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Abstract

In a diblock copolymer system the free energy field depends nonlocally on the monomer
density field. In addition there are two positive parameters in the constitutive relation. One of
them is small with respect to which we do singular perturbation analysis. The second one is
of order 1 with respect to which we do bifurcation analysis. Combining the two techniques we
find wriggled lamellar solutions of the Euler-Lagrange equation of the total free energy. They
bifurcate from the perfect lamellar solutions. The stability of the wriggled lamellar solutions is
reduced to a relatively simple finite dimensional problem, which may be solved accurately by a
numerical method. Our tests show that most of them are stable. The existence of such stable
wriggled lamellar solutions explains why in reality the lamellar phase is fragile and it often exists
in distorted forms.
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Figure 1: The spherical, cylindrical, and lamellar morphology phases commonly observed in diblock
copolymer melts. The dark color indicates the concentration of type A monomer, and the white
color indicates the concentration of type B monomer.

1 Introduction

Symmetry breaking distortion often appears for intrinsic reasons in systems of condensed matters
that exhibit self-organization and pattern formation (Seul and Andelman [21], Tsori et al [23]). We
study this phenomenon in diblock copolymers. A diblock copolymer is a soft material, characterized
by fluid-like disorder on the molecular scale and a high degree of order at longer length scales. A
molecule in a diblock copolymer melt is linear sub-chain of A monomers grafted covalently to another
sub-chain of B monomers. Because of the repulsion between the unlike monomers, the different type
sub-chains tend to segregate below some critical temperature, but as they are chemically bonded
in chain molecules, even a complete segregation of sub-chains cannot lead to a macroscopic phase
separation. Only a local micro-phase separation occurs: micro-domains rich in A and B are formed.
These micro-domains form morphology patterns/phases in a larger scale. The most commonly
observed undistorted phases are the spherical, cylindrical and lamellar, depicted in Figure 1. Here
we seek distorted, defective lamellar patterns, where the interfaces separating the microdomains,
unlike the ones in Plot 3 of Figure 1, are wriggled.

We consider a scenario that a diblock copolymer melt is placed in a domain D and maintained at
fixed temperature. D is scaled to have unit volume in space. Let a € (0,1) be the relative number
of the A monomers in a chain molecule, and b = 1 — a be the relative number of the B monomers
in a chain. The relative A monomer density field u is an order parameter. u ~ 1 stands for high
concentration of A monomers. The melt is incompressible so the relative B monomer density is 1 —u
and u = 0 stands for high concentration of B monomers.

Ohta and Kawasaki [10] introduced an equilibrium theory, in which the free energy of the system
is a functional of the relative A monomer density:

I) = [ (GIVuP + F1=8) = a)f + W), (1)

defined in X, = {u € W"?(D) : w = a}, where w := [, u is the average of u on D. The original



formula in [10] is given on the entire R?. The expression here on a bounded domain D first appeared
in Nishiura and Ohnishi [8]. A mathematically more rigorous derivation is in Choksi and Ren [3]. The
local function W is smooth and has the shape of a double well. It has the global minimum value 0 at
two numbers: 0 and 1. To avoid unnecessary technical difficulties we assume that W (p) = W (1 —p).
The two global minimum points are non-degenerate: W' (0) = W' (1) # 0.

The most unusual in (1.1) is the nonlocal expression (—A)~Y/2(u—a). It reflects the connectivity
of polymer chains. (—A)~1/2 is the square root of the positive operator (—A)~! from {w € L?*(D) :
w = 0} to itself. The integral of the nonlocal part in (1.1) may be rewritten as

— _1/2u—a2: T ulx) —a)lu —a)dzxdy.
/D|<A> (u—a) /D/DGD<,y><<> (uly) — a) dedy

Gp is the Green function of —A with the Neumann boundary condition. It splits to a fundamental
solution part and a regular part. The fundamental solution in R? is m, a long range Coulomb
type interaction, which is common in many important physical systems (Muratov [7]).

e and «y are positive dimensionless parameters that depend on various physical quantities [3].
In the strong segregation region where morphology patterns form, € is very small. v is of order 1
when we choose the size of the sample to be comparable to the size of the microdomains [3]. We
develop a particular two parameter perturbation method. We do singular perturbation analysis
with respect to € and bifurcation analysis with respect to 7. The challenge is to combine these
two techniques to derive fine analytical results. Even though this mathematical method is tailored
for the diblock copolymer problem, we believe that it may be applied to other ones with multiple
parameters. Examples include the Seul-Andelman membrane problem [21, 11], charged Langmuir
monolayers [1, 12], and smectic films [20].

The Euler-Lagrange equation of I is

—2Au+ f(u) — f(u) + ey(=A) " (u —a) =0, d,u=0o0ndD. (1.2)
f is the derivative of W. The term f(u) is equal to the Lagrange multiplier corresponding to the
constraint @ = a. The equation (1.2) may also be written as an elliptic system:

—e?Au + f(u) + eyv = Const.
—-Av=u—a

0,u =0,v=0o0n0D
u—a=v=0

Here Const. is the Lagrange multiplier.

In Ren and Wei [13] a family of lamellar solutions is found. When D = (0, 1), for each positive
integer K there exists a 1-dimensional local minimizer of I if € is sufficiently small *. This 1-D local
minimizer may be extended trivially to a 3-D solution of (1.2) on a box. Such a solution, illustrated
in Plot 1 of Figure 2, models the lamellar phase, Plot 3 of Figure 1, only if it is stable in the sense
that it is a local minimizer of I in 3-D. A local minimizer in 3-D is called a meta-stable state of the
physical system. It survives mild thermal fluctuation.

However in Ren and Wei [17] it is shown that such 1-D solutions are not necessarily 3-D local
minimizers. Detailed spectral information at each 1-D solution is found 2. In summary a 1-D local

1See Theorem 2.1.
2See Theorem 3.1.
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Figure 2: A perfect lamellar solution and a wriggled lamellar solution. In the dark regions the
solutions are close to 1 and in the light regions the solutions are close to 0.

minimizer is a 3-D local minimizer only if K is sufficiently large or - is sufficiently small. Moreover
the 1-D global minimizer, which is one of the 1-D local minimizers with the optimal number of
interfaces K,pt & (%)1/ 3, where 7 is defined in (2.2), has a delicate stability property. It actually
lies near the borderline that separates the stable 1-D solutions from the unstable 1-D solutions.

All this suggests that the lamellar phase is only a meta-stable, transient state of the material.
Thermal fluctuation will eventually destroy this phase. In reality one often observes the lamellar
phase in distorted forms. We predict based on the model (1.1) that a defective, wriggled lamellar
pattern (Figure 2, Plot 2) exists in diblock copolymers. We point out that the wriggled lamellar
pattern is typically observed in systems with competing interactions [21].

The existence of wriggled lamellar solutions is shown by a bifurcation analysis. Each perfect
lamellar solution u., with K interfaces is stable when ~ is sufficiently small. The spectrum of the
second variation of I at u., which consists of real eigenvalues only, lies to the right of 0. If we
increase 7, the spectrum moves to the left. When + reaches a critical value 7yg, the principal (the
smallest) eigenvalue in the spectrum becomes 0. A new solution branch bifurcates out of u.,. This
is a wriggled lamellar solution (Figure 2, Plot 2). If we further increase 7, then another eigenvalue of
u~, which is not the principal eigenvalue, may become 0, and another new solution also of a wriggled
lamellar pattern bifurcates from .. However wriggled lamellar solutions that bifurcate from larger
eigenvalues are unstable and physically less interesting.

Whether the wriggled lamellar solution associated with the principal eigenvalue of u., is stable
is a subtle question. It is relatively easy to see that the bifurcation diagram has the shape of a
pitchfork (Figure 3). The stability of the wriggled solution depends on the direction of the fork.
Here we face a formidable problem. The direction is determined by the sign of a number which
turns out to be terribly small (of € order, Lemma 5.2). To find this number we have to expand
the “trivial solution” u., its principal eigenfunction corresponding to the 0 eigenvalue, and the
third function ¢'(0) defined in (5.4), with respect to €. As we prove Lemma 5.2, these expansions
have to be carefully managed. All the lower order terms up to €* vanish. In the end we arrive at a
quantity S(a, K) that depends on a, and K only. The bifurcating solution is stable if S(a, K) > 0
and unstable if S(a,k) < 0. S(a, K) may be accurately calculated by a simple numerical method.
Our tests, reported in Section 5, show that for most values of a and K the wriggled lamellar solution



bifurcating out of the principal eigenvalue is stable.

