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Abstract
The existence of forward self-similar solution is established to the Stokes approximation

equations for two dimensional compressible flows. We obtain it by considering the Cauchy
problem of its corresponding approximation system in some homogeneous Besov spaces with
small date. Our result also holds for three dimensional case.
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1 Introduction

As pointed out in[1], self-similar solutions with suitable homogeneity often play a crucial
role in the theory of regularity and asymptotic stability of nonlinear problems, which are
physically or geometrically interesting. The pure existence and structure of such solution of-
ten reflects the intrinct dynamics of the underlying nonlinearity and different length scales.
This has been manifested in many interesting problems, such as the regularity theory of
harmonic maps, minimal surfaces and heat flows. In the mathematical theory of fluid dy-
namics, the idea that the self-similar solutions are building blocks both locally and globally
for general inviscid flows, is well known for two centenaries and has been the central idea
of the mathematical theory of shock wave.For viscous flows, the importance of self-similar
solutions in understanding the interactions between initial force and dissipation had been
recognized long time ago. Indeed, in his seminal paper in 1934, Leray [2]raised the ques-
tion of existence of self-similar solutions to the 3-dimensional incompressible Navier-Stokes
equations as soon as he established the existence of weak solutions for such system. The
existence of forward self-similar solution often reflects the dynamical dissipation mechanics
of the underlying nonlinear problem, while the existence of backward self-similar solution
shows the dominance of the nonlinearity over the dissipation and yields clues to construct
general singular solutions.

For the incompressible Navier-stokes system, where the major nonlinearity is due to
the nonlinear convection and thus the scale laws are similar to that for heat equations,

∗The research is partially supported in part by grants from RGC of HKSAR CUHK-4129/99p, CUHK-
4279/00p,and CUHK-4040/02p.
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the existence of forward self similar solutions in various space(such as Morrey space, weak
LP -space and Besov space,etc. )have been obtained by many authors(see[3], [4], [5],[6]).
The much difficult problem is the existence of the backward self-similar solutions,which was
originally raised by Leray. The blow-up estimate in theory of partial regularity (see[7],
[8]) implies that there are no backward self-similar solutions with small local energy. The
Leary’s problem was completely solved by Nečas,Ru̇žička and Šverák In 1995([9]), where
they showed,among other things that the only backward self-similar solutions satisfying the
global energy estimates is zero. This important result was generalized by Tai-Peng Tsai in
[10] showing that there are no backward self-similar solutions with even finite local energy.
These results implies the complexity of possible singularities of solutions for 3-dimensional
incompressible Navier-Stokes system.

On the other hand, these have been few studies on the self-similar solutions to the
compressible Navier-Stokes system partially due to the complicated nonlinearities arising
from both the nonlinear convection and the pressures and their interactions. For general
equation of states,even the scaling law is not clear. Recently, Ershkov and Shchennikov
[11] showed that the equation of self-similar solutions to the complete system of Navier-
Stokes equations for steady axially symmetric swirling viscous compressible gas flow can
be represented as a system of Riccati-type differential equations. However, the question
how to do solve these system of Riccati-type differential equations is still open. The multi-
dimensional problem for the viscous compressible flows are much more difficult. One of the
reason is due to the great complexity in nonlinearities and their interactions. To isolate the
difficulties, we consider the model of Stokes approximation equations for two dimensional
compressible system, where the pressure plays dominant role over the nonlinear convection.
We first establish the existence theory to Cauchy problem for this Stokes approximation
system in a class of homogeneous Besov spaces with negative degrees with small data. As
a consequence, we obtained the existence of small forward self-similar solutions to the 2-
dimensional Stokes approximate equations in some Besov spaces.

More precisely, we will study the following model which corresponds to a stokes-like
approximation to the momentum equations of the system of compressible isentropic Navier-
Stokes equation. This is, we consider{

ρt + div(ρu) = 0
ρ̄ut − μ�u− ξ∇divu+ a∇ργ = 0

where ρ̄ > 0, a > 0, μ > 0, μ+ ξ > 0 and γ ≥ 1.
This system is a good approximation for compressible flow which has been investigated

by many authors. For multi-dimensional flows, P. L. Lions [12] proved the existence of weak
solution under the assumptions of γ ≥ 1 in the Dirichlet boundary conditions when Ω is
bounded or γ > 1 in the periodic case when Ω = RN if N = 2;γ ≥ 2N

N+2
in the Dirichlet

boundary conditions when Ω is bounded or in the periodic case when Ω = RN if N ≥ 3. In
[13], the existence and uniqueness of weak solution to the potential flow has been obtained
in the periodic case when γ = 1. On the other situation, when ρ → ρ̄ = 1 as |x| → ∞,Lu
Min, Alexandre V. Kazhikhov and Seiji Ukai [14] proved the global existence of weak and
classical solutions to the Cauchy problem in R2 with large smooth initial data.

In the case of ρ̄ = 1, μ = 1, ξ = 0 and a = 1, the system becomes

ρt + div(ρu) = 0 (1.1)

ut −�u+ ∇ργ = 0 (1.2)
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with x ∈ R , γ ≥ 1.
Our focus will be to find forward self-similar solutions to the system(1.1)-(1.2). Here

forward self-similar solutions (ρ(x, t), u(x, t)) are ones satisfying

ρ(x, t) = λ
2
γ ρ(λx, λ2t), u(x, t) = λu(λx, λ2t) (1.3)

for λ > 0. This kind of solution is related to the large-time asymptotic behavior of the
global solutions of our system. It is hoped that the study of self-similar solutions to (1.1)-
(1.2) can shed some light on the regularity and structures of solutions to the compressible
Navier-Stokes equations.

Before going into the details of the construction of self-similar solution, we first explain
the main difficulties arising here. Note that(1.3) implies ρ(x, t = 0) = ρ0(x) and u(x, t =
0) = u0(x) must satisfy

ρ0(λx) = λ−
2
γ ρ0(x), u0(λx) = λ−1u0(x). (1.4)

This means that (ρ0(x), u0(x)) is homogeneous with degree (− 2
γ
,−1) and every initial data

that gives a self-similar solution must verify this property. Unfortunately, those functions do
not belong to the usual Sobolev or Hölder spaces. We shall therefore replace them by other
functional spaces that contain homogeneous function of degree (− 2

γ
,−1), e.g., Besov spaces.

The existence of solutions to the system(1.1)-(1.2) in Besov spaces will be obtained by
using vanishing viscosity method. The main difficulty is to get the passage to limit which
need some new a priori estimates.

Our main result reads as follows:

Theorem 1.1. For any (ρ0(x), u0(x)) such that ρ0(λx) = λ−
2
γ ρ0(x) and u0(λx) = λ−1u0(x),for

λ > 0,if

‖ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
≤ δ, ‖ρ0‖LM (R2) ≤ C1, ‖ρ0‖L1(R2) ≤ C2, if γ = 1 with 2 < p < 4, 2 < q < 4;

‖ρ0‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

≤ δ, ‖ρ0‖Lγ(R2) ≤ C3, if γ = 2;

‖ρ0‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

≤ δ, ‖ρ0‖Lγ(R2) ≤ C4, ‖ρ0‖L
γ
2 (R2)

≤ C5, if 2 < γ ≤ 4;

with p > 2γ, q > 2, for 2 ≤ γ ≤ 4.

‖u0‖
Ḃ

−1+2
q

q,∞ (R2)
≤ η, ‖u0‖L2(R2) ≤ C6.

Where δ, η are small and Ci, i = 1, ..., 6 are absolute constants. Then there exists a self-
similar solution (ρ(x, t), u(x, t)) to the problem (1.1)-(1.2)which satisfies

ρ(x, t) =
1

t
γ
2

Q(
x√
t
);u(x, t) =

1√
t
U(

x√
t
),∀0 < t < T.

where

Q(x) ∈ Ḃ
− 2

γ
+ 2

p
p,∞ (R2) ∩ Lp(R2);U(x) ∈ Ḃ

−1+ 2
q

q,∞ (R2).

The present paper is structured as follows.
In section 2, we recall some basic facts about Littlewood-Paley decomposition and Besov

spaces, which will be frequently used in our analysis later.
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In section 3, we will obtain the existence of solutions to the system(1.1) (1.2) in Besov
spaces for the γ = 1 case.

The passage to limit in this case is investigated in section 4.
In section 5, we will treat the general case of γ of the existence of solutions to the

system(1.1)-(1.2) in Besov spaces. Finally, we prove Theorem 1.1.
Notation:Throughout the paper,C or Cj stands for a ”harmless” constant, and C(T )

stands for the constant C only dependent on T .Lp(R2) and Hp(R2) are standard Sobolev
spaces.

2 Littlewood-Paley theory and Besov spaces

To understand homogeneous Besov spaces more clearly, we will give some details about them.
At first, let us introduce a dyadic partition of unity. We can use for instance any spheri-

cally symmetric Bump function ϕ̂(ξ) ∈ C∞
c (R2) satisfies

0 ≤ ϕ̂(ξ) ≤ 1, ϕ̂(ξ) =

{
1, |ξ| ≤ 1;
0, |ξ| ≥ 2.

then ϕ(x) ∈ S(R2), which is the Fourier transform of ϕ̂(ξ). Set⎧⎪⎪⎨
⎪⎪⎩

ψ(x) = 2ϕ(2x) − ϕ(x);
ϕj(x) = 22jϕ(2jx), j ∈ N;
ψj(x) = 22jψ(2jx), j ∈ N;
Sjf = ϕj(x) ∗ f,�jf = ψj(x) ∗ f.

Obviously, {Sj,�j} is the classical Littlewood-Paley decomposition, and homogeneous Besov
spaces can be defined as

Ḃα
p,∞ = {f ∈ S ′(R2), ‖f‖Ḃα

p,∞
= sup

j∈Z

2jα‖Sjf‖Lp <∞}, α ∈ R, p ≥ 1.

On the other hand, for a Banach space χ and for any non-zero function φ such that ‖φ(λ·)‖χ̇ is
a homogeneous function of λ with λ > 0, we introduce the following definition on smoothness
degree of Banach space χ(see [15]).

Definition 2.1. Let χ be a Banach space. The smoothness degree of χ is defined and denoted
by

deg(χ) := logλ(Λ(λ)),

where Λ(λ) =
‖φ(λ·)‖χ̇

‖φ(·)‖χ̇
and φ is a nonzero function in χ.

