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Abstrect

The Seul-Andelman membtrane is a systern of two coupled fields: The composition # of one
of the two (4 and B constitubive molecules, and the height profile kb of the Hexible membrane.
The ftee enetgy of the system conssts of two patts. The first patt is the vsal Gimeburg-
Landau free enetgy of ¢; the second patt iz attributed to the bending of the membtane and the
coupling of ¢ to h. The coupling tetm models the tendency that the two molecular coostituents
dicplar an affinity fotr tegions of the membtane of diffetent local cutvatute. Io a patticilar
parametetr range we prove the exdstence of the scliton-stripe pattern, vsing the I-limit thectr in
petturbative variaticnal calculiu=. This pattero medelled by ope-ditmensicnal local minimizets
of the free enetgy of the systemn, consists of 4-tich and B-tich sttipes coveting the metmbrane,
delineated by sharp domain walle. The optimal spacing between domain walls is determined
fromm the global minimizet of the T-limit.

PACS codes. B4.60.Fr, 68.55.Jk, 02.30.3x
Lier wotds. metmbtane, scliton-stripe pattetn, local minimizet, global minimizet, T-comvetgence.

1 Introduction

We study a memnbrane problem considered by Seul and Andelman [28]. In a 2-D sheet there are
two partially incompatible molecular species, say A and B, which can diffuse laterally. We asswme
that A and B molecules form an incompressible film that fully covers the sheet. The state of the
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TCorresponding author: Xisofeng Ren, Fhone: (135) 797-0765, Feoo: (135) 797-1822, E-mail: ren@msth vzo.edu
{Supported in part by & Direct Grant from OUHE and an Earmarked Grant of BREC of Hong Kong.



(1 =

Q.5 Q.=

a.s as a.s as

a a LU

Figure 1: {1). In the absence of bending, the A and B molecules form a large A-rich damain and a
large B-rich domain. (7). With (1.2), A and B madlecules form a lamellar pattern on the bending
membrane.

gystern is then characterized by selecting the relative composition @ to serve Bz an order parameter:
@ =1 indirates pure A composition, and ¢ = 0 corresponds to pure B composition. A walue of @
that iz betwesn 0 and 1 represents a mixture of the two types of meolecules. The incompatibility of
the molecular constituents will favor segregation into large coexisting A-rich and B-rich domains,
Figure 1 (1). This situation is modelled by the familiar Ginzburg-Landan free energy

quwm) oIV, (1.1)

where we may tale W (&) = (1/4)({$—1/2)* - 1/4)%, and 0 ¢ B is the sheet. Becanse the numer
of A melecules and the number of the B melecules are conserved quantities, we assume that & = m,
where ¢ = ﬁ [, #(r)dr is the average of &, and m (0,1}, the average relakive composition of A
molercules, is given and fived.

The situation is substantially altered when we allow for out-of-plane (bending) distortions of the
gsheet. Specifically we asswmne that the two molecular constituents display an affinity for regions of
different local curvature of the sheet, Figure 1 (2). The molecules separate inbo A-rich and B-rich
micro-domains. The tendency can be modelled by introducing & coupling term between the local
composition of ¢ and the curvabure of the sheet. Provided thab distortions remain small, we may
add to (1.1}

ﬁi%lvhmﬁ + SBR[ + Ad() Ahir)) dr, (12)

where h represents the beight profile of the sheet relaktive to a flat reference plane and 02 now becomes
the projection of the shest to the reference plane. « is its surfare tension, and w is its bending
modulus, A measures the strength of the coupling of local curvabure Ah and local composition .
The free energy iz now & functional of both @ and A.