The paper is organized as follows. In Section 2 we recall some properties of the perfect lamellar
solutions u.. Section 3 contains some spectral information of the second variation of I at u,. The
existence of the wriggled lamellar solutions is in Theorem 4.1. The reduction of their stability to
the positivity of S(a, K) culminates in Theorem 5.4. The lengthy calculations that prove Lemma
5.2 are in Appendices B and C.

To avoid clumsy notations a quantity’s dependence on € is usually suppressed. For example we
write u, the lamellar solution, instead of u.. On the other hand we often emphasize a quantity’s
independence of € with a superscript 0. For example the limit of a lamellar solution v as € — 0 is
denoted by u?. In estimates C is always a positive constant independent of €. Its value may vary
from line to line. The L? inner product is denoted by (-,-) and the L? norm by || - ||,.

To simplify the formulation of our results, we take D = (0,1) x (0,1) to be a 2-D square instead
of a 3-D box. Generalization to 3-D is trivial.

References on the mathematical aspects of the block copolymer theory include, in addition to
the ones cited already, Ohnishi et al [9], Choksi [2], Fife and Hilhorst [5], Henry [6], Ren and Wei
[15, 14], on diblock copolymers, and Ren and Wei [16, 18] on triblock copolymers.

2 The perfect lamellar solution u,

The perfect lamellar solutions that serve as “trivial solutions” in the bifurcation theory are con-
structed in [13] by the I-limit theory. The findings there are summarized in the following theorem.

Theorem 2.1 (Ren and Wei [13]) In I-D for each positive integer K the functional

R = [ (GG + g o + W) de,

0

in {u € WH2(0,1) : w = a}, has a local minimizer u near u®, under the L? norm, when € is

sufficiently small. It satisfies the Euler-Lagrange equation

—eu" + f(u) — F(u) + eyGolu — a] = 0, w'(0) = u'(1) =0,

and has the properties

1 2
- T s 1 _ ¥ _AT a0 2
11_r>%||u u’llz =0, and 611_I>1[1)6 L(u)=7K + 2/0 [ de) (v’ —a)|* dz.

Let H be the solution of
—H"+ f(H)y=0in R, H(—00) =0, H(oco) =1, H(0) = 1/2. (2.1)

The constant 7 in the theorem is defined by



7 is often called the surface tension in the literature. u°

points, defined to be

is a step function of K jump discontinuity

u’(z) =1 on (0,27), 0 on («7,23), 1 on (£3,23), 0 on (23,23), 1 on (£1,23), ...
with (recall b=1—a)

o a o 1+b 4 24a , 3+Db

o 4+a
Ty = 7= m2:K7m3: Ka354 K =

, T 7

(2.3)

Gl is the solution operator of —v" = g, v'(0) = v'(1) = =0, i.e. v =Golg] = (—%)’{q.

There is another K-interface 1-D local minimizer whose limiting value as € — 0 is 0 instead of 1
on the first interval (0,b/K). It is just 1 — @ where @ is a solution constructed in Theorem 2.1, but
with @ = b instead. 1 — @ has the same properties as u does, so we focus on u. w is found periodic
in the following sense.

Theorem 2.2 (Ren and Wei [17]) Let u be a 1-D local minimizer constructed in Theorem 2.1.
When € is small, for every xz € (0,1/K),

2 _ 2, 4 _ 4. [ ul-2) if K is even
u(z) —’U,(E—:L’) _u(m+E) —U(E—:L’) _u(m+E) =..= { u(e+ K=1) i K is odd
Moreover when € is small, u is the unique local minimizer of I, in an L® neighborhood of u®. If u
on ((j —1)/K,j/K) for some j = 1,2,...,K is scaled to a function on (0,1), then it is exactly a
one-layer local minimizer of Iy with € and 7y replaced by ¢ = eK and 7 = v/ K?.

Let us denote this u of K interfaces by u., to emphasize its dependence on . We need asymptotic
expansions of u, in terms of e. According to [17, Lemma A.1] there exist exactly K points z;,
j=1,2,..,K,in (0,1) so that u(z;) = 1/2. These K points identify the interfaces of u. Theorem
2.2 implies that 2o = 2 — @1, 23 = & — T2, ¥4 = 4= — 3, etc. The zeroth order approximation of
Uy is

g T r— T T—x3. H(%5) if K is even
o) = H-T2) g (22 g (- 1+...+{ M fek) 1 K bend - 9
The € order outer expansion term is z°, defined to be

0 0(,0 2
o A@ @) 2,
Aa) =~ W = ()~ a) (2.5)

and the € order inner expansion term is 0. Because of the periodicity, vo(m?) is independent of j and
0

29 is well defined. The €2 order inner expansion term is P, where P is the solution of
—P" + f'(H)P = —y(0°)'(a9)t, P L H'. (2.6)

There are two different P’s depending on whether j is odd or even. But they just differ by a sign,
and it is always easy to tell from the context which one is referred to.

Lemma 2.3 (Ren and Wei [17]) Let z be defined by u, = s + €z.



1. ||z = 2%]s0 = O(e).

2. There exists a constant C' > 0 independent of € so that e *z(z; + et)| < C(1 + |t]) for all

te (=%, %), e ly(zj +€) converges to P in CF.(R).

Proof. See [17, Lemmas 2.4 and 2.5].
It is proved in [17] that u, is a non-degenerate 1-D local minimizer in the sense that the 1-D
spectrum at u., lies to the right of the origin . This allows us to apply the implicit function theorem

to conclude that u, depends on y smoothly. Next we estimate dé‘v’ . Define

X —-$j

hj(z) = H'( ) +e.s. (2.7)

€

where e.s. is an exponentially small correction term. It is chosen so that h;(0) = h;(1) = h}(0) =
R5(1) =0, |Bf — e " H" ()]0 = O(e=©/¢), and W — e ?H" (=) ||oo = O(e©/¢). Decompose

duy

™ = Zc(hj —hj) + et (2.8)

J

where h; — h_J L ¢ for each j. Here that c is the same in front of all h; — h_] is a consequence of
Theorem 2.2.

vo(z?)
Lemma 2.4 1. ¢c = ¢y := ~®K70)
2. ¢ = 0(1), and near each z;, (z; + ) = R in C? (R), where R is the solution of
040
—R" + f'(H)R = —Ufl((:g])) f/(H), R L H'

3. Near each zj, e ' ((x; + €) — R) = v P + by in C7.(R) where by is the solution of
—by + f'(H)bp = —c f"(H)H; P + Const., by L H;.
The proof of this lemma is technical. We include it in Appendix A.
The 1-D local minimizer ., of I; is now viewed as a function on D, through extension to the

second dimension trivially, so u~(z,y) = u,(z). It is a solution of (1.2) and I (uy) = I(u,). In 2-D
it has straight interfaces. We call it a perfect lamellar solution of (1.2).

3 The 2-D spectrum at u,

The linearized operator at u., is

Lyp = —€Ap + f'(uy)p — f'uy)p + ey (=A) "o, o € W»*(D), 9,9 =00ndD, $=0. (3.1)

3See Part 2 of Theorem 3.1.




This is an unbounded self-adjoint operator defined densely on {¢ € L?>(D) : ¢ = 0} whose spectrum
consists of real eigenvalues only.

For an eigen pair (A, ¢) of L., separation of variables shows that ¢(z,y) = ém () cos(mmy) where
m is a non-negative integer. Hence the eigenvalues A are naturally classified by m. We therefore
denote a A that is associated with m by A,,. We have the following reduced eigenvalue problems for

(A Om)-
1. When m =0,

=€ + f'(uy)do — F'(us)do + €1Goldo] = Aodo, 6)(0) = (1) =do=0.  (3.2)
2. When m # 0,
— (¢ =T hpn) + [ (Uy) b+ €YGin[dm] = Andim, ¢1,(0) = ¢7,,(1) = 0. (3.3)
Here G, are the solution operators of the differential equations
X" =¢g, X'(0)=X'(1)=0, X =0, if m =0, (3.4)

X" +m?1*X = ¢, X'(0)=X'(1) =0, if m #0, (3.5)
ie. Gplom] = X. We often identify the operators G, with the Green functions of (3.4) and (3.5).

Theorem 3.1 (Ren and Wei [17]) * The eigenvalues \ of L are classified into N\, by m which
is a non-negative integer. The following 3 statements hold when € is sufficiently small.

1. There exists M(K) depending on K but not € so that when |m| > M (K), A\, > Ce? for some
C > 0 independent of €.

2. When m = 0, there are K small positive \g’s. One of them is of order ¢ whose only eigen-

function is approxrimately Zj(hj (z) — hj). The other K —1 X\o’s are of order €2. Their only
eigenfunctions are approzimately > cghj(m) for some vectors ¢ satisfying > c(]? = 0. The

remaining Ao ’s are positive and bounded below by a positive constant independent of e.