Remark 2.1. (1) It is easy to see that the definition of deg(χ) is independent of the choice
of φ;(2)Clearly,deg(χ1) ≥ deg(χ2), if χ1 ⊂ χ2; and

deg(Lp(RN)) = −N
p
, 1 ≤ p ≤ ∞; deg(W s,p(RN)) = s− N

p
, 1 ≤ p ≤ ∞, s ∈ R;

deg(Ḃs
p,q(R

N)) = s− N

p
, 1 ≤ p, q ≤ ∞, s ∈ R; deg(Mp

q (RN)) = −N
p
, 1 ≤ q ≤ p <∞;

deg(F s
p,q(R

N)) = s− N

p
, 1 ≤ p <∞, 1 ≤ q ≤ ∞, s ∈ R.
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By the above definition, the following properties hold(see[16],[15]):

(1) Let 1 ≤ p ≤ ∞, α > 0, then Ḃ−α
p,∞ has the following equivalent norms:

sup
j∈Z

2−jα‖�ju‖Lp ∼ sup
j∈Z

2−jα‖Sju‖Lp ∼ sup
t≥0

t
α
2 ‖S(t)u‖Lp

∼ sup
t≥0

‖S(t)u‖Ḃ−α
p,∞ , u ∈ Ḃ−α

p,∞.

where S(t) stands for the Poisson semigroup.

(2) By the Littlewood-Paley decomposition of Besov space, i.e.,

‖u‖Ḃ−α
p,∞ = sup

j∈Z

2−jα‖�ju‖Lp , u ∈ Ḃ−α
p,∞

we have

L2(R2) ↪→ Ḃ−α1
p1,∞(R2) ↪→ Ḃ−α2

p2,∞(R2)

αj = 1 − 2

pj

, j = 1, 2, 2 ≤ p1 ≤ p2 ≤ ∞.

(3) More generally, by the Sobolev embedding, we have

Lp(RN) ↪→ Ḃ−α
q,∞(RN);

W s,k(RN) ↪→ Ḃ−β
l,∞(RN).

where

deg(Lp(RN)) = deg(Ḃ−α
q,∞(RN)); deg(W s,k(RN)) = deg(Ḃ−β

l,∞(RN)),

with

−N
p

= −α− N

q
; s− N

k
= −β − N

l
;

s ∈ R, 1 ≤ p, q, k, l ≤ ∞.

In particular,

Lγ(R2) ↪→ Ḃ
− 2

γ
+ 2

p
q,∞ (R2), with p > γ.

Remark 2.2. Notes that

|x|−
2
γ ∈ Ḃ−α

p,∞, α =
2

γ
− 2

p
; |x|−1 ∈ Ḃ−β

q,∞, β = 1 − 2

q
.

with p > γ, q > 2. But

|x|−
2
γ � Lγ(R2); |x|−1 � L2(R2).
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3 The Cauchy problem to the approximation system

in Besov spaces

The existence of self-similar solution to the problem (1.1)-(1.2) up to a smallness condition
on the initial data, will be obtained as a limit of solution to the following approximation
system:

ρt + div(ρu) = ε�ρ (3.1)

ut −�u+ ∇ργ = 0 (3.2)

where x ∈ R2, γ ≥ 1, ε > 0 is small, and ρ ≥ 0.
Note that the approximation system (3.1)-(3.2) is invariant under scaling

(ρ(x, t), u(x, t)) = (λ
2
γ ρ(λx, λ2t), λu(λx, λ2t).

In the sequel, we will first treat the case γ = 1 and then turn to the general case of γ > 1.
For the sake of simplicity in presentation, we drop the dependence on ε in the system

(3.1)-(3.2) for γ = 1, thus consider the following Cauchy problem:

ρt + div(ρu) = �ρ (3.3)

ut −�u+ ∇ρ = 0 (3.4)

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x) (3.5)

Furthermore, it is assumed that

ρ0(x) ∈ Ḃ
−2+ 2

p
p,∞ (R2), u0(x) ∈ Ḃ

−1+ 2
q

q,∞ (R2) (3.6)

where p > 1, q > 2.
From (3.4), we can represent u(x, t) as

u(x, t) = S(t)u0(x) −
∫ t

0

S(t− τ)∇ρ(τ, x)dτ

:= S(t)u0(x) − C[ρ](t, x) (3.7)

So, a mild solution of (3.3) can be defined as

ρ(x, t) = S(t)ρ0(x) −
∫ t

0

S(t− τ)div(ρ(τ, x)S(τ)u0(x))dτ

+

∫ t

0

S(t− τ)div(ρC[ρ])(τ, x)dτ

:= S(t)ρ0(x) −A[ρ, u0](t, x) + B[ρ, ρ](t, x) (3.8)

Where S(t) denotes the heat operator. It follows from the classical regularity estimates of
the heat semigroup(see e.g. [16],[15]), one easily sees that for t > 0

‖S(t)ϕ‖Lp ≤ Ct−
N
2

( 1
r
− 1

p
)‖ϕ‖Lr , 1 ≤ r ≤ p ≤ ∞; (3.9)

‖(−�)
d
2S(t)ϕ‖Lp ≤ Ct−

d
2
−N

2
( 1

r
− 1

p
)‖ϕ‖Lr , d ≥ 0, 1 ≤ r ≤ p ≤ ∞, r �= ∞. (3.10)

Now, we will prove the following basic existence result:
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Theorem 3.1. For any ρ0(x) ∈ B p
p,∞ (R2),and u0(x) ∈ B q

q,∞ (R2),if

‖ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
≤ δ, ‖u0‖

Ḃ
−1+2

q
q,∞ (R2)

≤ η (3.11)

with 2 < p < 4, 2 < q < 4 and δ, η > 0 both are small. Then there exists a unique solution
ρ(x, t) of (3.8) which satisfies:

ρ(t) ∈ Cw([0,∞); Ḃ
−2+ 2

p
p,∞ (R2)); t1−

1
pρ(t) ∈ C([0,∞);Lp(R2)); (3.12)

ρ(t) − S(t)ρ0(x) ∈ C([0,∞);L1(R2)) (3.13)

sup
t≥0

‖ρ‖
Ḃ

−2+ 2
p

p,∞ (R2)
+ sup

t≥0
t1−

1
p‖ρ‖Lp(R2) ≤ C, (3.14)

where C depends only on ‖ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
, and ‖u0‖

Ḃ
−1+2

q
q,∞ (R2)

.

Proof. Set

Y = {ρ(t); ρ(t) ∈ Cw([0,∞); Ḃ
−2+ 2

p
p,∞ (R2))} ∩ {ρ(t); t1−

1
pρ(t) ∈ C([0,∞);Lp(R2))}

endowed with the norm

‖ · ‖Y = sup
t≥0

‖ · ‖
Ḃ

−2+ 2
p

p,∞ (R2)
+ sup

t≥0
t1−

1
p‖ · ‖Lp(R2)

where v(t) ∈ Cw([0,∞);E) means that v(t) ∈ C((0,∞);E) and v(t) is continuous at t = 0
in the weak topology σ(E,E ′), that is

lim
t→0

〈v(x, t) − v0(x), ψ〉 = 0, ψ(x) ∈ E ′

where E ′ is the dual space of E.
Notes that(see[15]):

sup
t≥0

‖ · ‖
Ḃ

−2+ 2
p

p,∞ (R2)
= sup

t≥0
t1−

1
p‖S(t) · ‖Lp(R2)

then we have easily

‖S(t)ρ0‖Y ≤ sup
t≥0

‖S(t)ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
+ sup

t≥0
t1−

1
p‖S(t)ρ0‖Lp(R2)

≤ 2‖S(t)ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
. (3.15)

The existence result will be proved by applying the fixed point argument, so we need some
basic estimates.

Step 1: Estimates of A[ρ, u0]
It follows from the definitions that

A[ρ, u0](t, x) =

∫ t

0

S(t− τ)div(ρ(τ, x)S(τ)u0(x))dτ

‖A[ρ, u0]‖Y = sup
t≥0

‖A[ρ, u0]‖
Ḃ

−2+ 2
p

p,∞ (R2)
+ sup

t≥0
t1−

1
p‖A[ρ, u0]‖Lp(R2)
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By the Sobolev embedding L1(R2) ↪→ B p
p,∞ (R2) and (3.9)-(3.10), since 0 < 1

p
+ 1

q
< 1, one

has

‖A[ρ, u0]‖
Ḃ

−2+ 2
p

p,∞
≤ C‖A[ρ, u0]‖L1

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
−( 1

p
+ 1

q
−1)‖ρS(τ)u0(x)‖

L
pq

p+q
dτ

= C sup
t≥0

∫ t

0

|t− τ |
1
2
− 1

p
− 1

q ‖ρS(τ)u0(x)‖
L

pq
p+q

dτ

≤ C sup
t≥0

∫ t

0

|t− τ |
1
2
− 1

p
− 1

q ‖ρ‖Lp‖S(τ)u0(x)‖Lqdτ

= C sup
t≥0

∫ t

0

τ−
3
2
+ 1

p
+ 1

q |t− τ |
1
2
− 1

p
− 1

q (τ 1− 1
p‖ρ‖Lp)(τ

1
2
− 1

q ‖S(τ)u0(x)‖Lq)dτ

≤ C sup
t≥0

∫ t

0

τ−
3
2
+ 1

p
+ 1

q |t− τ |
1
2
− 1

p
− 1

q dτ‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞

= C

∫ 1

0

|1 − s|
1
2
− 1

p
− 1

q s−
3
2
+ 1

p
+ 1

q ds‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞

≤ C‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞
,

where we have used the fact that for 2 < p < 4, 2 < q < 4, it holds that −3
2

+ 1
p

+ 1
q
> −1,

and 1
2
− 1

p
− 1

q
> −1, so ∫ 1

0

|1 − s|
1
2
− 1

p
− 1

q s−
3
2
+ 1

p
+ 1

q ds

is a finite constant. Therefore

sup
t≥0

‖A[ρ, u0]‖
Ḃ

−2+ 2
p

p,∞
≤ C‖ρ‖Y ‖u0‖

Ḃ
−1+2

q
q,∞

. (3.16)