The soliton-stripe pattern is a lamdlar pattern for ¢ which varies in one direction. Tt is char-
acterized by sharp domain walls delineating fully segregated A-rich and B-rich regions, Figare 2
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Figure 2: (1). A solibon-stripe patbern for ¢ where sharp domain walls separate A-rich and B-rich
regions. [2). A sinusoidal pattern which has no sharp domain walls. A and B melecular constituents
are more mixed in {2} than in (1)

{1}. The similar phenomenon occurs in many other systems incduding diblod: copolymers (Leibler
[11] and Ohta and Kawasaki [15]), Langmoir monolayers of polar molecules (Andelman et al [1]},
and smectic films (Selinger et af [27]). In the diblock copolymer theory this patbern, which occurs
in systems with large polymerization indexes at low temperature, iz called the strongly segregated
lamellar pattern, and in [27] it is called the solibon-stripe pattern. Here we follow the terminclogy
of [27]. We will show the existence of thiz patbern using the T'-limit theory of De Giargi [5], which is
a rigorous singular perburbakion theory in variakional caleulus. More specifically we will prove that
the free energy of the sysbem in one-dimension has local minimizers that have solibon-stripe shape.
This argument was first used by the authors to study strongly segregabed lamellar patterns in di-
and tri-block copalymers [17, 18, 21]. We will also debermine the optimal thickness of an A-rich, ar
B-rich, region by studying the global minimizer of the free energy functional in one-dimension.

There iz another lamellar pattern which has no sharp domain walls. ¢ forms & partially segre-
gated, sine-lilke function in space, Figure 2 (2). This type is termed the wealdy segregated lamellar
pathern in the diblock copalymer theory [11], and the sinuscidal pattern in [27]. It may be studied
by the stan dard bifurcation theory. We will give a sletch of this method in Section 6.

Mathematical studieson perindic patherns with sharp domain walls started rather recently. Many
worlks have been done to the block copolymer problem. The literabure there inclodes Mishiora and
Ohnishi [13], Ohnishi et al[14], Ren and Wei [17, 19, 18, 20, 21, 22, 25], Cholsi [2], Fife and Hilhorst
[7], Henry [8], and Chalsi and Ren [3]. Elsewhere Ren and Wei [21] sbudies this phenomenon in
charged monolayers, and [23] in chiral liquid crystals.

2 Soliton-stripe pattern

To study a lamellar pattern, it is nabural to take the sample 02 to be a square. Let 02 = (0, L)% (0, L)
The size L of the sample will be determined mathematically The consequence is that L i= several



times greater than but still camparable to the thidiness of one Aridh, or Brich, region. MNext we
scale 02 bo £ = (0,1} % (0,1} to separate the size effect of the sample from ibs shape efect. Namely
we let (v y) = (r /L, refL) € D for v = (r1,v:) € 2 Then the sum of (1.1) and {12} divided by
L® becomes

) b . o I A
L[W{cp]l + EW@P +o573l¥ hl* + Emnﬁ + 300k drdy. (2.1)

Here we have regarded ¢ and A as funchions of the new variables + and .

Since lamellar patberns vary in one direction we assume that ¢ and & depend on r only. S0 (2.1)
becarnes an integral on (0,1). To eliminate the boundary effect we identify 0 and 1 to turn {0, 1) to
R/Z, ie we assume the periodic boundary condition, throughout this paper. This is the simplest
boundary condition bere. However we do pay a price of taking care of the translation invariance.
COn R/Z there is the action by the translabion group,

g0 we will often use phrases like ‘module translation’ and *up to translation’. We rewrite (2.1} as

. - . R .

Pt = [ W(8)+ 502 + 5+ Gt 4+ evan i (22)
Q

where

é, g WHR/E), 6—m=7=0 (2.3)

1

We have introduced new positive parameters € w, and 4 to replace the criginal physical param-
ebers in (2.1). The new parameters are relabed to the original parameters throngh

bl";g (_:I'l-'l.gL Mll."i
= T am e T A (2.4)
The new function g is proportional to k., Le.
ﬁ;]..-"3
7= piagsa e (2.5)

Here h, stands for the derivative of k with respect to =. In (2.2) g is the second wariable of the
functional. MNow ¢ is the average of @ on (0,1). 7§ = 0 because of {25). The function W may be
generalized from the exach formula mentioned afber (1.1}, We assume that W is smooth, it has
a global minimum valoe 0 achieved at exactly two points: 0 and 1, and it prows to co &b least
quadrabically fast as its argument approaches 4.

