe +{pw), =0
{pu)e + (pu® + p{p))x + {puwv), =0 {1.1)
{v)e + {puv)e + {p2* +p{p))y =0

where p and {u,v) represent the density and velacity of the Auid respectively, and the
pressure law p = p{p) is given by an equation of states.
Equations {1.1) can be rewritten as the fallawing svstem farm:

&F(N+ &R+ 8,R{U)=0 {1.2)
where I = (p,u,2)7 and
p pu 2
R{f)=| s |, A= a*+spn |, FR(l)= iy
o U »* +p{p)

Denote by 7 = p~! the specific volume. The pressure law P{7) := p{1) in a van der
Waals fluid reads RT
a

where T denates the temperature, which is assumed to be a positive constant, B is the
perfect gas constant, and a, b are positive canstants. When the temperature

4R 2THR
is fixed, there are 1, < 7* such that

Pty <0, ifb<T T, 0 T >7* (14)
P{r)y=>0, ifr, <77 ’ ’

Thus, the state of 7 £ {b,7,) represents the liquid phase while that of 7 € {7*, +c0) is
the vapar phase. Generally, these twa phases are likely to coexist and one may observe the
propagation of phase boundaries.



As usual, the Maxwell equilibrium {73,7%} of a phase transition is defined by the equal
area rule:

P{zs) = P(+%), f " (Pirs) — Piz))dr =0 (15)

and 7 <7, T > T,
Tt is obvious that there is a unique point 7 > 7° at which the tangent to the graph of
p = P{r) passes through 7y {see the Figure 1 below). Denote by

Ji = —P'{n) (16)
which equals to {P{7s) — P{n))/{n1 —7s)-

P P=P(1)
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Figure 1
Suppose that
_ [ Uetry), x>ty
Uft,x,y) = {U_ {t,z,y), = <ty (17)

is a local phase transition solution to the system {1.2), which means that ¢ € &2, Uy €
CYa > @t )} and UT_ € C'a < @{t,4)} belong to different phases, satisfy {1.2) in
{z > @{t,)} and {r < @(t,¥)} respectively, and the follawing Rankine-Huganiat jumping
condition:

| Fo{U)] — [Fi{lN)] + ¢4 [F2{U)] =0 on z = g{t,y) (18)

halds. Here and after we always use [.] to denate the jump of related funetions acrass the
phase boundary {a = {t,)}.

Far simplicity, we assume that ¢{0,0) = 8,¢{0,0) = 0, and outside a compact neighbaor-
haod of the arigin, 74 (#,x,3) are constant states and {¢,y) = ot for a constant .



Furthermare, we assume that the phase transition {1.7) is subsonic, which means that
at each paint (¢, x,y) € T = {x = (¢, )}, if we denate by

fy = {PF{Pi))%
the sound speeds, and

1 [uy —gvs —
M, =—|=r= =
el {1+t
the Mach numbers evaluated at Uy (£, 2,2) = {py,u4,24)7, then we have
My < 1. {19

In particular, this shaws that phase transitions we consider here are not the classical Lax
shocks, they violate the Lax entrapy inequalities. Several alternative criteria have been
develaped in arder to determine the admissible phase fronts {cf. [1, 10, 14]). Here we are
gaing to use the viscasity-capillarity criterion proposed by Slemrad in [14), which is alsa the
ane studied by Benzoni-Gavage in [3].

Ta intraduce the viscasity-capillarity criterion precisely, let us denate by E{p) the specific
free energy such that d,E{p) = %%l, and &{p) = pE{p) the free energy per unit volume.
From the first component of the Rankine-Hugoniot condition {1.8), we have

prluy — s —@)=p {u_ —gr_ —@) onx=gty.
We shall denate by
J=pafus —@ua —@) /1 T2 {1.10)
the mass transfer flux across the phase baundary.
As in [3, 14], we say that the phase transition {1.7) is viscasity-capillarity admissible if

and only if far any fixed Py = {fa, &{#0, 20),20) € L, it has a viscasity-capillarity profile,
which is a planar wave salution af the farm

ot z,y) = p{ =)
{urv){t'rm:y) = {ur v){ﬂty-_ﬁ) (1-“-)
limfﬂi:m(pr u:v){'ﬂ = (p:l:ruzl::”:I:NPo

with 1, = @,{1 + ¢2)~'/?| 5, and & = @1 + ¢2) ~'/?|p,, to the following equations:

o+ {pwe +{m), =0
{pw)e + (pu? +p{p))x + (puv)y = vedu — 28.(A{p™ ")) . (1.12)
{m)e + {(puv)e + (p0* + p{A))y = vetsv — 28,{A{p™"))

As in the discussion of Benzoni-Gavage in [3], if we denote by 7(£;4,7) the viscosity-
capillarity profile satisfring

{T” = yjr! +m — P{r) — j*r

. . L 1.13
g oo™ = T lempteg)s  WMeagoe T = o= lomy(ey (113)

with 7/, 7" being the first and the second arder derivatives of T with respect to §, T =
olpy) + }% =plp )+ % valued at x = @{f,y) {This identity is a simple consequence
of {1.8).}, then for any {f,z,y) € ¥ = {& = ¢{t, y)}, the viscosity-capillarity admissible
Upff,x, 1) = {pr,us,v1)7 satisties the following identity

)+ B oy [T i oa-etny). 019



The existence of the viscosity-capillarity profile 7{£; 4,+) to {1.13) is obtained by Benzoni-
Gavage in [3] when 0 < ~ £ ~y for some small v > 0 and 0 < j2 < 57 with j; being given
in {1.6).

Mareaver, Benzoni-Gavage showed in (3] that Uy .= ;) depend smaathly anly on {j,~),
and as a consequence,

aljyy) = j jm P2 44 (1.15)

is a smooth function of {5, ) in {0 < 52 < j32,0 < v < 7).
In arder to study the linearized stability of the phase transition {1.7), let us consider the
perturbed family of subsanic phase transition salutions ta {1.2),

wtma) = { T, 2 10

satisfying
BR{UL) + 8 F(UL) + 8,R{(U5) =0, Hr—¢'{t, 1)) >0
et Fo(U)] — [F(U)] + @} [FU)] =0, & =*{L3) (1.17)
leTt) + it = v IT, e N 2 = o)

and

(U4 U2,@ ) =0 = (U4, U, @) (1.18)

where I7¢ is the k—th campoanent of I7* {That is U} = p*, U5 = »*, U = »*, and these twa
natations far campanents of &7 will be used simultanecusly in the remainder of this paper.),

3 = U5 105 2 — 4% 0 — /1 + (09 empeten (1.19)

and 7{¢; 5%, ) is defined in a way similar to that in {1.13):

{ T — it 4wt = Pir) — (P (120)

N L . 1
lime oo = 5o bompettads MMt yoa T = 5o lompe(ta)

with 7 = p{p}) + L.
=
Ta differentiate {1.17) with respect to ¢, as usual, let us transfarm this free boundary
problem into a fixed one by introducing

& =tz — ¢ {L,y))

=y
fy: ; {1.21)
Ui(ir fE:- g‘) = Ufl: ':’f':- €, y)

L)

for the plus and the minus parts of equations in {1.17) respectively. Then, from {1.17) we
know that 7% {Z, #,7) satisfy the following problem

BUL £ {AdUL) — ¢ A(UL) — )8 U} + A2{UL)Q,UL =0, t,x>0
wi{Fo{U3) — R(UL)) — (F{UL) — F{UL)) + ¢ {R{U3) - R{UL)) =0, z=0

[:Ue_ € e . :]2 i
' TF) + sy = —velit ), «=0

(122)



where we have dropped tildes of notations for simplicity, a(4, +) is defined in {1.15), and

u g o
AT = (R Fi{) = ( 2 4 0 ) ,
0 0 u

0 g

» 0

0
with ¢ = {p'{ p)) T being the sound speed.

Let [T, {i, %, ) be derived from 7, {£, z,) given in {1.7) under the same mapping (£, z,y) —
{t,#3) as in {1 21) at ¢ = 0, and we still denote by I7y (£, z,5) the transformed functions
without tildes for simplicity.

