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Abstract

It is a well known fact that the Kronecker limit formula gives an explicit
formula for regularized determinants of flat metrics on elliptic curves. It
established the relation between the regularized determinant of the flat
metrics on elliptic curves and their discriminants. This relation can be
interpreted as follows; There exists a holomorphic section (multivalued)
of the dual of the determinant line bundle such that its L2 norm is equal
to the regularized determinant of the Laplacian acting on (0, 1) forms.

In this paper we prove the existence of the analogue of the Dedekind
eta function for odd dimensional CY manifolds. The construction of the
generalized Dedekind eta function is based on the variational formulas
for the determinants of the Laplacians of a Calabi-Yau metric acting on
functions and forms of type (0,q) on CY manifolds obtained in the present
paper. We establish the existence of a holomorphic section of some power
N of the dual of determinant line bundle on the moduli space of odd
dimensional CY manifolds whose L2 norm is the N th power of the reg-
ularized determinant of the Laplacian acting on (0, 1). This holomorphic
section of the determinant line bundle is the analogue of the Dedekind
eta function for odd dimensional CY manifolds. It is also proved that the
L2 norm on the relative dualizing sheaf is a good metric in the sense of
Mumford. This implies that the Weil-Petersson volumes of the moduli
spaces of CY manifolds are rational numbers. When M is a CY threefold
we proved that the regularized determinant of the Laplacian acting on
(0, 1) forms is bounded and the section ηN vanishes on the discriminant
locus.

∗Partially supported by The Institute of Mathematical Sciences of The Chinese University
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1 Introduction

In case of elliptic curves, it is a well known fact that the regularized determi-
nants of the Laplacians of flat metrics are related to the discriminant locus. In
this paper we established the relation between the regularized determinants of
Calabi-Yau metrics with the discriminant locus. The computation of the regu-
larized determinant in the case of the flat metric on an elliptic curve is based
on the Kronecker limit formula. It states that if

E(s) =
∑

n,m∈Z&(n,m) �=(0,0)

1
|n+mτ |2s

where τ ∈ C, Im τ > 0 and ’ means that the sum is over all pair of integers
(m,n) �= (0, 0), then E(s) has a meromorphic continuation in C with only one
pole at s = 1 and

exp
(
− d

ds
E(s)|s=0

)
= (Im τ)2 |η|4

where η is the Dedekind eta function. In the case of elliptic curves

{Eτ = C/(n+mτ)| Im τ > 0},

the function (
1
2π

)2s

E(s)

is the zeta function of the Laplacians of the flat metrics on the elliptic curves
Eτ . The regularized determinant of the Laplacian is

exp(− d

ds
E(s)|s=0) = (Im τ)2 |η|4 (1)

where η24 is equal to the discriminant of the elliptic curve Eτ . The automorphic
function η24 vanishes at ∞ and is equal to the discriminant of the elliptic curve.
The point ∞ corresponds to an elliptic curve with a node. Thus the Kronecker
limit formula gives a relation between the spectrum of the Laplacian and the dis-
criminant of elliptic curves. In the case of the elliptic curves formula (1) has the
following interpretation. There exists a holomorphic section of the sixth power
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of the dual of the determinant line bundle whose L2 norm is the determinant of
the Laplacian of the flat metric acting on (0, 1) forms. Moreover the existence
of such section implies the existence of a multivalued holomorphic section η4 of
the determinant line bundle whose L2 norm is equal to the exponential of the
Ray Singer analytic torsion. (η4)6 can be realized as a holomorphic section of
the 24th power of the determinant line bundle over PSL2(Z)\h. Notice that

6 = #(PSL2(Z)/[PSL2(Z),PSL2(Z)]) .

This implies that the zero set of the exponential of the Ray Singer analytic
torsion is the same as the discriminant η24 in this case.

There is a simple non-formal explanation of the above mentioned interpre-
tation of the Kronecker limit formula. As we mentioned above, the spectrum of
the Laplacian of a Riemannian metric on a compact manifold is discrete. When
the manifold acquires singularities then the spectrum becomes continuous and
hence contains zero. This phenomenon suggests that when the metric ”degen-
erates” together with the manifold, then the regularized determinant vanishes
on the points that parametrize the singular varieties. The problem is how to
relate the spectrum of the Laplacian with the discriminant locus. The relation is
suggested by the theory of determinant line bundles on the moduli space, their
Quillen metrics and the Ray-Singer torsion as developed recently by Quillen,
Donaldson, Bismut, Gillet, Soulé and others.

The problem that we are going to study is to find the generalization of
the analogue of the Dedekind eta function for three dimensional CY manifolds
and to relate it to the discriminant locus in the moduli space of polarized CY
manifolds. To realize this program we need to work on the moduli space of
polarized CY manifolds. It is a well known fact that the moduli space M(M) of
CY manifolds is obtained by factoring the Teichmüller space by an arithmetic
subgroup in the mapping class group of M that preserves some polarization
on the CY manifolds. According to [45] M(M) is a quasi-projective variety.
From the fact that the mapping class group is an arithmetic one, we can find a
subgroup of finite index in the mapping class group such that the quotient of the
Teichmüller space by this group ML(M) is a non-singular variety. ML(M) is a
finite covering of M(M). Over ML(M) there exists a family of odd dimensional
CY manifolds.

In this paper we study the determinant line bundle over the moduli space
ML(M) of CY manifolds together with the Quillen metric associated with CY
metric with a fix class of cohomology of its imaginary part. We prove that
the determinant line bundle L is trivial as a C∞ bundle on the moduli space
of odd dimensional CY manifolds and that it is isomorphic to the dualizing
line bundle π∗(ωX/ML(M)). Using this fact we construct a canonical C∞ non-
vanishing section det(∂) of the determinant line bundle whose Quillen norm is
exactly the analytic Ray Singer torsion. We study the zero set of det(∂) on
some compactification ML(M) such that

ML(M) � ML(M)= D
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is a divisor with normal crossings. D is called the discriminant locus. On the
relative dualizing sheaf π∗ωX/ML(M) we have a natural L2 metric ‖ ‖2 . One can
show that the metric ‖ ‖2 is a good one in the sense that Mumford discussed in
[35]. From here we deduce that the determinant line bundle L can be prolonged
in a unique way to a line bundle L over ML(M) by using the metric ‖ ‖2 . In
order to generalize the Dedekind eta function we need to construct a section
ηN of some power of the dual of the determinant line bundle whose L2 norm is
equal to the N th power of the regularized determinant det Δτ,1of a CY metric
acting on (0, 1) forms. To construct the section ηN we need to establish the
variational formulas for the regularized determinants of the Laplacians acting
on (0, q) forms. By the variational formulas of the determinants Δτ,q we mean
to compute the Hessian of log Δτ,q. The method of the computation of the the
Hessian of log Δτ,q in this paper is based on the method used in [14]. It is easy
to see that in order to compute

∂2

∂τ i∂τ j
log Δτ,q

it is enouph to compute ∂2

∂τ i∂τj
log Δ

”

τ,q, where Δ
”

τ,q = Δτ,q|Im ∂
∗ . Following the

ideas in [14] it is not difficult to prove that the Hessian of the zeta function
ζτ,q(s) is given by the formula:

∂2

∂τ i∂τ j
ζ”
τ,q(s) =

s

Γ(s)

∞∫
0

Tr

(
1

4πtn
exp

(
−tΔ′

τ,q+1

)
F

(
q + 1, φi ◦ φj

))
ts−1dt,

where φi ∈ H1(M,Θ) are Kodaira-Spencer classes viewed as bundle maps:

φi : C∞
(
M,Ω1,0

M

)
→ C∞

(
M,Ω0,1

M

)
.

F
(
q + 1, φi ◦ φj

)
is the map induced by

φi ◦ φj : C∞
(
M,Ω0,1

M

)
→ C∞

(
M,Ω0,1

M

)
on C∞

(
M,Ω0,q+1

M

)
and restricted in Im ∂. Let

Tr

(
1

4πtn
exp

(
−tΔ′

τ,q+1

)
F

(
q + 1, φi ◦ φj

))
=

1∑
k=−n

αk

tk
+ α0 + ..

be the short time asymptotic expansion. It was pointed out in [14] that

∂2

∂τ i∂τ j
log Δ

”

τ,q = α0.

In this paper we gave an explicit formula for α0. This can be viewed as the
generalization of the results in [24] and [27].
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Based on the variational formulas we construct a section of the dual of the
determinant line bundle whose L2 norm is equal detΔτ,1. Thus we generalize the
above mentioned relation between the regularized determinant of the Laplacian
of a CY metric acting on (0, 1) forms and the Dedekind eta function from elliptic
curves to odd dimensional Calabi-Yau manifolds. We show that the holomorphic
section ηN vanishes on the discriminant locus when M is a CY threefold.

The results in this paper are related to the results in [2]. In [2] a relation be-
tween the section η and counting elliptic curves on CY threefold was established
by using arguments from String Theory. It is a real challenge for mathemati-
cians to establish mathematically the results obtained in [2]. Some connections
between the results of this paper and those in [2] are established in [44].

The results and the conjectures stated in this paper are related to the results
in [22] and [23].

We discussed the problem of finding the relations between the spectral prop-
erties of the Laplacian of CY metric on K3 surfaces with the discriminant set
in [24], [25] and [27]. The results of these papers showed that the problem of
relating the spectral properties of the Laplacian acting on functions of a CY
metric on even dimensional CY manifolds is a very delicate one since the Ray
Singer Analytic torsion is zero. The analytic torsion for Enriques surfaces is
discussed in [22] from the point of view of String Theory and in [46] from a
mathematical point of view. The analogue of the Dedekind eta function for
Enriques surfaces was constructed in [8]. Its relations to the regularized deter-
minants of CY metrics on Enriques surfaces is discussed in [28]. Recently H.
Fang and Z. Lu obtained important results concerning the relations between
BCOV analytic torsion and its relations to Hodge and Weil Petersson metric.
See [16].

This article is organized as follows.
In Section 2 we introduce some basic notions about zeta functions of Lapla-

cians on Riemannian manifolds. We review the results from [43].
In Section 3 We review the basic properties of the Weil-Petersson metric

on the moduli of CY manifolds. See also [33].
In Section 4 we review some facts about the Hilbert spaces of the (0, q)

forms and their isospectral identifications which we used in the paper. We
also study traces the operators acting on the L2 sections of some vector bundle
induced by some global C∞ section its endormorphisms composed with the heat
kernel. We study the short term expansions of these operators and especially
the constant term of the expansion.

In Section 5 we establish the variational formulas for the zeta functions of
the Laplacians and its regularized determinants.

In Section 6 we review the theory of moduli of CY manifolds following
[31] and also metrics with logarithmic singularities on vector bundle following
Mumford’s article [35]. We prove that the L2 metric on the dualizing line bundle
over the moduli space of CY manifolds is a good metric in the sense of Mumford.
This implies that the volumes of the moduli spaces of CY manifolds are rational
numbers.

We show that the determinant line bundle is isomorphic to the line bundle
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of holomorphic n-forms on the moduli space ML(M) and that the natural L2

metric on that bundle has logarithmic singularities. We will use the results of
the previous sections to deduce that we can prolong the determinant line bundle
to a line bundle on any compactification ML(M) such that

ML(M) � ML(M)= D

is a divisor with normal crossings. We will show that there exists a holomorphic
section ηN of some power of the prolonged determinant line bundle the support
of whose zero set is contained or equal to the support of D. We will prove that
ηN vanishes on D∞, where D∞ consists of those point in D, around which
we can find one parameter family of polarized CY such that the monodromy
operator is of infinite order in the middle cohomology.