We will show mathermabi cally that the scliton-stripe pattern exists if

£ — 0, and w, F remain positive and fixed. (2.8)

This condition may be interpreted in terms of the original parameters with the help of (2.4). More
specifically (2.6) is equivalent to
BliZols s BliZoli3, 153

=0 L (2.7)



Mote that I does not appear in (2.7). This is natural since L, the size of the membrane, is a chosen
parameter, while b, o, x and A are inbrinsic physical parameters of the membrane. Once the physical
parameters b, o, & and A are in the right range (2.7), we take

Hl-';g
gl

(2.8)

The condition (2.6) is then satisfied.
Our main result is the following theorewn regarding the existence of the soliton-stripe pattern as
local minimizers of F,. The procf of the theorem will span Sections 3, 4, and 5.

Theorem 2.1 {inder the condition (2 ] for sach positive cuen integer K the functional F, has a
local minimizer (., q.) when ¢ iz sufficiently small It satisfics the Euler- Lagrange equation

— Py +W(P) + ey, = Conmst. (2.9)
— ez +uig—ydy = D (2.10}

and has the properties lim, g |@. — dof|z =0 and lim,_o | 2. — 9o||22 = 0 modulo transiation, and

2R sinh ¥ sigh #1=ml
2 sinh &

—1 . _ -
L€ Fld.,q.) ="k (2.11;

The Const. in (2.9} is a Lagrange mulkiplier coming from the constraint @ = m. || - |3 denobes
the Linerm and |- |35 the W™ norm. 7 in (2.11) is a positive constant defined by

T= /l 2W (u) du. {2.12}

It iz called the interfacial tension, not to be confused with the surface tension ¢ in (1.3). That ¢,
develops a Solibon-Stripe patbern as ¢ — 0 lies in the fact thab the limiting profile ¢ of @, is & step
function with /v regularly distriboted junp points:

3

an (0,(1 —m)/A]},

an ({1 —m) /A, (14+m)/R),

an ({1+m) /A, (3 — m) K]},

an ({3 — m) /A, (3 4+ m)/R), {2.13)

= O = O

dolr) = {

=

on ({K — 1 —m)/R&, (K — 1+ m)/K),
an (A —14+m)/ /A 1)

=

]

The limiting profileof g, is go which is the solution of (2.10) with ¢ = ¢, While & is discontinuons,
0o is of class W32

One of the local minimizers of F, in Theorem 2.1 is a global minimizer. Our second result
describes this global minimizer and gives the number of its domain walls, The existence of a global
minitmizer follows from the sbandard argument. Let [r] dencte the greatest integer less than or equal
to e



Theorem 2.2 Let(#,,q.) b a global minimizer of F,. Then under the condition {2 8] lim, _q ||&, —
Popt||z = 0 up bo tmnsldion. fup is (2 15) whose number of jumps Koo ds cither [{,] or [f] +1,
where £, is the minimem of the funclion
3 sinh 2 sigh “l=m

2 sinh &

Rit) =T -

defined on [1,00).

Straight calculations show that A{f) is convex in . Hence there is a unique {,. For large { we
can expand A{t) and obtain, up to an addibive constant, that

'}-gw?'mg{l —m)?

Alt) =Tt 2 1
(f) =7+ e (2.11)
We then find T .
TeTm TM)Te
b o 2.15
T ) (2.15)
From (2.18) the optimal spacing may now be determined in terms of the original parameters
2L a5 L Lt e R
~ = S - {2.18}

Bope By ANSGLEmEE(1 _ pm)ae

which is the optimal thickness of a cycle of an A-rich layer plus a B-rich layer. MNote, as it should
e, the last quantity in {2.16) is independent of L.

Even though the last quantity in (2.18) is an approximabe formula in this context, it is indeed a
Pliysically accurate description of optimal spacing. As L expands in the range (2.8}, both « and w
increase. The approximation (2 11) becomes more accurate near f,. Then (2.15) is more effective.
The right side of formula (2.16) is actually the optimal spacing in the thermodynamic limit (L — o).