By setting

Aa(Us) = (FY() ' FY(U) = (

o 2

diry dUt dig*

{ de ' de ' de )|¢=U = (V+:-V-1¢'):- (123)
differentiating {1.22) with respect to ¢ and letting € = 0, we obtain the linearized problem
aof {1.22) as follows:

SV £ {AUL) — ey do(UL) — )8 Vo + AU VL = fi, fa>0
B(V,.V..0) = lode +0idy + My Ve + M.V. =g onz=0 (1.24)
{V'l'r v r¢)|£{ﬂ vanish

where
B . U[Fn(U)]
= 3=y Uy - »
gl 00t

o R0 2
L= 78;{3”""“ E;ﬁzz}afs’:u 3= i) + [Uaiuzlf;UE =) +Wy[(#9:(':'r;g;2-”2)| r

M, — ( e F{(U) +¢9E{U+} _ FT) )

and

w. _ { FUO) = aRT-) — 0, FT.)
= - )

with &6 = 3},

_ {—E”(U+ D, @ —Upo+e,Uss {}jy{U+ 2 — g — Uy, 3))

1+ {py 1+ {py
and
I o o U_oo—@, U 3—
_ {"Y&jaw 2Te,l 3 + e (T ), —B5a L Y- 1&0;; 2,3 e ’
1+ {pg ) {1+ gag Ty
o ‘g, 03—
eyinta—=ie + TR ety

1 -I-gri'g, ¥y

The form of the problem {1.24) is similar to the one derived by Majda [11] for multi-
dimensional shock fronts. However, due to the subsanic property of the phase transition



{7y, U, ) and the viscosity-capillarity criterion {1.14), the well-posedness of the linearized
problem {1.24) needs to be investigated.

The first goal of this paper is to study the unifarm stability of the subsonic phase transi-
tion {I7,, UV, ), and the second one is to establish the existence of such a phase transition
salution under certain campatibility conditions on initial data.

1.2 Main Results

To study the stability of the phase transition {1.7), far simplicity let us assume that it
is the follawing planar case:

_ U-I- =(P+:u+:'~'«’ﬂ): x> ot
U(t’:r’y} B {U' = (P-,u-,m), x <ot (125}

with {py , 4y, %, ¢) being constants. Once we know that {1.25) is unifarmly stable, then we
can easily deduce that in a neighbarhaod of the arigin, the general curved phase transition
{1.7) is also uniformly stable by cantinuity.

In the case {1.25), the prablem {1.24) is simplified as:

&Vi =+ {AI{U:I:) - U)amvi + Aﬂ(Ui)ByVi =fy, Hax>0
B(V3,V_,8) :=bode + iy + M4V + M_V_ =9 (1.26)
{V'P:V- ¥ {ﬁ')lli(ﬂ vanish

where
b = {lpl, [pul, wlel, k] +F0-)7,
by = (volal, valoul, v3lo] + [p], vo{[u] + F2_))7,
M, = ( UF&(UJJ: F{(t) ) , M. = ( F({U_) —-UFd{U-) )
with

I'l' = {_eﬂ{p'l'): T— Uy, 0):- I = (E”{p-) _;Y{u- —G’), u- _J_"?p-: 0)

Here % = v{a{4) + o{1)) while v+ — 0 with a{;) satisfying
i Ly
o) = lim B—ja(:i,v) za>0

far a pasitive constant « {ef. [3]).
The first main result of this paper is

Theorem 1.1 {ONE-DIMENSIONAL STABILITY) There 18 - > 0 such thai for any 0 <
¥ < ~, the subsonic phase transition {7, U_,0) is stable with vespect to perturbaiions
in the x—direction, which means that the problem (1.26) without terms of y—derivaiives is
well-posed.

Denote by
K V={v,v.)T

and ! e oo
) _ = (ol i
Vis,wa2)= an f_me (stdiwud (s o o)duydt



the Laplace-Fourier transform of V' in (£, y)—variables with Res > 0. Then, from {1.26) we
lnow that V" satisfies

Y BlswV+ S (1.27)
where
—{A{U4) —a D)7 YsT +iw A2 {U,)) 0
3(3,&’):( Wl 0 S {A(U)—oD) "W +iwA2(T7)) )

and f = ((Ai(U4) oD 7' fi, (0T — A(T) )7
Denate by {X; }‘?-zl all distinet eigenvalues of B{s, w) with multiplicity being m;. Obwi-
ously, we have

:
& = Pker(>;T - B(s,w))™].
=1
Intraduce

E*{s,w) = {w; € ker[(3;] — B{s,w))™|| Red; <0,i=1,....I} {1.28)

the space of boundary values of all bounded solutions of the special farm

;=1
. el I
Vis,w,z) = Z ehi® z :r—r{)ij—B{s,w))pwj
Redjei =0 ¥

to {1.27) with f = 0. Then, the second main result of this paper is:

Theorem 1.2 (UNIFORM STABILITY) There 18 vy > 0 depending only on the bounds of
Uy given in (1.25), such that for any fired 0 < v € o, the viscosily-capillarity admissible
phase transition (1.25) is uniformly stable, i.e. there is n > 0 such thai the estimate

Reinf . |{Bos +ibpe)e + Mu Ve + MoV 22 0 (Va 2+ VP + 4% (1.29)
& >
5|2 + w? =1

holds for allV = (V3 ,V_ )€ E*{s,05) and pec R,

Remark 1.3: Notice that the above uniform stobility vesult vequires no constramt on the
staies of the phase transition, which consirasis to the condittons (63} in [3]

The third main result concerns the local existence of single multidimensional phase tran-
sition.

Theorem 1.4: For any fired s > 9, suppose that the intiial daia

R S 1 s e 0

satisfy (7,0 ,) € B {{&z — ols) > O), ¢o € H**} and certain compatibility
conditions, which will be given precisely in §2, there is a subsonic phase transition soluiton

__ (p'l':u'l'rv'l'):- & > (,Q{t-,y)
(pyu,2) = {(p-,u-,»-), z < w(tyy) (131)

o the probleme (1.1)(1.30) locally in time.



Remark 1.5: The above regularity conditions on initial data can be wealened as

(AL ul,0) € BV YA ({{z— woly) > O}), o HH'
far any fixed s > 2 by using the theary of paradifferential operators as in [7, 13]. But, in

arder to avaid much technique in this paper, we shall directly use Majda’s theory {[12]) to
study our nonlinear prablems, that is why we have the condition s > 9.

2. The Stability of Phase Transitions

In this section, we shall prave Theorems 1.1 and 1.2, and canclude that the viscasity-
capillarity admissible phase transition is uniformly stable.

2.1 The one-dimensional stability

In arder ta study the prablem (1.26), from the expressions of M, and M _, if we define
Wy = R{U)Vy (21)
then the equatians in {1.26) are equivalent to

3W:|: 3W:|:

+ {(A{U,) - 0"7) +A‘2{Ui:’ fa (22)

3y
where A2(Us) = F{U{(F§{UL))"", f1 = F§{Us)fs and

0 1 0
AUL) = F{UFUN) ' = & —43 2us 0
—guy kL] Uy

and the boundary condition in {1.26) is transformed inta
bode +idy + MyW, + M_W_ =g on 2 =0 (2.3)
where by, b, are given in {1.26), and

My = My (FY(U,))" = ( 7T ) )

o= M (ry )y = (AT

with

= {e"{p.) — 25T 4 o, x5, 00T

To study the one dimensional stability in the z—variable for the problem {2.2){2.5), let
us study the following problem

{BEWJ: :E_{‘il(UJ:) —oN&W, = fi, ta>0

{u-{*—j“*— e"(py), T22x,0)7

bu(ﬁ'g + M+W+ ‘l— M_W_ = g‘, ’T = 0 . (24)
{W+1W-:¢)|E(U =0



The eigenvalues of 4,{I7y) — T are
Mouy—0—e, M=u,—0 M=-u—0cte.