In Section 7 we recall the theory of determinant line bundles of Mumford,
Knudsen, Bismut, Donaldson and Soulé, following the exposition of D. Freed.
See [12] and [17]. We review the Quillen metric.

In Section 8 we construct a nonvanishing section det(∂) of the determinant
line bundle L over the moduli space ML(M) of a CY manifold M of any di-
mension. Thus we prove that we prove that the determinant line bundle is a
trivial C∞ bundle over the moduli space ML(M). In the case of odd dimensional
CY manifold we construct a C∞ section of the determinant line bundle whose
Quillen norm is the exponential of the Ray Singer Analytic torsion.

In Section 9 we show that the regularized determinants of the Laplacian of
CY metrics on CY threefolds acting on (0, 1) forms is bounded on the moduli
space.

In Section 10 we show that we can prolong the canonical C∞ section det(∂)
constructed in Section 9 to any compactification ML(M) such that

ML(M) � ML(M) = D

is a divisor with normal crossings. We prove that the zero set of det(∂) is
supported by an effective divisor contained in the discriminant locus D. Based
on results of Kazhdan and Sullivan, we will prove that there exists a positive
integer N such that the N th power of the determinant holomorphic line bundle
is a trivial one over the moduli space ML(M). Using this result we will construct
a holomorphic section ηN of the determinant line bundle

(
L
)⊗N

over ML(M)
whose zero set is the same as that of the exponential of the analytic Ray Singer
torsion and supported by D.

In Section 11 we discuss some conjectures and problems.

Acknowledgement 1 The author wants to thank G. Moore, J. Jorgenson S.
Donaldson, S.-T. Yau, G. Zuckerman, D. Kazhdan, P. Deligne, S. Lang, B.
Lian, J. Li, K. Liu, Y. Eliashberg, Dai and R. Donagi for useful comments
and support. I want to thank Sinan Unver for his help. Special thanks to The
Institute of Mathematical Sciences at CUHK and Hangzhou for their hospitality
during the preparation of this article.
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2 Preliminary Material

2.1 Basic Notions

Let M be a n-dimensional Kähler manifold with a zero canonical class. Suppose
that Hk(M,OM) = 0 for 1 ≤ k < n. Such manifolds are called Calabi-Yau
manifolds. A pair (M,L) will be called a polarized CY manifold if M is a CY
manifold and L ∈ H2(M,Z)1 is a fixed class such that it represents the imaginary
part of a Kähler metric on M.

Yau’s celebrated theorem asserts the existence of a unique Ricci flat Kähler
metric g on M such that the cohomology class [Im(g)] = L. (See [47].) From now
on we will consider polarized CY manifolds of odd dimension. The polarization
class L determines the CY metric g uniquely. We will denote by


q = ∂
∗ ◦ ∂ + ∂ ◦ ∂∗

the associated Laplacians that act on smooth (0, q) forms on M for 0 ≤ q ≤ n.
∂
∗

is the adjoint operator of ∂ with respect to the CY metric g.
The regularized determinants are defined as follows: Let (M,g) be an n-

dimensional Riemannian manifold. Let

Δq = dd∗ + d∗d

be the Laplacian acting on the space of q forms on M. We recall that the
spectrum of the Laplacian Δq is positive and discrete. Thus the non zero eigen
values of Δq are

0 < λ1 ≤ λ2 ≤ ... ≤ λn ≤ ...

We define the zeta function of Δq as follows:

ζq(s) =
∞∑

i=1

λ−s
i .

It is known that ζq(s) is a well defined analytic function for Re(s) � C, it has
a meromorphic continuation in the complex plane and 0 is not a pole of ζq(s).
Define

det(Δq) = exp
(
− d

ds
(ζq(s)) |s=0

)
.

The determinant of these operators 
q, defined through zeta function regular-
ization, will be denoted by det(
q) .

The Hodge decomposition theorem asserts that

Γ(M,Ω0,q) = Im(∂) ⊕ Im(∂
∗
)

for 1 ≤ q ≤ dimC M − 1. The restriction of 
q on Im(∂) will be denoted by 
′
q

and 
′
q = ∂ ◦ ∂∗ and the restriction of Δq on Im(∂

∗
) will be denoted by 
”

q

and = ∂
∗ ◦ ∂. Hence we have

Tr(exp(−t
q) = Tr(exp(−t
′
q) + Tr(exp(−t
”

q).
1Notice that H1,1(M,R) =H2(M,R) since H2(M,OM) = 0 for CY manifolds.
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This implies that

ζq(s) =
∞∑

k=1

λ−s
k = ζ

′
q(s) + ζ”

q (s),

where λk > 0 are the positive eigen values of 
q and ζ
′
q(s) & ζ”

q (s) are the
zeta functions of 
′

q and 
”
q. From here and the definition of the regularized

determinant we obtain that

log det(
q) = log det(
′
q) + log det(
”

q).

It is a well known fact that the action of 
”

q on Im ∂
∗

is isospectral to the action
of 
′

q+1 on Im ∂, which means that the spectrum of 
”

q is equal to the spectrum
of 
′

q+1. So we have the equality

det(
”
q) = det(
′

q+1).

Let f be a map from a set A to a set B and let g be a map from the set B to
the set C, then the compositions of those two maps we will denote by f◦g.

2.2 Basic Notions about Complex Structures

Let M be an even dimensional C∞ manifold. We will say that M has an almost
complex structure if there exists a section

I ∈ C∞(M,Hom(T ∗, T ∗)

such that I2 = −id. T is the tangent bundle and T ∗ is the cotangent bundle
on M. This definition is equivalent to the following one: Let M be an even
dimensional C∞ manifold. Suppose that there exists a global splitting of the
complexified cotangent bundle

T ∗ ⊗ C = Ω1,0 ⊕ Ω0,1,

where Ω0,1 = Ω1,0. Then we will say that M has an almost complex structure.
We will say that an almost complex structure is an integrable one, if for each
point x ∈M there exists an open set U ⊂M such that we can find local coor-
dinates z1, .., zn, such that dz1, .., dzn are linearly independent in each point
m ∈ U and they generate Ω1,0|U .

Definition 2 Let M be a complex manifold. Let

φ ∈ Γ(M,Hom(Ω1,0,Ω0,1)),

then we will call φ a Beltrami differential.

Since
Γ(M,Hom(Ω1,0,Ω0,1)) � Γ(M,Ω0,1 ⊗ T 1,0),
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we deduce that locally φ can be written as follows:

φ|U =
∑

φβ
αdz

α ⊗ ∂

∂zβ
.

From now on we will denote by Aφ the following linear operator:

Aφ =
(

id φ(τ)
φ(τ) id

)
.

We will consider only those Beltrami differentials φ such that det(Aφ) �= 0. The
Beltrami differential φ defines an integrable complex structure on M if and only
if the following equation holds:

∂φ =
1
2

[φ, φ] , (2)

where

[φ, φ] |U :=
n∑

ν=1

∑
1�α<β�n

(
n∑

μ=1

(
φμ

α

(
∂μφ

ν
β

)
− φμ

β
(∂νφ

ν
α)

))
dz

α∧dzβ ⊗ ∂

dzν
(3)

(See [30].)

2.3 Kuranishi Space and Flat Local Coordinates

Kuranishi proved the following Theorem:

Theorem 3 Let {φi} be a basis of harmonic (0, 1) forms of H1(M, T 1,0) on
a Hermitian manifold M. Let G be the Green operator and let φ(τ1, .., τN ) be
defined as follows:

φ(τ1, ..., τN ) =
N∑

i=1

φiτ
i +

1
2
∂
∗
G[φ(τ1, ..., τN ), φ(τ1, ..., τN )]. (4)

There exists ε > 0 such that if

τ = (τ1, ..., τN )

satisfies |τi| < ε then φ(τ1, ..., τN ) is a global C∞ section of the bundle Ω(0,1)⊗
T 1,0.(See [30].)

Based on Theorem 3, we proved in [43] the following Theorem:

Theorem 4 Let M be a CY manifold and let {φi} be a basis of harmonic (0, 1)
forms with coefficients in T 1,0, i.e.

{φi} ∈ H1(M, T 1,0),
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then the equation (2):

∂φ =
1
2

[φ, φ]

has a solution in the form:

φ(τ1, ..., τN ) =
N∑

i=1

φiτ
i +

∑
|IN |�2

φIN
τ IN =

N∑
i=1

φiτ
i +

1
2
∂
∗
G[φ(τ1, ..., τN ), φ(τ1, ..., τN )]

and
∂
∗
φ(τ1, ..., τN ) = 0, φIN

�ωM = ∂ψIN

where IN = (i1, ..., iN ) is a multi-index,

φIN
∈ C∞(M,Ω0,1 ⊗ T 1,0), τ IN = (τ i)i1 ...(τN )iN

and if for some ε > 0 |τ i| < ε then

φ(τ) ∈ C∞(M,Ω0,1 ⊗ T 1,0)

where i = 1, ..., N. (See [42] and [43]) .

It is a standard fact from Kodaira-Spencer-Kuranishi deformation theory
that for each

τ = (τ1, ..., τN ) ∈ K
as in Theorem 4 the Beltrami differential φ(τ1, ..., τN ) defines a new integrable
complex structure on M. This means that the points of K, where

K : {τ = (τ1, ..., τN )||τ i| < ε}

defines a family of operators ∂τ on the C∞ family K ×M → M and ∂τ are
integrable in the sense of Newlander-Nirenberg. Moreover it was proved by
Kodaira, Spencer and Kuranishi that we get a complex analytic family of CY
manifolds

π : X → K,
where as C∞ manifold

X � K × M.

The family
π : X → K (5)

is called the Kuranishi family. The operators ∂τ are defined as follows:
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Definition 5 Let {Ui} be an open covering of M, with local coordinate system
in Ui given by {zk

i } with k = 1, ..., n =dimCM. Assume that φ(τ1, ..., τN )|Ui
is

given by:

φ(τ1, ..., τN ) =
n∑

j,k=1

(φ(τ1, ..., τN ))k
j
dzj ⊗ ∂

∂zk
.

Then we define (
∂
)
τ,j

=
∂

∂zj
−

n∑
k=1

(φ(τ1, ..., τN ))k
j

∂

∂zk
. (6)

Definition 6 The coordinates τ = (τ1, ..., τN ) defined in Theorem 4, will be
fixed from now on and will be called the flat coordinate system in K.

2.4 Family of Holomorphic Forms

In [43] the following Theorem is proved:

Theorem 7 There exists a family of holomorphic forms ωτ of the Kuranishi
family (5) such that

〈[ωτ ], [ωτ ]〉 =

1−
∑
i,j

〈ω0�φi, ω0�φj〉 τ iτ j+
∑
i,j

〈ω0� (φi ∧ φk) , ω0� (φj ∧ φl)〉 τ iτ jτkτ l+O(τ5) =

1 −
∑
i,j

τ iτ j +
∑
i,j

〈ω0� (φi ∧ φk) , ω0� (φj ∧ φl)〉 τ iτ jτkτ l +O(τ5) and

〈[ωτ ], [ωτ ]〉 ≤ 〈[ω0], [ω0]〉 . (7)

3 Weil-Petersson Metric

3.1 Basic Properties

It is a well known fact from Kodaira-Spencer-Kuranishi theory that the tangent
space Tτ,K at a point τ ∈ K can be identified with the space of harmonic (0,1)
forms with values in the holomorphic vector fields H1(Mτ , T ). We will view
each element φ ∈ H1(Mτ , T ) as a point wise linear map from Ω(1,0)

Mτ
to Ω(0,1)

Mτ
.