3. When m # 0 and |m| < M(K), there are K M., ’s of order €, which are not necessarily
positive, whose only eigenfunctions are approzimately c?hj(m) cos(mmy). The remaining
Am s are positive and bounded below by a positive constant independent of €. Only when K is
sufficiently large or v is sufficiently small, all the eigenvalues of L are positive and u is stable.

The eigenvalues Ao in Part 2 of Theorem 3.1 are just the 1-D eigenvalues of u.,. That they
are positive is consistent with the fact that u, is a local minimizer of I;. Bifurcations occur at 0
eigenvalues, so we are more interested in the A,,’s of Part 3. In [17, Sections 6 and 7] we obtained
asymptotic expansions of the K pairs (A, ¢,,) in Part 3. When m > 1,

b
Am = e“’(}(A - %) +m?n?) +0(€?), bm =Y cihj+ . (3.6)
J

4[17, Theorem 1.1] is formulated for a 3-D box. The similar conclusions hold true for the 2-D square D here.



In (3.6) ¢y, is decomposed to Ej cjh;j in the subspace spanned by hj, j = 1,2,..., K, and €2¢;, in
the orthogonal complement of the subspace. Moreover [|¢y,[l2 = O(l¢|) °. As e = 0, ¢; = ¢}. Here
(A, ") are the K eigenpairs of the K by K matrix [G (29, 20)]. [Gm(27,27)] is diagonalized in [17,
Section 7]. When K = 1, it has, for each m > 1, one eigenvalue pair

1 0

A= mm(tanh(mma) + tanh(mnb))’ c ol (3:7)

When K = 2, there are two eigenpairs

1

mm(coth(mma) + cot(mnb) — csch (mma) + csch (mnb))
- 1 0
A= mm(coth(mma) + cot(mmb) — csch (mma) — csch (mmb))’ ¢’ o (1,1). (38)

A= , C O((—l,l),

When K > 3, there are K eigenpairs

1
A=—, " 3.9
T (39)
Here ¢ is one of the K eigenvalues of the triagonal matrix
a B
8 0 «
Q= a 0 p (3.10)
8 0 «
where 2 omib 2 omib
mmra mm mra mm
a = mmesch A B = mmcsch % d = mn(coth ' + coth ),

and ¥ is a corresponding eigenvector of Q.
In this paper we improve ||¢:: |2 = O(|c|) to [|¢||sc = O(|c|), and find the limiting behavior of

¢;- near each z;. Define II to be the solution of
" ! ’y ab ! !
-I" + f'(H)l1 = =(A— —=)H' + Const., II L H', (3.11)
T K

in R. Recall P from (2.6).
Lemma 3.2 1. ||¢:]lec = O(]e]).
2. At each xj, ¢ (zj + €) converges in C? (R) to (P +10).

Proof. We define an operator L,, so that the left side of (3.3) is L;,¢m 5. ¢ satisfies the
equation

Lt =My = Y e {mm?mhy = () = Py — 1G]+ 220} (312
J

5See [17, Formula (6.55)].
6This L, differs from the one in [17] slightly.



We claim that the right side of (3.12) is O(|¢|). The first term inside {} on the right side is obviously
O(1). The last term is O(1) by (3.6). The third term is O(1) because Gm[hT’] — G (2,29) as e = 0.
The least obvious is the second term. It is O(1) by Lemma 2.3.

Suppose that Part 1 of Lemma 3.2 is false. Let ¢ = ﬁ 1) satisfies

L) = o(1). (3.13)

Without the loss of generality we let x, € [0,1] so that ¢(z,) = max|¢| = 1. Then z, — 2; = O(e)
for some z;. If this is not the case, (3.13) can not be satisfied at z, since

Lintp(z.) = =€ (0" (w2) = m*m* (1)) + ' (uy (22))0 (@) + 9Gm¥](2) > £'(0) +o(1).
Define ¥(t) = ¢(x; + et). As e — 0, ¥ converges in C7,.(R) to a non-zero solution ¥, of
—0 + f(H)Ty = 0.

Therefore ¥, oc H'. But ¢ L h; implies that ¥, L H'. Hence ¥, = 0, a contradiction.
To prove Part 2 we let ®(t) = ¢ (z; + €t). From (3.12) we find that &+ — ®Z which is a

solution of )
—(®L)" + f(H)®L = O(f"(H)H'P + %(A _ %)H’ +~A). (3.14)

By differentiating the equation for P we find

b

—(P')' + f/(H)P' = —f"(H)H'P - 2.

So @2, and ¢)(P'+11) satisfy the same equation (3.14). Moreover ¢,, L h; implies ®., L H'. Hence
‘I’é;) = C?(Pl +H). O

4 Bifurcation at (v, up)

We use 7 as a bifurcation parameter. Let A(y) be one of the K eigenvalues of order > found in Part
3 of Theorem 3.1, associated with a positive integer m. Generically this eigenvalue is simple. To
have multiplicity there would be another m' # m so that A(v) = A, for a A, associated with m/.
Because of (3.6) the latter case happens rarely, so we assume that A(y) is simple. It is continued
smoothly to a curve of simple eigenvalues A(y) of L, as v varies. Let yg be a particular value of
so that A(yg) = 0. The existence of such v follows from (3.6). The sign of A(y) is determined, to
the leading order term, by (A — %) +m?n?. This quantity is positive when v is small and negative
when + is large. See [17, Section 7] for more details. Denote the eigenfunction associated with A(yg)
by ¢B(z,y) = ¢r(x) cos(mny). We write up := u,, and Ly := L., for simplicity. Let

X:={weW*?*D): 9,w=00ndD, Ww=0}, Y:={z€cL?D): z=0} (4.1)
Here X is a dense subspace of Y. Y is an Hilbert space with the usual inner product (-, -} inherited
from L?(D).
A nonlinear map F': (0,00) x X — Y is defined by

Fy,w) = —€A(uy +w) + fuy +w) — Fluy +0) +ey(-8) 7 (uy tw—a).  (42)

10



Obviously the “trivial branch” (v,0) is a solution branch of F(vy,w) = 0. It corresponds to the
K-interface, perfect lamellar solution w., of (1.2), parameterized by v. We look for another solution
branch, a bifurcating branch, (y(s),w(s)) of F. It gives another solution wu. ) + w(s) of (1.2).

Theorem 4.1 Aty = v another solution branch (y(s),w(s)) bifurcates from the “trivial branch”
(7,0). Here w(s) = spp + sg(s) where the parameter s is in a neighborhood of 0 with v(0) = yg and
w(0) = 0. Moreover g(s) € X satisfies g(s) L ¢p and g(0) = 0.

Note that u.(s) +w(s) is approximately u.(s) () + s¢B(x) cos(mmy) since g(s) is a smaller term
compared to g (z,y) = ¢B(x) cos(mmy). Plot 2 of Figure 2 is made based on this observation.

Proof. We appeal to the standard “Bifurcation from simple eigenvalue” theorem 7. Denote the
Fréchet derivatives of F' with respect to v by D; and with respect to w by Ds. We need to verify
the following three properties.

1. DyF(vs,0), which is just Lg : X — Y, has a one dimensional kernel, spanned by ¢g.
2. R(DyF(vg,0)), the range of D2F (s, 0), has co-dimension 1.

3. D1D>F(vB,0)pp is not in R(DyF(ys,0)).

Property 1. follows from the simplicity assumption of A(y). To prove 2. we claim that there
exists a positive constant ¢(e,vp) depending on € and yg so that

[|£]]2 < ele,v8)||LY||2, for all ¥ L g, ¢ € X. (4.3)

Suppose (4.3) is false. There would exist a sequence ¥, € X, 1, L g, ||¢n|| = 1 so that || Lg,|l2 —
0. Let 9, = 1. weakly in L?(D). Then v, L ¢p. For every w € X

(1/1*’ LBW) = ('ﬁbna LBW> = (LB’QZJn, w) =0.

lim lim
n—oo n—oo
By the self-adjointness of Ly, 1. € X and L, = 0. Hence ¢, = 0 from property 1. Rewrite Lg,
as

_€2A¢n = _fI(UB)¢n + f'(uB)pn — €7B(_A)_1¢n + Ln.

Since |[¢u]l2 = 1 and ||Lgthn|l2 — 0, the right side is bounded in L?(D). The elliptic regularity
theory asserts that v, is pre-compact in L?(D). Hence v,, — 0 in L?(D). This is inconsistent with
the fact ||¢n|| = 1. Hence (4.3) holds.