Denate by r+ and I;-E the right and left eigenvectars of 4, {[7y) — o T assaciated with ).;-E

with the normafization
I;l:rf = 6jk (Jrk = 1:2:3)

Since the mass transfer flux § = g, {u, — o) = p-{u_ — ) is nonzero, first, we assume

J > 0, which implies
A <0 <aF <3 (25)

by using the subsanic praperty of the phase transition {1.25).
Denote by

3 3
— + .+ _ - -
W.|. —zwj T'j- and W_ —zwj Tj
=1 =1

the decompositions of W, and W_ on the bases {r]}J_, and {r] }3_, respectively, ie.
w;' = I}-" W, and w; = {;W_. Then, one can rewrite the boundary condition in {2.4) as

3
=g—(Myrd)uwl =D MRy (26)

322

(bﬂrﬂ}+r;rﬂ}+r;rﬂ-rl-)

E &5

Similar to [6, 11], due to {25), the necessary and sufficient condition for the well-
pasedness of the problem {2.4) is the following one-dimensional stability condition

A = det(bo, Myrd, Myrd, M_r{) £0. e

Now, let us see whether the condition {2.7) is satisfied.
By a direct computation, one has,

Tl- = (]':r LIS _C-:M])T! T; = {0:- 0:- ]')T:r T; = {]':ru'l' + C+,D{])T (28)
and
(2] 0 —A3 A
|kl 0 e Nl -e)
v #] -3 3w Al Yo
[u] + 45 0 Lird Lrp
[zl 1 1
=it el up tey u-—co | (2.9)
. I v
[l 430 = S

Denote by A the determinant an the right side of {2.9).

It follows from a simple coamputation and £7{p) = */p that

f.,.r;' £y I =T e_ “

S S O W S o3} 2.10

o ) (2.10)
Substituting {2.10) into {2.9), developing A, and using py{u, — ) = p_{u_ — o), one

gets that

Ar = [ul{u- —c- —uy—cy) +1o] {z_:{a_u_ o) - Euy —a+c+)}—%(p+C++p-c-)

10



Cypt_
Py p-
which is negative far any 4 > 0. Thus, we conclude

= —[u? - [ —Fpses +p-c-)

det{by, Myr} , Myr}, M_v) #0. (2.11)
Far the case j < 0, we have uy — o < 0, which implies
AP <27 <0<)3
and the necessary and sufficient candition far the well-posedness of the prablem {2.4) is:
det{bo, Myrd, M_v{, M_r;) #0. 212)

The condition {2.12) far any 4 = 0 can be verified in a way similar to that for {2.11).
Hence, we abtain the conclusion of Thearem 1.1 by nating 4 = v{af§) + o{1)) with

o) = lim 25 [ 724, 2 0> 0

2.2 The uniform stability

The purpase of this subsection is to establish the uniform stability of subsaonic phase
transitions claimed in Thearem 1.2
First, let us recall a lemma from Majda [12] as follows:

Lemma 2.1: For the problem (1.26), and s € G w € R, f we define e¥ (s, w) = sbo+iwd
and the projection
(Vie*)

Pls, eV =V — =

for any V € @, then the problem (1.26) is uniformiy wellposed if there exisis n > 0, such
thai
inf + = 213
U S le* {s,)| 2= (2.13)
and
inf P, @) (M, Vi + M_VL)| 2 Vel + V-] (2.14)
Ress0, |82 +wi=1

Jor allV = {V, ,V_) € E*{s, ) with E*{s,w) being defined in (1.28).
SBet § = & +1wwp. For the problem (1.26), we have

e*{s,w) = (3[n], 3lpul, Svolp] +iwlp], {[u] + F5- )7

which satisties {2.13) obviously.
To study {2.14), let us investigate the space E¥{s,w). For simplicity, we shall only
consider the case
j=pilug —c} >0

and the other case § < 0 can be studied similarly.

11



2.2.1 The space E*(s,w)
For any s = i + n {n > 0) and w € R, denote by
U{s,w,a) = (2r) 2 /m]m e~ Nt o, y)dydt
0 -oo

the Laplace-Fourier transform of I7{£,x,y) satisfying I7|;<g = 0.
Taking the Laplace-Fourier transform on the equations of {1.26) with fy = 0 yields

. §{uy ~ ) —3py iwpy (14 — 0)

3 . \ .
Ve L[ 2 fuy—0) —iwed Vi(s,w,2)  (215)
da ‘-’ﬁ frwes 43 Fd®

+o+ 0 +

pald =) F—tuy
where
E=s+iwvy and dy =,/2 —{uy —0)2

As in [11], if we define Z, = (2,25, ZH)7 by

2? = ff+,3
Zy = ﬁ(“’l,z + E_—'Vhl) (2.18)

2; = ﬁ(—f’l,z + ;—:fﬁ,l)

then {2.15) is equivalent to

=

8%, .
— =N z 217
B (8w} Zy ( )
where __ ¥ Gy o ety
"-E+‘:45Ir ﬁl:u_;--ﬁ} V2(uy-a)
Ne(8:0) = | — A, -avey) ws-oter 0
_ [ 0 _ K1
Vafuy-a-2y) Up=F=2y

The eigenvalues of N, (s, w) with negative real parts for Res > 0 are

Ao H=§{u+_a)_;{§2+w2di)% (2.18)
+

Uy — T
and the carrespanding eigenvectars are

& = {28, iw({uy —0), —iw{u, —a))7 (2.19)
E = (—if2wey, F+2F{uy —o—ey), E+ M {uy — o+ N7 '

Similarly, for the V_ part in {1.28), taking the Laplace-Fourier transform gives

) o —u_) Ep_ dwp_{o—u_)

av_ 1 e . . g .
e _ - —= Ho—u_ 1w
o ~ & o { ) we- V_{(s,w,2) {2.20)

2 42 0 2

p_fu_—a) U_ -
where
d_ =/ —{u_ —e)?.

12



Set Z. ={4[,%;,%;)" &

Zr =V.3
Zi = (Vo2 + Vo)

{2.21)
Z; = Vo2t V)
Tt follows that {2.20) is equivalent to
7 .
% =N_{su)Z_ {2.22)
where ) )
F Dt et
13;50 \,“E[:'uz_ -2} W2{u_ —a)
N. {3, w) = ﬁ(u_-;+c_} U_ - T 0
Lt _ 0 F
V2u_ —a-a_) U ==
The eigenvalue of N_ {s,w) with a negative real part for Res > 0is
A = §{a—u-)—¢;;(§i+w2dﬁ)% (2.93)
and the carresponding eigenvectar is
& ={—Buwe_, §-2j{u. —o—e.), E-X{u. —ot+e )T (2.24)

In arder to regard the problem (1.28) as a system for V = {V4,V.)7, we take the
following natural extension of {&}, &, &5) in CF:

EZT = (ﬁgr 'iﬂd{U+ _J):- —'itd{ﬂ+ —G’:I, 0, 0, O)T
EF = (—iRwey, F4+203uy —o—cy), 5+ 2 {uy —0+24),0,0,007T . {225)
g5 =(0,0,0, 1 2we_, §—2jlu_—o—c), §-—2j{u. —oc+ec N7

For these vectors, we have

Proposition 2.2: {&},&},25) ere linearly independent except ai {{5,0)|§ = ofu, —
o) or § = —w(uy —0), Rei >0}.

Proof: Tt suffices to verify that £ and & are linearly independent when (%,w) ¢
{{8, )| = ef{uy — o) or § = —wluy —0o), Red >0},
On the contrary, obviously, £€] and £} are linearly dependent if and only if
P iw{u, —o) _ il —u,)
fwey E+2H{uy —0—c4) N E+ 2 {uy —o+24)

which is equivalent to

3 dwluy —o){uy —oteq)  dwfuy —oduy —o—cy)

iw T (B 1uP)2 | (8 w2

Fram these identities, we immediately deduce either § = w{uy —o) for w >0 aor & =
—w{uy — ) for w < 0.