Given φ1 and φ2 ∈ H1(Mτ , T ), the trace of the map

φ1 ◦ φ2 : Ω(0,1)
Mτ

→ Ω(0,1)
Mτ

at the point m ∈Mτ with respect to the metric g is simply:

Tr(φ1 ◦ φ2)(m) =
n∑

k,l,m=1

(φ1)k
l
(φ)m

k
gl,kgk,m (8)
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Definition 8 We will define the Weil-Petersson metric on K via the scalar
product:

< φ1, φ2 >=
∫
M

Tr(φ1 ◦ φ2)vol(g). (9)

We proved in [43] that the coordinates

τ = (τ1, ..., τN )

as defined in Definition 6 are flat in the sense that the Weil-Petersson metric is
Kähler and in these coordinates we have that the components gi,j of the Weil
Petersson metric are given by the following formulas:

gi,j = δi,j +Ri,j,l,kτ
lτk +O(τ3).

Very detailed treatment of the Weil-Petersson geometry of the moduli space
of polarized CY manifolds can be found in [32] and [33]. In those two papers
important results are obtained.

3.2 Infinitesimal Deformation of the Imaginary Part of
the WP Metric

Theorem 9 Near the point τ = 0 of the Kuranishi space K, the imaginary
part Im(g) of the CY metric g has the following expansion in the coordinates
τ := (τ1, ..., τN ):

Im(g)(τ, τ) = Im(g)(0) +O(τ2).

Proof: In [43] we proved that the forms

θk
τ = dzk +

∑
l=1

(
φ(τ1, ..., τN )k

l

)
dzl (10)

for
k = 1, ., n

form a basis of (1, 0) forms relative to the complex structure defined by τ ∈ K
in U ⊂M. Let

Im(gτ ) =
√
−1

⎛⎝ ∑
1≤k≤l≤n

gk,l(τ, τ)θ
k
τ ∧ θl

τ

⎞⎠ (11)

and

gk,l(τ, τ) = gk,l(0) +
N∑

i=1

((
gk,l(1)

)
i
τ i +

(
g

′

k,l
(1)

)
i
τ i
)

+O(2). (12)

We get the following expression for Im(gτ ) in terms of dzi and dzj , by substi-
tuting the expressions for θk

τ from (10) and the expressions for gk,l(τ, τ) from
formula (12) in the formula (11):

13



Im(gτ ) =
√
−1

⎛⎝ ∑
1≤k≤l≤n

gk,l(τ, τ)θ
k
τ ∧ θl

τ

⎞⎠ =
√
−1

⎛⎝ ∑
1≤k≤l≤n

gk,l(0)dzk ∧ dzl

⎞⎠+

+
√
−1

⎛⎝ N∑
i=1

τ i

⎛⎝ ∑
1≤k≤l≤n

((
gk,l(1)

)
i
dzk ∧ dzl +

n∑
m=1

(gk,mφm
i,l

− gl,mφm
i,k

)dzk ∧ dzl

)⎞⎠⎞⎠

+
1√
−1

N∑
i=1

τ i

⎛⎝ ∑
1≤k≤l≤n

((
gk,l(1)

)
i
dzk ∧ dzl + (

n∑
m=1

(gk,mφm
i,l

− gl,mφm
i,k

)dzk ∧ dzl

)⎞⎠.
On page 332 of [43] the following results is proved:

Lemma 10 Let φ ∈ H1(M, T ) be a harmonic form with respect to the CY metric
g. Let

φ|U =
n∑

k,l=1

φl
k
dz

k ⊗ ∂

∂zl
,

then

φk,l =
n∑

j=1

gj,k φ
j

l
=

n∑
j=1

gj,l φ
j

k
= φl,k.

From Lemma 10 we conclude that
n∑

m=1

(gk,mφm
i,l

− gl,mφm
i,k

) = 0. (13)

From (13) we get the following expression for Im(gτ ):

Im(gτ ) =
√
−1

⎛⎝ ∑
1≤k≤l≤n

gk,l(0)dzk ∧ dzl

⎞⎠+

√
−1

⎛⎝ N∑
i=1

τ i

⎛⎝ ∑
1≤k≤l≤n

(
gk,l(1)

)
i
dzk ∧ dzl

⎞⎠⎞⎠+

+
√
−1

⎛⎝ N∑
i=1

τ i
∑

1≤k≤l≤n

(
gk,l(1)

)
i
dzk ∧ dzl

⎞⎠ +O(2) (14)

Let us define the (1,1) forms ψi as follows:

ψi =
√
−1

⎛⎝ ∑
1≤k≤l≤n

(
gk,l(1)

)
i
dzk ∧ dzl

⎞⎠ (15)

14



We derive the following formula, by substituting in the expression (14) the
expression given by (15):

Im(gτ ) = Im(g0) +
N∑

i=1

τ iψi +
N∑

i=1

τ iψi +O(τ2) (16)

From the fact that the class of the cohomology of the imaginary part of the CY
metric is fixed, i.e.

[Im(gτ )] = [Im(g0)] = L,

and (16) we deduce that each ψi is an exact form, i.e.

ψi =
√
−1∂∂fi, (17)

where fi are globally defined functions on M. Our Theorem will follow if we
prove that ψi = 0.

Lemma 11 ψi = 0.

Proof: In [43] we proved that

det(gτ ) = ∧n Im(gτ ) = det(g0) +O(2) (18)

in the flat coordinates (τ1, ..., τN ). We deduce from the expressions (16) and
(17), by direct computations that:

det(gτ ) = det(g0) +
√
−1

N∑
i=1

τ i

⎛⎝∑
k,l

gl,k∂k∂l(fi)

⎞⎠+

1√
−1

N∑
i=1

τ i

⎛⎝∑
k,l

gl,k∂k∂l(fi)

⎞⎠ +O(2). (19)

Combining (18) and (19) we obtain that for each i we have:∑
k,l

gl,k∂k∂l(fi) = 
(fi) = 0,

where 
 is the Laplacian of the metric g. From the maximum principle, we
deduce that all fi are constants. Formula (17) implies that ψi = 0. Lemma 11
is proved. �

Theorem 9 follows directly from Lemma 11. Theorem 9 is proved. �

Corollary 12 The imaginary part Imgτ of the CY metric is a constant sym-
plectic form on the moduli space ML(M), i.e.

d

dτ
Im(gτ ) = 0.
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Corollary 13 The following formulas are true:

∂

∂τi

(
∂τ

)∗
= 0 and

∂

∂τi
(∂τ )∗ = 0. (20)

Proof: We know from Kähler geometry that (∂τ )∗ = [Λτ , ∂τ ], where Λτ is
the contraction with (1,1) vector field:

Λτ =
√
−1
2

n∑
k,l=1

gk,l
τ (θl

τ )∗ ∧ (θk
τ )∗ (21)

on Mτ and (θl
τ )∗ is (1,0) vector field on Mτ dual to the (1,0) form

θi
τ = dzi +

N∑
j=1

τ j(
n∑

k=1

(φj)i
k
dz

k
)).

Cor. 12 implies that
∂

∂τi
(Λτ ) = 0.

On the other hand, ∂τ depends antiholomorphically on τ , i.e. it depends on

τ = (τ1, ..., τN ).

So we deduce that:

∂

∂τi
((∂τ )∗) =

(
[
∂

∂τi
(Λτ ), ∂τ ] + [Λτ ,

∂

∂τi
(∂τ )]

)
= 0.

Exactly in the same way we prove that

∂

∂τi
(∂τ )∗ = 0.

Corollary 13 is proved. �

4 Hilbert Spaces and Trace Class Operators

4.1 Preliminary Material

Definition 14 We will denote by L2
0,q(Im(∂

∗
)) the Hilbert subspace in L2(M,Ω(0,q))

which is the L2 completion of ∂∗ exact forms in C∞(M,Ω(0,q)) for q ≥ 0.
In the same manner we will denote by L2

1,q−1(Im(∂)) the Hilbert subspace in

L2(M,Ω(1,q−1)
M ) which is the L2 competition of the ∂ exact (1, q − 1) forms in

C∞(M,Ω(1,q−1)) for q > 0 . All the completions are with respect to the scalar
product on the bundles Ωp,q defined by the CY metric g.
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Let φ(τ1, .., τN ) be the solution of the equation (2):

∂φ(τ1, ..., τN ) =
1
2
[φ(τ1, ..., τN ), φ(τ1, ..., τN )]

by Theorem 4. From Definition 2 of the Beltrami differential, we know that the
Beltrami differential φ(τ1, .., τN ) defines a linear fibrewise map

φ(τ1, ..., τN ) : Ω(1,0) → Ω(0,1).

So
φ(τ1, ..., τN ) ∈ C∞(M,Hom(Ω(1,0)

M ,Ω(0,1)
M ). (22)

Definition 15 We define the following maps between vector bundles

φ ∧ id : Ω(1,q−1) → Ω(0,q)

as
φ(dzi ∧ α) = φ(dzi) ∧ α

for each 1 ≤ q ≤ n. Clearly each fibre wise linear map φ∧idq−1 defines a natural
linear operator

F (q, φ) : L2(M,Ω(1,q−1)) → L2(M,Ω(0,q))

between the Hilbert spaces. The restriction of the linear operator F(q,φ) on the
subspace

Im(∂) ⊂ L2(M,Ω(1,q−1)
M ))

to
Im(∂) ⊂ L2(M,Ω(0,q)

M )

will be denoted by F ′(q, φ). The restriction of the linear operator F(q,φ) on the
subspace

Im(∂∗) ⊂ L2(M,Ω(1,q−1)
M ))

to
Im

(
∂
∗) ⊂ L2(M,Ω(0,q)

M )

will be denoted by F ”(q, φ). Let φ and ψ be two Kodaira Spencer classes and let

φ ◦ ψ : L2(M,Ω(0,1)
M ) → L2(M,Ω(0,1)

M )

be fibrewise linea map given by

φ ◦ ψ|U :=
n∑

α,β=1

(
φ ◦ ψ

)α

β
dzβ ⊗ ∂

∂zα
. (23)

We define the fibrewise bundle maps(
φ ◦ ψ

)
∧ idq−1 : Ω0,q

M → Ω0,q
M , (24)
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as follows:

((
φ ◦ ψ

)
∧ idq−1

)
(ω) :=

⎛⎝ n∑
α,β=1

(
φ ◦ ψ

)α

β
dzβ ⊗ ∂

∂zα

⎞⎠�ω, (25)

where � means contraction of tensors and ω is some global form of type (0, q)
on M. We will define for the linear operators

F ′
(q, φ ◦ ψ) : L2

0,q(Im(∂)) → L2
0,q(Im(∂)) (26)

and
F”(q, φ ◦ ψ) : L2

0,q(Im(∂)∗) → L2
0,q(Im(∂)∗) (27)

as the restriction of the operators
((
φ ◦ ψ

)
∧ idq−1

)
on L2

0,q(Im(∂)) and L2
0,q(Im(∂)∗)

respectively.