Next, we can also reduce from (3.9)-(3.10) that

sup
t≥0

t1−
1
p‖A[ρ, u0]‖Lp(R2) ≤ sup

t≥0
t1−

1
p

∫ t

0

|t− τ |−
1
2
−( 1

p
+ 1

q
− 1

p
)‖ρS(τ)u0‖

L
pq

p+q
dτ

≤ sup
t≥0

t1−
1
p

∫ t

0

τ−
3
2
+ 1

p
+ 1

q |t− τ |−
1
2
− 1

q (τ 1− 1
p‖ρ‖Lp)(τ

1
2
− 1

q ‖S(τ)u0‖Lq)dτ

≤ sup
t≥0

∫ t

0

t1−
1
p |t− τ |−

1
2
− 1

q τ−
3
2
+ 1

p
+ 1

q dτ‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞

=

∫ 1

0

|1 − s|−
1
2
− 1

q s−
3
2
+ 1

p
+ 1

q ds‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞

≤ C‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞
,

since
∫ 1

0
|1− s|−

1
2
− 1

q s−
3
2
+ 1

p
+ 1

q ds is finite constant for 2 < p < 4, 2 < q < 4 also. Thus we have

sup
t≥0

t1−
1
p‖A[ρ, u0]‖Lp(R2) ≤ C‖ρ‖Y ‖u0‖

Ḃ
−1+2

q
q,∞

. (3.17)
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Combining (3.16) with (3.17), we have

‖A[ρ, u0]‖Y ≤ C0‖ρ‖Y ‖u0‖
Ḃ

−1+2
q

q,∞
. (3.18)

Step 2: Estimates of B[ρ, ρ]
Exactly as step 1, we know

B[ρ, ρ](t, x) =

∫ t

0

S(t− τ)div(ρC[ρ])(τ, x)dτ

C[ρ] =

∫ t

0

S(t− τ)∇ρdτ

‖B[ρ, ρ]‖Y = sup
t≥0

‖B[ρ, ρ]‖
Ḃ

−2+ 2
p

p,∞ (R2)
+ sup

t≥0
t1−

1
p‖B[ρ, ρ]‖Lp(R2)

Using the Sobolev embedding L1(R2) ↪→ Ḃ
−2+ 2

p
p,∞ (R2) and(3.9)-(3.10)again, one can obtain

‖B[ρ, ρ]‖
Ḃ

−2+ 2
p

p,∞
≤ C‖B[ρ, ρ]‖L1

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
−( 2

p
−1)‖ρC[ρ]‖

L
p
2
dτ

≤ C sup
t≥0

∫ t

0

|t− τ |
1
2
− 2

p‖ρ‖Lp‖C[ρ]‖Lpdτ

= C sup
t≥0

∫ t

0

|t− τ |
1
2
− 2

p τ−1+ 1
p (τ 1− 1

p‖ρ‖Lp)‖C[ρ]‖Lpdτ

≤ C sup
t≥0

∫ t

0

|t− τ |
1
2
− 2

p τ−1+ 1
p (

∫ τ

0

|τ − s|− 1
2‖ρ‖Lpds)dτ‖ρ‖Y

= C sup
t≥0

∫ t

0

|t− τ |
1
2
− 2

p τ−1+ 1
p (

∫ τ

0

|τ − s|− 1
2 s−1+ 1

p (s1− 1
p‖ρ‖Lp)ds)dτ‖ρ‖Y

≤ C sup
t≥0

∫ t

0

|t− τ |
1
2
− 2

p τ−1+ 1
p (

∫ τ

0

|τ − s|− 1
2 s−1+ 1

pds)dτ‖ρ‖2
Y

≤ C sup
t≥0

∫ t

0

|t− τ |
1
2
− 2

p τ−
3
2
+ 2

pdτ‖ρ‖2
Y

= C

∫ 1

0

|1 − θ|
1
2
− 2

p θ−
3
2
+ 2

pdθ‖ρ‖2
Y

= C‖ρ‖2
Y ,with2 < p < 4,

where we have used∫ τ

0

|τ − s|− 1
2 s−1+ 1

pds = τ−
1
2
+ 1

p

∫ 1

0

|1 − η|− 1
2η−1+ 1

pdη = Cτ−
1
2
+ 1

p

and the fact that both∫ 1

0

|1 − θ|
1
2
− 2

p θ−
3
2
+ 2

pdθ and

∫ 1

0

|1 − η|− 1
2η−1+ 1

pdη
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are finite constants since 2 < p < 4. Therefore,

sup
t≥0

‖B[ρ, ρ]‖
Ḃ

−2+ 2
p

p,∞
≤ C‖ρ‖2

Y . (3.19)

Similarly ,

sup
t≥0

t1−
1
p‖B[ρ, ρ]‖Lp ≤ sup

t≥0

∫ t

0

t1−
1
p |t− τ |−

1
2
−( 2

p
− 1

p
)‖ρC[ρ]‖

L
p
2
dτ

≤ sup
t≥0

∫ t

0

t1−
1
p |t− τ |−

1
2
− 1

p τ−1+ 1
p (τ 1− 1

p‖ρ‖Lp)‖C[ρ]‖Lpdτ

≤ sup
t≥0

∫ t

0

t1−
1
p |t− τ |−

1
2
− 1

p τ−1+ 1
p‖C[ρ]‖Lpdτ‖ρ‖Y

≤ sup
t≥0

∫ t

0

t1−
1
p |t− τ |−

1
2
− 1

p τ−1+ 1
p (

∫ τ

0

|τ − s|− 1
2 s−1+ 1

p (s1− 1
p‖ρ‖Lp)ds)dτ‖ρ‖Y

≤ sup
t≥0

∫ t

0

t1−
1
p |t− τ |−

1
2
− 1

p τ−
3
2
+ 2

pdτ‖ρ‖2
Y

=

∫ 1

0

|1 − θ|−
1
2
− 1

p θ−
3
2
+ 2

p‖ρ‖2
Y

= C‖ρ‖2
Y ,with2 < p < 4.

This, together with (3.19) implies the desired estimate

‖B[ρ, ρ]‖Y ≤ C1‖ρ‖2
Y . (3.20)

Step 3: Fixed point argument
Consider now

Yδ = {ρ(t) ∈ Y, ‖ρ‖Y ≤ 2Cδ};
d(ρ1, ρ2) = sup

t≥0
t1−

1
p‖ρ1 − ρ2‖Lp ,∀ρ1, ρ2 ∈ Yδ,

and

T ρ = S(t)ρ0 −A[ρ, u0] + B[ρ, ρ].

Similarly as in step 1 and step 2, we have

t1−
1
p‖A[ρ, u0]‖Lp ≤ C( sup

0≤τ≤t
τ 1− 1

p‖ρ‖Lp) (3.21)

t1−
1
p‖B[ρ, ρ]‖Lp ≤ C( sup

0≤τ≤t
τ 1− 1

p‖ρ‖Lp)2 (3.22)

‖A[ρ, u0]‖L1 ≤ C( sup
0≤τ≤t

τ 1− 1
p‖ρ‖Lp) (3.23)

‖B[ρ, ρ]‖L1 ≤ C( sup
0≤τ≤t

τ 1− 1
p‖ρ‖Lp)2 (3.24)

Obviously, if ρ0 ∈ Ḃ
−2+ 2

p
p,∞ , then

S(t)ρ0 ∈ Ḃ
−2+ 2

p
p,∞ , t1−

1
pS(t)ρ0 ∈ C([0,∞);Lp)
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and

〈S(t)ρ0 − ρ0, ψ(x)〉 = 〈S(t)ρ0, ψ(x)〉 − 〈ρ0, ψ(x)〉 → 0, as t→ 0.

This means S(t)ρ0 ∈ Cw([0,∞); Ḃ
−2+ 2

p
p,∞ ). So it follows from (3.23)-(3.24) and t1−

1
pρ ∈

C([0,∞);Lp) that

T ρ− S(t)ρ0 = −A[ρ, u0] + B[ρ, ρ] ∈ C([0,∞);L1);

∀ψ ∈ Ḃ
2− 2

p

p′,1 , 〈T ρ− S(t)ρ0 − ρ0, ψ〉 ≤ ‖T ρ− S(t)ρ0 − ρ0‖
Ḃ

−2+ 2
p

p,∞
‖ψ‖

Ḃ
2− 2

p

p′,1
;

≤ C‖T ρ− S(t)ρ0 − ρ0‖L1‖ψ‖
Ḃ

2− 2
p

p′,1
→ 0, as t→ 0.

Consequently,

T ρ− S(t)ρ0 ∈ Cw([0,∞); Ḃ
−2+ 2

p
p,∞ ), T ρ ∈ Cw([0,∞); Ḃ

−2+ 2
p

p,∞ ).

Moreover, since t1−
1
pρ ∈ C([0,∞);Lp) and from (3.21)-(3.22), we deduce that

t1−
1
pT ρ ∈ C([0,∞);Lp).

On the other hand, it follows from step 1 and step 2 that

‖T ρ‖Yδ
≤ 2‖ρ0‖

Ḃ
−2+ 2

p
p,∞

+ C0‖ρ‖Yδ
‖u0‖

Ḃ
−1+2

q
q,∞

+ C1‖ρ‖2
Yδ

≤ 2δ + 2C0Cηδ + 4C1C
2δ2 = δ(2 + 2C0Cη + 4C1C

2δ).

Now then we can choose C ≥ 3 fixed, such that for η and δ small enough,2C0η ≤ 1
2
, 4C1C

2δ ≤
C. Therefore,

‖T ρ‖Yδ
≤ 2Cδ.

Next, note that

d(T ρ1, T ρ2) ≤ sup
t≥0

t1−
1
p‖

∫ t

0

S(t− τ)div[(ρ1(τ, x) − ρ2(τ, x))S(τ)u0(x)]dτ‖Lp

+ sup
t≥0

t1−
1
p‖

∫ t

0

S(t− τ)div(ρ1C[ρ1] − ρ2C[ρ2])(τ, x)dτ‖Lp

= I1 + I2.

we can estimate I1 and I2 as

I1 ≤ C sup
t≥0

t1−
1
p

∫ t

0

|t− τ |−
1
2
− 1

q ‖(ρ1 − ρ2)S(τ)u0‖
L

pq
p+q

dτ

≤ C sup
t≥0

t1−
1
p

∫ t

0

|t− τ |−
1
2
− 1

q ‖ρ1 − ρ2‖Lp‖S(τ)u0‖Lqdτ

≤ C sup
t≥0

t1−
1
p

∫ t

0

|t− τ |−
1
2
− 1

q τ−
3
2
+ 1

p
+ 1

q dτ‖u0‖
Ḃ

−1+2
q

q,∞
d(ρ1, ρ2)

= C‖u0‖
Ḃ

−1+2
q

q,∞
d(ρ1, ρ2),
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and

I2 ≤ C sup
t≥0

t1−
1
p

∫ t

0

|t− τ |−
1
2
− 1

p‖ρ1C[ρ1] − ρ2C[ρ2]‖L
p
2
dτ

≤ C sup
t≥0

t1−
1
p

∫ t

0

|t− τ |−
1
2
− 1

p
(
‖ρ1 − ρ2‖Lp‖C[ρ1]‖Lp + ‖ρ2‖Lp‖C[ρ1 − ρ2]‖Lp

)
dτ

≤ C sup
t≥0

t1−
1
p

∫ t

0

|t− τ |−
1
2
− 1

p τ−
3
2
+ 2

pdτ(‖ρ1‖Y + ‖ρ2‖Y )d(ρ1, ρ2)

≤ C(‖ρ1‖Y + ‖ρ2‖Y )d(ρ1, ρ2).