MNow we begin to prove the two theorems. We hold ¢ and minimize F, with respect to 4. The
unique minimizer g satisfies (2.10). Substituting this g inbo (2.2) and using (2.10), we turn the local
variabional problem (2.2} of two variables @ and g to a nonlocal variational problem J, of one variable
12

L 3 2
1.(6) = min F.{é, q) = / (W& + 562 — T 6.Glan)) dr (2.17)
g u]
where 7
& e WHER/Z), 6 =m. (2.18)
Here & = G{z,y) is the Green funchion of
— g tolg=38( —y), (2.19)

which is also viewed as a nonlocal, solution cperator, ie.

1
Gleal(@) = | Gl @y
For technical ressons I, is trivially extended to X :
X, ={pc L R{Z): p=m] (2.20)
by taking I,(#) = oo, for ¢ € X \W(R/Z).



3 [-limit

The Tlimit theory is a singular perburbation theory in the calculus of variations. An introduction
to the theory may be found in Dal Maso [4]. In this theory there is a perturbed variationsl problem,
which is often & standard one with & small parameter, say € The Euler-Lagrange equabion of this
problem iz often a differential equation, although in cur case the Euler-Lagrange equation is an
integro-differential equation (6.2). The limiting problem, as ¢ — 0, is usually a geomebric problem,
whose Euler-Lagrange equation is a free boandary problemm.  Cerbain properties of the limiting
problem are carried over to the perburbed problem. In this sense the perturbed problem is reduced
to the limiting problem.

In this paper we need the property, Corollary 3.2, that near isolated local minimizers of the
limiting problem there exist local minimizers of the perturbed problem. Then the construction of
local minimizers of f, becomes the search for local minimizers of the limiting problem.

The singular limit (the Tlimit) of ¢ 15, denoted by J in this paper, is & variakional problem
initially defined in

A={sc BV(R/Z {0,1}): & =m]. (3.1}
Here BV(R/Z) is the class of periodic functions of bounded variation with values in {0,1}. Each
function in A has a finite number of junps betwesn 0 and 1. A more formal description of these
functions may be found in Evans and Gariepy [6, chapter §]. INaturally for each positive, even integer
i we set

Ap ={pc A: ¢has & junps]. (3.2}
Then we have o decompeosition
aa, BVEN
A= | Ax (3.3)
AR=3
For each ¢ in A we define
Tt
Ji{@) =rh — 5 / e G| dr, if d2 Agx. (3.4}
o

Here the positive constant v is defined in (2.12). Again we extend J trivially to X, by taking
J(@)=coif p € X \A

TUnless ctherwise indicated, convergence of funckions in X, means convergence under the L3
fula) v

Proposition 3.1 Let X, b equipped with the L® metric.
1 Ase—0, 71, T-ronverges to J in the folloming sense.
fa) For cuery family ¢, C X, with ””E. P =, l'u:niél:lf e L) 2 T(@);

(4) Forcvery @€ X, there ts {o,] C X, suchthat im ¢, = ¢ and imsupe 11 (&) £ J(#).
e—0 e—0
2 Let g; be a sequence of posilive numbers congerging o 0, and {$;] a sequence in X If
Ej_l..l",j (@) is bounded above in §, then {@;] is relalively compact in X, and ils cluster points
beiong to A



Froof. We view ¢71J, a5 a sum of a local part

K (6) = [[1 W(e) + o] dx (3.5)

and an s-independent, perturbative, nonlocal part
ot
2 =" / b Gl ] . (3.6)
o

Regarding L, we note that ¢ — L{$) iz continuous from L*(R/Z) to R by the elliptic regularity
theory.

After making some miner modifications (change Lt to L) in the proof of Propesitions 1 and 2
of Maodica [12], we find that &, T-converges to Ay Here

Rol#) :=7H, if & € Ax. (3.7}

Since L : X, — K is a conkinuous funchional, by the definition of T-convergence ¢, = &, + L
T-converges to J = A + 1.
Part 2 of the proposition is type of uniform coercivity properby. If we rewrite

4% gt ¥
T [ ecma = T [ (o ruteaie o
2 Q 2 Q

then the property follows from Ren and Truskinovsky [16, Lemma A.3]. o

The next result proved by Kohn and Sternberg [ asserts that as a corollary of Proposition 3.1
near every isolabed local minimizer of J there exists a local minimizer of §,. The original result in [3]
deals with a domain with a boundary. Here on R Z we must take care of the translation invariance
of §, and stabe the result a little differently. Define a manifold of translates of &g

Midg) ={d & Xn: () =dl —y), y € R/Z}
and a tube like neighborhood of A (#g)
Ns(do) = {@ € Xm : &) — dol —¢)| <4, for some y in R/Z}.