Remark 16 It is a standard fact that we can choose globally ∂ closed forms
ω1, ..., ωN of type (0, q) such that at each point z ∈M they span the fibre Ω0,q

M,z.

We can deduce directly from the definitions of the operators F ′(q, φ),F ′
(q, φ◦ψ)

and F
′
(q, ψ ◦ φ) and the existence of the forms ω1, ..., ωN that the operators

F ′(q, φ),F ′
(q, φ ◦ ψ) and F

′
(q, ψ ◦ φ) pointwise will be represented by matrices

of dimensions
(
n
q

)
,
(
n
q

)
and n×

(
n

q−1

)
.

4.2 Trace Class Operators (See [7].)

Let H be a Hilbert space with a orthonormal basis ei. An operator A is a
Hilbert-Schmidt operator if

‖A‖2
HS =

∑
i

‖Aei‖2 =
∑
ij

|〈Aei, ej〉|2 <∞

is finite. The number ‖A‖2
HS is called the Hilbert-Schmidt norm of A. If A is a

Hilbert-Schmid so is its adjoint A∗ and

‖A‖2
HS = ‖A∗‖2

HS .

If U is a bounded operator on H and A is an Hilbert-Schmidt, then U ◦A and
A ◦ U are Hilbert-Schmidt operators and

‖U ◦A‖HS ≤ ‖A ◦ U‖HS .

In this paper we will consider the Hilbert spaces of the square integrable
sections of the bundles Ω0,q

M ⊗ |ΛM|1/2 on M, where |ΛM| is the trivial density
bundles generated by the volume form of the CY metric.

An operator K with square-integrable kernel

k(w, z) ∈ ΓL2

(
M × M,

(
Ω0,q

M ⊗ |ΛM|1/2 � Ω0,q
M ⊗ |ΛM|1/2

))
18



is Hilbert-Schmidt, and

‖K‖2
HS =

∫
(w,z)∈M×M

Tr
(
k (w, z)∗ k (w, z)

)
. (28)

Formula (28) follows from the definition of the Hilbert-Schmidt norm

‖K‖2
HS =

∑
ij

|〈Kei, ej〉|2 .

An operator K is said to be trace class if it has the form A ◦B, where A and
B are Hilbert-Schmidt. For such operators, the sum

TrK =
∑

i

〈Kei, ei〉

is absolutely summable and TrK is independent of the choice of the orthonormal
basis in H and is called the trace of K.

4.3 Heat Kernels and Traces

In this subsection we study the traces of operators which are compositions of the
heat kernel with operators induced by endomorphisms of some vector bundle.
We will use some of the results from [14] and will adopt them to our situation.

Let h be a metric on a vector bundle E over M. Let Δh be the Laplacian on
E. It is a well known fact that the operator exp(−t
h) can be represented by
an integral kernel:

kt(w, z, τ) =
∑

j

exp (−tλj)φj(ω) ⊗ φj(z),

where λj and φj are the eigen values and the eigen sections of the Laplace
operator Δh on some vector bundle E on M. kt(w, z, τ) is an operator of trace
class. We know that the following formula holds for the short term asymptotic
expansion of Tr (kt(w, z, τ))

Tr (kt(w, z, τ)) =
α−n

tn
+ ...+

α−1

t
+ α0 +O(t).

Let E be a holomorphic vector bundle over M, let φ ∈ C∞(M,Hom(E,E)). It
is easy to see that the operator exp(−Δh) ◦ φ is of trace class and its trace has
an asymptotic expansion

Tr (kt(w, z, τ) ◦ φ) =
β−n(φ)
tn

+ ...+
β−1(φ)

t
+ β0(φ) +O(t) (29)

according to [7]. We will study the following problem in this section:

Problem 17 Find an explicit expression for β0(φ).
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Definition 18 We define the function kd
τ (w, z, t) in a neighborhood of the diag-

onal Δ in M×M as follows: Let ρτ be the injectivity radius on Mτ . Let dτ (w, z)
be the distance between the points w and z on Mτ with respect to CY metric
gτ . We suppose that |τ | < ε. Let δ be such that δ > ρτ . Then we define the
function kd

τ (w, z, t) as a C∞ function on M×M using partition of unity by using
the functions

kd
t (w, z, τ) =

{
1

(4πt)
n
2

exp
(
−d2

τ (w,z)
4t

)
if dτ (w, z) < ρτ

0 if dτ (w, z) > δ.
(30)

defined on the opened balls around countable points (wk, zk) on M×M with in-
jectivity radius ρτ .

Let E be a holomorphic vector bundle on M with a Hermitian metric h on
it and let Pτ (w, z) be the parallel transport of the bundle E along the minimal
geodesic joining the point w and z with respect to natural connection on E
induced by the metric h on E. It was proved in [7] on page 87 that we can
represent the operator exp(−t
h) by an integral kernel kt(w, z, τ), where

kt(w, z, τ) = kd
t (w, z, τ) (Pτ (w, z) +O(t)) (31)

and
Δh := ∂

∗
h ◦ ∂.

Definition 19 We will define the kernel k#
t (w, z, τ) as the matrix operator de-

fined as follows
k#

t (w, z, τ) = kd
t (w, z, τ)Pτ (w, z). (32)

So we have the following formula

kt(w, z, τ) = k#
t (w, z, τ) + εt(w, z, τ). (33)

Let us define

Υt(φ, τ) :=
∫
M

Tr
((
k#

t/2(w, z, τ)
)∗

◦
(
k#

t/2(w, z, τ) ◦ φ
))

vol(g)w. (34)

Proposition 20 We have

lim
t→0

∫
M

Tr (εt(w, z, 0) ◦ φ) vol(g)w = 0. (35)

Proof: The definition 19 of k#
τ (w, z, t) and the arguments from [14] on page

260 imply that ε0(w, z, t) is bounded and tends to zero away from the diagonal,
as t tends to zero. From here we deduce that

lim
t→0

∫
M

Tr (εt(w, z, 0) ◦ φ) vol(g)w = 0

uniformly in z. Proposition 20 is proved. �
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Lemma 21 Let E be a holomorphic vector bundle over M, let φ ∈ C∞(M,Hom(E,E)),
then

lim
t→0

Υt(φ, τ, z)

exists and
lim
t→0

Υt(φ, τ, z) = Tr(φ|Ez
). (36)

Proof: We have:

lim
t→0

Υt(φ, 0, z) = lim
t→0

∫
M

Tr
((
k#

t/2(w, z, τ)
)∗

◦
(
k#

t/2(w, z, τ) ◦ φ
))

vol(g)w =

lim
t→0

⎛⎝ 1
(4πt)

n
2

∫
M

Tr

(
exp

(
−d

2
0(w, z)

4t

)
◦ P0(w, z)∗ ◦ P0(w, z) ◦ φ

)
vol(g)w

⎞⎠ .

(37)
Using the facts that

lim
t→0

exp
(
−d

2
τ (w, z)

4t

)
= δ(z − w), (38)

lim
w→z

P0(w, z) = id (39)

and the explicit formula (37) for Υt(φ, τ, z) we obtain that

lim
t→0

Υt(φ, τ, z) =
∫
M

Tr (δ(z − w) ◦ φ) vol(g)ω = Tr(φ|Ez
). (40)

Lemma 21 is proved. �

Theorem 22 Let φ ∈ C∞
(
M,

(
Ω0,q

M

)∗
⊗ Ω0,q

M

)
then the operator exp(−tΔh)◦φ

for t > 0 is of trace class and its trace is given by the formula;

Tr (exp(−tΔh) ◦ φ) =∫
M

Υt(φ, τ, z)vol(g)z + Φ(t), (41)

where the short term asymptotic of Φ(t) is given by

Φ(t) =
N0>0∑
k=1

a−k

tk
+O(t). (42)
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Proof: The proof of Theorem 22 is based on the facts that

exp(−tΔh) ◦ φ = exp
(
− t

2
Δh

)
◦ exp

(
− t

2
Δh ◦ φ

)
, (43)

and the operators

exp
(
− t

2
Δh

)
and exp

(
− t

2
Δh ◦ φ

)
can be represented by C∞ kernels k1(z, w, t) and kφ(z, w, t).

As we pointed out the operators defined by the kernels k1(z, w, t) and kφ(z, w, t)
are Hilbert-Schmidt operators. Thus since the operator exp(−tΔh)◦φ is a prod-
uct of two Hilbert-Schmidt operators it is of trace class. On the other hand the
definition of the trace of the operator exp(−tΔh) ◦ φ implies that

Tr (exp(−tΔh) ◦ φ) =
〈

exp
(
− t

2
Δh

)∗
, exp

(
− t

2
Δh

)
◦ φ

〉
=∫

(z,w)∈M×M

Tr
(
(k1(z, w, t))

∗ ◦ kφ(z, w, t)
)
. (44)

From the definitions of the function Υt(φ, τ, z) and the operator εt(w, z, τ) we
deduce that

Tr (exp(−tΔh) ◦ φ) =∫
M

⎛⎝∫
M

(
kt/2(w, z, τ)

)∗ ◦ (
kt/2(w, z, τ) ◦ φ

)
vol(g)w

⎞⎠ vol(g)z =

∫
M

Υt(φ, τ, z)vol(g)z+

∫
M

⎛⎝∫
M

Tr
((
εt/2(w, z, τ)

)∗ ◦ k#
t/2(w, z, τ) ◦ φ

)
vol(g)ω

⎞⎠ vol(g)z+

∫
M

⎛⎝∫
M

Tr
(
k#

t/2(w, z, τ) ◦ εt/2(w, z, τ) ◦ φ
)
vol(g)ω

⎞⎠ vol(g)z. (45)

Lemma 23 Let

Φ1(t) :=
∫
M

⎛⎝∫
M

Tr
((
εt/2(w, z, τ)

)∗ ◦ k#
t/2(w, z, τ) ◦ φ

)
vol(g)ω

⎞⎠ vol(g)z

and

Φ2(t) :=
∫
M

⎛⎝∫
M

Tr
(
k#

t/2(w, z, τ) ◦ εt/2(w, z, τ) ◦ φ
)
vol(g)ω

⎞⎠ vol(g)z (46)
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then we have

Φ1(t) =
N0>0∑
k=1

b−k

tk
+O(t) and Φ2(t) =

N0>0∑
k=1

c−k

tk
+O(t). (47)

Proof: Let

k#
t/2(w, z, τ) =

N0>0∑
k=1

B−k(w, z)
tk

+ B0(w, z) +
∑
k=1

Bk(w, z)tk (48)

be the short term asymptotic expansion of the operator k#
t/2(w, z, τ). We know

that
lim
t→0

εt(w, z, τ) = 0 (49)

away from the diagonal Δ ⊂M×M. Combining (48) and (49) with the definitions
of operators k#

t/2(w, z, τ) ◦ εt/2(w, z, τ) ◦ φ and
(
εt/2(w, z, τ)

)∗ ◦ k#
t/2(w, z, τ) ◦ φ

we obtain that
k#

t/2(w, z, τ) ◦ εt/2(w, z, τ) ◦ φ =

N0>0∑
k=1

B−k(w, z) ◦ εt/2(w, z, τ) ◦ φ
tk

+ B0(w, z) ◦ εt/2(w, z, τ) ◦ φ+O(t) (50)

and (
εt/2(w, z, τ)

)∗ ◦ k#
t/2(w, z, τ) ◦ φ =

N0>0∑
k=1

(
εt/2(w, z, τ)

)∗ ◦ B−k(w, z)
tk

+
(
εt/2(w, z, τ)

)∗ ◦ B0(w, z) +O(t). (51)

Combining (50), (51) with (49) we get that

lim
t→0

B0(w, z) ◦ εt/2(w, z, τ) ◦ φ = lim
t→0

(
εt/2(w, z, τ)

)∗ ◦ B0(w, z) = 0

away from the diagonal. From here we we obtain that

lim
t→∞

∫
M

Tr
(
B0(w, z) ◦ εt/2(w, z, τ) ◦ φ

)
vol(g) = 0

and
lim

t→∞

∫
M

Tr
((
εt/2(w, z, τ)

)∗ ◦ B0(w, z)
)
vol(g) = 0.