Conversely, it is easy to verify that if (#, ) € {{(#w)|F = wluy — o) or ¥ = —wlu, —
o), Red > 0}, then &} and & are linearly dependent. §

13



When § = w{u, — o), we should have ¢y > 0 to guarantee Res > 0 fram the assumption
i= pael{us —c) > 0. Inthis case, A} = —w is the eigenvalue of multiplicity two of N, {s,0),
and

& =2, 4, )7 (2.26)
is the carresponding eigenvector of Ny {s,w).
Let us compute another generalized eigenvector of N {s,w) with respect to A} = —w.

The definition
{(—wI— Ny(s,w))?&F =0

gives rise ta
V2(uy —c)oti{uy —o—e)B—ifuy —o+ely=0

far & = {@, B,~). Thus, we can take

& ={uy —0 + 4, 0, —in/2uy — o)) (2.27)
which is linearly independent of &} given in {2.26).
When § = —w{u, — o) with w < 0, X = w is the eigenvalue of multiplicity two of
Ny({s,w). In a way similar to {2.27), we obtain that
+ Y
£ = ('\/Er -1, 1) 3 SR
{é;=(u+—a+«:+, 0, iv/Z(uy — )T (2.28)

are two independent generalized eigenvectars of N, {s,w) with respect to A} = w.
As in {2.25), we still denote by (&7, &, &5 ) the set of the following vectors in {F:

25 =(0,0,0, —tv2we_, §—Xj{u. —o—c_), §-2;{u. —oc+e )7 (2.20)

and . Y -
=1 ={ :i:_irororo) 5 30
{é:; = ':"U,.‘. _J+C+: 0: _iﬁ(ui' _J):r 0: 0:- O)T ( )

when § = w{uy — o), or

g ={/2, —1,4,0,0, 007 {2.31)
é‘; = ('U+ —U+C+, 0, 'i'\@(u-l- —U), 0! 0! O)T

when § = —wluy — o).
Define the space for any w € IR and s € Cwith Res > 0:

span{e] €7 ,8;} givenin (2.25), if &2 # of{uy —0o)?
E*{s,w) = 4 span{e},eF &1 givenin (220){2.30), if 3=wluy, —0) (2.32)
span{€] &7, &8} givenin (2.20)(2.31), if = —wlu, —o)

where & = 5+ duay.

Next, let us study the critical case § = s+ iwwy = 0, which implies Res = 0 as well. For
simplicity, we assume w > 0.

Tt is easy to know that the eigenvalues of N, {s,w) are

A =0, M= T (2.33)
dy dy
and the eigenvectors with respect to A} =0 and A} = —% < 0 are
ey —uy +0) ey +up —a)\T
&=, 1, -7, é‘*:(l,’(c" B+ TI) _HCeT Uy ) , 2 34
L ( } 2 '\‘/idq. ﬁd-‘. ( }
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The eigenvalue with a negative real part of N_{s,w) is

we
Ar=——" 235
3 d_ ( )

and the carrespanding eigenvectar is

P (1, Cife- —u-+a) dfe- tuo —a))rr 2.36)

Med. 2d_
As before, we denote by (g}, &, &) the following three vectars in C°

et =0, 1, -1,0,0,007
— _(1 ifey —up+a) iferFuy —a) 00 O)T

= A %0 (2.37)
& ={0,0,0, 1 —”:‘:‘\;E‘;'_"'":" ﬂfc—;iz—_-a))'r

When 5 = 5+ dwvp =0 and w > 0, we define
E*{s,w) = span{é},&},&5} given by (237) (238)

which is a cantinuous extension of E* {2, w) defined in {2.32) fram {Res > 0,3 # +w{uy—o)}
to {§ =0,w > 0}.

In order ta use Lemma 2.1 to study the stability of the problem {1.26), let us investigate
the boundary condition in {1.26) for the unknown function Z = {Z,,Z.)7 introduced in
{2.16) and {2.21).

Taking the Laplace-Fourier transforrn on the boundary condition in {1.26) with ¢ = 0
gives

{bos + bt + MyVy + M_V. =0 onz=0. (2.39)

The first component in {2.39) can be expressed as
.x 1 5 ~ A .
s = m{{‘u* —oWVa 1 —{u. —o Vo 1+ o4 Via — p-V_ 3)

which is equivalent to the follawing one by using the transformations {2.16) and {2.21):

-

zv‘i—m

—|—'Z—'{a—u_ e )2 + i—'{a—u_ te )25y (2 40)

{(Buy — o te) B + oy o)}
+

{1) When # # 0, by substituting {2.40) into other components in {2.39), we deduce

i—:[(‘uw — o+ e 22T + ey o —uy )22
—E=lfu. —o+e.)Z; +{u. —oc—e)?Z5]=0

(Eell¥i2-) 1)y — o+ )2 + (2 BE) 4y, — 0 —cy) 2
—(e=lbee) . —o +e )25 —f%ﬂﬂ){u-—a—c-)é; 0
prluy — VIt +p lo—u )2y — F;P[Jﬂ i:{U+—U+C+)é;

+£—:(u+ —o—e )2 + E={o —u- —e )75 + (o —u. +e.)Z27)=0
(2.41)
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which can be formulated as a matrix form
BZ=0 onzx=0 (2.42)
where the 3 x 6 matrix B is compased of coefficients in {2.41) explicitly.
{2) When # = 0 and w # 0, the third component of {2.39) is
iwlpld = {uy — Vi1 + pyvoVen + pulty — Wi s
—mplu. —)V. 1 —pmVe 2 —p_{u. —o)WW._3 {2 43)
and ather campanents of {2.39) are independent of 45, they can be expressed as follows:

if[{‘uw — o+ +{uy — 0 —e4) 23]
—E=[{u_ —o+e )] +{u. —o—e)2;7]=0

2 [{ug + o4 Yus — 0+ €4) 2 + (uy — e4){uy — 0 —24) 23]

L ot . . (2.44)
—E=fu te Yy —o+e )y +{u. —e Yu. —oc—c)47]=0
{uy —o+ C+)Za {uy — —C+)é3

HE — u. o+ )27 H(EE D) —o—e )7 =0

.

by using the transformations {2.16) and (2.21) again. Certainly, {2.44) can be represented
as

&

BZ =10 onx =0 {2.458)
with B being a 3 x 6 matrix.

In the remainder of this section, we want to compute the Lopatinski determinant for
three cases §2 # w?{uy — 0)?, 52 = w?{uy —)? and § # 0 separately.

2.2.2 The Lopatinski determinant for
the case 52 # w?(u, —¢)? and § # 0.

For any (5,w) € {5 # w®{uy — )%, Red > 0,]52 + w? = 1}, the Lopatinski determinant
is
A = det{B(e] &7 ,€3)) (2.46)
where B and {&},&7, 25 } are given by {2.42) and (2.25) respectively. By direct computation,
we obtain A

4253 p (uy —0)

YHeifuy — ) Seg + {uy — a)jp_‘ + w?d? —{Fe_ +{o —u_ )jﬁ_‘ —f—wzd’z)
l{[fulw,cr_ _ Exmdy (lul +Fp- ) f P2l ([u|+$p+) B2 g 2d®

L2l o ]
w N wzd X Tt
Pl e fuy o) + 2 ,* ) —w(e-{a—u-nﬁzz
gl gl [,crl(2 a7

By using the Rankine-Huganiot condition {1.8), and a length computation for {2.47), we
deduce A

3R p (g —0) (8% — wuy — o) WT +50) (2.48)
FO-\Uy —
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where

[u]

‘j{*ﬂ + e )& +e2d2) + ["’]C"; $ (2.49)
+ -

and

2p_d2 ul{fe_ 4+ (u. — )y /52 4+ 2d2)
£+l p-€- WALy
S I A T At Sy '

Hpl(3es + {uy —0) /5 + w2d])

{2.50)
We claitn that J is nonzero when Res > 0. Tndeed, if J = 0, then we have
2
2 2 22 2 _ e i w4
@ttt ) = ()
which implies
wi{d? +d2)Lo? f(d2 + 422 +adl 2 ({M M )2 —1
R R R (L By 251)

2{{MyM_)-2 1)

with M, = %, M_ = *==7 being the Mach numbers. From the subsonic property of
the phase transition {1.25), we have

0 <My, M. <1

Due to Res > 0, we deduce that one should take the plus sign in {2.51), which is not the
raot of J obviously. Thus, Fis always nonzera, which gives there exist constants M, > 0,
and y = 0, such that for any 0 < ¥ < g, we have

A
/2 p g — )& —Pluy — o))

Therefare, we abtain

> My >0, (2.52)

Proposition 2.8 For any (3,w) € {# # o?(uy —0)%,Red > 0, |5 + |w* = 1}, there
18 % > 0 such that the Lopatinski determinont given in (2 .46) does not vanish for any
O<y<Eh.