We now prove 2. by showing R(Lg) = {¢B}*. The self-adjointness of Lg and 1. imply that
every ¢ € R(Lp)"* is pp multiplied by a constant. It suffices to show that R(Lg) is closed. Take
wn € R(Lp) so that wy, — w, in L2(D). Let ¢,, € X, 1, L ¢p such that L), = wy,. Since w, is a
Cauchy sequence, by (4.3) v, is also a Cauchy sequence. Let 1, — 9, in L?(D). Note that Lg is a
closed operator since it is self-adjoint. Hence 9, € X and Lgt. = w,. This proves 2.

To prove 3. note that the linear map Dy Dy F(y5,0): X = Y is

d d
= f"(UB)%lw=wB¢ - f”(UB)%Iw=wB¢ +e(=A)"M. (4.4)

"See [22, Theorem 13.5, page 173].
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Since R(Lp) = {¢p}+, it suffices to show

(D1 DaF (45, 0)pp, 05) £ 0, Le. /D (" () 22

This fact is established in the next lemma. 0

Lemma 4.2 When € is sufficiently small,

du 310 )P rm2n?
[ 48" ) 52+ (-8 = ~ LT o <o,

278

Here 1 is given in (2.2), and ° is in (3.7-3.9), a non-zero vector.

d—;lwmw% + epp(—A) B} #0.

(4.5)

Proof. Note that pgp(z,y) = ¢B(x)cos(mmy) and (=A)"tpp(z,y) = Gunlos](w)cos(mmy).

Hence after integrating out the y variable we deduce

d d
[ ) B it + e s = [ 3770 B+ Sl . (49

By Lemmas 2.4, 3.2, we find

! du
/0 f”(UB) d—,)’/Y |’Y:’YB (15]23

/ f"(quZ(ch L E(y 1P+ b)) + o))
= / " (uB)( ch +E(YT'P +bo)) b + o(€’]c]?)

= e / £ (ug) (7" LP)6E + o(¥]cf?).

We have used the fact that P is odd and by, H; and II are even. Hence we arrive at

| ) (el =B + et P+ )G o)

1 3,.0(2
| s G adh =€ [ £ S 19b s oes1eop)
0 R

K

where the last equation follows after we differentiate the equation for v ! P:

ab

~(7 )"+ fE) TP + fIH)H (P) = — 4,

multiply by H', and integrate: [g f"(H)y~'P(H')*dt = —ab/K. By Lemma 3.2 we obtain

| cGulonlon = & [ (2 eiGnlZN(Y al) + olep)
0 0 k

= 63chcka(mk,mj) +o(|c|?) = AP + o(e®|c°).
gk

12



Here A is an eigenvalue of the K by K matrix G, (2%, j) and ¢ is a corresponding eigenvector,
satisfying lim¢_,o c; = c?.
Hence the right side of (4.6) becomes

63|CO|2

ab 31012
LA =)+ o1,

K
To determine the sign of this quantity we recall (3.6):

Now) = 224 = )+ ]+ ofe?).

But here A(yg) = 0. Hence

This proves the lemma.

5 Stability of the bifurcating solutions

The eigenvalue A(7y) of the “trivial” branch w. corresponds to an eigenvalue A.(s) of the bifurcating
solution w. (s +w(s). The sign of A\« (s) may be determined from the shape of 7(s). Thus we proceed
to compute 7'(0) and v"(0). However the overall stability of u.(s) + w(s) is interesting only when
A(7) is the principal, i.e. the smallest, eigenvalue of L.. Otherwise, both u, and u.(4) + w(s) are
unstable. For the moment when studying the shape of v(s), we do not assume that A(y) is the
principal eigenvalue. We will do so later in Theorem 5.4.

Place w(s) = spp + sg(s) into F(y,w) = 0 and divide by s:

U U + w(s U —a
—CA(L o +g(s)) + M +e1()(=2) (L + o +g(5)) = Const. (5.1)
where Const. refers to the term coming from the average of f, which is independent of (z,y). Here
we do not need its exact value. On the other hand divide the equation (1.2) of u,() by s and

subtract the result from (5.1):

f(u'y(s) + w(s)) - f(u

S

e A(pn + 9() + 1) | e (6)(—A) (g + g(#) = Const. (5.2)

Differentiate (5.2) with respect to s and set s = 0 afterwards:
Lgg'(0) ++"(0){f" (u ) |w e #B +e(—A) "o} + %f”(uB)ga% = Const.. (5.3)
Then we multiply (5.3) by ¢p and integrate over D:
7O [ () G2 awh + eon(-2) en) = = [ 5 uneh. (5.4)

Clearly the right side of (5.4) is 0 since ¢p(z,y) = ¢B(z) cos(mny) and integration with respect to
y yields 0. Lemma 4.2 then implies

13



Wriggled, Unstable Wriggled, Stable

Perfect, Stable Perfect, Stable

Untable Untable

>

Figure 3: The two possible diagrams of wriggled lamellar solutions bifurcating out of perfect lamellar
solutions. The bifurcating solutions are unstable in the first case where v"'(0) < 0, and stable in the
second case where v''(0) > 0.

Corollary 5.1 +'(0) = 0.
Consequently the equation (5.3) is simplified to

1
Lpg'(0) = —§f"(UB)<P123 + Const., ¢'(0) L ¢g. (5.5)

The right side of (5.5) is perpendicular to ¢p since the integration of the right side multiplied by
up with respect to y yields 0, so there is a solution of ¢'(0). ¢'(0) L g follows from g(s) L g in
Theorem 4.1, so ¢’(0) is uniquely determined.

Corollary 5.1 implies that the bifurcation digram has the shape of a pitchfork. There are two
possibilities illustrated in Figure 3. To determine which of the two cases occurs, we need to find
~"(0). Differentiate (5.2) with respect to s twice and set s = 0 afterwards:

du _ 1
Lig"(0) + 7"(0){f”(UB)d—JIw=wB%23 +e(=A)" o} + 2" (u)psg' (0) + gf"'(UB)sO% = Const..
(5.6)
We have used Corollary 5.1 in deriving (5.6). Again we multiply (5.6) by pp and integrate:

/{f” 7|7 @ +epn(—=A)TTpp} = _/D{QfII(UB)(P]%gI(O)+%f”I(UB)SO4B}- (5.7)

The integral on the left side of (5.7) has been calculated in Lemma 4.2. We now need to know the
right side.

Lemma 5.2
- [ r ks © + 31" )eh) -

2 4 cosh(2mm) cosh(2mm(1 — 23:?)) cosh(mm(1 — 23:?)) 5(mm)3T
8sinh(2mm) 8 sinh(2mm) 4 sinh(mm) 8vB

+o(e®|c|*).

—e mTYB Z
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The proof of Lemma 5.2 is formidable. We have to expand the quantity to the € order term,
because all the lower order terms up to e* vanish. Our main idea is to expand ug, ¢B,2g'(0) as
(...) + €%(...) near each interface z; and then show that the quantity in Lemma 5.2 depends “locally”
on these expansions near z;. This is a very long computation. We do not know if there is a simpler
proof. We include it in Appendices B and C. The reader may skip it at a first reading. Combining
Lemmas 4.2 and 5.2 we obtain

Corollary 5.3 Ase— 0, e729"(0) —

2(18°)° i( oya| 2+ cosh(2mm) | cosh(2mm(l —22F)) ~cosh(mm(l—223))  5(mm)’r

|cOPmrT & J 8 sinh(2mm) 8 sinh(2m) 4 sinh(mm) 8v°
. o . ’)/BO mm
where v8° = lim_,0v8 and 2= is determined from — = I
T ab
K

To study the overall stability of wu.(,) + w(s) we now assume that at v = g, the principle
eigenvalue A(yg) of up is 0, and this eigenvalue is associated with a particular m. There are K
eigenvalues of order €2 associated with this particular m. Here the 0 eigenvalue is the smallest.
Hence A now is the smallest eigenvalue of [G, (29, #7)]. According to [17, Section 7]

1
A = fK=1
mm(tanh(mma) + tanh(mwb)) ' ’
1
A = if K =2 .
mm(coth(mma) + cot(mnb) — csch (mma) + csch (mnb)) ' ’ (58)
1

- , 0=2r/K, if K >3.
d++\/a% + 32 +2a8cosf

Define

K ¢} 4.2+ cosh(2mm) cosh(2mm(1 —229)) cosh(mm(l —229)) 5(mn)’r

S(a, K) := ;(E)4[ 8 sinh(2m) + 8 sinh(2m) + 4 sinh(mm) B 8vg? ] (5.9)

where y5°/7 is determined as in Corollary 5.3 and m is associated with the principal eigenvalue 0.
Note that S(a, K) depends on a and K only. It does not depend on 7. Since 7 depends on the shape
of W, S(a, K) is independent of the exact shape of W. Then Corollary 5.3 implies

2 0V2],.0]2
lim 6_2’)/”(0) — (7]3 ) |C |
e—0 mmnT

S(a,K). (5.10)

Theorem 5.4 When ¢ is sufficiently small, the bifurcating solution wu.) + w(s) of K wriggled
interfaces is stable if S(a, K) > 0 and it is unstable if S(a, K) < 0.