Lemma 23 is proved. �
Theorem 22 follows directly from Lemma 23 and (45). �

Theorem 24 We have the following expression for β0(φ) from (29):

β0(φ) = lim
t→0

∫
M

Υt(φ, τ, z)vol(g)z =
∫
M

Tr(φ)vol(g). (52)

Proof: Theorem 24 follows directly from Theorem 22, Lemma 21 and the
definition of Υt(φ, τ, z). �
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4.4 Explicit Formulas

Theorem 25 Let F ′
(q, φ◦ψ) be given by the formula (26). Then for t > 0 and

q≥ 1 the following equality of the traces of the respective operators holds

Tr
(
exp

((
−t
”

q−1

)
◦ ∂−1 ◦ F ′

(q, φ ◦ ψ) ◦ ∂
))

=

Tr
(
exp

(
−t


′

q

)
◦ (F ′

(q, φ ◦ ψ))
)
. (53)

Proof: From Proposition 2.45 on page 96 in [7] it follows directly that the
operators

exp(−tΔ”
q−1) ◦ ∂

−1 ◦ F ′
(q, φ ◦ ψ) ◦ ∂, exp(−tΔ′

q) ◦ F
′
(q, φ ◦ ψ)

are of trace class since the operators exp(−tΔ”
q−1) have smooth kernels for q ≥ 1.

We know from Proposition 2.45 in [7] that we have the following formula:

Tr(DK) = Tr(DA) (54)

where D is a differential operator and A is an operator with a smooth kernel. By
using 54 and the fact that the operators Δq and ∂ commute we derive Theorem
25. Theorem 25 is proved. �

Remark 26 From Definition 15 of the operator F ′
(q, φi ◦ φj) and Remark 16

we know that it can be represented pointwise by a matrix which we will denote
by F ′

(q,
(
φi ◦ φj

)
). Since k#

t (z, w, 0) is also a matrix of the same dimension as
the operator F ′

(q, φi ◦ φj) we get that the operator k#
t (z, w, 0) ◦ F ′

(q, φi ◦ φj)
will be represented pointwise by the product of finite dimensional matrices. So
the integral∫

M

Tr
((
k#

t/2(z, w, 0)
)∗

◦ k#
t/2(z, w, 0) ◦ F ′ (

q, φi ◦ φj

))
vol(g)

makes sense for t > 0.

Theorem 27 Let

Tr
(
kt(w, z, τ) ◦ F

′
(q,

(
φi ◦ φj

)
)
)

=

β−n(φi ◦ φj)
tn

+ ...+
β−1(φi ◦ φj)

t
+ β0(φi ◦ φj) +O(t) (55)

be the short term asymptotic. Then the following limit

lim
t→0

∫
M

⎛⎝∫
M

Tr
((
k#

t/2(z, w, 0)
)∗

◦ k#
t/2(z, w, 0) ◦ F ′

(q, φi ◦ φj

)
vol(g)w

⎞⎠ vol(g)
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exists and
β0(φi ◦ φj) =

lim
t→0

∫
M

⎛⎝∫
M

Tr
((
k#

t/2(z, w, 0)
)∗

◦ k#
t/2(z, w, 0) ◦ F ′

(q, φi ◦ φj)
)
vol(g)w

⎞⎠ vol(g) =

∫
M

Tr
(
F ′ (

q, φi ◦ φj

))
vol(g) <∞. (56)

Proof: Formulas (41) and (42) in Theorem 22 imply that

β0(φi ◦ φj) = lim
t→0

∫
M

Υt(F
′ (
q, φi ◦ φj

)
, τ, z)vol(g)z

Theorem 24 imply that

β0(φi ◦ φj) = lim
t→0

∫
M

Υt(F
′ (
q, φi ◦ φj

)
, τ, z)vol(g)z =

Tr
(
F ′

(q, φi ◦ φj)
)
|z. (57)

Formula (57) implies formula (56) . Theorem 27 is proved. �

5 The Variational Formulas

5.1 Preliminary Formulas

Lemma 28 The following formulas are true for 1 ≤ q ≤ n:

∂

∂τ i

(
∂τ

)
|τ=0 = −F (q, φi) ◦ ∂ (58)

and
∂

∂τ i
(∂τ ) |τ=0 = −F (q, φi) ◦ ∂. (59)

Proof: From the expression of ∂τ given in Definition 5:

∂τ =
∂

∂zj
−

N∑
m=1

(
n∑

k=1

(φm)k
j

∂

∂zk

)
τm +O(τ2)),

we conclude that
∂

∂τ i

(
∂τ

)
|τ=0 = −

N∑
k=1

(φi)k
j

∂

∂zk
. (60)

Formula (59) is proved in the same way as formula (60). Lemma 28 follows
directly from Definition 15 of the linear operators F

′
(q, φ) and F”(q, φ). �
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Corollary 29 The following formulas are true for 1 ≤ q ≤ n:

∂

∂τ i

((
∂τ

∗ ◦ ∂τ

)
|Im ∂τ

∗
)
|τ=0 = −Δ”

0,q ◦ ∂0
−1 ◦ F (q, φi) ◦ ∂0,

∂

∂τ i

(
(∂∗τ ◦ ∂τ ) |Im ∂τ

∗
)
|τ=0 = −Δ”

0,q ◦ ∂−1
0 ◦ F (q, φi) ◦ ∂

and
∂

∂τ j

(

”

τ,q

)
|τ=0 = −
”

0,q ◦ ∂−1
0 ◦ F ′

(q + 1, φi) ◦ ∂0. (61)

Proof: From the standard facts of Kähler geometry we obtain that on Im ∂
∗

in Ω0,q
M we have



”

τ,q|Im ∂ = ∂τ ◦ Λτ ◦ ∂τ = ∂∗τ ◦ ∂τ . (62)

We know from (58) and (59) that

∂

∂τ j

(
∂τ

)
|τ=0 = −F ′

(q + 1, φj) ◦ ∂,
∂

∂τ j
(Λτ ) |τ=0 =

∂

∂τ j
(∂τ ) |τ=0 = 0. (63)

Combining (63), (62) and the fact that

∂

∂τ j

(
∂τ

∗) |τ=0 = 0

we obtain:

∂

∂τ j

(

”

τ,q

)
|τ=0 =

∂

∂τ j

(
∂τ

∗ ◦ ∂τ

)
|τ=0 = −∂0

∗ ◦ F ′
(q + 1, φj) ◦ ∂0. (64)

Thus on Im ∂
∗

we have
∂∗τ = 
”

τ,q ◦ ∂τ
−1
. (65)

Substituting (65) in (64) we get

∂

∂τ j

((

”

τ,q

))
|τ=0 = −
”

τ,q ◦ ∂τ
−1 ◦ F ′

(q + 1, φj) ◦ ∂0.

In the same way we prove the rest of the formulas. Corollary 29 is proved. �

5.2 The Computation of the Antiholomorphic Derivative
of ζ”

τ,q−1(s)

First we will compute the antiholomorphic derivative of ζ
”

τ,q(s).

Theorem 30 The following formula is true for t > 0:

∂

∂τ i

(
ζ

”

q,τ (s)
)
|τ=0 =

1
Γ(s)

∞∫
0

Tr
(
exp(−t(
”

0,q) ◦ 

”

0,q ◦ ∂−1
0 ◦ F ′

(q + 1, φi) ◦ ∂0

)
tsdt.
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Proof: For the proof of Theorem 30 we will need the following Lemma:

Lemma 31 The following formula is true for t > 0 and 0 < q < n :

∂

∂τ i

(
Tr(exp

(
−t
”

τ,q

))
|τ=0 =

tT r
(
exp

(
−t
”

0,q

)
◦ Δ

”

τ,q ◦ ∂−1 ◦ F ′
(q + 1, φi) ◦ ∂

)
|τ=0. (66)

Proof: Direct computations based on Proposition 9.38. on page 304 of the
book [14] show that:

∂

∂τ i

(
Tr(exp

(
−t
”

τ,q

))
|τ=0 = −t

(
exp

(
−t
”

τ,q

)
◦ ∂

∂τ i

(

”

τ,q

))
|τ=0. (67)

See also [7] page 98 Theorem 2.48. Formulas (58) and (59) in Lemma 28 imply
that

∂

∂τ i
(∂τ ) = −F ′

(q + 1, φi(τ)) ◦ ∂ (68)

and on Im ∂
∗

we have

∂

∂τ i
(∂∗τ ) =

∂

∂τ i

(
Λ ◦ ∂τ

)
=

(
∂

∂τ i
Λ
)
◦ ∂τ + Λ ◦ ∂

∂τ i

(
∂τ

)
= 0. (69)

The last equality follows from Cor. 28 and 13. On Kähler manifolds we know
that

∂∗ ◦ ∂ + ∂ ◦ ∂∗ = ∂
∗ ◦ ∂ + ∂ ◦ ∂∗.

So we deduce that

Δ”
τ,q = (∂∗τ ◦ ∂τ + ∂τ ◦ ∂∗τ ) |Im ∂τ

∗ = ∂∗τ ◦ ∂τ |Im ∂τ
∗ .

Thus from formulas (68) and (69) it follows:

∂

∂τ i

(

”

τ,q

)
=

(
∂∗τ ◦ ∂

∂τ i
(∂τ )

)
= −∂∗τ ◦ F ′

(q + 1, φi(τ)) ◦ ∂. (70)

By substituting in (67) the expression from (70) we obtain:

∂

∂τ i

(
Tr(exp

(
−t
”

τ,q

))
|τ=0 =

tT r
(
exp

(
−t
”

q

)
◦ ∂∗ ◦ F ′

(q + 1, φi) ◦ ∂0

)
. (71)

The operator ∂∗τ is well defined on the space of C∞ (0,q) forms on Mτ . So the
following formula is true on Im ∂

∗
τ :

∂∗τ = (
”

τ,q) ◦ (∂τ )−1
. (72)
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Substituting the expression for ∂∗τ in formula (72) in (71), we deduce formula
(66) :

∂

∂τ i

(
Tr(exp

(
−t
”

q,τ

))
|τ=0 =

tT r
(
exp

(
−t
”

0,q

)
◦ 
”

0,q ◦ ∂−1 ◦ F ′
(q + 1, φi) ◦ ∂

)
.