Corollary 3.2 Letd > 0 and @ € Xy be such that J{dg) < J(@) for all & € Nsy(da)\M{d). Then
there erist ep = 0 and @, € Ny do) for all € < e such that T(@.) = (@) for all @ € Ny 3({dn). In
addition §, — @ up o franslation.

Proposition 3.3 If (11,Ts, .., 1) siriclly minimizes J in Ap locally, wp o transiation, then the
COTFESPonRding ¢ is a sirict local minimizer of J in X, modulo transiation.

Froof. Suppose that the conclusion is false. There would be a sequence of $; such thabt ¢;
gmod RYZ, ¢ — ¢ and J(@;) < J(¢). The LPcontinuity of L implies lim;_ o L{&;) = L{#).
Therefore

limsupfalé;) = Ao &)

F—oa



On the other hand the lower semicontinuity theorem of BY funchions {[f], Theorem 1, p. 172)
stabes
Liminf Rg{@;) 2 Kol#).
j—aa

We deduce that
lim K.;.[.:isj]l = .K.;.{-:f:']l. [3.8}
F—oa

Hence for large §, @; has exactly & jumps and is in Ax. Buot this is inconsistent with ¢; — &,
J(@;) = J(@), and the assumption of the proposition.

Now the study of J in X, i=s reduced to the study in Ay, View the jumps of @ 11, 7=, .., Th
as fi points on (0,1), with 0 < 11 < 12 < .. < v = 1, 5o that

0 on (0.},
1 on iz,
, 0 on (T, 7s),
dlr) = (3.9)
1 oni{Trn-1,Tx),
0 aon (rx,1)
Then
By =de, —dy 8., — . — ey {3.10}
The constraint ¢ = m becomes
Ty —T 4+, —Tx+ .. T —Tr—1 =M. {311}

L is now viewed as a function of x5, and

3

Lixy,..,r5) = %ZZ(—ljﬁ"G(xj,rk}. (3.12)

j=lLEk=l
Proposition 3.4 Any critical point (r1, ., rx) of L ($12) in Ap ds 1, = 250, 12 = 210, 25 =
3; T, = 3"’—.’“, TE = EPT, TRl =8 _,]E_’“, TH = w, models transiation.

We postpone the proof of this proposition to Section 4.

Proposition 3.5 At {2.15) or any of its franslates, we have zTEr) . 1x)z 2 0 for all vectors
2= (2, %,..,3x) sabisfying 2 — 2 42— 4+ 2p — 2po1 = 0, and the eqeality holds if and
orly if zoc (1,1,..,1)7 . So (2.18) s a strict local minimum of L tn A, moduls translation.

The constraint on =; is a consequence of the constraint (3.11). We postpone the proof of this
proposition to Section 5.

Froof of Theorern 2.1 The existence of a local minimizer ¢, of & junps follows from Corollary
3.2, Propositions 2.3 and 35, ¢, satisfies that ¢, — @ and E_l}',{@,]l — Jidp) as e — 0. Jifg) is
caleulated in (519}

+* K sinh #M ginh “ﬂl—l

Jigg)l =1 —
(6o} =& Eusmh_;:.

(3.13)



The convergence of g, to g under the W3 norm follows from the elliptic regularity theory for
{(2.10). o

Froof of Theorem 2.2 Tet ¢, bea global minimizer of J,. Then Part 2 of Proposition 3.1 implies
that ¢, — Pope € A in L*. From part 1 of the same propesition we conclude that @, is a global
minimizer of J By Proposition 3.1, @op must be a critical poink of J, i.e. one of the ¢¢'s. A
must minimize the right side of (3.13) among all positive integers K. Hence R = [f] or [£] + 1

O

4 Proof of Proposition 3.4

The Green function of {2.10) is

_ coshiw{1/2 — |z — =|1)
T sinhife f3) ’