So

d(T ρ1, T ρ2) ≤ C(‖u0‖
Ḃ

−1+2
q

q,∞
+ ‖ρ1‖Y + ‖ρ2‖Y )d(ρ1, ρ2)

≤ C(η + 4Cδ)d(ρ1, ρ2).

Thus,for δ and η small enough, T is a contraction mapping from Yδ into itself. So the
Banach contraction mapping principle implies that there exists a unique solution ρ ∈ Yδ to
the problem (3.8). This proves our theorem.

With ρ(x, t) at hand, one obtains u(x, t) by the equation (3.7), i.e.

u(x, t) = S(t)u0(x) −
∫ t

0

S(t− τ)∇ρ(τ, x)dτ

:= S(t)u0(x) − C[ρ]. (3.25)

Furthermore, u(x, t) can be estimated easily as follows. First,

‖u‖
Ḃ

−1+2
q

q,∞
≤ ‖S(t)u0‖

Ḃ
−1+2

q
q,∞

+ ‖C[ρ]‖
Ḃ

−1+2
q

q,∞
. (3.26)

From (3.9), we deduce easily

‖S(t)u0‖
Ḃ

−1+2
q

q,∞
= sup

t≥0
t

1
2
− 1

q ‖S(t)(S(t)u0)‖Lq

≤ C sup
t≥0

t
1
2
− 1

q ‖S(t)u0‖Lq = ‖u0‖
Ḃ

−1+2
q

q,∞
. (3.27)

In a similar way as in step 1, using the Sobolev embedding L2(R2) ↪→ Ḃ
−1+ 2

q
q,∞ (R2) and (3.10),

we can compute:

‖C[ρ]‖
Ḃ

−1+2
q

q,∞
≤ C‖C[ρ]‖L2

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
+ 1

2
− 1

p‖ρ‖Lpdτ

= sup
t≥0

∫ t

0

|t− τ |−
1
p τ−1+ 1

p (τ 1− 1
p‖ρ‖Lp)dτ

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
p τ−1+ 1

pdτ‖ρ‖Y

= C

∫ 1

0

|1 − s|−
1
p s−1+ 1

pds‖ρ‖Y ≤ C‖ρ‖Y .
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Thus from Theorem 3.1 and (3.27), one has

sup
t≥0

‖u‖
Ḃ

−1+2
q

q,∞
≤ C(‖ρ0‖

Ḃ
−2+ 2

p
p,∞ (R2)

, ‖u0‖
Ḃ

−1+2
q

q,∞ (R2)
). (3.28)

So combining with Theorem 3.1, we have

Theorem 3.2. For any ρ0(x) ∈ Ḃ
−2+ 2

p
p,∞ (R2) and u0(x) ∈ Ḃ

−1+ 2
q

q,∞ (R2),if

‖ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
≤ δ, ‖u0‖

Ḃ
−1+2

q
q,∞ (R2)

≤ η

with 2 < p < 4, 2 < q < 4, and δ, η > 0 are small. Then there exists a unique solution
(ρ(x, t), u(x, t)) of (3.3)-(3.5) which satisfies:

ρ(t) ∈ Cw([0,∞); Ḃ
−2+ 2

p
p,∞ (R2));u(t) ∈ Cw([0,∞); Ḃ

−1+ 2
q

q,∞ (R2));

ρ(t) − S(t)ρ0(x) ∈ C([0,∞);L1(R2)); t1−
1
pρ(t) ∈ C([0,∞);Lp(R2));

sup
t≥0

‖ρ‖
Ḃ

−2+ 2
p

p,∞ (R2)
+ sup

t≥0
t1−

1
p‖ρ‖Lp(R2) ≤ C; sup

t≥0
‖u‖

Ḃ
−1+2

q
q,∞

≤ C,

where C depends only on ‖ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
and ‖u0‖

Ḃ
−1+2

q
q,∞ (R2)

.

4 The passage to limit

In this section, we would like to pass the limit ε→ 0+ in the approximate system

ρt + div(ρu) = ε�ρ, (4.1)

ut −�u+ ∇ρ = 0 (4.2)

to obtain the desired solution to (1.1)-(1.2) with(3.5). From Theorem 3.1 and Theorem 3.2,

we know there exist a unique solution (ρε, uε) in Cw([0,∞); Ḃ
−2+ 2

p
p,∞ ) × Cw([0,∞); Ḃ

−1+ 2
q

q,∞ ).
Note that the homogeneous Besov spacesḂ−α

p,∞ are not separable, so the convergence will

be taken in the weak topology σ(Ḃ−α
p,∞, Ḃ

α
p′,1) (where p′ is the conjugate exponent of p).

Observe that an equivalent convergence condition in these spaces is given by the following
definition(see [3]):

Definition 4.1. Let B is a Banach functional space, Then a sequence fj of vectors in B
converges weakly to f ∈ B, if the sequence ‖fj‖B is bounded and fj ⇀ f in the sense of
distributions.

Since we cannot obtain any energy bounds about homogeneous space, the above principle
will be difficult to be used in the passage to limit. However, we can do it in the subset of
our homogeneous space which are Sobolev spaces and Orlicz spaces. Indeed, we know

L2(R2) ↪→ Ḃ
−1+ 2

q
q,∞ (R2);LM(R2) ↪→ H−1(R2) ↪→ Ḃ

−2+ 2
p

p,∞ (R2). (4.3)

with p > 1 and q > 2. Where LM(R2) denotes the Orlicz space defined over R2 with
M = M(s) = (1 + s) log(1 + s) − s.

To continue, we need some a priori estimates.
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Lemma 4.1. Let (ρ, u) be smooth solution of (4.1) (4.2), and set

E(t) =

∫
R2

[
1

2
u2 + (ρ+ 1) log(1 + ρ)](x, t)dx.

Then the following energy inequality holds:

E(t) +

∫ t

0

∫
R2

1

2
|∇u|2 + ε

|∇ρ|2
1 + ρ

dxdτ ≤ E(0) exp(
T

2
) (4.4)

for any t ∈ [0, T ], 0 < T <∞.

Proof. Direct computations using (4.1)-(4.2) give

dE

dt
=

∫
R2

[u�u− u∇ρ+ ε�ρ log(1 + ρ) − div(�u) log(1 + ρ)]dx

=

∫
R2

[−|∇u|2 − ε
|∇ρ|2
1 + ρ

− u∇ρ
1 + ρ

]dx.

Thus

dE

dt
+

∫
R2

|∇u|2 + ε
|∇ρ|2
1 + ρ

dx ≤
∫

R2

|divu| log(1 + ρ)dx. (4.5)

On the other hand, using Hölder inequality and Young’s inequality, one has∫
R2

|divu| log(1 + ρ)dx ≤ (

∫
R2

|divu|2dx) 1
2 (

∫
R2

(log(1 + ρ))2dx)
1
2

≤ 1

2

∫
R2

|∇u|2dx+
1

2

∫
R2

(log(1 + ρ))2dx

∵ log(1 + ρ) ≤ 1 + ρ,∀ρ ≥ 0

∴
∫

R2

|divu| log(1 + ρ)dx ≤ 1

2

∫
R2

|∇u|2dx+
1

2

∫
R2

(1 + ρ) log(1 + ρ)dx.

That is ∫
R2

|divu| log(1 + ρ)dx ≤ 1

2

∫
R2

|∇u|2dx+
1

2
E(t). (4.6)

So from (4.5) and (4.6), we know

dE

dt
+

∫
R2

1

2
|∇u|2 + ε

|∇ρ|2
1 + ρ

dx ≤ 1

2
E(t).

Then by Gronwall’s lemma, (4.4)holds.

Remark 4.1. The above lemma holds on the following restriction of the initial data:

‖u0‖L2(R2) ≤ C; ‖ρ0‖L1(R2) ≤ C, ‖ρ0‖LM (R2) ≤ C.

and consequently, ρ(x, t) ∈ LM(R2).
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Now, from lemma 4.1 and (4.3), we know

sup
0≤t≤T

‖uε‖
Ḃ

−1+2
q

q,∞
≤ C sup

0≤t≤T
‖uε‖L2 ≤ C1; (4.7)

sup
0≤t≤T

‖ρε‖
Ḃ

−2+ 2
p

p,∞
≤ C sup

0≤t≤T
‖ρε‖H−1 ≤ C sup

0≤t≤T
‖ρε‖LM

≤ C2, (4.8)

where C1, C2 are independent of ε. In addition,

‖∇uε‖L2([0,T ];L2(R2)) ≤ C3,

C3 is independent of ε also. So we can extract a subsequence of (ρε, uε), still denoted by
(ρε, uε), such that

ρε ⇀ ρ,weak-* in L∞([0, T ];LM (R2)); (4.9)

uε ⇀ u, for some u,weakly in L2([0, T ];H1(R2)). (4.10)

Where T > 0 is an arbitrary but fixed constant. Moreover, by the lower semi-continuity of
weak convergence, ∇u ∈ L2([0, T ];L2(R2)).

In order to prove that (ρ, u) obtained in (4.9)-(4.10) is indeed a weak solution of (1.1)-
(1.2) and (3.5), we need the following key compactness lemma, which gives some compactness
concerning H1 and LM . It can be found in [20]:

Lemma 4.2. Let Ω be a bounded domain in RN , and p, q be conjugate numbers.
Assume that {gε(t, x)} and {vε(t, x)} are bounded uniformly in ε in Lp([0, T ];LM (Ω)) and

Lq([0, T ];H
N
2 (Ω)) respectively and that, as ε → 0, gε and vε converge weakly to g and v

in Lp([0, T ];LM(Ω)) and Lq([0, T ];H
N
2 (Ω)). Moreover, if {∂tg

ε} is uniformly bounded in
Lλ([0, T ];W−m,1(Ω)) for some λ > 1 and m > 0, then gεvε converges weakly to gv in the
sense of D′((0, T ) × Ω) as ε→ 0.