Lemma 31 is proved. �
The end of the proof of Theorem 30: The definition of the zeta function

implies that
∂

∂τ i

(
ζΔ”

τ,q
(s)

)
|τ=0 =

∂

∂τ i

⎛⎝ 1
Γ(s)

∞∫
0

Tr

(
exp(−t(


”

τ,q)
)
ts−1dt

⎞⎠ |τ=0 =

1
Γ(s)

∞∫
0

(
∂

∂τ i

(
Tr exp(−t(


”

τ,q)
))

|τ=0t
s−1dt. (73)

Substituting in (73) the expression for

∂

∂τ i

(
Tr

(
exp(−t(
”

τ,q)
))

in (66) we obtain:

∂

∂τ i

(
ζΔ”

τ,q
(s)

)
|τ=0 =

1
Γ(s)

∞∫
0

Tr
((

exp(−t(
”
0,q)

)
◦
(

”

0,q

)
◦ ∂−1 ◦ F ′

(q + 1, φi) ◦ ∂
)
tsdt. (74)

Theorem 30 is proved. �

5.3 The Computation of the Hessian of ζ
”

τ,q(s)

Theorem 32 The following formula holds:

∂2

∂τ j∂τ i

(
ζ

”

τ,q(s)
)
|τ=0 =

s

Γ(s)

∞∫
0

Tr
((

exp(−t(
′
0,q)

)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt+

− s2

Γ(s)

∞∫
0

Tr

((
exp(−t(


”

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt. (75)
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Proof: The facts that the operators

∂

∂τ i

(
∂τ

)
= (−φi +O(τ)) ◦ ∂0

depend holomorphically on τ and the operator ∂−1
τ depends antiholomorphically

imply that the operator

∂−1
τ ◦ F ′

(q + 1, φi) ◦ ∂0

depends antiholomorphically on the coordinates τ = (τ1, ..., τN ). By using the
explicit formula (74) for the antiholomorphic derivative of ζ”

τ,q(s) and

∂

∂τ j

(
∂−1

τ ◦ F ′
(q + 1, φi) ◦ ∂0

)
= 0

we derive
∂2

∂τ j∂τ i

(
ζ”
τ,q(s)

)
=

1
Γ(s)

∞∫
0

Tr

((
∂

∂τ j
exp(−t

(

”

τ,q

))
◦
(

”

τ,q

)
◦ ∂−1

τ ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt+

1
Γ(s)

∞∫
0

Tr

((
exp(−t(
”

τ,q)
)
◦ ∂

∂τ j

(

”

τ,q

)
◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt.

(76)

Lemma 33 We have the following expression:

1
Γ(s)

∞∫
0

Tr

((
∂

∂τ j

(
exp(−t

(

”

τ,q

)))
◦
(

”

τ,q

)
◦ ∂−1

τ ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt =

−s
Γ(s)

∞∫
0

Tr

((
exp(−t
”

0,q

)
◦ ∂

∂τ j

(

”

τ,q

)
◦ ∂−1

τ ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt. (77)

Proof: Direct computations show that

1
Γ(s)

⎛⎝ ∞∫
0

Tr

((
∂

∂τ j

(
exp(−t

(

”

τ,q

)))
◦
(

”

τ,q

)
◦ ∂−1

τ ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt

⎞⎠ |τ=0 =

−1
Γ(s)

∞∫
0

(
d

dt
Tr

((
∂

∂τ j

(
exp(−t

(

”

τ,q

)))
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

))
tsdt

(78)
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By integrating by parts the right hand side of formula (78) we deduce that:

−1
Γ(s)

∞∫
0

(
d

dt
Tr

((
∂

∂τ j

(
exp(−t

(

”

τ,q

)))
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

))
tsdt =

s

Γ(s)

∞∫
0

Tr

((
∂

∂τ j

(
exp(−t

(

”

τ,q

)))
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
ts−1dt.

(79)
Direct computations of the right hand side of (79) show that:

s

Γ(s)

∞∫
0

Tr

((
∂

∂τ j

(
exp(−t
”

τ,q

))
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
ts−1dt =

−s
Γ(s)

∞∫
0

Tr

((
exp(−t
”

τ,q

)
◦ ∂

∂τ j

(

”

τ,q

)
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt.

Formula (77) is proved. �
Substituting in (76) the expression

1
Γ(s)

∞∫
0

Tr

((
∂

∂τ j

(
exp(−t

(

”

τ,q

)))
◦
(

”

τ,q

)
◦ ∂−1

τ ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt

from (77) we get:
∂2

∂τ j∂τ i

(
ζ”
q−1,τ (s)

)
|τ=0 =

1
Γ(s)

∞∫
0

Tr

(((
exp(−t
”

τ,q

)
◦ ∂

∂τ j

(

”

τ,q

))
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt+

−s
Γ(s)

∞∫
0

Tr

((
exp(−t

(

”

τ,q

))
◦ ∂

∂τ j

(

”

τ,q

)
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt.

(80)

Lemma 34

∞∫
0

Tr

((
exp(−t

(

”

τ,q

))
◦ ∂

∂τ j

(

”

τ,q

)
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt =

s

∞∫
0

Tr
((

exp(−t
(

”

τ,q

))
|τ=0 ◦

(
∂0

)−1 ◦ F ′
(q + 1, φj ◦ φi) ◦ ∂0

)
ts−1dt. (81)
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Proof: Substituting the expression of (61)

∂

∂τ j

(

”

τ,q

)
|τ=0 = −
”

0,q ◦
(
∂0

)−1 ◦ F ′
(q + 1, φj) ◦ ∂0

in the expression of

∞∫
0

Tr

((
exp(−t

(

”

τ,q

))
◦ ∂

∂τ j

(

”

τ,q

)
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt

we obtain:
∞∫
0

Tr

((
exp(−t

(

”

τ,q

))
◦ ∂

∂τ j

(

”

τ,q

)
|τ=0 ◦ ∂−1

0 ◦ F ′
(q + 1, φi) ◦ ∂0

)
tsdt =

−
∞∫
0

Tr
((

exp(−t
(

”

0,q

))
◦ 
”

0,q ◦ ∂−1
0 ◦ F ′

(q + 1, φi) ◦ F
′
(q + 1, φi) ◦ ∂0

)
tsdt =

∞∫
0

Tr

(
d

dt

(
exp(−t

(

”

0,q

))
◦
(
∂0

)−1 ◦ F ′
(q + 1, φj ◦ φi) ◦ ∂0

)
tsdt. (82)

By integrating by parts the right hand side of (82) we obtain formula (81).
Lemma 34 is proved. �

Substituting the expression of (81) in the expression (80) we get the following
equality:

∂2

∂τ j∂τ i

(
ζ”
q,τ (s)

)
|τ=0 =

− s

Γ(s)

∞∫
0

Tr
((

exp(−t
(

”

0,q

))
◦ ∂0

−1 ◦ F ′
(q + 1, φj ◦ φi) ◦ ∂0

)
ts−1dt+

1
Γ(s)

∞∫
0

Tr
((

exp(−t(
”

0,q)
)
◦ ∂0

−1 ◦ F ′
(q + 1, φj ◦ φi) ◦ ∂0

)
ts−1dt. (83)

Applying Theorem 25 we deduce Theorem 32. �

5.4 The Computations of the Hessian of log det Δτ,q

Theorem 35 The following formula is true:

∂2

∂τ j∂τ i

(
log det Δ”

τ,q

)
|τ=0 =

−lim
t→0

∫
M

⎛⎝∫
M

Tr

(
4πt)−

n
2 exp

(
−d

2
0(w, z)

4t

)
◦ P∗ ◦ P ◦ F ′ (

q + 1, φi ◦ φj

))
vol(g)w

⎞⎠ vol(g)z =
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−
∫
M

Tr
(
F ′ (

q + 1,
(
φi ◦ φj

))
)
)
vol(g). (84)

Proof: ζ”
τ,q(s) is obtained from the meromorphic continuation of

1
Γ(s)

∞∫
0

Tr
(
exp(−tΔ”

τ,q)
)
ts−1dt

and it is a meromorphic function on C well defined at 0. Thus we get that

ζ”
τ,q(s) = μ0(τ) + μ1(τ)s+O(s2)

and

∂2

∂τ j∂τ i

(
ζ”
τ,q(s)

)
|τ=0 =

∂2

∂τ j∂τ i
μ0(τ)|τ=0 +

(
∂2

∂τ j∂τ i
μ1(τ)

)
|τ=0s+O(s2) =

α0 + α1s+O(s2). (85)

Thus from the definition of the regularized determinant

log det(
”
τ,q) =

(
d

ds

(
−ζ”

τ,q(s)
))

|s=0

we see that

∂2

∂τ j∂τ i

(
log det Δ”

τ,q

)
|τ=0 =

d

ds

(
∂2

∂τ j∂τ i

((
−ζ”

τ,q(s)
))

|τ=0

)
|s=0 = −α1. (86)

Combining formula (75)

∂2

∂τ j∂τ i

(
ζ

”

τ,q(s)
)
|τ=0 =

s

Γ(s)

∞∫
0

Tr
((

exp(−t(
′
0,q)

)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt+

− s2

Γ(s)

∞∫
0

Tr

((
exp(−t(


′

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt

with the short term expansion:

Tr
((

exp(−t(

′

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)

=
1∑

k=−n

νk

tk
+ ν0 + ψ(t) (87)

where

ψ(t) = Tr
((

exp(−t(

′

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)
−

1∑
k=−n

νk

tk
+ ν0
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we obtain:
∂2

∂τ j∂τ i

(
ζ

”

τ,q(s)
)
|τ=0 =

s

Γ(s)

⎛⎝ 1∫
0

(
1∑

k=−n

νk

tk

)
ts−1dt+ ν0

1∫
0

ts−1dt+

1∫
0

ψ(t)ts−1dt

⎞⎠+

s

Γ(s)

⎛⎝ ∞∫
1

Tr
((

exp(−t(

′

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt

⎞⎠−

− s2

Γ(s)

⎛⎝ 1∫
0

(
1∑

k=−n

νk

tk

)
ts−1dt+ ν0

1∫
0

ts−1dt+

1∫
0

ψ(t)ts−1dt

⎞⎠−

− s2

Γ(s)

⎛⎝ ∞∫
1

Tr
((

exp(−t(

′

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt

⎞⎠ . (88)

By using formula (88) we will prove the following Lemma:

Lemma 36 We have the following formula:

∂2

∂τ j∂τ i

(
log det Δ”

τ,q

)
|τ=0 = −

∫
M

TrF ′
(q + 1, φi ◦ φj)vol(g) = −α1.

Proof: Lemma 9.34 on page 300 of [7] or direct computations show that
for |s| < ε we have the following identity:

1
Γ(s)

∞∫
0

Tr
((

exp(−t(
′
0,q)

)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt =

1
Γ(s)

⎛⎝ 1∫
0

(
1∑

k=−n

νk

tk

)
ts−1dt+ ν0

1∫
0

ts−1dt+

1∫
0

ψ(t)ts−1dt

⎞⎠+

1
Γ(s)

∞∫
1

Tr
((

exp(−t(

′

0,q)
)
◦ F ′

(q + 1, φj ◦ φi)
)
ts−1dt =

ν0
s

+ κ+O(s). (89)

Combining the expression in (89) with the following standard fact

s

Γ(s)
= s2 +O(s3)
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we obtain from formulas (88) and (89) that for |s| < ε

∂2

∂τ j∂τ i

(
ζ

”

τ,q(s)
)
|τ=0 = ν0s+O(s2). (90)

Thus according to (86) and (90)

d

ds

(
∂2

∂τ j∂τ i

(
ζ

”

τ,q(s)
)
|τ=0

)
|s=0 = ν0 = α1. (91)

Applying Theorem 24 to formula (91) we deduce that

α1 = ν0 =
∫
M

Tr
(
F ′ (

q + 1, φi ◦ φj

))
vol(g).