G, =) r, 2 e[0,1] (4.1}

At a critical point of L, becanse of the constraint (3.11), we have

2 Y Goylrs,md(—1)F =2 (1.2)

k=L, sk

where A is the Lagrange rmalkbiplier. Let

Plr) =) Glr,z)(-1)" (1.3}
Then F sabisfies x
P+t P = (1), (14
Ateach 7, )
Fllr =) — Flim+) = (- 1)%. (1.8
From (1.3) we also have
Ploy=)+ Plm+) =2 D Guplze, 1;)(—1F. (1.6)
F=l#k
By (1.2) we deduce
Fllag =)+ Flim+) = A (1.7)
Solving (1.5) and (1. 7) we cbtain
Fllr—) = %_ljk Fllo+) = %_ljk (1.8)

We solve (1) on (Tr_1, ) to find

coshuw iz — o)
twsinh wire_ — 1)

oosh wir — 1)

Flx) = Pllrp_1+) + Flire—) (1.9)

wainhe(ry — Tr_1)’

10



which, together with (18], yidds

1 coslh !
_ +Pr|:1'k—}|.7k
te sial ety tw sinlecty
A= -1yt 1 + A+ (-1)% cosh ey
2 w sinl ey 2 wEinhedy,
A+ (—1)F ey,
2u ¢ 2 10
Wehave set {; =,z =Tz — 71,5 =23 — T3, .., {x =Tx — Tr-1, k1 =1 —rx. Similarly if
we consider £ on (Tg,Te41),

P{Ik}l = —PI(IPC_1+::|

= Ati- Dl coth EIP:-H'.

Flae) i 3

(4.11)

I
From (110} and {111} we conclude that % coth %%, k = 2,3,..,R, is independent of k.
Therefore

fa=iy = dp_a=1lg, ls=1ls=..=lx_1. (4.12)

{1 and {x 41 arehandled differently. Translating x,, ..., Tx if necessary, we may assume £'(0) = 0.

T sl el A-1
_ _ [ a] L'y _ - .
Pix,) =Pz, }IL;.'Si ut, — cothwt;. {1.13}

On the other hand (1.11) implies

A+l et A-1 Lt
F{Tl} = ? coth Tg = ? coth Ts {—11—1}

Cambining (113) and (1.11) we find {; ={5/2. Similarly we have {x 1 ={x_1/2 = /2.

5 Proof of Proposition 3.5

In this section we translate (2.13) to

l—-m 1 2—m 2 L — M

_1 = 5.1
) W3 b’ e b 2 B4 b’ 2 Hae—1 b 1 { ]I

to=0, 31 =

where v = &/2 For (5.1)
0 ify & (1o, yo)
if y € (y1,y2)
daly) =< 0 if ¥ e (ysys) . (5.2)

[y

1 if o = {yiu—l; 1]|
The second derivatives of L of (3.12) with respect to x; are
TR 1Y TG s ) £5 £k
_B8L
B ; B, —w? Y (-1 MGy, 1) i j=k
15

(5.3)

11



It is more convenient to study the spectrum of L' in the complex space CF | In this context i is
the imaginary unit. We decompose
1

i
at (5.1). The (7, &) entry of E i= (—1)7"*Q {3 10 ). The matrix F iz & scalar multiple of the identity
matrix, ie.

(LY =E+F (54)

F=(— Y (-1¥*"G(y;, y)Ix. (5.5)

Mote that the sum in (5.5) is independent of j. Let us divide E into 2 by 2 blocks:

=] en ... S0l u—1)
= 10 e ... S1lu—1) _ {56}
Slv—1)0 Su-1)1 - Su-1)le-1)

These blodks are labelled by indices &, £ €{0,1,...,»— 1}. A typical ege is

Gling, ) —GlYaa, trras)
= . 5Y
i -G I:?,f1+3,a 2 s ) G{Ul+3ﬂ TH1aE ] { )

The spectral analysisis done in two steps. First we perform a “coarse”™ discrete Fourier transform
to convert £ to & matrix with vanishing off-diagonal 2 by 2 blocks. In the serond step we study
the spectra of the diagonal blocls.