For anyK ⊂ R2, the estimates (4.4)imply that uε is bounded from above inL2([0, T ];H1(K))
uniformly in ε provided that ε is sufficiently small, while by equations (4.1) and (4.4) we
find that ∂tρ

ε is uniformly bounded in L∞([0, T ];W−1,1(K)). Thus, applying lemma 4.2, we
obtain

ρεuε ⇀ ρu, in D′([0, T ] ×K) (4.11)

Letting ε → 0 in (4.1)-(4.2), and using (4.9)-(4.11), we see that (ρ, u) satisfies (1.1)-(1.2) in
the sense of distribution. Thus we have the following theorem:

Theorem 4.1. For any ρ0(x) ∈ Ḃ
−2+ 2

p
p,∞ (R2) and u0(x) ∈ Ḃ

−1+ 2
q

q,∞ (R2),if

‖ρ0‖
Ḃ

−2+ 2
p

p,∞ (R2)
≤ δ, ‖ρ0‖LM (R2) ≤ C1, ‖ρ0‖L1(R2) ≤ C2;

‖u0‖
Ḃ

−1+2
q

q,∞
≤ η, ‖u0‖L2(R2) ≤ C3.

with γ = 1, 2 < p < 4, 2 < q < 4, δ and η are small, C1, C2 and C3 are absolute constants.
Then there exists a solution (ρ(x, t), u(x, t)) of (1.1)-(1.2) in the space

Cw([0, T ]; Ḃ
−2+ 2

p
p,∞ ) × Cw([0, T ]; Ḃ

−1+ 2
q

q,∞ ),∀0 < T <∞.
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5 The general case

In this section, we will consider

ρt + div(ρu) = 0 (5.1)

ut −�u+ ∇ργ = 0 (5.2)

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x) (5.3)

with x ∈ R2, γ > 1.
It has been proved in[14] that there exist a unique smooth solution to (5.1)-(5.3).
Obviously, if (ρ, u)(x, t) solves (5.1)-(5.3), then the re-scaled pair (ρλ, uλ)(x, t), defined

by

ρλ(x, t) = λ
2
γ ρ(λx, λ2t), uλ(x, t) = λu(λx, λ2t)

is also a solution for each λ > 0. So the initial function (ρ0(x), u(x)) must belong to

homogeneous space (Ḃ
− 2

γ
+ 2

p
p,∞ , Ḃ

−1+ 2
q

q,∞ ) with p > γ, q > 2, γ > 1.
The existence of solution for (5.1)-(5.3) in homogenous space will be obtained by using

similar ideas as in last section. Thus, consider the following approximation problem:

ρt + div(ρu) = ε�ρ (5.4)

ut −�u+ ∇ργ = 0 (5.5)

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x) (5.6)

with x ∈ R2, γ > 1.

Remark 5.1. Notes that the approximation system (5.4)-(5.6) is invariant under scaling

(ρ(x, t), u(x, t)) = (λ
2
γ ρ(λx, λ2t), λu(λx, λ2t), so the system (5.1)-(5.3) can be approximated

by the system (5.4)-(5.6) in homogeneous spaces.

As in the case of γ = 1, we have the following the existence result on the problem
(5.4)-(5.6)(we also assume ε = 1):

Theorem 5.1. For any ρ0(x) ∈ Ḃ
− 2

γ
+ 2

p
p,∞ (R2) and u0(x) ∈ Ḃ

−1+ 2
q

q,∞ (R2), if

‖ρ0‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

≤ δ and ‖u0‖
Ḃ

−1+2
q

q,∞ (R2)
≤ η (5.7)

with p > 2γ, γ ≥ 2, q > 2, for δ and η > 0 suitably small. Then there exists a unique solution
(ρ(x, t), u(x, t)) to the problem (5.4)-(5.6) satisfying:

ρ(t) ∈ Cw([0,∞); Ḃ
− 2

γ
+ 2

p
p,∞ (R2)); t

1
γ
− 1

pρ(t) ∈ C([0,∞);Lp(R2)); (5.8)

sup
t≥0

‖ρ‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

+ sup
t≥0

t
1
γ
− 1

p‖ρ‖Lp(R2) ≤ C1; (5.9)

ρ(t) − S(t)ρ0(x) ∈ C([0,∞);Lγ(R2)); sup
t≥0

‖u‖
Ḃ

−1+2
q

q,∞
≤ C2. (5.10)

Where C1 and C2 are constants which depend only on ‖ρ0‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

and ‖u0‖
Ḃ

−1+2
q

q,∞ (R2)
.
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Proof. Indeed, we only need to replace the space Y in the proof of Theorem 3.1 by

Y ′ = {ρ(t); ρ(t) ∈ Cw

(
[0,∞); Ḃ

− 2
γ
+ 2

p
p,∞ (R2)

)
} ∩ {ρ(t); t

1
γ
− 1

pρ(t) ∈ C
(
[0,∞);Lp(R2)

)
} (5.11)

endowed with the norm

‖ · ‖Y ′ = sup
t≥0

‖ · ‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

+ sup
t≥0

t
1
γ
− 1

p‖ · ‖Lp(R2)

The approach to prove theorem is similar to that of Theorem 3.1, so we only sketch some
key estimates. We start from

A[ρ, u0](t, x) =

∫ t

0

S(t− τ)div(ρ(τ, x)S(τ)u0(x))dτ

‖A[ρ, u0]‖Y ′ = sup
t≥0

‖A[ρ, u0]‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

+ sup
t≥0

t
1
γ
− 1

p‖A[ρ, u0]‖Lp(R2)

By the Sobolev embedding Lγ(R2) ↪→ Ḃ
− 2

γ
+ 2

p
p,∞ (R2) and using (3.9)-(3.10) for 0 < 1

p
+1

q
< 1,

we deduce that

‖A[ρ, u0]‖
Ḃ

− 2
γ + 2

p
p,∞

≤ C‖A[ρ, u0]‖Lγ

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
−( 1

p
+ 1

q
− 1

γ
)‖ρS(t)u0(x)‖

L
pq

p+q
dτ

≤ C sup
t≥0

∫ t

0

|t− τ |
1
γ
− 1

2
− 1

p
− 1

q ‖ρ‖Lp‖S(t)u0(x)‖Lqdτ

= C sup
t≥0

∫ t

0

τ−
1
2
− 1

γ
+ 1

p
+ 1

q |t− τ |
1
γ
− 1

2
− 1

p
− 1

q (τ
1
γ
− 1

p‖ρ‖Lp)(τ
1
2
− 1

q ‖S(t)u0(x)‖Lq)dτ

≤ C sup
t≥0

∫ t

0

τ−
1
γ
− 1

2
+ 1

p
+ 1

q |t− τ |
1
γ
− 1

2
− 1

p
− 1

q dτ‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞

= C

∫ 1

0

|1 − s|
1
γ
− 1

2
− 1

p
− 1

q s−
1
2
− 1

γ
+ 1

p
+ 1

q ds‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞

≤ C‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞
,

where since p > 2γ, γ ≥ 2, q > 2, so∫ 1

0

|1 − s|
1
γ
− 1

2
− 1

p
− 1

q s−
1
2
− 1

γ
+ 1

p
+ 1

q ds

is a finite constant. Thus

sup
t≥0

‖A[ρ, u0]‖
Ḃ

− 2
γ + 2

p
p,∞

≤ C‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞
.
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Next,we have

sup
t≥0

t
1
γ
− 1

p‖A[ρ, u0]‖Lp(R2) ≤ sup
t≥0

t
1
γ
− 1

p

∫ t

0

|t− τ |−
1
2
−( 1

p
+ 1

q
− 1

p
)‖ρS(t)u0‖

L
pq

p+q
dτ

≤ sup
t≥0

t
1
γ
− 1

p

∫ t

0

τ−
1
2
− 1

γ
+ 1

p
+ 1

q |t− τ |−
1
2
− 1

q (τ
1
γ
− 1

p‖ρ‖Lp)(τ
1
2
− 1

q ‖S(t)u0‖Lq)dτ

≤ sup
t≥0

∫ t

0

t
1
γ
− 1

p |t− τ |−
1
2
− 1

q τ−
1
2
− 1

γ
+ 1

p
+ 1

q dτ‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞

=

∫ 1

0

|1 − s|−
1
2
− 1

q s−
1
2
− 1

γ
+ 1

p
+ 1

q ds‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞

≤ C‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞
, with p > 2γ, γ ≥ 2, q > 2.

It follows that

sup
t≥0

t
1
γ
− 1

p‖A[ρ, u0]‖Lp(R2) ≤ C‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞
.

Thus

‖A[ρ, u0]‖Y ′ ≤ C‖ρ‖Y ′‖u0‖
Ḃ

−1+2
q

q,∞
.

For the estimate of B[ρ, ρ](t, x),we need to make some changes. It becomes

B[ρ, ρ](t, x) =

∫ t

0

S(t− τ)div(ρC[ρ])(τ, x)dτ,

with

C[ρ] =

∫ t

0

S(t− τ)∇ργdτ.

To estimate

‖B[ρ, ρ]‖Y ′ = sup
t≥0

‖B[ρ, ρ]‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

+ sup
t≥0

t
1
γ
− 1

p‖B[ρ, ρ]‖Lp(R2),

one uses the Sobolev embedding Lγ(R2) ↪→ Ḃ
− 2

γ
+ 2

p
p,∞ (R2) and(3.9)-(3.10) again for p > 2γ >

18



γ + 1 to obtain

‖B[ρ, ρ]‖
Ḃ

− 2
γ + 2

p
p,∞

≤ C‖B[ρ, ρ]‖Lγ

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
−( γ+1

p
− 1

γ
)‖ρC[ρ]‖

L
p

γ+1
dτ

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
+ 1

γ
− γ+1

p ‖ρ‖Lp‖C[ρ]‖
L

p
γ
dτ

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
+ 1

γ
− γ+1

p τ−
1
γ
+ 1

p (

∫ τ

0

|τ − s|− 1
2‖ργ‖

L
p
γ
ds)dτ‖ρ‖Y ′

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
+ 1

γ
− γ+1

p τ−
1
γ
+ 1

p (

∫ τ

0

|τ − s|− 1
2 s−1+ γ

p ds)dτ‖ρ‖γ+1
Y ′

≤ C sup
t≥0

∫ t

0

|t− τ |−
1
2
+ 1

γ
− γ+1

p τ−
1
2
− 1

γ
+ γ+1

p dτ‖ρ‖γ+1
Y ′

= C

∫ 1

0

|1 − θ|−
1
2
+ 1

γ
− γ+1

p θ−
1
2
− 1

γ
+ γ+1

p dθ‖ρ‖γ+1
Y ′

= C‖ρ‖γ+1
Y ′ .