2.2.8 The Lopatinski determinant for the case § = w?(u, — ¢ )°

Let us first consider the case § = wluy — o) with w > 0.
For the boundary matrix B and the basis {&],&],&5 } of E*{s,w) given in {2.42) and
{2.30){2.29) respectively, the Lapatinski determinant is

A = det(B{e],5;,43)) (2.53)
which gives rise to
a8
Zpy{uy —a)
i2\f§p+ {(uy —0) —1—(u+ —o){uy —0 —e4)? —v’ﬁp_ {fe. —{u. — o))
2{ay —us +0)  —i{uy — o)uy — —C+){2—: +1) Ve & +a_b)
v”i(l-l-%f-) uy —o+teg —“‘;""z‘r""—'c‘"—} i2we. —b)
(254)
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with a, = P+':[“[|‘:|'5P—] g = P—([“[|'||';'FP+.'F and b= {5;2 +w‘2d2)12-
y B K - -
By a direct computation and using the Rankine-Huganiot candition {1.8), we get
&
————= =T +A40 255
4ip? (uy — 0)? T (255)

where
T = e, [ul{s/ 52 + o242 + i—'wc-) (2 56)
+

and IT iz a bounded term depending on {uy, py)-
Therefore, it immediately fallows:

Proposition 2.4: For the case § = w{uy — @) with w > 0, there is % > 0 such thai
when 0 < v < vo, the Lopaiinski deierminani given in (£2.53) does noi vanish.

Next, we study the case § = —w{uy — o) with @ < 0.
As before, for the boundary matrix B and the basis {&},27,25} of E*(s,w) given in
{2.42) and {2.31){2.29) respectively, the Lopatinski determinant is

which gives rise ta
&y _
2p4{uy —0)
—i2/2p, {uy — 0) 125 (uy —0)uy —o—e4)®  —Zp_{c. —{u. — o))
—i2ay —uy + ) {uy —0)us 0o —c.,.){‘;—f +1) v2{c.&+a.d)
(258)
with a4 = P+':[“[|:|"FP—}’ . = P—([H[LT‘FP+} and b= ,:’5’2 +w2d’2_)%'
If setting & = —w, then, obviously we have
Ay =-—A

where A is the determinant given in {2.53) with § = G{uy —0c) and b = {8+ G242 )3. Thus,
from (2.55) and {2.56), we immediately canclude

AL =—4ip] (uy — 0)’T + OfF) (2.59)
with
T =%, [ul{s/82 + é2d2 + 2=Ge) {2.60)
£+
having the same sige as that of [u]. Therefore, we obtain:

Proposition 2.5: For the case § = —w{uy — o) with w < 0, there is v > 0 such thai
when 0 < v < v, the Lopatinski determinant given in (£2.57) does not vanish.

2.2.4 The Lopatinski determinant for the case s =10

With the boundary matrix B and the basis {£],£7,&5 } of E*(s,w) given in {2.45) and
{2.37) respectively, the Lopatinski determinant is

5 12 ol iy2d_p_
P oo s
A= de(Blet,ef,65)) = | 20y (Buy — o) fBxprue  iEopeu
2uy — ) 0 _ i p

o—
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which gives
dd, d_ _ N
A= *q—j”’(m —o)[u] — Hp4). (2.61)

Thus, we immediately obtain

Proposition 2.6: For the case i = 0, there 18 4y > 0 such that when 0 < ~ < ~y, the
Lopatinski determinant (2.61) does not vanish.

Together all results from Propositions 2.3, 2.4, 2.5 to 2.6, noting that the left hand side
of {1.29) is homogeneous in (i, V., V. ), and using Lemma 2.1 we abtain the conclusion of
Thearetn 1.2 immediately. 4

Remark 2.7: From the above discussion, ane sees that the constant ~ depends an the
existence of the viscosity-capillarity profile 7{&;4,7) (0 < v <€ 7o) to the problem {1.13),
which was given by Benzani-Gavage in [3], and on the bounds of the viscosity-capillarity
admissible phase transition (U, , ) given in {1.25) such that Propasitions 2.3, 2.4, 2.5 and
2.6 hold.

3. The Existence of Multidimensional Phase Transitions

In this section, we shall use the uniform stability obtained in §2 ta estabilish the lacal
existence of a subsanie phase transition. The main idea will follow the argument of Majda
in [12] for the existence of multidimensional shock fronts, sa we shall anly sketch the main
parts of the proof.

Consider the following Cauchy problern for the Euler equations {1.2) in two space vari-

bles:
e BFolT) + B Fu{T) + 8, Fa{U) = 0
B D

We are going to construct a lacal solution ta {3.1) in the form

U_{t,z,y), =<l

which is a subsonie, viscosity-capillarity admissible phase transition.

To have such a phase transition solution, we make the following main assumptions on
{3.1):

{(MAL1) for any fixed {z,y) € Iy = {& = wofy)}, there exists o{y) € R such that the
problem (3.1) with the initial data frozen at {z,3), admits a planar subsonic phase transition:

U{i._.ﬂl‘,y) — {U+(f':m: y): x> (P':’f':y) (32)

Ua{eo(e)y), > o) +oly)i
UL, 2,3 =% 18 ¢ i = £ 33
Zhe ) = { s, o <o) § o (3:3)

satisfying the viscasity-capillarity criterion.
Tt follows from Theorems 1.1 and 1.2 that the phase transition {3.3) is ane-dimensional

stable and multi-dimensional unifarmly stable as well.
As in §1, the phase transition ({7, ,I7_, ) should solve the following problem

B F(UL) + 8, F{UL) + 8, F(U,) =0, Xfzr—eL,y)) >0

e FolU)] — [Fi{T] + goy[Fz(U)] =0, on z=4g{y)

') + hgan ] = —vg [, TG AN, on 2= (ty)
U {0,2,y) = U {o,y),  ¢{0,%) = oly)

(34)
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where j = Uy 1 {Us 2— 3 Us 3 — @) /1 / | + 2 |2= (1) 15 the mass transfer flux, and 7(£; 4,7)
is the solution to the fallowing problem for the profile equation:

{ ™ =it +m—plr-Y) — 1
limg_.-mT = Tl_'|m=p(£,y}:- limf—*"'WT = ﬁh:w(ﬂ,y}

» ;2
with T = {p{U:l:,l) + E%.”m:w(t,y}'
Ta salve the problem {3.4), as in {1.21), we introduce

He — ¢lt,y))

Y , (35)

fr:l: {i‘r i'r ﬁ) = Ui{t’r x, y)
so that 7 {f,#,7) solve the problem

80y £ (AUL) — ey A2{Us) — @) 80y + A2(U)0,U, =0, & x>0
el Fo{Uy) — Fo(U.)) — (Fu{lh) — F{U.)) + { (U, ) —F{U_}} =0, «=0

- - 2 - fu =l -
e/ {T0) + gtk | — g [ T2(G5, e, = =0

U:I:':’O:m:-y) = U:E (E, y):- (,0':’0, y) = W(y)
where we have dropped tildes for simplicity, 4,(I7) = (F{IN)-'F{{T") and A{T7) =
(F{U) - F{(T).