The coarse discrete Fourier transform, nsed in [21] for triblock copolymers, treats a cyde of two
interfaces as a single unit. I is given by the matrix P whese (o, 3) block is

exp(—2mi S]Ig, w, Fe{0,1 -1}, (5.8}
.._,-’u
where I; is the 2 by 2 identity matriv. P is unitary so ite inverse P~1 iz its adjoint, ie (5.8) with
the —2mi's replaced by 2wi's in the exponents.
Clearly PFP~' = F. The calculation of PEP™' iz mere involved. The (o,%) block of this
produck is
&

1
Z exp(— 2m + dari
6"
The computation of (5.9} is done on the entries of egs individually, so for any s, = {0,1] the (s, {)
entry of (5.9) is

e (5.9)

—1)Ftt Lo f? )
%ZﬂP(—zmj +2m%}ciy-+zﬂa?=‘t+3é}- (5.10)
[

Let us first ==t
coshi{1/2 — =)

9zl = Ju smh[uf?]l

(5.11)

12



on [0,1] and periodically extended to R, and define

(S exp(—2wi " Yg(”) £s=t¢
- 2 2
o, o 1—m,
Glay s,y =4 D exp(—2mi Mgl - ) fs=01t=1 (6.12)
wr, g 1l—m
—3mi— g — fr=1 t=0
lgmﬂp{ gl +———) fs=1,
Straight calenlakions show that
Ha00) = Asll = )
1 - Lt Tt _ pimit e p—imis
1 s g
01l = — — = — — = 513
Q{ﬂ': 1 ]I EL&'{E‘EJ‘-!F e Eg,“; —EF]I l: ::I
1 g g T
1,0 = - — — 1.
Q(ﬂ', ! } P E,‘I‘T:' _ E—Erl% E,—‘:{ _ E—Erl%}

Mate that €(0,0,1) = (0,1, 0) = gl ) + glys) +... + glya—1) = 0 and o, 0,1} is conjugate to
Q{a,1,0). Then

—1yett o — 1)t "
I R B i CCRU NGRS
A

iz the (s, t) entry of the (o, £} block of PE. From (5.9) we aondode that the (o, ) block of PEP !
vanishes if o 75 97 and the (o, o) blodk is

[ o, 0,0 —q(a,n,n]
Ko, 1,00 FHa,1,1) |

This way =LY =E + F is diagonalized to 2 by 2 blocks, where the o'th diagonal cne s

T

_ | @e,0,0) Qe 0,1) | _ -
Ma = |: —Q(cr,l,ﬂ]l Q{D‘,l,l}l :| (Q(D’D’D]I Q(DJD:]-”IZ (515}

Here we hawe uzed the fact that

sinh @M ginh 2l-m)

—1yFtE : = — = !
where the last quantity follows from (5.13).
In the second step of our spectral analysis we study m,. [Mote that
_ Q{DJ D,l]l _Q{DJDJ l}l
o = _Q{DJ]‘JD} Q{D,I,D} . {51?}

1z



COne of the eigenvalues of mg is 0 and the second is 202({0,0,1). Although it is positive, the second
eigenvalue iz irrelevant. Mote thak an eigenvector of the mgem"aluﬂ 0is {1,1,...,1,1}, in the coordi-
nates before the coarse Fourier transform. The invariant subspace corresponding to mg is the linear
span of the first two columns of P in (5.8), ie.

171 171

e1(1,0,1,0,..,1,007 +£4(0,1,0,1,..,0,1)7

In this two-dimensional subspace (1, —1,1, -1,...,1, -1} is an eigenvectar corresponding to the second
eigenvalue of my. However this vector does not sabisfy the condition za—21 42— 24+ 2 — 21 =
0 in Propeosition 3.5, The wector is indeed normal to the condition hyperplane. Other eigenvectors
of L* all satisfy the condition.