Where one has used∫ τ

0

|τ − s|− 1
2 s−1+ γ

p ds = τ−
1
2
+ γ

p

∫ 1

0

|1 − η|− 1
2η−1+ γ

p dη = Cτ−
1
2
+ γ

p

and the fact that for p > 2γ, γ ≥ 2 and q > 2,∫ 1

0

|1 − θ|−
1
2
+ 1

γ
− γ+1

p θ−
1
2
− 1

γ
+ γ+1

p dθ and

∫ 1

0

|1 − η|− 1
2η−1+ γ

p dη

both are finite constants. Therefore,

sup
t≥0

‖B[ρ, ρ]‖
Ḃ

− 2
γ + 2

p
p,∞

≤ C‖ρ‖γ+1
Y ′ .

Similarly ,

sup
t≥0

t
1
γ
− 1

p‖B[ρ, ρ]‖Lp ≤ sup
t≥0

∫ t

0

t
1
γ
− 1

p |t− τ |−
1
2
−( γ+1

p
− 1

p
)‖ρC[ρ]‖

L
p

γ+1
dτ

≤ sup
t≥0

∫ t

0

t
1
γ
− 1

p |t− τ |−
1
2
− γ

p τ−
1
γ
+ 1

p (τ
1
γ
− 1

p‖ρ‖Lp)‖C[ρ]‖
L

p
γ
dτ

≤ sup
t≥0

∫ t

0

t
1
γ
− 1

p |t− τ |−
1
2
− γ

p τ−
1
γ
+ 1

p‖C[ρ]‖
L

p
γ
dτ‖ρ‖Y ′

≤ sup
t≥0

∫ t

0

t
1
γ
− 1

p |t− τ |−
1
2
− γ

p τ−
1
2
− 1

γ
+ γ+1

p dτ‖ρ‖γ+1
Y ′

=

∫ 1

0

|1 − θ|−
1
2
− γ

p θ−
1
2
− 1

γ
+ γ+1

p ‖ρ‖γ+1
Y ′

= C‖ρ‖γ+1
Y ′ , with p > 2γ, γ ≥ 2.
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Consequently,

‖B[ρ, ρ]‖Y ′ ≤ C‖ρ‖γ+1
Y ′ .

The other parts of the estimates and the scheme of the existence proof are similar to those
for Theorem 3.1, so we omit the details.

Remark 5.2. If 1 < γ < 2 and

2γ < p <
2γ(γ + 1)

2 − γ
, q > 2

the above theorem holds also.

Remark 5.3. In the 3-dimensional case, the conclusion in above theorem also holds under
the following restriction of p, q:

p > 3γ, q > 3, if γ ≥ 2;

3γ < p <
3γ(γ + 1)

2 − γ
, q > 3, if 1 ≤ γ < 2,

and (ρ0, u0) ∈ (Ḃ
− 2

γ
+ 3

p
p,∞ , Ḃ

−1+ 3
q

q,∞ ).

To obtain the desired solution to the problem (5.1)-(5.3), we would like to take the limit
ε → 0+ in (5.4)-(5.6) .To this end, certain compactness on the sequence (ρε, uε) is required.
This will be provided by the following key a priori estimates.

First, note that due to the property of homogeneous spaces, we can assume without lose
of generality that (ρ(x, t), u(x, t)) vanishes as x→ ∞. The first a priori estimate is given in
the following lemma:

Lemma 5.1. Let (ρ, u) be a smooth solution to (5.4)-(5.5),and set

E(t) =

∫
R2

[
1

2
u2 +

ργ

γ − 1
]dx.

Then the following energy inequality holds:

E(t) +

∫ t

0

∫
R2

|∇u|2 +
4ε

γ
|∇(ρ

γ
2 )|2dxdτ ≤ E(0) (5.12)

for any t ∈ [0, T ], γ > 1.

Proof. Multiplying (5.5) by u, integrating it over R2,and using (5.4), we deduce:

dE(t)

dt
+

∫
R2

|∇u(x, t)|2 + εγ|∇ρ|2ργ−2dx = 0.

Thus (5.12) follows by integration.

Another necessary a priori estimate we need is the following
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Lemma 5.2. Let (ρ, u) be a smooth solution to the problem (5.4) (5.5), then the following
energy inequality holds:∫

R2

(
1

2
u2 +

ργ

γ − 1
+

2ρ
γ
2

γ − 2
)dx+

∫ t

0

∫
R2

1

2
|∇u|2 +

4ε

γ
|∇(ρ

γ
2 )|2 +

8ε

γ
|∇(ρ

γ
4 )|2dxdτ

≤ E1(0) exp(
γ − 1

2
T ) (5.13)

for any t ∈ [0, T ], γ > 2. where

E1(t) =

∫
R2

(
1

2
u2 +

ργ

γ − 1
+

2ρ
γ
2

γ − 2
)dx (5.14)

Proof. First, it follows from lemma 5.1 and γ > 2 that ρ ∈ L2
loc((0, T ) × R2). Thus the

equation(5.4) can be satisfied also in the sense of renormalized solutions introduced by
Diperna and Lions [25]. More precisely,

b(ρ)t + div(b(ρ)u) + (b′(ρ)ρ− b(ρ))div = εb′(ρ)�ρ (5.15)

holds for any b ∈ C1(R) and convex. Therefore,

∂ρ
γ
2

∂t
+ div(ρ

γ
2 u) =

γε

2
ρ

γ
2
−1�ρ+ (1 − γ

2
)ρ

γ
2 divu (5.16)

Integrating (5.16) over R2 yields

∂

∂t

∫
R2

2ρ
γ
2

γ − 2
dx+

∫
R2

8ε

γ
|∇(ρ

γ
4 )|2dx ≤

∫
R2

ρ
γ
2 |divu|dx. (5.17)

On the other hand, it follows from the proof of lemma 5.1 that

∂

∂t

∫
R2

[
1

2
u2 +

ργ

γ − 1
]dx+

∫
R2

|∇u|2 +
4ε

γ
|∇(ρ

γ
2 )|2dx = 0. (5.18)

Therefore, combining (5.17) with (5.18) and using Hölder inequality and Young’s inequality,
one has

∂

∂t

∫
R2

[
1

2
u2 +

2ρ
γ
2

γ − 2
+

ργ

γ − 1
]dx+

∫
R2

[|∇u|2 +
8ε

γ
|∇(ρ

γ
4 )|2 +

4ε

γ
|∇(ρ

γ
2 )|2]dx

≤
∫

R2

ρ
γ
2 |divu|dx ≤ (

∫
R2

ργdx)
1
2 (

∫
R2

|∇u|2dx) 1
2

≤ 1

2

∫
R2

ργdx+
1

2

∫
R2

|∇u|2dx ≤ γ − 1

2
E1(t) +

1

2

∫
R2

|∇u|2dx.

Thus

∂E1(t)

∂t
+

∫
R2

[
1

2
|∇u|2 +

8ε

γ
|∇(ρ

γ
4 )|2 +

4ε

γ
|∇(ρ

γ
2 )|2]dx

≤ γ − 1

2
E1(t)

So this gives the desired estimate (5.13)using Gronwall’s inequality.
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Remark 5.4. The above lemma holds on the following restriction of the initial data:

‖u0(x)‖L(R2) ≤ C1; ‖ρ0(x)‖L
γ
2 (R2)

≤ C2, ‖ρ0(x)‖Lγ(R2) ≤ C3.

where C1, C2 and C3 are absolute constants.

It follows from lemma 5.1 and lemma 5.2 that the following conclusion holds:

Corollary 5.1. Let (ρ, u) be a smooth solution to the problem (5.4)-(5.5). Then the following
inequality holds:

ε

∫ T

0

∫
R2

|∇ρ|2dxdt ≤ C. (5.19)

for 2 ≤ γ ≤ 4. Where C is independent of ε.

Proof. Obviously, if γ = 2,lemma 5.1 implies (5.19). For 2 < γ ≤ 4, from lemma 5.2, we
know

ε

∫ T

0

∫
R2

|∇ρ γ
2 |2dxdt ≤ C1, (5.20)

ε

∫ T

0

∫
R2

|∇ρ γ
4 |2dxdt ≤ C2. (5.21)

Thus

ε

∫ T

0

∫
R2

|∇ρ|2dxdt = ε

∫ T

0

∫
R2

ρ( γ
2
−1)( 8

γ
−2)|∇ρ|

8
γ
−2 · ρ( γ

4
−1)(4− 8

γ
)|∇ρ|4−

8
γ dxdt

= Cε

∫ T

0

∫
R2

|∇ρ γ
2 |

8
γ
−2|∇ρ γ

4 |4−
8
γ dxdt

≤ Cε

∫ T

0

( ∫
R2

|∇ρ γ
2 |2dx

) 4
γ
−1( ∫

R2

|∇ρ γ
4 |2dx

)2− 4
γ dt

≤ Cε
( ∫ T

0

∫
R2

|∇ρ γ
2 |2dxdt

) 4
γ
−1 ·

( ∫ T

0

∫
R2

|∇ρ γ
4 |2dxdt

)2− 4
γ

≤ C
(
ε

∫ T

0

∫
R2

|∇ρ γ
2 |2dxdt

) 4
γ
−1 ·

(
ε

∫ T

0

∫
R2

|∇ρ γ
4 |2dxdt

)2− 4
γ

≤ C,

where we have used 4
γ
− 1, 2 − 4

γ
∈ [0, 1] for 2 < γ ≤ 4, (5.20) and (5.21).

Note that

L2(R2) ↪→ Ḃ
−1+ 2

q
q,∞ (R2);Lγ(R2) ↪→ Ḃ

− 2
γ
+ 2

p
p,∞ (R2) (5.22)

with p > 2γ, γ ≥ 2, q > 2,and

L
γ
2 (R2) ↪→ Ḃ

− 2
γ
+ 2

l

l,∞ (R2) ↪→ Ḃ
− 2

γ
+ 2

p
p,∞ (R2)
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where for any
2
≤ l ≤ p <∞. It follows from lemma 5.1, lemma 5.2 and (5.22)that

sup
0≤t≤T

‖uε‖
Ḃ

−1+2
q

q,∞
≤ C sup

0≤t≤T
‖uε‖L2 ≤ C1; (5.23)

sup
0≤t≤T

‖ρε‖
Ḃ

− 2
γ + 2

p
p,∞

≤ C sup
0≤t≤T

‖ρε‖Lγ ≤ C2, (5.24)

where C1, C2 are independent of ε. In addition,

‖∇uε‖L2([0,T ];L2(R2)) ≤ C3,

C3 is independent of ε also. So we can extract a subsequence of (ρε, uε), still denoted by
(ρε, uε), such that

ρε ⇀ ρ,weak-* in L∞([0, T ];Lγ(R2)); (5.25)

uε ⇀ u, for some u,weakly in L2([0, T ];H1(R2)), (5.26)

where T > 0 is an arbitrary but fixed constant. Moreover, by the lower semi-continuity of
weak convergence, ∇u ∈ L2([0, T ];L2(R2)).