Natations: Tn the following discussion, we will always let the integer s > 9, w be the part

aof a neighbarhood of the ariginin {{ = 0,2 >0}, T =wn{r =0}, 2 C {{,x >0} bea
determinacy domain of w with respeet to the prablem {3.6) when

Tty B3
Il

(36)

sup{|Us — U3 | + | — ol +18,{e — o)l + | — o) < 1

QTO

with Qr = QN {f < T}, wr =20 { =7} and Q7 = Q7N {z =0}.
As usual, to obtain smaath salutions to the problem (3.6), it is necessary to impase
certain compatibility conditions on initial data.

3.1 Compatibility conditions

The derivatian of ecampatibility conditions follaws the classical argument far standard
hyperbolic mixed prablems utilizing the farmal Cauchy-Kaowaleski computations. Here, we
assume that there is a smooth solution {I7,,T7_, ) to {3.6), and derive the formal compat-
ibility conditions up to order = — 1, s a given positive integer, which must be satisfied by
the initial data. In the next subsection, we shall show there are large classes of initial data
satisfying these compatibility canditions.

From {MA1) and (3.6), the zero-th order compaiibility condilion is that at 2 = 0, the
initial data satisfy

o(){Fo{U3) — Fo(U2)) — Fu{U3) + Fu(U2) + () (Fa(U) — FafU2)) = 0
(U, — {02 ) + [t — o 72, m3(€3 0, )

where

{(3.7)

do = UL (UL 2 — eb{)UL 5 — (1)) /y/1 + 05 () |==0
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and 7y {¢; jo,y) satisfies
7§ = ~jor§ + mo — p{7g ") — jd7o
lime, .70 = ﬁlhzu, lime, 4070 = ﬁ z=0
g
with 7 = p(0%,0) + - o

Next, let us derive relations amaong 85 '¢|i—o and 8507 |.—p recursively.
Differentiating the secand equation in {3.6) with respect to £, it follows

Be(R{U) — BT + BUD(el) — AU + @b AU,

—Fy{U2){o{y) — Al{T2) + p{) 4AUNBT_ = ') F{U2) — F(U7Y)) (38)
at f =2 =0

Denote by
ol ) = i | THE 5. (39)
Differentiating the third equation in {3.6) with respect ta £, we get
a8 e+ LU, + L ()aU_ =g (3.10)

at it = x = 0, where

ao{y) = eh) (U] ; — UL )+ U2, — yae{jo, VUL /1 + iy
+(y)—{{1+w52(y))8”(Uﬂ l):U-?-2 @u{y)U-?-a (), wu(y)(saé{y)U'imLU(y) U3 2))

2 ) = {(valdo, )/ 1+ &5 (T2 2 — eb( UL 5 — o(y)) — (1 + f (1))e(TU2 1),
yoljo, DL v/ 1+ @f ) + b2 s +o{y) — U ,,
eh UL 5 — @b UL 5 —o{y) —valio, VT2 |/ 1+ ¢f (1))

and

o1 = 1alio, NI (/1 + REIT2 5 + \/ff{%ﬂ“ U2, — HT? 5 — o)

o () [UOTD — )T — o)) + AT e ot o).

L+ @)
On the other hand, from the equations of Iy in (3.6) it follows
8T le=0 = H{o(y) + ¢h{) A(U1) — A{TL))DUL — A(UL)D, UL (3.11)

Substituting {3.11) inta {3.8) and {3.10), we abtain the following first order compatibifity
condition far the problem {3.6) at ¢ = = = O:

(Fo(T) — Fo{U2))B2¢ + F4{T2) o (y) + @b () Ax(T0) — A(TD))28, T2
U Yo @) + wba) A2(U0) — A (T0))28.° = stV
ao{)8¢ + B () {oly) + wby) A{T0) — AUL))6T°
— () {oty) + @b{) A (U°) — AT )BT = fY

(3.12)

where
1Y = o {PaT) —Fa{UE)) + PO () + @h{) A2(05) — AT Ax(U2)8,18
—FHTYoly) + @) () A2T0) — A {T)) A{T)8, U0

5 = g+ B(a) A(U9)8,02 + P {y) A:(T°2)5,T°
(3.13)
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Here we nate that the right hand sides of {3.12), f{:” and fé '} depend only upon U} and
their first order tangential derivatives at Ty = {xr=1=0}.

Similarly, far any fixed k € IV, by acting 8° an the boundary conditions in {3.6) and
using the equations of Iy in {3.6) to replace &7, by the normal and tangential derivatives
of 7y at T, it leads ta the following k& — th order compaiibility conditions:

(Fo{T0) — FolTP))BE o + FH{UDoly) + wh{a) 4 (T2) — AT+ 19508
R U AUT®) — o) — whly) Ao(T2) Y+ 8500 = f{M
ao{N&* ¢+ B W)o) + eh{1) 42(07) — A TIN50
+2 ) {AT?) — oly) — ehl) A (U0 8ET° = jiM

(3.14)

at { =z = 0, where fl(k]' and f,‘EH smoothly depend an {&éﬁfgphzu :0<j<kI+i<k+1}
and {8903 |s=0: 0<jSk—1,{+j <k}

3.2 Large classes of initial data satisfying
the compatibility conditions

Denote by At {y) {k = 1,2,3) the eigenvalues of {4, {72} — i {3 A(T]) — e (1)) |2=0-
Then by simple computation, we have

ME(y) = o) — o) — eh ()Y} — /1 + B W)
Ao {y) = u} — o) — @byl
M) =] — o) — @] + V1 + )

where £} = {p'{p]))z.
Without loss of generality, we assume that the initial mass transfer flux

doly) = ALY — wb()vh —o(¥))/y/1 + ¢f ) |e=0 (3.15)

is positive, then we have
X)) <0 <27 (e) <5 () (3.16)

by using the subsonic praperty of the planar phase transition given in {MAT1).
Denote by P*{y) and P~ () the smoathly varying prajections anto the subspaces spanned
by the eigenvectors associated with eigenvalues M3 {y), 2¥ {y) of

(AT — @ () 4(03) — o{3))]e=0

and with X[ {y) of
(ATY) — @) A2(U2) — o (1))lomo.
Similar to the Lermma 2.1 of Majda in [12], we have the following result:

Lemma 8.1: If (v*+,07) € R® x IR® satisfies
Py (y) =" {y), P (o () =»"{) (3.17)
and 3 is a constant, then from the identily

[Fa(U)] )+( F U)o (1) + o) A2(UD) — AT+ )v+

M(p,v*,07) = ( ao{y) B (w)lo(y) + @b(y) A=(T3) — AT
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FYURYA(UR) — o(y) — bl A(UON N
+( P ) A (U2) — o(y) — ¢h(y) AxU2))* ) -=0 (3.18)
X

we should have (B, v*,v™) =0, where ao(y), 15 (y) and I° (y) are given in (3.10)

Proof: Let r¥ (y) (k = 1, 2,3) be the eigenvectors of (A1{U2) — @h{y) Ax{U2) — (1)) ==0
with respect to AE(y), then the basis of the set

{(8. 0%, 07) PTlyke* (y) = v (), P~ yv™ () = v~ ()} (3.19)

is piven by
(1,0,0) U {0, 73 (1), 0) U (0,73 (1),0) U(0,0,7T (). (3.20)

Fromn definitions, obviously we have

M(1,0,0) = (FGU” )
MO .0 = ( )
Mot 0).0 = ( QIS0 )

5y
7 ()
) )

)
)+ FYU2
T
det(M(1,0,0), M{0,7F (3),0), M{0,73 (3),0), M{0,0,77 ()

:lk-l-lF

l‘-"-l-\-_'

M0,0,7T () = ( ()‘E-)::g:&y])kfi (1)

1

which implies

[FolU%)] F(ULrdy) FRUDT) FiUS)rT )
= (AT AT AT ™! ° ﬂzﬂa)rfm (mf(m S s ) ‘
soly) -5, TN W ()

does not vanish by vsing the one-dimensional stability (2.11).
Thus, we obtain the conclusion. 4

First, we suppose that there are functions (V2(y), V2(y),o(y)) € H**+3(I) and woly)) €
H**+% (Isatistying the zero-th order compatibility condition (3.7).