When o = 0, the two eigenvalues of m, are Qo 0,00 + |G (e, 0, 1)| — €{0,0,0) + 40, 0,1) and
G, 0,00 — |&{a, 0,1} — €(0,0,0) + €{0,0,1). Fram (513} we find them to be

sinh® + \‘/sm]:z“’m +25u1]1“’msmhﬂl—1ccs i ﬂ]lgﬂl—l smh smh“ﬂlu—l
2e cosh < 3“' “'5“1]1 i

. (5.18)

Both of them are positive To see this we consider the smaller one in (5.18) which is the one with
— in £ The quantity is minimized if cos 22 js 1. Wheu this happens, the entire (5 18} is exactly
0. However here we have oo =1, 2, u—laudl:cs =% < 1. Therefore (5.18) is positive.
One byproduct here is the u‘alue ::uf J ab (2.13). ﬁl:-:::urlim,g bo (3.12) and (5.16),

gn -1
Jld) = TR -1 Z{ DG ()
_'.',Pc=l.'.l
= Ti 0y — {0,013}
3}' ﬂ_hn.um. ﬂ].'l.wt'l ""-:'
- pr- T = (5.19)

disinh 5

6 Remark=

Theorem 2.1 shows the existence of infinitely many sclutions of (2.9) and (2.10) as local minimizers
of the free energy One of them is a global minimizer which is described in Theorem 2.2, All the
local minimizers have the desired soliton-stripe shape, and bence model the soliton-stripe patbern in
1.D.

It is nabural, as done by the autheors in the diblock copolymer problem [22], to study the 2-D
stabiliby of the 1-D solutions viewed in 2D In the diblod: copolymer problem only the 1-I local
minimizers with sufficently many domain walls are stable in 2D, The 1-D global minimizer in the
diblaclk copolymer problem is near the borderline between the stable ones and the unstable ones in
2-D. We suspect, based on our experience in [22], that not all the 1-D local minimizers constructed in
Theorem 2.1 are stable in 2-D. It is interesting to see whether the 1-D global minimizer in Theoremn
2.2 iz sbakle in 2-D. There is also the possibility, as in the diblock copolymer problem (Ren and Wei
[25]), that there could be stable lamellar solutions with wriggled domain walls in 2-D.

11



The approximate dependence of J{#) on &, according to {214}, is

CI?
Jido) =mrh + —
(o) 2 R + 7
tor some proper positive constant £ independent of L., when & is large. This asymptotic formola
that leads to the optimal spacing shows up in many other physical systemns, induding di- and tri-
block copolymers [17, 21] and chiral liquid crystals [27, 23] It is minimized at & = (2E)3F
Ancther impeortant formula that leads to optimal spacing i=

. CL*

i + = (6.1}
which is minimized at & = {%)13‘3_& The difference between the exponents 1/3 and 1/2 may be
significant. In [2d] we showed that (6.1) appears in a dharged Langmuir monolayer problem proposed
by Andelman et al [1. It is also found in the sbudies of the domain structures of ferromagnets,
Landan, Lifshitz and Pitaevskii [10], and superconductors in the intermediabe state, Tinkham [29).

The sinusoidal lamellar patbern, Figure 2 (2}, is of very different nature It bifurcates out of the
constant state (m, 0} of F, MNote that the Euler-Lagrange equabion of (2.17) is

—3 e, + WD) — WH@) +ey3G[é:). =100 (6.2)
The eigenvalue problem of (6.2) at & is
—e*g + WS — WHB)y + ey Clyi]e = A (6.3)
Equation (6.3) is satisfied by & =m. At thiz solution m, we have, in (6.3],
31 = cos( 2mmx ), or ¢ = sin(3nwr), n=1,2,3,.. (6.4}

and the corresponding

]

£ Fa

yli_a_ % i —mrye -
A=defntwt + W {m} £¥ +—1ﬂ.35‘i'3 +|-_"-3:'

n=123,.. (6.5)
In (6.5) A is convex with respect to n®. Depending on the values of €, 4, & znd m the principal
eigenrvalue (ie the smallest A) may be positive, negative, or zero. This allows one to use the
bifurcation theory to find sclutions bifurcating out of m. Sud solutions differ from m by & function
proportional to (6.4), to the first order approximation. We then obtain a sinusoidal lamellar pabtern.
The stability of such solubions may also be determined.

This construction israther standard, =o we omit the details. The reader may find all the necessary
tools in Sathinger [26]. It should be noted thab this bifurcation phenomenon appears in a parameter
range different from (2.6).
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