Lemma 36 is proved. �
Lemma 36 implies directly Theorem 35. �

5.5 Some Applications of the Variational Formulas

On CY manifold we have the following duality:

∗ : Ω0,q
M � Ω0,n−q

M

induced by the Hodge star operator ∗ of a CY metric. Using this duality direct
check shows that on CY manifolds we have

∗ : Im ∂q � Im
(
∂n−q

∗)
and ∗ : Im

(
∂q

∗)
� Im

(
∂n−q

)
. (92)

Theorem 37 The following identity holds

ddc (log det Δτ,1) = ddc
(
log det Δ

′
τ,1 det Δ”

τ,1

)
= − ImW.P.

Proof: The proof of Theorem 37 is based on the following Lemma:

Lemma 38 We have the following relations between the operators on a CY
manifold

F ′ (
1, φi ◦ φj

)
= F” (

n− 1, φi ◦ φj

)
and F”

(
1, φi ◦ φj

)
= F

′ (
n− 1, φi ◦ φj

)
(93)

by identifying the Hilbert spaces Im ∂ ⊂L2(M,Ω0,1
M ) and Im ∂∗ ⊂L2

(
M,Ω0,1

M

)
with Im ∂∗ ⊂L2

(
M,Ω0,n−1

M

)
and Im ∂ ⊂L2

(
M,Ω0,n−1

M

)
by using (92) .

Proof: We will need the following Proposition to prove Lemma 38:
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Proposition 39 Let

φi ◦ φj ∧ idn−1 : C∞(M,Ω0,n−1
M ) → C∞(M,Ω0,n−1

M )

be the operator defined by (25) . Then fibrewise we have the equality of the ma-
trices

φi ◦ φj ∧ idn−1 = φj ◦ φi ∧ idn−1 (94)

of the operators φi ◦ φj ∧ idn−1 and φj ◦ φi ∧ idn−1 given in the orthonormal
basis with respect to the CY metric.

Proof: Let {ωi} be an orthonormal basis at Ω1,0
x . Then the operators

φi : Ω1,0
x → Ω0,1

x

in the basises {ωi} and {ωi} are given by symmetric matrices by Lemma 10.
From here (94) follows directly. Indeed from the relations φα

β
= φβ

α we obtain

(
φi ◦ φj

)α

β
=

n∑
μ=1

φμ

i,β
φα

j,μ =
n∑

μ=1

φβ
i,μφ

μ

j,β
=

n∑
μ=1

φμ

j,β
φβ

i,μ =
(
φj ◦ φi

)α

β
. (95)

Formula (94) follows directly from (95) and the definitions of the operators
φi ◦ φj ∧ idn−1 and φj ◦ φi ∧ idn−1. �

Let us define (
φi ◦ φj ∧ idn−1

)∗
: Ωn−1

M → Ωn−1
M

as follows: (
φi ◦ φj ∧ idn−1

)∗
(∗ωk) = ∗

((
φi ◦ φj

)
(ωk)

)
. (96)

Corollary 40 The matrix of the operator
(
φi ◦ φj ∧ idn−1

)∗
in the orthonormal

basis ωi1 ∧ ...∧ωin−k
can be identified withe the matrix of the operator φj ◦φi of

the bundle Ω1,0
M written in the orthonormal basis {ωi} .

Proof: From the definition of the operator
(
φi ◦ φj ∧ idn−1

)∗
given by (96)

we get:

(
φi ◦ φj ∧ idn−1

)∗
(∗ωk) = ∗

((
φi ◦ φj

)
(ωk)

)
= ∗

⎛⎝ n∑
k,l=1

(
φi ◦ φj

)l

k
(ωl)

⎞⎠ =

n∑
k,l=1

(
φi ◦ φj

)l

k
(ω1 ∧ ... ∧ ωl−1 ∧ ωl+1 ∧ ... ∧ ωn) . (97)

Combining (95) and (97) we get

(
φi ◦ φj ∧ idn−1

)∗
(∗ωk) =

n∑
k,l=1

(
φj ◦ φi

)k

l
(ω1 ∧ ... ∧ ωl−1 ∧ ωl+1 ∧ ... ∧ ωn) =
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n∑
k,l=1

(
φj ◦ φi

)k

l
(∗ωk) =

n∑
k,l=1

(
φj ◦ φi

)k

l
ωk. (98)

We can identify Ω0,n−1
M with Ω1

M by using Hodge star operator ∗ and complex
conjugation. From here and (98) we conclude Cor. 40. �

Combining Cor. 40 with (92) and the identification Ω0,q
M with Ωq,0

M by com-
plex conjugation we derive (93) . Lemma 38 is proved. �

From (93) we deduce that

F
′ (

1, φi ◦ φj

)
+ F” (

1, φi ◦ φj

)
= ImW.P. (99)

Combining (99) with Theorem 35 we deduce that

ddc (log det Δτ,1) = ddc log
(
Δ

′
τ,1 × Δ

”

τ,1

)
= − ImW.P. (100)

Theorem 37 is proved. �

6 Moduli of CY Manifolds

6.1 Basic Construction

Definition 41 We will define the Teichmüller space T (M) of a CY manifold
M as follows:

T (M) := I(M)/Diff0(M),

where
I(M) := {all integrable complex structures on M}

and Diff0(M) is the group of diffeomorphisms isotopic to identity. The action
of the group Diff(M0) is defined as follows; Let φ ∈Diff0(M) then φ acts on
integrable complex structures on M by pull back, i.e. if

I ∈ C∞(M,Hom(T (M), T (M)),

then we define φ(Iτ ) = φ∗(Iτ ).

We will call a pair (M; γ1, ..., γbn
) a marked CY manifold where M is a CY

manifold and {γ1, ..., γbn
} is a basis of Hn(M,Z)/Tor.

Remark 42 Let K be the Kuranishi space. It is easy to see that if we choose a
basis of Hn(M,Z)/Tor in one of the fibres of the Kuranishi family M → K then
all the fibres will be marked, since as a C∞ manifold XK �M×K.

In [31] the following Theorem was proved:
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Theorem 43 There exists a family of marked polarized CY manifolds

ZL→T̃ (M), (101)

which possesses the following properties: a) It is effectively parametrized, b)
For any marked CY manifold M of fixed topological type for which the polariza-
tion class L defines an imbedding into a projective space CP

N , there exists an
isomorphism of it (as a marked CY manifold) with a fibre Ms of the family ZL.
c) The base has dimension hn−1,1.γbn

) a marked CY manifold where M is a CY
manifold and {γ1, ..., γbn

} is a basis of Hn(M,Z)/Tor.

Corollary 44 Let Y →X be any family of marked polarized CY manifolds, then
there exists a unique holomorphic map

φ : X → T̃ (M)

up to a biholomorphic map ψ of M which induces the identity map on Hn(M,Z).

From now on we will denote by T (M) the irreducible component of the
Teichmüller space that contains our fixed CY manifold M.

Definition 45 We will define the mapping class group Γ1(M) of any compact
C∞ manifold M as follows: Γ1(M) = Diff+(M)/Diff0(M), where Diff+(M) is
the group of diffeomorphisms of M preserving the orientation of M and Diff0(M)
is the group of diffeomorphisms isotopic to identity.

Definition 46 Let L ∈ H2(M,Z) be the imaginary part of a Kähler metric.
Let

Γ2 := {φ ∈ Γ1(M)|φ(L) = L}.

It is a well know fact that the moduli space of polarized algebraic manifolds
ML(M) = T (M)/Γ2. In [31] the following fact was established:

Theorem 47 There exists a subgroup of finite index ΓL of Γ2 such that ΓL

acts freely on T (M) and Γ\T (M)= ML(M) is a non-singular quasi-projective
variety. Over ML(M) there exists a family of polarized CY manifolds

M → ML(M).

Remark 48 Theorem 47 implies that we constructed a family of non-singular
CY manifolds

π : X →ML(M)

over a quasi-projective non-singular variety ML(M). Moreover it is easy to see
that

X ⊂CP
N × ML(M).

So X is also quasi-projective. From now on we will work only with this family.
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6.2 Metrics on Vector Bundles with Logarithmic Growth

In Theorem 47 we constructed the moduli space ML(M) of CY manifolds. From
the results in [45] and Theorem 47 we know that ML(M) is a quasi-projective
non-singular variety. Using Hironaka’s resolution theorem, we may find a com-
pactification ML(M) of ML(M) such that

ML(M) � ML(M) = D

is a divisor with normal crossings. We need now to show how we will extend the
determinant line bundle L to a line bundle L to ML (M). For this reason we
are going to recall the following definitions and results from [35]. We will look
at polycylinders DN ⊂ ML(M), where D is the unit disk, N = dim ML(M) and
such that

DN ∩ D∞ = {union of hyperplanes; q1 = 0, ..., qN = 0}.

Hence,
DN ∩ ML(M) = (D∗)k × DN−k,

where D∗ =D�0. On D∗ we have the Poincare metric

ds2 =
|dq|2

|q|2 (log |q|)2

and on D we have the simple metric |dq|2 , giving us a product metric on
(D∗)k×DN−k which we call ω(P ).

A complex-valued C∞ p-form η on ML(M) is said to have Poincare growth
on ML(M) � ML(M) if there is a set of if polycylinders

Uα ⊂ ML(M)

covering
ML(M) � ML(M)

such that in each Uα an estimate of the following type holds:∣∣η (q1, ..., qN
)∣∣ ≤ Cαω

(P )
Uα

(q1, q1)...αω
(P )
Uα

(qN , qN ).

This property is independent of the covering Uα of ML(M)�ML(M) but depends
on the compactification ML(M). If η1 and η2 both have Poincare growth on

ML(M) � ML(M),

then so does η1∧η2. An important property of Poincare growth is the following:

Theorem 49 A p-form η with a Poincare growth on

ML(M) � ML(M) = D
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has the property that for every C∞ (r − p) form ψ on ML(M) we have:∫
ML(M)
ML(M)

|η ∧ ψ| <∞.

Hence, η defines a current [η] on ML(M).

Proof:For the proof see [35]. �

Definition 50 A complex valued C∞ p-form η on ML(M) will be called ”good”
on M if both η and dη have Poincare growth. Let E be a vector bundle on
ML(M) with a Hermitian metric h. We will call h a good metric on ML(M) if
the following holds:

1. If for all x∈ ML(M)�ML(M), there exist sections e1, ..., em of E which
form a basis of E

∣∣
Dr
(Dr∩D∞) .

2. In a neighborhood Dr of x∈ ML(M)�ML(M) in which ML(M)�ML(M)
is given by qh1× ...× qN = 0. The metric hij =h(ei, ej) has the following
properties: a.

∣∣∣hij

∣∣∣ ≤ C

(
k∑

i=1

log
∣∣qi

∣∣)2m

, (det (h))−1 ≤ C

(
k∑

i=1

log
∣∣qi

∣∣)2m

for some C > 0, m ≥ 0. b. The 1-forms
(
(dh)h−1

)
are good forms on

ML(M) ∩DN .