Remark 3.2: From [3], we know that for any fixed y € T, 0 < -y < 5 and 0 < |7(y)| <
71| for 42 = —P!{7) given in (L.6), there is a unique planar subsonic phase transition
Vi), x> eoly) +oly)t
Ut 2, y) = { A 0
TE2D=100), 2 < poly) + ol
satisfying
Poly) = A2 0NE () —eblyi(y) — o))/ 1+ 65 ()

and the viscosity-capillarity criterion (1.14) on {z = wa(y)+o(y)t}. Then, (Ve(y), VE(y),oly)
satisfes the zero-th order compatibility condition (3.7).

The next proposition shows that larpe classes of initial data can be penerated so that
the compatibility conditions up to order s — 1 are satisfied.

Propasition 3.3: Asswne that (V2(y),V2(y).c(y)) € HHE{I and poly)) € HHE(T)
sotisfy the zero-th order compatibility condition (3.7), end gt(y) e H*1-%{I) (k €5 -1}
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are arbitrary functions satisfying P2(y)gE(y) = 0. Then there are (U5 (2,4),¢°(f,y)) €
Ho+tlw) x H**?{{ =00, 00) x T) so that

(1) U(0.3) = V2{y), ©°(0.3) = woly), 8®(0,) = oly), and (T = PE{y))OEUR oo =
gE(y) for Ll kg8 -1,
(2} (U5 (z,9), & (£, 1)) satisfies the compotibility conditions (5.14) forany0 € k£ 5-1.

Proof: From Letnma 3.1, we know there are uniquely determined functions (A (y), o (y)) €
H*+i=F (0 € k € s — 1) such that PE(y)hE(y) = ht{y), such that the following identity:

Fo(U°)] FUo(y) + eh(y) A (U5) — AL (U))<*!
(TR )etors (P Lot~y )t

R0 ) AL(T) = o(y) - oh () Aa( TP Y —
+( 12 (5 (AT — o(y) — ohlz) Aa(U2))* )”k‘y’

=f(k:] {é}:;ﬂ.f{y]} 0€i<k-1 :{éﬁrt’?{y)} 0€i€k—-1 (3.21)
Lyigk I+isk

bolds for any 0 € k € s—1, where v {y) = h¥{y) + gE{y) and () are piven in (3.14).
By using the trace inverse theoremn, there exist

Ug(z,y) € HH ' w), ¢°(ty) € H**{((—00,00) x 1)
such that

{8:Ug|z=o =v¥y), 0<k<s-1
W°(0,y) = woly), B0, y)=0(y), FP0.y) =01 (25k<s)’

3.3 Proof of Theorem 1.4
3.3.1 Construction of an approximate solution

For simplicity of notations, denote the problem {3.6) by

Li(Ui:W)Ui = 0:- (94 >0

GI(U'F: U—:w:%] 20: 0[].."'.!:0 (3 22)
GZ(U'F: U—:w:%] = 0: onx = 0 :
Ue(0.2.9) = UR(2.9).  9(0,%) = poly)

where
L3 (Ug,0) =8 £ (A1(Uz) — oy A2(Us) — 908 + Ax(U4)8,

and G1(-) =0, Gz(-) = 0 represent the Rankine-Hugoniot condition, the viscosity-capillarity
admissibility criterion given in (3.6) respectively.
As in Theoren 1.4, we assume the following condition (MA2):

for any fixed 5 > 9, Ul € H**'(w), ¢ € H**+%(I) satisty (MA1) and the
compatibility condition (3.14) forany 0 € k< 85— 1.
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With ° € H**?(bQr,) being given in Proposition 3.3, we are going to construct

U§ € mi25Ca ([0, To), B+~ () (3.23)
such that - .
Liitfi:wD)ng 1 x>0
Gl(@:@a@?ﬂ’g)zg{f; O'l].."_?:ﬂ (324)
GZ(UE,UE,@?, y:l=9‘g, on =1
U‘i{ﬂama Y= Ug :.c,y), ‘;‘QU(G: y) = @0(9)
ard _ _
8:fi |E='D = 0: 8 9'{1] |E=ID = 3:9% |E=0 = 0 (3,25)
for0<j<s-1.
Denote by
03 |
L= Tkl (025%9)

then from (3.24)(3.25), we obtain
mi e H* 0gj<s) (3.26)

Let P{8;, 8.,8,) be a scalar linear hyperbolic operator of order s+1, 1), € H**+1=1(IR?)
be an appropriate extension of m} to {2 < 0}, and W3 € N C7{[0,To], H*+!~7) be the
unique solution to the following Cauchy problemn: '

PWS =0, i >0
{ &gwi |!=0 = Tﬁi(l‘r y)r 1 E .'? E & ’ (3'27)
Then, the restriction B
Ui{t,m,y] = W?g|z:>0 (3.28)

topether with °(x,y) are the approximate solutions satisfying (3.24)(3.25). Indeed, since
the initial data (I73 (2, y), @o(y)) satisty the compatibility conditions up to order s — 1, and
from (3.27) we conclude (3.25).

3.3.2 The iteration scheme

Similar to [12], first, for any n = 1 and integer 5 = Q, let us mtroduce notations as follows

T p4oo
<g3lr= 2 [ [ mPeetogor ol ayar
1] -

aySpy=4

L) oo
] " 2
For=3 fo <O f I, g dz
=0

il T Y]

2 2 vy o Foo 2 o
I|V|”a.o1.T =<4 >a+1.n.T + Z({: 8-"3-1 >a-j.n.T + < 5._1,.1 >a-j.n.T)+n(|v+|a.n.T+|v-|a.n.T)
where ¥ = (vy, v-, ). We will siinply denote < - .7, | - let, || - |le7 the cases when the
above norins are independent of 5 = 1, and < - >,, |- |, || - |2 the cases when T = 400,



Denote by Er the extension operator given in the Lemma 3.1 of [12]. That is, for any
fixed 0 < T € 2, V = (v, v_, ) satisfies ||V ][4 < oo and

{3:vt|:=o=0 0<i<s-1)
eli=o=0 (0£7<3)
the extended function ErV satisfies

EfV =V for 0€i<T
ErV =0 for t<0 and t>Tp (3.29)
IBrV I3, mre € CallV I, r forany 05 <3

with a constant 'y depending only on s.
Now, we introduce the iteration scheme for the nonlinear problem (3.22). Let

(T (t,2,9),0°(t. 1)) € (MZ5C7 (10, Tol, H*+ 1= () X H (90,
be the approximate solution constructed in §3.3.1. Define the functions inductively as fol-

lowrs: o
;=03 + Br, W}
{99” =" + Er,¢" (3.30)

N

where

VO = (W), W2, 4% = {0,0,0) (3.31)

and V" = (W37, W, 4™) is the unique solution for 0 € ¢ £ T, to the following problen
provided V=1 = (W7~1, W==1 $*~1} being known already for 0 € ¢ < T,y

LU W = /3
4 :a—l‘ga:—‘l)(W:er: ?2¢;)=g?
G;.(U:_‘.U’_‘" w?".w:_')(wr’wf’ T:85) =68

(W3, Wir,¢™) wvanishfor £<0

LU=t

(3.32)

where G.';(Uar Ul apeipy) (Wi . W_.d.¢,) (7 = 1,2) denote the Fréchet derivatives of G; with
respect to their arguments at (7, U_, @1, ¢y,

= -Lt{U:-lawn-l)ﬁgg £>0
iz {0, <0

and

g? = ;,(u:",Uf",@?"‘¢;-1)(E'Tn—1W:-1?ETn—lwf-lr(ETn—t ¢n-1)h(ETn—1¢n—l)y)

-GULL U et

Similar to [12], in the iteration scheme {3.30)(3.32), we have taken the Picard iteration
schetne for the equations, and the Newton schetne for the boundary conditions in (3.22).

Before studying {3.32), let us first state a result for the linearized problemn of (3.22).