Proof. We first find A'(yg). Differentiate the equation L = Ap with respect to 7:

_ du _
—EApy, + f(uy) oy +ey(=A) o, + f”(uy)d—;goy +e(=A) "t = Ap, + N (7)¢p + Const..
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Set v = v in the equation, multiply the equation by g, and integrate over D:

d
/D {0 m) G + o (=4) om} = N o) /D =3

The left side is calculated in Lemma 4.2. The integral on the right side is

/ch—/ Zc] 2 cos® (mmy) dzdy + o(e|c|?) 5 Zc + o(ele|?)

Therefore

e2m?r?

B

According to Crandall and Rabinowitz [4, Theorem 1.16], which generalizes an earlier result of
Sattinger [19], near s = 0, A.(s) and —s7'(s)\ (y8) have the same zeros, and

—s7'(s)N'(18)

1i
s—0, l)\r?(s)qéO A (S)

+ o(e?) < 0. (5.11)

N(ys) = -

=1. (5.12)

Here A, (s) is the principle eigenvalue of the bifurcating solution u,,)+w(s). Whether the bifurcating
solution is stable depends on whether A.(s) is positive. The theorem follows from (5.10), (5.11), and
(5.12).

Let us use Theorem 5.4 to work out some examples. The quantity S(a, K) may be accurately
calculated following these numerical steps.

1. For each positive integer m find A from (5.8).

2. With this A find yg°/7 from the formula in Corollary 5.3. If one obtains a non-positive vg° /7,
this means that eigenvalues associated with this m are positive for any - and this m does not
yield any wriggled lamellar solution. Discard such m.

3. Minimize the positive yg"/7 with respect to the remaining m. The minimum is achieved at
the particular m associated to the principal eigenvalue of ug. Find ¢ from @ of (3.10), using
this m and its corresponding A.

4. Use this particular m and the corresponding y8°/7 and ¢° to find S(a, K) from (5.9).

Tables 1, 2 and 3 report our numerical calculations based on this method for the cases a = 1/2,
1/8, and 7/8. In each table the first column is the number of the interfaces in the perfect lamellar
solution up. The second column gives the value of m associated with the principal eigenvalue 0 of
ug. Note that m does not increase as fast as K does. The third column has the value of 7]30/ 7. We
will explain the fourth in a moment. The fifth column has the value of S(a, K). The last column
indicates the stability of the bifurcating solution with K wriggled interfaces.

We have deliberately chosen a = 1/8 and a = 7/8 because they are somehow “symmetric”.
With the exception of K = 2, the v5°/7’s are identical in Tables 2 and 3 for the same value of K.
Moreover the S(a, K) values are the same in the two tables when K is odd. All these symmetries
and asymmetries can be explained from the formula (5.8) for A and the matrix (3.10) of Q.

There is something interesting about the perfect lamellar solution ug whose principal eigenvalue
is 0 where bifurcation occurs. In [17, Section 8] it is shown that the 1-D global minimizer (the
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| K | m | ve°/T | Kopt | S(1/2,K) | Stability |
1 1 | 1.2906e+02 2 | -2.0964e-03 | Unstable
2| 2| 8.6349¢+02 3 | -2.1740e-02 | Unstable
3| 3| 2.7193e+03 4 | -3.3075e-02 | Unstable
4| 3| 5.3823e+03 5| 1.0764e-02 Stable
5| 3| 9.7086e+03 6 | 2.1578e-02 Stable
6| 4| 1.6165e+04 7| 1.2129e-02 Stable
71 4] 2.4091e+04 8 | 1.5804e-02 Stable
8 | 4| 3.4492e+04 9| 1.6739e-02 Stable
9 | 4| 4.7728e+04 10 | 1.6541e-02 Stable
10 | 4 | 6.4156e+04 11 | 1.5885e-02 Stable

Table 1: The stability of the wriggled lamellar solutions that bifurcate from the principal eigenvalues

of the perfect lamellar solutions, when a = b = 1/2.

| K | m | v8°/T | Kopt | S(1/8,K) | Stability |
1| 3| 1.7317e+03 2 | -1.5234e-01 | Unstable
2| 5| 1.3418e+04 4 | -8.9872e-03 | Unstable
3| 2| 1.0218e+04 3| 5.7102e-02 Stable
4| 3| 2.3798e+04 5| 5.1520e-02 Stable
51| 3| 4.3553e+04 6 | 3.4174e-02 Stable
6 | 3| 7.3607e+04 7| 2.9597e-02 Stable
71 4] 1.1373e+05 8 | 2.4505e-02 Stable
8 | 4| 1.6489¢+05 9| 2.2058e-02 Stable
9| 4| 2.3061e+05 10 | 1.9979e-02 Stable
10 | 4 | 3.1284e+05 11 | 1.8189e-02 Stable

Table 2: The stability of the wriggled lamellar solutions that bifurcate from the principal eigenvalues

of the perfect lamellar solutions, when a = 1/8.
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| K | m ] 18°/7 | Kopt | S(7/8,K) | Stability |
1| 3| 1.7317e+03 2 | -1.5234e-01 | Unstable
2 | 2| 3.4949¢+03 2 | 4.0940e-02 Stable
3| 2| 1.0218e+04 3| 5.7102e-02 Stable
4| 3| 2.3798e+04 5| 2.6416e-02 Stable
51| 3| 4.3553e+04 6 | 3.4174e-02 Stable
6| 3| 7.3607e+04 7 2.9798e-02 Stable
71 4] 1.1373e+05 8 | 2.4505e-02 Stable
8 | 4 | 1.6489%¢+05 9 | 2.2092e-02 Stable
9| 4| 2.3061e+05 10 | 1.9979e-02 Stable
10 | 4 | 3.1284e+05 11 1.8196e-02 Stable

Table 3: The stability of the wriggled lamellar solutions that bifurcate from the principal eigenvalues
of the perfect lamellar solutions, when a = 7/8.

global minimizer of I; in Theorem 2.1, also a perfect lamellar solution on D after trivial extension),
which is one of the 1-D local minimizers, has the number of interfaces K,,; which minimizes (among
positive integers N) TN + va?b?/(6N?). If we take v = vg so that the K-interface, perfect lamellar
solution up has 0 principal eigenvalue, we find the 1-D global minimizer corresponding to yg. The
number of interfaces K,y of this 1-D global minimizer is reported in the fourth columns in Tables
1, 2, and 3. For most ¢ and K the 1-D global minimizer has one more interface than upg does. In
some other cases the 1-D global minimizer is exactly ug.
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A Proof of Lemma 2.4

Proof. We differentiate the 1-D Euler-Lagrange equation in Theorem 2.1 with respect to v to deduce

o du,

" —’udﬂe T = —eGolu, —a
— Y ) 5 = ) G+ rGal 5] = ~eGalu, — . (A1)

Let us define an operator Lo so the left side of (A.1) is Lo~ d"’ . Rewrite (A.1) as
CZ Lo(hj — h;) + eLotp = —eGo[u — a). (A.2)
J

Note that

Lo(hj = hy) = (f'(uy) = f'(H))hj + erGolhj — hj] + (f'(uy) = f'(us))hj — f'(uy)hj + ecs.. (A.3)

We claim that
[¥lloc = O)(1 + |c])- (A4)
According to [17, (4.29)], Lo(hj — hj) = O(e). Hence we deduce from (A.2)

Lot = O(1)(1 + |cl). (A.5)
If (A.4) is false, let w = W, which satisfies
Low = o(1). (A.6)

Assume without the loss of generality at some z. € [0,1], w(z.) = max|w| = 1. We show that
x4 —xj = O(e) for some z;. Otherwise at =, (A.6) implies

o(1) = Low(zs) 2 f'(uqy(z2))w (@) = (f'(uy) — f/(0))w + O(e) = f'(0) + o(1),

which is impossible. Define Q(t) = w(z; + €t), which satisfies

Q"+ f'(u,)Q = o(1) (A.7)
on (—zj/e, (1 —z;)/€) by (A.6). Ase =0, Q2 — Q in C7 (R). Qs is non-zero and satisfies
—Q" + f'(H)Qs = 0.