In order to prove that (ρ, u) obtained in (5.4)-(5.6)is indeed a weak solution of (5.1)-(5.3),
we need the following high space-time regularity estimate for the density:

Lemma 5.3. Let (ρ, u) be a weak solution to the problem (5.4)-(5.6). Then for any γ ≥ 2,
the following estimate holds: ∫ T

0

∫
K

ρ
3γ
2 dxdt ≤ C,∀T > 0, (5.27)

where K ⊂ R2 is bounded, and C depends on T,E0, K and E1.

Proof. Consider the function:

ϕi(t, x) = ψ(t)φ(x)Ai[ρ
γ
2 ], i = 1, 2. (5.28)

Where

φ ∈ D′(R2), |∇φ| ≤M on R2;ψ ∈ D′(0, T ), |ψ′| ≤M, (5.29)

for some finite positive constantM , and Ai are pseudodifferential operators defined by means
of the fourier multiplies with the symbols:

Âj(ξ) =
−iξj
|ξ|2 , j = 1, 2;

i.e.Aj[h] = (−�)−1∂jh, j = 1, 2.

By virtue of the Marcinkiewicz multiplier theorem [27] and the classical Sobolev embed-
ding, we have

‖Ai[h]‖W 1,s(R2) ≤ C(s)‖h‖Ls(R2), 1 < s <∞, in particular ,

‖Ai[h]‖Lq(R2) ≤ C(q, s)‖h‖Ls(R2), q finite, provided
1

q
≥ 1

s
− 1

2
,

‖Ai[h]L∞(R2) ≤ C(s)‖h‖Ls(R2), if s > 2. (5.30)
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So one can calculate that

ϕi
t(t, x) = ψ′(t)φ(x)Ai[ρ

γ
2 ] + ψ(t)φ(x)Ai[−div(ρ

γ
2 u)

+
γε

2
(ρδ)

γ
2
−1�ρ+ (1 − γ

2
)ρ

γ
2 divu], (5.31)

∂jϕ
i(t, x) = ψ(t)

(
φ∂jAi[ρ

γ
2 ] + ∂jφAi[ρ

γ
2 ]

)
, i, j = 1, 2.

Thus
2∑

i=1

∂iϕ
i = ψ(t)

(
φρ

γ
2 +

2∑
i=1

∂iφAi[ρ
γ
2 ]

)
, (5.32)

where we have used (5.16). Now due to lemma 5.1, lemma 5.2 and the regularity properties
of ρ, one can justify easily the choice of ϕi(t, x) as test functions for (5.5). It follows(5.31)and
(5.32)that∫ T

0

∫
R2

ψ(t)φ(x)ρ
3γ
2 dxdt

≤
2∑

i=1

∫ T

0

∫
R2

ργψ∂iφAi[ρ
γ
2 ]dxdt+

2∑
i=1

∫ T

0

∫
R2

ψ∂iφ|∇ui|Ai[ρ
γ
2 ]dxdt

+
2∑

i=1

∫ T

0

∫
R2

ψφ|∇ui|∂iAi[ρ
γ
2 ]dxdt+

2∑
i=1

∫ T

0

∫
R2

ψ′φ|ui|Ai[ρ
γ
2 ]dxdt

+
2∑

i=1

∫
R2

ψφ|ui|Ai[ρ
γ
2 ]dx(t = 0, T ) +

2∑
i=1

∫ T

0

∫
R2

ψφ|ui|Ai[div(ρ
γ
2 u)]dxdt

2∑
i=1

∫ T

0

∫
R2

ψφ|ui|Ai[(
γ

2
− 1)ρ

γ
2 divu]dxdt+

2∑
i=1

∫ T

0

∫
R2

ψφ|ui|Ai[
γ

2
ρ

γ
2
−1ε�ρ]dxdt

=
8∑

k=1

Ik. (5.33)

In the following, we will estimate Ik, k = 1, 2, ..., 8 separately.

1. (estimate of I1)

I1 ≤
∫ T

0

(‖ργ‖
L

3
2
‖Ai[ρ

γ
2 ]‖L3)dt ≤ C

∫ T

0

(‖ργ‖
L

3
2
‖ρ γ

2 ‖L2)dt

≤ Cess sup0≤t≤T‖ρ‖
γ
2
Lγ

∫ T

0

‖ρ‖γ

L
3γ
2

dt ≤ CE
1
2
0

∫ T

0

‖ρ‖γ

L
3γ
2

dt

≤ ν‖ρ‖
3γ
2

L
3γ
2 ((0,T )×R2)

+ C,

where ν > 0 is small, and (5.30) has been used.

2. (estimate of I2)

I2 ≤
∫ T

0

(‖∇u‖L2‖Ai[ρ
γ
2 ]‖L2)dt ≤ C

∫ T

0

(‖∇u‖L2‖ρ γ
2 ‖L2)dt

≤ C(

∫ T

0

‖∇u‖2
L2dt)

1
2 (

∫ T

0

‖ρ‖γ
Lγdt)

1
2 ≤ CE0T

1
2 .
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3. (estimate of I3) Using (5.30) and Holder inequality, we know

I3 ≤
∫ T

0

(‖∇u‖L2‖∂iAi[ρ
γ
2 ]‖L2)dt ≤ C

∫ T

0

(‖∇u‖L2‖ρ γ
2 ‖L2)dt

≤ CT
1
2 ess sup0≤t≤T

∫
R2

ργdx(

∫ T

0

∫
R2

|∇u|2dxdt) 1
2 ≤ CE0T

1
2 .

4. (estimate of I4) Similarly as for I2, we have

I4 ≤
∫ T

0

(‖u‖L2‖Ai[ρ
γ
2 ]‖L2)dt ≤ C

∫ T

0

(‖u‖L2‖ρ γ
2 ‖L2)dt

≤ CE0.

5. (estimate of I5)

I5 ≤ ess sup0≤t≤T‖u‖L2‖Ai[ρ
γ
2 ]‖L2 ≤ Cess sup0≤t≤T‖u‖L2‖ρ γ

2 ‖L2

≤ CE0.

6. (estimate of I6) Using (5.30) again, one has

I6 ≤
∫ T

0

(‖u‖L2‖Ai[div(ρ
γ
2 u)]‖L2)dt ≤ C

∫ T

0

(‖u‖L2‖ρ γ
2 u‖L2)dt

≤ C(

∫ T

0

∫
R2

|u|2dxdt) 1
2 (

∫ T

0

∫
R2

ργu2dxdt)
1
2

≤ CT
1
2 ess sup0≤t≤T‖u‖2

L2(

∫ T

0

∫
R2

ργdxdt)
1
2

≤ CTE
3
2
0 .

7. (estimate of I7)

I7 ≤
∫ T

0

(‖u‖L2‖Ai[divuρ
γ
2 ]‖L2)dt ≤ C

∫ T

0

(‖u‖L2‖divuρ
γ
2 ‖L2)dt

≤ C(

∫ T

0

‖u‖2
L2dt)

1
2 (

∫ T

0

‖divuρ
γ
2 ‖2

L2dt)
1
2

≤ Cess sup0≤t≤TT
1
2‖u‖L2(

∫ T

0

∫
R2

ργ(divu)2dxdt)
1
2

≤ CT
1
2E0(

∫ T

0

∫
R2

(divu)2dxdt)
1
2 ≤ CT

1
2E

3
2
0 .

8. (estimate of I8) Thanks to lemma 5.1, lemma 5.2,and (5.30), for γ > 2 we can deduce
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that

I8 ≤ C

∫ T

0

(‖u‖L2‖Ai[ερ
γ
2
−1�ρ]‖L2)dt

≤ C

∫ T

0

(‖u‖L2‖Ai[ε�(ρ
γ
2 ) + ε|∇(ρ

γ
4 )|2]‖L2)dt

≤ C

∫ T

0

(‖u‖L2(‖Ai[ε�(ρ
γ
2 )]‖L2 + ‖Ai[ε|∇(ρ

γ
4 )|2]‖L2)dt

≤ C

∫ T

0

‖u‖L2(ε‖∇(ρ
γ
2 )‖L2)dt+ C

∫ T

0

‖u‖L2(ε‖|∇(ρ
γ
4 )|2‖L1)dt

= C

∫ T

0

‖u‖L2(ε‖∇(ρ
γ
2 )‖L2)dt+ C

∫ T

0

‖u‖L2(ε‖∇(ρ
γ
4 )‖2

L2)dt

≤ C(

∫ T

0

‖u‖2
L2dt)

1
2 ε(

∫ T

0

‖∇(ρ
γ
2 )‖2

L2dt)
1
2 + Cess sup0≤t≤T‖u‖L2(ε

∫ T

0

‖∇(ρ
γ
4 )‖2

L2dt)

≤ Cε

∫ T

0

‖u‖2
L2dt+ Cε

∫ T

0

‖∇(ρ
γ
2 )‖2

L2dt) + Cess sup0≤t≤T‖u‖L2(ε

∫ T

0

‖∇(ρ
γ
4 )‖2

L2dt)

≤ CεE0T + CE0 + CE
1
2
0 E1(0) exp(

γ − 1

2
T ) < C

Putting I1, I2, ..., and I8 into (5.33), choosing ψ|(0,T ) = φ|K = 1 and using Young’s inequality,
we can deduce our result.

For the case γ = 2, the above high regularity estimate of density still holds.
Indeed, we can choose test function of the form:

ϕi(t, x) = ψ(t)φ(x)Ai[ρ], i = 1, 2.

The only different term can be estimated as follows:

I ′8 ≤
∫ T

0

(‖u‖L2‖Ai[ε�ρ]‖L2)dt ≤ C

∫ T

0

‖u‖L2(ε‖∇ρ‖L2)dt

≤ Cε(

∫ T

0

‖u‖2
L2dt) + Cε(

∫ T

0

‖∇ρ‖2
L2dt) ≤ CεE0T + CE0 ≤ CE0,∀ε > 0 small.

In this case, the energy inequality becomes:∫
R2

[
1

2
|u|2 + ρ2](x, t)dx+

∫ T

0

∫
R2

[|∇u|2 + 4ε|∇ρ|2]dxdt ≤ E(0). (5.34)

So similar arguments lead to the local space-time bound for ρ3.