Under the assamption (MA1) piven at the beginning of this section on the initial data
(U2(z, ), U2 (z.y), wo(y)), there is § > 0 such that for any smooth funetions (U4(f,2,y),
U_(t,2,9),p(t,y)) satisfying

sup([Us = U |+ oo — ol + Lo = o ()] + [8y(e0 — 0} ]) < &, (3.33)
fry
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the probletn (1.24) as follows:

OeVe £ {A1{Us) — 0, A2(Us) =) Ve + Ao{Us), Ve = f2, t.2>0
BV, V_.¢):=bot + 01, + MV + M_V_=g onz=10 (1.24)
(Vi Vo, ®)eco vanish

with (bg, by, M4, M_) being the same functions of {7y, ) as in {1.24), is well-posed for
(V,,V_..#), which means:

Proposition 3.4: Suppose that the assumplion (MA 1} is sotisfied, and (§.55) holds for
(U7, U_, ). Jf we have

(fs.f-.0) wanishesfor {<Q and {>7T, (3.34)
If+l5 + =15+ < g >§ s fivite ‘
then there is o unique strong solution V = (Vy, V-, &) to (1.24), and the estimate
1
V1507 < Ch {E(|f+ BT+ - Grr)+ < g >g,«q.'r} ; 0<TED (3.35)

holds for i = C, where C1,Ch > (0 depend only upen the gquantities (8, UL, U_, wlo1,) for
any fired 8 > 9.
Additionaily, if |f4|5 + |f- 3+ < g >1 s finite for s 2 9, and

3:ft|s=0 = 3;9'|s=0 =0

for any 0 < § < s5—1, then the solution (V4,V_, @) belongs to H* x H* x H*+!, and satisfies
the estiinate

1
IVIE, - <€ {Eumiﬂ PP < >§.,,.T} . (3.30)

This result can be obtained in the same way as in [11, 12] by vsing the uniforin stability
result, Theoremn 1.2 which we proved in §2.2.

Let us apply Proposition 3.4 to study the convergence of the iteration scheme (3.30)(3.32).

For any fixed s > 9, denote by C, the Sobolev embedding constant satisfying

e | Leegerry + 1=l noegerzy + 1@l e oy € CallV e

for any V = (vy,v_,p) € H* x H* x H**!, and g > 0 a small quantity such that when
{U+, U—r *P) satisfies

Ty = U2 V- = V2,0 — eh(y) - toly)llir, <€ (3.37)

we have (3.33).
For the iteration scheme (3.32), let us define

T =min{T: ||WL, W2 i = &}
and

T, = min(%,ﬂ;], (3.38)

Propaosition 3.5: (BOUNDEDNESS) For any fized s = 9, and &5 > 0 being given as in
(.57}, there are A € (0, 1) and T, > 0 such that the solution sequence V™ = (W3}, W2, )
defined by (5 88} satisfies

V™2 eryr <€ (¥n € BV) (3.39)
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where n(T) = CpT-2.

Proof: The proof is the satne as that of Proposition 4.1 in [12]. For cotnpleteness, let us
briefly recall it. (3.39) shall be proved by induction on n. Tt is true for n = ( obviously.
Assumne that {3.39) holds for the case n — 1, we study the problem (3.32).

Employing Proposition 3.4 for (3.32), it follows

|||Vn|”3'q[:T =G { T )(|f+|.q«.-,(T)T + |fn|a'q[:T T <gl.97 > .q«.-,(’r).’r} . (3.40)

Without loss of penerality, we consider the case () < Ty < 1, which vields

E—ECQ EE—ZCDET_-B ‘5 1

forany 0L A< 1and0 2T ETH L
Fromn the definition, we can easily deduce

IF2 12 2em. T CCr g TR 2R r
<gT.95 >? AT)T= = Oy Zk T8 « 9r:95 PR
IV IE 7 < Col VI ez

with an absolute constant Cy > 0 when 9(T) = CoT-7.
Therefore, from (3.40) we obtain

| &
V™15 < Cs (Tﬁ Y TR R + R + 2 TP < g g7 >i:r) :

k=0 k=0
(3.41)
Omn other hand, from the classical interpolation inequality, we hawve
2k
3 < CREL AR
. (3.42)
< 67,98 »irS Ce <9708 ,T< 97:9% >or

for any 0 < T < 22, 0 < k < s with . depending only upon s.
Fromn the assumption (MA2), and the induction assumption on ¥V™=!, we have a constant
C(€p) depending only upon €5 > (1 such that

|fEle1o < Clen) (3.43)

for f7 piven in (3.32).
Furthermore, by using fTleco = 0 and [|fE e (g, ) S €, we have

F2l8r < CT. (3.44)
Substituting (3.43) and (3.44) into (3.42), it follows
2R 0T (0gk<gs) (3.45)
which implies ,
S TR 22 4 7R r) S C(L+T-%) (3.46)

fe=0

when 0 < A< 2(“_1)



Set Zy = (U9,02,8¢°,8,0°. From the property of the Newton iteration schetne, we
have

& = ~Gs{Zo) + O(|Br,_,(Wy~" W21, 06" 8,6" 1))

which itnplies
< g »irs Cl< G Zo) »5r +IV™lsr) (3.47)

for j=1,2
Similar to (3.44), we obtain
<¢l.95 >ors CT (3.48)

by using g7|e=0 =0 and [|g?|leren.y € €.
Substituting (3.47)(3.48) into (3.42), it follows

£

< o768 > CT (< GilZ), Gal Zo) >3 r +IV™ I8 )*
which implies
-]
Y TPER o @ g S CIT %+ < Gl Zo), ol Zo) >0 +IIV™ I2r)- (349)
k=0

Substituting (3.46) and (3.49) into (3.41), we conclude

IV 2 € CIT3 % 4 TP 4+ T34 < Gi{ %), G2(Z0) >21 +IV™ 12 1)

which implies that there exist T, > 0, eo >0 such that if ||V, < &, we have
V™57, < eo (3.50)
1

Propaosition 3.6: (CONVERGENCE) [nder the same assumption as in Proposition 5.5,
there are constants C1,Ch > O depending only on 8, such that for onyn > Co and T < T,
we have

1
IV=*! =Vl e < 01{5 + TV =V 15 51 (3.51)

Proof: When T < T,, we can omit Er__, in the problem (3.32), from which we know
that V™! — V7 = (Wit — W3, W2+ — W2, 4™+ — §7) satisfies the following problem

LU eMWEH -WH =Y, t2>0
G W3t —WRLWIH W2t gt g - ) =g (G=1.2)

F{UR R en )

(Wit —Wr, Wt —Wr, 47+ — 7)) vanishes for £ < 0

(3.52)
where
Fott = —LAUR, 02 + U0~ )02 + (LU, ¢7) = LU o) W3
G =G =g G gy T Crwp o) W WG
(3.53)

Employing Proposition 3.4 for the problen (3.52), it yields

! Fr Fr 27 F T n
v+ =v7I3 ., < Ci {E(|f++1 By + 2 o)+ < gL g5 :’gﬂ.’T} - (354)
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On the other hand, from (3.53) we easily deduce

e 1 -
e R ,r € Callve =V, r
<@L BT S rS CT <V =Vl BE

when T € T, be using Proposition 3.5.

Thus, we iminediately couclude {3.51) from (3.54) and (3.55). §

The proof of Theorem 1.5 follows standard arpuments. Tn detail, froin Proposition 3.0
we know that there are T, € (0,T,], o € (0,1} and 5y > 0 such that

V7t =Vl gy 7., € @llV™ =V 7G4, .. - (3.50)

Froin Proposition 3.5 we know that V™ = (W7, W2, 4™) is bounded in H* x H* x H**!
for 0 < £ < T,. Thus we obtain V = (W, W_.4) € (H*(Qr,,))2 x H*+1(¥Qr,,) such that

{n— +o0)

Wg —"W* in HT(QT")
M —p  in HH{bQr )

for any 0 < r < 5, and ~
U7y = Ug + Wy, ‘:}9:@04“3&
are solutions to (3.22). q
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