Therefore Qo oc H'. On the other hand ¢ L h; implies Qo L H'. Hence Q. = 0, a contradiction.
This proves (A.4). o
Multiply (A.2) by hg — hi and integrate:

¢ (Lo(hj = Ty), by = T} + €(, Lo(hk — i) = —€(Golur — al, by, — Tuy). (A.8)

J

It is proved in [17, (4.35)] that

637ab6jk

(Lo(hj = hj), i — hi) = — I

+ 53'7G0(1'j; Ty) + 62f'(Uw) +o(e%), (A.9)
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where 6;;, =0 if j = k and = 0 otherwise, and proved in [17, (4.30)] that
1Lo(hj = hj)lls = O(?). (A.10)
Following (A.9) and (A.10), (A.8) becomes

63 aovo
e (= S e oy, )+ € ) + ollel + OE) 1+ e = (o) +ofe?). (A1)

Comparing the leading order €2 terms on the both sides of (A.11), we conclude that ¢ = O(1) and

lim,_,gc=cg := —;’:}—,I(’go)). This proves Part 1.
The above argument (A.11) also shows that
()
- O(e). A.12
Kfl(o) + (6) ( )
Rewrite (A.2) as
c .
Loy = —Golu—ad] —EZLg(h]- — ) (A.13)
j

c

= =SS0 () = DG + £ )5 +9€Golhy — i)

€&
i
~(Golu - a] + Kcfi(us) Ty). (A.14)
The limit of ¢(z; + €-) satisfies the limit of (A.14) in the ¢-coordinate:

v0(2?)
—-R"+ f'(H)R = — f’(Ok) f'(H) + Const. (A.15)
This is because in the right side of (A.3) the third term is of the leading € order (See [17, Section 4]
for details). Multiply (A.15) by H; and integrate to find Const. = 0. This proves Part 2.

0/..0
To prove Part 3, we note that we can write R = —vf,((%j)) + doH;, where dy is such that R 1 H;.
This is the inner expansion of ¢. We have to glue the inner expansion and outer expansion of ).

The outer expansion of ¥ is f,L(O). We now choose

T — T v

NARANT0)

¢hy
Ro =3 (= +dh; -

J

)X( (A.16)

f'(0)

where x(s) is a cut-off function such that x(s) = 1 for s < 1 and x(s) = 0 for s > 2, and the
constants ¢ and d are chosen such that [ R.h; =0, [ R, = 0. By (A.12), we have

é=Kec+0(), d=do+O(e).

It is then easy to calculate that

NG 1)) — g > F'(uy)hj + € Const. + ofe). (A.17)

J J
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Set now
1/1 = R¢ + €b.

Then b, satisfies
_ c / i cy 7
Lobe = = S (= ()b — - > 7Golhj — 1]
J J

r—Tj

NG

Since [ bchj =0, [be = 0, we see from (A.18) that b, is bounded and hence we pass to the limit in
(A.18). The limiting equation of (A.18) becomes

—%Z(GO[U—G]X( ) — v(z;)) + Const. + o(1). (A.18)

b — f/(H)b = —(°) (29)t + co f" (H)H, P + Const.,b L Hy, (A.19)

where b(t) = lim,_,o be(z; + et). Multiplying (A.19) by H;, we see that the Const. in (A.19) must
be —co [ f"(H)H;P. Tt then follows that b = 1P + by, where by is defined in Lemma 2.4. This
gives Part 3.

B Expansion of 2¢/(0)
In Appendices B and C we use the following simplified notations:

u:=ug, v:= Golup —al, v:= B, ¢:=op, w:=o¢g, f :=f(H), f":=f"(H), etc. (B.1)

The vector ¢; in the expansion of ¢ satisfies |c| = 1.
Define a linear operator £ by

LU =U" - f'U (B.2)
where U is defined on R. Then
LH, = 0, (B.3)
EHtt - f”Ht27 (B4)
EHttt = 3f”Htht + f”lHtB. (B5)
Let u = H(t) + €2p. Then p satisfies

1 P>

e’p" — f'p = < [yeGolu — a] — Constant] + e2f”7 + O(eh). (B.6)
€

By Lemma 2.3 as € — 0,p(z; + €) = P in C}(R), where P satisfies

LP +~(°) (29)t = 0. (B.7)
Note that P(t) is an odd function (and hence P L H;). It is easy to compute that
LR = f"HP-~(") (), (B.8)
LPy = (f"Hy)P +2f"Hy P, (B.9)
LPy = (f"H))uP +3(f"H)eP + 3f"Hy Py. (B.10)
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Recall Lemma 3.2. In the decomposition

K
z) = chhj +ew, hj Lw (B.11)
j=1

w satisfies

62(4.}” _ 62(m )2w _ fl( )w _ G’YGm[w]
1 & S
) Z u)hj — € (mm)*h;] + . Z ckGm[h]. (B.12)
j=1 k=1

We further expand (B.12):

K
W' — Z [f"Hip—m 7r2Ht] + = chG [h]
—1
+7€G 0] + " po + mPn®w + fH, Y ]+O( ?). (B.13)

As € = 0, we have w(z; +e) = I in C}, (R), where Q satisfies
£Q = f"H,P — (mm)*H; + Const., Q is even and Q 1 H;. (B.14)

Hence
Qt = f”HtQ + (f"Ht)tP + f”HtPt — (m7r)2Htt. (B15)

Finally, we calculate 2¢'(0). Since 9} = ¢*(z) cos?(mmy), we decompose the solution of (5.5)
into
gi(x) | g2(x) cos@mmy)

!
29'(0)(z,y) = =, 5 (B.16)
where g; and gy are solutions of the following two equations.
€91 — f'(wg1 — erGolgi] = f"(w)¢” — f"(w)¢?, 91(0) = g1 (1) = g1 = 0; (B.17)
(g5 — 4m*m>gy) — f'(u)g2 — evGamlgal = " (u)¢?, g5(0) = g5(1) = 0. (B.18)

Both equations are uniquely solvable, since the eigenvalues of the two operators in (B.17) and (B.18)
are non-zero (the zero eigenvalue is associated with m), i.e. both operators are invertible.

We write
29'(0) = by + €%¢ho (B.19)
where
Zctht ) cos® (mmy), e = g—;l + g—gl cos(2mmy). (B.20)
Here

ZC Htt +6 gi1, g2 = ZC Htt )+ g21- (B.21)

23



The equation for gq; is

gty — f'(wgn — €7G0[911]
2
'yc
= —GolHul+ 5 [f"( Von, — ¢ fTHE — [ (u)¢2,]
76? 2 e 72 " 2 gl
= TGO[Htt]+c'f Htp+2f Hicjw + ¢ f " Hup

+€2[ f( )H2%+ QfIIIHtt 2 +20]fIIIHtpw+fllw2]+O( )+Cl

where C; = e 2f"(u)$2,. By (B.15), it is easy to see that

_ e2/ F(u) g2, = Zf” (H + 2p)c2H2 + o(1) = o(1).
Similarly the equation for go; is

62951 - 4m27T2921 - f’(U)gm - €7G2m[921]
2

ye
= 4m27r2c§Htt + _]GZm[Htt] + CQ-f”IHEp + 2f”Hthw + szllHttp

+€2[c?f( )H2

5 +c2fIIIHt?+20]fIIIHtpw+fllw2]+O( )

We state the following lemma.

Lemma B.1 As ¢ = 0, near z; we have g11(z; + €) = (9)>G11, g21 (2 + €) = (
G111 satisfies
£G11 = f”’HfP + 2f”HtQ + f”HttP, Gllis odd

and G21 satisfies

£G21 = f”IHEP + 2f”HtQ + f”HttP + (2m7r)2Htt, G21i8 odd.