Remark 5.5. For the case N = 3, we can obtain the same result. Since (5.30) becomes

‖Ai[h]‖W 1,s(R3) ≤ C(s)‖h‖Ls(R3), 1 < s <∞, in particular ,

‖Ai[h]‖Lq(R3) ≤ C(q, s)‖h‖Ls(R3), q finite, provided
1

q
≥ 1

s
− 1

3

‖Ai[h]L∞(R3) ≤ C(s)‖h‖Ls(R3), if s > 3 (5.35)

and lemma 5.1 and lemma 5.2 also hold.
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Lemma 5.4. Under the restrictions of lemma 5.1 and lemma 5.3, the following estimate
holds: ∫ T

0

∫
K

ργ+1dxdt ≤ C (5.36)

for γ ≥ 2,∀0 < T <∞, and K ⊂ R2 is bounded.

Proof. Obviously, by the interpolation inequality, one can deduce from lemma 5.1 and lemma
5.3 that ∫ T

0

∫
K

ργ+1dxdt ≤
∫ T

0

(
‖ρ‖θ

Lγ‖ρ‖1−θ

L
3γ
2

)γ+1
dt, for θ =

γ − 2

γ + 1
, θ ∈ [0, 1)

≤ ess sup0≤t≤T‖ρ‖θ
Lγ

∫ T

0

‖ρ‖3

L
3γ
2
dt

≤ CT 1− 2
γ
( ∫ T

0

∫
K

ρ
3γ
2 dxdt)

2
γ

≤ C.

where C is independent of ε.

Now, making use of lemma 5.4, we may suppose that

(ρε)γ → ργ weakly in L
γ+1

γ (K), (5.37)

(ρε)γ+1 → ργ+1 weakly in D′((0, T ) × R2) (5.38)

passing to subsequence if necessary. Moreover, the uniform energy estimates implies that

ε�ρε → 0, in L2(0, T ;W−1,2(R2)).

while lemma 5.2 yields

ρεuε uniformly bounded in L∞(0, T ;L
2γ

2+γ (R2)) ∩ L2(0, T ;L
mγ

m+γ (R2)),∀2 < m <∞.
Thus using (5.4), we obtain

∂tρ
ε uniformly bounded in L2(0, T ;W−1, mγ

m+γ (R2)).

Since Lγ(R2) is compactly embedded into W−1, mγ
m+γ (R2), we can use the Banach space

version of the Arzela-Ascoli theorem to infer that
ρε are precompact in C([0, T ],W−1, mγ

m+γ (R2)).
and, consequently

ρε → ρ in C([0, T ], Lγ
weak(R

2)), and weakly in L
3γ
2 ((0, T ) × R2).

Combining (5.22) with (5.23), we see that (ρ, u) satisfies{
∂ρ
∂t

+ div(ρu) = 0;
ut −�u+ ∇ργ = 0.

in D′((0, T ) × R2).
So our ultimate goal is to prove the strong convergence in (5.37) of the density.
To this end, we need the following key lemma motivated by a similar argument in[22]:
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Lemma 5.5. Let ψ(t) and φ(x) be in lemma 5.3,(ρ , u ) be a weak solution of (5.4) (5.6)
with γ ≥ 2, and (ρ, u) be a weak solution of the limit system. Then

lim
ε→0+

∫ T

0

∫
R2

ψ(t)φ(x)(ρε)γ+1dxdt =

∫ T

0

∫
R2

ψ(t)φ(x)ργρdxdt (5.39)

Proof. As in the proof of lemma 5.3, we consider the following test function for the system
(5.5):

ϕi(t, x) = ψ(t)φ(x)Ai[ρ
ε], i = 1, 2

for the same reason as in lemma 5.3. We arrive at∫ T

0

∫
R2

ψφ(ρε)γ+1dxdt =

∫
R2

ψφuε
iAi[ρ

ε]dx(t = 0, T )

−
∫ T

0

∫
R2

ψ′φuε
iAi[ρ

ε] − ψφuε
iAi[ε�ρε]dxdt

+

∫ T

0

∫
R2

ψφuε
iAi[div(ρεuε)] + ψ∂jφ∂ju

ε
iAi[ρ

ε]dxdt

+

∫ T

0

∫
R2

ψφ∂ju
ε
i∂jAi[ρ

ε] − ψ∂iφ(ρε)γAi[ρ
ε]dxdt (5.40)

Similarly, we can choose functions of the form

ϕi(t, x) = ψ(t)φ(x)Ai[ρ], i = 1, 2

as test functions for the limit system:

ut −�u+ ∇(ργ) = 0

and we obtain the following formula:∫ T

0

∫
R2

ψφργρdxdt =

∫
R2

ψφuiAi[ρ]dx(t = 0, T ) −
∫ T

0

∫
R2

ψ′φuiAi[ρ]dxdt

+

∫ T

0

∫
R2

ψφuiAi[div(ρu)] + ψ∂jφ∂juiAi[ρ]dxdt

+

∫ T

0

∫
R2

ψφ∂jui∂jAi[ρ] − ψ∂iφργAi[ρ]dxdt (5.41)

Note that

ε|
∫ T

0

∫
R2

ψφuε
iAi[�ρε]dxdt|

≤ ε

∫ T

0

‖uε
i‖L2‖Ai[�ρε]‖L2dt

≤ ε

∫ T

0

‖uε
i‖L2‖∇ρε‖L2dt→ 0, as ε→ 0, (5.42)

by the corollary 5.1.
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Due to

ρε → ρ in C([0, T ], Lγ
weak(R

2)), and weakly in L
3γ
2 ((0, T ) × R2),

and ‖Ai[ρ
ε]‖W 1,γ+1(R2) ≤ C(γ)‖ρε‖Lγ+1(R2) for γ ≥ 2. one deduce easily that

Ai[ρ
ε] → Ai[ρ] in C((0, T ) × R2), (5.43)

∂jAi[ρ
ε] → ∂jAi[ρ] in C([0, T ];Lγ

weak(R
2)). (5.44)

And so, the Sobolev embedding and the Arzela-Ascoli theorem imply again

uε → u strongly in L2(0, T ;Lp(R2)),∀1 < p <∞,

ρεuε → ρu, in C
(
[0, T ], L

2γ
2+γ

weak(R
2)

)
;

∴ Ai[div(ρεuε)] → Ai[div(ρu)] in C
(
[0, T ], L

2γ
2+γ

weak(R
2)

)
. (5.45)

Comparing (5.40)(letting ε→ 0) with (5.41),and using(5.38) and(5.42)-(5.45), we obtain our
conclusion.

To claim the strong convergence, we will make use of a( slightly modified )Minty’s
trick.Since the nonlinearity P (z) = zγ is monotone, we have∫ T

0

∫
R2

ψφ(P (ρε) − P (v))(ρε − v)dxdt ≥ 0.

Consequently, it follows from lemma 5.5 that∫ T

0

∫
R2

ψφργρ+ ψφvγ+1dxdt−
∫ T

0

∫
R2

ψφ(ργv + vγρ)dxdt ≥ 0.

Thus ∫ T

0

∫
K

(ργ − vγ)(ρ− v)dxdt ≥ 0.

We can choose v = ρ+ ηϑ, η → 0, ϑ is arbitrary,to obtain

ργ = ργ.

The above compactness argument combined with the existence Theorem 5.1, lemma 5.1 and
lemma 5.2 imply the following desired result:

Theorem 5.2. For any ρ0(x) ∈ Ḃ
− 2

γ
+ 2

p
p,∞ (R2) and u0(x) ∈ Ḃ

−1+ 2
q

q,∞ (R2),if

‖ρ0‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

≤ δ, ‖ρ0‖Lγ(R2) ≤ C1,

‖ρ0‖L
γ
2 (R2)

≤ C2( for γ > 2 only );

‖u0‖
Ḃ

−1+2
q

q,∞ (R2)
≤ η, ‖u0‖L2(R2) ≤ C3.

with p > 2γ, 2 ≤ γ ≤ 4, q > 2, δ and η are small, and C1, C2 and C3 are absolute con-
stants. Then there exists a solution (ρ(x, t), u(x, t)) to the problem (5.1)-(5.3) in the space

Cw([0, T ]; Ḃ
− 2

γ
+ 2

p
p,∞ ) × Cw([0, T ]; Ḃ

−1+ 2
q

q,∞ ),∀0 < T <∞.
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Homogeneity properties of the problem (5.1) (5.3) imply that if (ρ(x, t), u(x, t)) is a so

lution of (5.1)-(5.3), then (λ
2
γ ρ(λx, λ2t), λu(λx, λ2t)) is also a solution for all λ > 0. So

self-similar solutions can be obtained directly from Theorem 5.2 and Theorem 4.1 by tak-

ing ρ0 homogeneous of degree − 2
γ

of small Ḃ
− 2

γ
+ 2

p
p,∞ norm and u0 homogeneous of degree −1

of small Ḃ
−1+ 2

q
q,∞ norm. Since (ρε, uε) is self-similar, so is its limit. Thus we have obtained

Theorem 1.1.

Remark 5.6. From Remark 2.2, (ρ0(x), u0(x)) cannot be the form of (C1|x|−
2
γ , C2|x|−1).

However, we can choose any function (f(x), g(x)), f(x) ∈ Lγ(R2), g(x) ∈ L2(R2). Let
ωk(x) = exp(ix · k), ωl(x) = exp(ix · l), then

‖ωkf(x)‖Lγ(R2) = ‖f(x)‖Lγ(R2); ‖ωlg(x)‖L2(R2) = ‖g(x)‖L2(R2).

but

lim
|k|→∞

‖ωkf(x)‖
Ḃ

− 2
γ + 2

p
p,∞ (R2)

= 0; lim
|l|→∞

‖ωlg(x)‖
Ḃ

−1+2
q

q,∞ (R2)
= 0.

This means, the restriction of the initial date in Theorem 1.1 is reasonable.

Remark 5.7. Our theorem can be extended to the case of three space dimension by virtue
of Remark 5.3 and Remark 5.5.
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[23] Eduard Feireisl andHana Petzeltová, Large-time Behaviour of solutions to the Navier-
Stokes Equations of Compressible Flow, Arch. Rational Mech. Anal. 150(1999), 77-96.

[24] P. -L.Lions, Mathematical topics in fluid dynamics, Vol.1, Incompressible models. Ox-
ford Science Publication, Oxford, 1996.

[25] R.J.Diperna, P. -L. Lions, ordinary differential equations, transport theory and sobolev
spaces, Invent. Math. 98(1989), 511-547.
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