(B.22)

(B.23)

(B.24)

c?)2G21, where

Proof. We only prove the convergence of g;1. The convergence of go; is similar. To this end, let

us decompose
K

gi1 = Zaj(hj —h;)+ G+ g
j=1

where g11 L hj,j =1,..., K and fol g11 = 0. The key is to show that a; = o(1). This is similar to

the proof of (3) of Lemma 2.4.
Simple calculations show that §i; satisfies

N

e g1y — f'(w)gi — eyGolgu1] Z laj|) + of
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Since g11 L hj,j=1,.., K, [ g11 =0, standard arguments show that
K
5711 = O(Z |Oéj|€2) + 0(1) (B25)
j=1
We multiply (B.22) by h; and integrate over (0, 1), to find

1 1
Ci + / (f — flu)H? = / (3 1 H2p + 26, " Hyo + & " Huupl H, + ofc)
0 0

1 1
[ Gr 2+ sl + 20 [ L+ o)
0 0
1
= / [C?fI”thp + 3C§f"Http]Ht + o(€®)
0
1
= c?/ (LHy)p + o(€®) = o(e?).
0
Thus we obtain the first identity
Cr +€ay / f"PH} = o(e*). (B.26)
R

Next, we integrate the equation (B.22) over (0,1) and make use of (B.25) to deduce that
1 1 .
0= / flu)gn = / F'@)(Q aj(hy —hy) + gu).
0 0 -
i

So we obtain the second identity

Zajf'(()) = o(1). (B.27)

Substituting (B.27) into (B.26), we have that
Ci = o(€?), aj = o(1) (B.28)

and hence g11 = o(1). O

C Proof of Lemma 5.2

In this appendix we omit »_, most of the time. When ¢; appears in a quantity, }; is usually
implied. We use the notation A ~ B for A — B = o(e?).
Define a linear operator S by
Sip = 2 A — f(u)h + eyA™ . (C.1)
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where 1) is a function on D. Recall ¢; and 15 defined in (B.20). Note

Sy = c?{(f’ — f'(u))Hyy cos® (mmy) + f" HE cos® (mmy)
—2€*(mm)? Hy cos(2mmy) + eyA™  (Hyy cos® (mmy)) ).
2
Sy = 2(m7r)20?Htt cos(2mmy) — ﬁA_I(HM cos® (mmy))
€

2

o)

€ €2

Then
/f"(U)902(2g'(0)) = /(5(29'(0)))(29'(0))
D D
= [ Sun e [ (Svwn vt [ (Svadn = Bt Bt
D D D
where the last equation defines I, I and I3. To prove Lemma 5.2 we compute
" 2 ! 1 n 4 1 n 4
[ rweeson+g [ rwet =nenrneyg [ et

We start with I,. From (C.3) we obtain
1
L = 463(m7r)2c§/ Hft/ cos? (mmy) cos(2mmy)
R 0

—26’)/03%/ (A=Y (Hyy cos® (mary))) Hy cos® (mmy)
D

1

+2¢c] /R(f”(u)d)2 —c?f”Hf)Htt/ cos* (mmy)

0

1
+26c§ /R(f’(u) —f’)Hft/O cos* (mmy)

1
H
~ 63(mﬂ-)2c§/RHt2t+e'yc§/0 (2G0+G2m)[Htt]%
3ec? 3ect
+TJ (f"(u)¢® — & f"HY ) Hy + T] (f'(u) — f")HE,-
R R
The last two terms in (C.6) are estimated as follows:
3e " 2 2 o1 772
1 R(f (u)é —ij H;)Hy
3¢ 2 pnr gr2 " 2 e, 2 2 2 2 (4)p2 2
T (cj f""pH; + 2¢c; f"Hiw + € f"w” + 2e7c; f"'pw + ¢ f 3Ht)Htt,
R
3e
T | -
3 2
~ 2 [ grmip e,
4 g 2

26

+i2(f”(u)¢2 — ¢ f"HY) cos® (may) + =5 (f'(u) — ') Hyt cos® (my).

(C.4)



Substitute (C.7) to (C.6) we obtain

H
I, ~ € (mr)? 4/ H} + eve; / (2Go +G2m)[Htt]i
0

3e’c j " rr2 "
1 (¢;f"HHyp + c; f"Hiyp + 2f" H Hyw)
R
36502 n " (4) 72 nyr2 p2
1 / (f Httw + 2CJf Hthtpw + C (f Ht Htt + f Htt)E) (08)

On the other hand

L] s

1 1
5P e+ )t
3.3

€C4 mrr4 ¢ (4) 74 "mrr3
8 /f H +T R(ij Htp+4f Htw)

X

6502- p
+5 /R (G FOHZ + de; f Y Hpw + 6" Hiw?).

We combine the last with (C.8) to deduce

1
I2+_/ f”'(u) 4
3Jp
Htt

604
~ ?j/ f"'Hf+e3(m7r)zc?/ Hft+evc?/ (2G0+G2m)[Htt]—
R R 0
6303-
5 / {e;(F HY + 6" H Hy + 6" Hip)p + A(f" H} + 3" HyHyu)w}
R
6502-
iy / (6" HP + 6" Hy)w® + ¢; (4f W H} + 124" HyHy)puo
R

2
+cA(FO ] + 6§ HE Hy + 6" H}) 5 ). (C.9)

3.3
One term in the integral after 8Cj is simplified using (B.5) and (B.13):
/ (fIIIHtS _+_ 3f”Htht)w
R

_ /R (LHy)w = / (C)Hyp = / {(f'(u) = ) Huwo + (" — f'(w)) Hu

62/ f"Htttpw+e2(m7r)2/ Htttw-i—e'y/ Gm[w]Httt—(mﬂ')ch/ HE
R R 0 R
2

S
+%/ Gm[Ht]Httt+Cj/(f"Hthttp+€2f”’Hthtt%)+0(62)‘ (C.10)
0

Here we have dropped fol Gm|w]Hye = fo m[Hett]w = o(€). Substituting (C.10) to (C.9) we deduce

1
[2+§/Dfm(u) 4
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X

ec}l- M mﬂ' 2 4 mﬂ' 2 4
f Ht Htt Htttw

H H
+erch / {26y + GQm)[Htt]i G [Ht]%
€3C4
+5 (FYH! +6f"HZHy + 6f"H}, + Af" HHyy)p
R
502

+—8J {(6f"H? + 6 f"Hy)w? + cj(Af W H} + 12f" HiHyy + Af" Hyse)pw
R
2
+C§(f(5)Ht4 + 6f(4)Ht2Htt +4f" HeHyy + 6f”'Ht2t)%}. (C.11)

Next we compute I;. From (C.2) we deduce

3ect 3 (mm)2ct
now =g [, +—/ - pni - =00 | g

+€'ycj /D(A_ (Hy cos® (mmy))(Hy cos® (mmy)

3ect 3e3cd 3¢t e3(mm)2ct
—Sf/f”HEHtt— - / f"Hep — —~ / prgl - e 2) : /RHEt

X

X

tt D)
Htt

_e’)/C}l-/ (2G0 + G2m)[Htt] 3 (C12)
0
(C.12) is added to (C.11). The € order terms and the €*(mm)? terms cancel out:
1
Lty [ faet
D

e (mm)*c} ! H, H
~ G / Hyppwo + eve? / {26 + Gon)[Hul "2 + Gn[H) 22}
R 0

3.4
+TJ / (fOH} +6f"H?Hy + 3f"HZ + 4f" HyHyy)p
R
502
+TJ / {(6f"H? + 6f"Hyy)w® + c;(4f W H} + 12" Hi Hyy + 4f" Hye)pw
R

2
+C§(f(5)Ht4 + 6f(4)Ht2Htt +4f"HHyy + 3f”'Ht2t)%}- (C.13)

3.4
The integral after Scj is, by (B.6),
/ (f( )H4+6f”IH2Htt+3f”Ht +4f”Hthtt)p
R
= / (LHie)p = / (Lp)Hyste
R R

Y 2 " p2 2\ 2 " p2 2
= | vHyy +e€ ['Hyy— +o0(e) = €y | veaHy +e€ " Hype— + o(€”)
€ JR R 2 R R 2
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2 2
p p

= —G’Y/ (H+€2P—G)Htt +€2/ f”Htttt_ = 67/ Ht2 +€2/ f”Htttt_ +0(€2)-
R R 2 R R 2

Hence (C.13) becomes
Il +I2+ / flll( )
H H etvycl e’ (mm)?c?
~ G’YC?/ {(2G0 + sz)[Htt]i + G [Ht]%} + ’;/ J / HtQ + %/ Htttw
0 R R

€°c?
+— / {(6f"H? 4+ 61" Hy)w? + cj(Af D H} + 12f" H Hyy + Af" Hyyy)pw
R
2

+E (fOH + 6fYHIHy + Af" H Hyy + 3" H, + f”Hmt)%}

% H 7 )2 3
= et / {26 + Gam) [Hul 2% + G [ 22+ =12 / H2 4 / Huw

52
+—/ {6(f" Hy)iw® + 4c;(f" Ht)upw + ¢5 (" Hy) e 2} (C.14)

Finally we compute I3. By (C.3) we find
921

Ii=¢ [ (S

3 G/D(lbz)iﬁz

~ G [ (e Hp + 2" ) cos? mmy) (AL + 2 cos(amy)
D

+2(m7r)2c;1-/ Hy cos(2m7r)(g—;1 + 9_31 cos(2mmy))
D

ct
—%/wﬂ@m%mw%+%mmmm
D
(9t " " 65(m7r
—3 ((f"(Hy)eP + 2f"HQ)(2G11 + Goy) + ————— HttGm (C.15)
R
where we have used Lemma B.1. We have dropped the last integral of the second last line for it is

of order o(e?). Combining (C.14) and (C.15) we arrive at

X

1
Il+[2+[3+—/ fl/l(u)<p4
3Jp

1 H H
R~ 6704/ {(2G, +G2m)[Htt]% +Gm [Ht]ﬁ}

~

(C.16)

2

”J/Ht /Htt Gy — )
2
{6(f"Hy)Q? + 4(f"Ht) PQ + (f”Ht)m% + 3((f"Hy)e P + 2f"HQ)T'}.

Here we have introduced e o
p;ﬁgﬂ. (C.17)

29



We simplify the last integral in (C.16). Let

Q=P +1II, T =Py + V. (C.18)
Note that by (3.11) and A(yg) =0,
2 " 4(m7r)2
LI = (mr)?H, + Const., LU = 2f"H,II + Hy. (C.19)
ES(CQ)4
The integral after —g— in (C.16) is
P2
{(f”Ht)ttt7 +6(f"Hy): PP +4(f"Hy) e PP + 3((f"Hy)e P + 2f" Hy Py) P} + (C.20)
R

/ {4(f" Hy) g PIH12(f" Hy) P46 f" Hy ) T2 +-3((f" H) P+2f" Hy Py) U +6 f HITW 46 f" H, 1Py, }.
R

The first integral in (C.20) is 0 after integration by parts. To calculate the second integral note, by
(B.9),

/3((f”Ht)tP+2f”HtPt)\Il

R

= 3| (LPy)¥ =3[ (LY)P; =6 "HOPy + 4(mm)? | Hy Py, C.21
/R( 4t /R()tt /thtt+(m)/Rtttt ( )

/ f"HJIIY
R
4(mm)?

= 6/R(£Ht — (mﬂ')tht) = 6/R(2f”HtH+
_ " 2 T 2 _ T 2 . C.

Substituting (C.21) and (C.22) into the second integral in (C.20) we find, with the help of (B.10)
and (C.19),

Htt II; — mﬂ' /Htt

(C.20)

/ (4(f'Hy) e P+ 12(f"Hy) e Pr + 12f" Hy Py )11 (C.23)
R
+4(mn)? / Hy Py + 8(mm)? / Hy 11, — 6(mm)? / H;, ¥
= / (ﬁPttt)H + 4 mﬂ' / HttPtt + 8 ’ITL?T / Htth — 6 ’ITL?T / Htt
= 4(m7r) / HtPttt + 4(m7r) / HttPtt + 8(m7r) / Htth m7r / Htt\I’
R R R
= 8(m7r)2/ Htth—G(mW)z/ Htt\I’. (C24:)
R R
Substitute (C.24) back to (C.16) we find

1
[1+I2+[3+_/ f”l(u)@4
3Jp
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! 4, .4
H H, €y
] 6’70;1-/ {(2Go + sz)[Htt]—tt + Gm[Ht]—Qttt} + e /R t2
0 H

8 8
€?(mm)2(c9)% 3
M / Htt(G21 — QO + 2II; — —\I/) (C25)
2 R 2
Note that

3
E(Gzl —Q + 2II; — 5\1’)

= 4(m7r)2 —+ f’”thP —+ 2f”HtQ —+ f”HttP — 2f”HtQ — (f”Ht)tP —+ f”HtH —+ (m7r)2Htt
2
+2f”HtH + 2(m7r)2Htt _ (S)Qf”HtH _ (3)4(m7r3) Hy
= 5(mm)?Hy. (C.26)

On the other hand we may solve the last equation to find

2
Gy — Q + 210, — gql - 5(”;”)

since £(£H;) = Hy;. Hence the last integral in (C.25) is

tH,

3 5(mm)?

5(mm)3r
/ Htt(G21—Qt+2Ht—§‘I’)= 5(mm)°r
R

tHiHy = —
A :

Putting this back to (C.25) we deduce

1
I1+I2 +Ig+—/ f”’(u)<p4
3J/p

1 H H,
=t G’YC?/ {(2G0 +G2m)[Htt]% +Gm[Ht]ﬁ
0

P / H} - —565(m227(cg " cam
R

2} 8

We now compute the first term in (C.27). Note that

1
/ GO[Htt]Htt = 63/ Ht2 + 0(64), (028)
0 R

since GO[Htt] = ¢2 (H( -7:]‘) _ H( ] ))

€

Recall that Gy, is identified with the Green function of
_GIQIm + (2mﬂ)2G2m = 6( - y)) ;m(o)y) = I2m(]-7y) =0.

G, splits to the fundamental solution part and the regular part:

1 —2MmT|T—
Gom(z,y) = e 2mrleyl _ Ry (z,y).
Note that Ray, is smooth in both variables x and y. We write down Gayy, (2, y) explicitly:

cosh(2mm (1 — |z — y|)) + cosh(2mn (1 — z — y))
4dmm sinh(2mm) ’

G2m(w7 y) =
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Thus

_ 1 sry cosh@ma(1— o — y]) + cosh(2mm(l — 2 — y)
R2m (1’, y) 4m7Te dmm sinh(?mﬂ') ‘
We need to compute
2Ry, mm cosh(2mm) — 2mm cosh(2mn (1 — 2y))
. __ . C.29
R2m,my(y: y) amay mm + sinh(2m7r) ( )
r=y

Then we have

1
.
Gom[Hy](7) = / sz(i’?;y)Htt(y c L) dy.
0
By simple computations, we have that
(1—z;)/e
Gom[Hy)(z; +€t) = e/ Gom/(z; + €t,x; + €2)Hy(z) dz

—xzj/e

e/ [Le_Qm“‘t_zl — Rom(zj + €t + €2)|H,.dz + o(e*). (C.30)
R dmm

We expand e~ 2m7elt=2] to deduce

/ e 2mrelt=:lg dz = / (1 — 2mmelt — 2| + 2(mme)?|t — 2> + O(3|t — 2|*))H... dz
R R
= —dmmeH(t) + 4(mme)*t + O(e?).

Hence (C.30) becomes
Gom[Hit)(zj + €t) = —2H(t) + mme’t — e/ Rom(x; +€t,zj +ez)H. . dz. (C.31)
R
Next we expand Rop, (z; + €t,2; + €z) so that
1
/ Gom|[Hit|Hyt = 63/ H} —mme* — €4R2m7w(m?,m?) + o(€*). (C.32)
0 R
For the term involving G,,, integrating by parts, we obtain
1 1
| Gl =~ [ G
0 0

where GP[Hy] is the Green function of

—(GR)" + (mm)*Gy = 6(-—y), G (0,y)(0) = G (L,y) = 0. (C.33)
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The superscript D emphasizes the Dirichlet boundary condition. Similar to the Neumann boundary
case we find

GP(z.y) = cosh(mm(1 — |z — y|)) —cosh(mn(1 — 2z — y))’
2m sinh(mm)
1 _ cosh(mm(1 — |z — y|)) — cosh(mn (1 —z — y))
D — mr|le—y| _
Bu(zy) omm 2m sinh(mm) ’
O’RD mm  mn cosh(mn) + mn cosh(mn(1 — 2y))
RP = n = —— C.34
moay(Y:9) B0y 3 " 2 sinh(m) (C:34)
e=y
By the same argument leading to (C.32), we arrive at
! 3 ,  €mr | 4p 0 ,.0 4
/0 Gm[Ht]Httt = —€ LHt + T + € Rm,zy(mjamj) + 0(6 ) (C35)
Substituting (C.28), (C.32) and (C.35) into (C.27), we obtain
1 " 4
Il+12 +I3+— f (u)(p
3J/p
K 5 5 5 5 4
eymmw €’y €y 5> (mm)*T
j=1
~ Smr i(co)4 2 4 cosh(2mm)  cosh(2mm(1 —229))  cosh(mm(1 — 2z7)) _ 5(mm)’r
- ’inl J 8sinh(2mm) 8sinh(2mm) 4 sinh(mm) 8 ’

using (C.29) and (C.34), (restoring the 3 sign). This completes the proof.
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