It is easy to prove that there exists a unique extension E of E on ML(M),
i.e. E is defined locally as holomorphic sections of E which have a finite norm
in h.

Theorem 51 Let (E,h) be a vector bundle with a good metric on ML(M), then
the Chern classes ck(E,h) are good forms on ML(M) and the currents [ck (E , h)]
represent the cohomology classes

ck(E , h) ∈ H2k(ML(M),Z).

Proof: For the proof see [35]. �

6.3 Applications of Mumford’s Results to the Moduli of
CY

We are going to prove the following result:

Theorem 52 Let
π : X →ML(M)
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be the flat family of non-singular CY manifolds. Then on π∗
(
ωX/ML(M)

)
we

have a natural L2 metric defined as follows:

h = ‖ωτ‖2 := (−1)
n(n−1)

2
(√

−1
)n

∫
M

ωτ ∧ ωτ . (102)

Then h is a good metric.

Proof: Let q0 ∈ D = ML (M) � ML(M). Let q0 ∈ (D)N be a polydisk in
ML (M) which intersects D. We will assume without loss of generality that

(D∗)N ⊂ ML(M),

where N is the dimension of ML(M). Over (D∗)N we have a family

X(D∗)N→ (D∗)N (103)

of CY manifolds. The local parameters on (D∗)N will be qi = exp(2π
√
−1τ i),

i = 1, ..., N and τ will be the coordinate in the upper half plane h. Let

Xα0,α1 → Dα0,α1 (104)

be the restriction of the family (103) on

Dα0,α1 ⊂ (D∗)N ⊂ ML(M),

where

Dα1,α2 := {t ∈ C|0 < |t| < 1 and 0 ≤ α1 < arg t < α2 < 2π}

We will assume that the closure of Dα0,α1 contains a point κ∞ ∈D and κ∞ ∈
D ⊂ ML(M).

Lemma 53 There exists a global section

ηq ∈ Γ
(
Dα1,α2 , ωXα1,α2/Dα1,α2

)
such that for the classes of cohomology [ητ ] the limit

lim
τ→κ∞

[ηq] = [ηκ∞ ] (105)

exists.

Proof: Since Dα1,α2 is a contractible sector in the punctured disk D∗ we
conclude that we can construct a section

ηq ∈ Γ
(
Dα1,α2 , ωXα1,α2/Dα1,α2

)
such that for each q ∈ Dα1,α2 η

′
q �= 0. From local Torelli theorem we may assume

that Dα1,α2 ⊂ P(Hn(M,C)). From Lemma 53 follows directly. �
We have two possibilities for the for the class of cohomology [ηκ∞ ] established

by Lemma 53.
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Lemma 54 Suppose that
〈[ηκ∞ ], [ηκ∞ ]〉 > 0. (106)

Then the metric h is good around κ∞ ∈ ML(M).

Proof: If (106) holds for [ηκ∞ ] then the function

h(q, q) = 〈[ηq], [ηq]〉

is bounded in (D)N ⊂ ML (M). Thus obviously we have:

h(q, q) ≤ C

(
k∑

i=1

log
∣∣qi

∣∣)2m

,

h−1 ≤ C1

(
k∑

i=1

log
∣∣qi

∣∣)2m

and

∂ (log(h)) ∧ ∂ (log(h)) =
∂h

h
∧ ∂h

h
< C2

k∑
i=1

d log qi ∧ d log qi

(log |qi|)2

in (D∗)N ⊂ ML(M). Thus we proved Lemma 54. �
The second possibility is that

〈[ηκ∞ ], [ηκ∞ ]〉 = 0. (107)

Assuming this let
π : (U)N → (D∗)N ⊂ ML(M)

be the universal cover of (D∗)N
. We will assume that Ui is the universal cover

of D∗
i and it is the unit disk with a local parameter ti. The point 0i ∈ Di = D∗

corresponds to a boundary point κi
∞ ∈ Ui. Let qi be the local parameter on Di.

Let us consider
(Dα1,α2)

N ⊂ ML(M)

and the family
XN,α1,α2 → (Dα1,α2)

N (108)

which is the restriction of the family (103) on

Dα1,α2 × ...×Dα1,α2︸ ︷︷ ︸
N

⊂ ML(M).

Let τ0 ∈ (Dα1,α2)
N ⊂ ML(M). Let ωq be the family of forms constructed in The-

orem 7 in a polydisk which contained the point τ0 and is contained in(Dα1,α2)
N .

Then we have:
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Lemma 55 The function
h(q, q) = 〈ωq, ωq〉

is real analytic function which can be analytically continued to (D)N ⊂ ML(M)
maybe after we shrink the disks Di and

h(q, q)|D∩(D)N

N

= 0.

Proof: Repeating the arguments of Lemma 53 we can construct on (Dα1,α2)
N ⊂

ML(M) a global section

ηq ∈ Γ
(
(Dα1,α2)

N
, ωXN,α1,α2/(Dα1,α2

)N

)
such that

lim
q=(q1,...,qN )→(κ1∞,...,κN∞)∈D

[ηq] = [η(κ1∞,...,κN∞)]

exists and by assumption (107)〈
[η(κ1∞,...,κN∞)], [η(κ1∞,...,κN∞)]

〉
= 0.

The relations between the forms [ηq] and [ωq] constructed in Theorem 7 are
given by the formula

[ηq] = ϕ(q)[ωq], (109)

where ϕ(q) is a holomorphic function on the product (Dε)
N of small discs con-

taining the point τ0 and contained in (Dα1,α2)
N ⊂ ML(M). According to The-

orem 7
〈[ωq], [ωq]〉 ≤ 〈[ωq0 ], [ωq0 ]〉 (110)

Notice that the functions 〈[ηq], [ηq]〉 and 〈[ωq], [ωq]〉 are real analytic. Combining
this fact with (109) , (110) and (104) we deduce that the function

h(q, q) = 〈[ωq], [ωq]〉

can be analytically continued to a function on D × ...×D︸ ︷︷ ︸
N

⊂ ML(M) since the

function 〈[ηq], [ηq]〉 is well defined on D × ...×D︸ ︷︷ ︸
N

and so

lim
q=(q1,...,qN )→(κ1∞,...,κN∞)∈D

[ωq] = [ω(κ1∞,...,κN∞)]

exists and
〈[ωκ∞ ], [ωκ∞ ]〉 |D∩(D)N = h(q, q)|D∩(D)N = 0.

Lemma 55 is proved. �
The local coordinate ti in the disk Ui which is the universal cover of D∗

i

satisfies

ti =
τ i + κi

∞
τ i − κi∞

.
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Lemma 56 On each of the components Ui of the universal cover

π : (U)N → (D∗)N ⊂ ML(M)

of (D∗)N we have the following expression of the restriction of 〈ωti , ωti〉

〈ωti , ωti〉 = 1 −
∣∣ti∣∣2 + ψ(ti) and lim

ti→κi∞
ψ(ti) = 0. (111)

Proof: (111) follows directly from the expression for

h(t, t) = 〈[ωt], [ωt]〉 =

1 −
∑
i,j

〈ω0�φi, ω0�φj〉 titj +
∑
i,j

〈ω0� (φi ∧ φk) , ω0� (φj ∧ φl)〉 titjtktl +O(t5)

given by formula (7) of Theorem 7 when restricted to the unit disc Ui. Lemma
56 is proved. �

Lemma 57 On
(D)N ⊂ ML(M)

the function h(q, q) := 〈ωq, ωq〉 satisfies the inequality

h(ωq, ωq) ≤ C

(
k∑

i=1

log |qi|
)2m

.

Proof: We know from the theory of Hodge structures that if {γ1, ..., γbn
} is

a basis of Hn(M,Z)/Tor, then the functions:(
...,

∫
γi

ωq, ...

)
for 0 < |q| < 1 and 0 < arg(q) < 2π are solutions of a differential equation
with regular singularities. From the fact that the solutions of any differential
equation with regular singularities have logarithmic growth and

h(ωq, ωq) =
(
...,

∫
γi

ωq, ...

)
(〈γi, γj〉)

(
...,

∫
γi

ωq, ...

)t

,

we deduce that

h(ωq, ωq) ≤ C

(
k∑

i=1

log |qi|
)2m

.

Lemma 57 is proved. �
Next we will prove that on (D∗)N ⊂ ML(M) we have

h−1 :=
1

〈ωτ , ωτ 〉
≤ C

(
k∑

i=1

log |qi|
)2m

(112)

43



and

∂ (log(h)) ∧ ∂ (log(h)) ≤ C

k∑
i=1

dqi ∧ dqi
|qi|2 (log |qi|)2

= C

k∑
i=1

d log qi ∧ d log qi
(log |qi|)2

. (113)

We will work on each of the components Ui of the universal cover π : (U)N →
(D∗)N ⊂ ML(M) of (D∗)N

.
Proof of (112) : From the relations between the coordinates q, τ and t

t =
τ + κ∞
τ − κ∞

and q = exp
(
2π

√
−1t

)
we deduce that on

(D∗)N ⊂ ML(M)

the function h(q, q) on each Di will be given by

h(q, q)|Di
= |qi|2

(
log |qi|2

)
+ φ(qi),

where
lim
q→0

φ(q) = 0. (114)

Formula (112) follows directly from formula (114). Thus (112) is proved. �
Proof of (113) : From the explicit formula (7) for the family [ωt] and the

definition of the function h we obtain:

h(t, t)|Ui
= 〈[ωti ], [ωti ]〉 = 1 −

∣∣∣∣ tiκi∞

∣∣∣∣2 + ψ(ti)

where ψ(ti) is C∞ and
lim

t→κ∞
ψ(ti) = 0.

Thus we obtain that(
∂h

h
∧ ∂h

h

)
|Di

=

∣∣(1 − ∂
∂tih(ti)

)∣∣2 dti ∧ dti
h2

. (115)

Since the function
∂

∂ti
h(ti) = − ti

|κi∞|2
+ ψ(ti)

is bounded and the formula (111) we obtain from (115):

∂h

h
∧ ∂h

h
|Ui

≤ C

√
−1
2

dti ∧ dti
(1 − |ti|2)2

. (116)

Notice that (116) is equivalent to (111) since the upper half plane is conformally
equivalent to the unit disk and by the conformal transformation the Poincare
metric

−
√
−1

2
dqi ∧ dqi

|qi|2 (log |qi|)2
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on the upper half plane transforms to

−
√
−1

2
dti ∧ dti

(1 − |ti|2)2
.

Thus relation (111) is proved. �
Theorem 52 is proved. �

Theorem 58 The Weil-Petersson volume of the moduli space of polarized CY
manifolds is finite and it is a rational number.

Proof: Theorem 52 implies that the metric on the relative dualizing sheaf
ωX/ML(M) defined by (102) is a good metric. This implies that the Chern
form of any good metric defines a class of cohomology in H2(ML(M),Z) ∩
H1,1(ML(M),Z). See Theorem 51. We know from [43] that the Chern form of
the metric h is equal to minus the imaginary part of the Weil-Petersson metric.
So the imaginary part of the Weil-Petersson metric is a good form in the sense
of Mumford. This implies that∫

ML(M)

∧dimC ML(M) c1(h) ∈ Z

since ML(M) is a smooth manifold. Since ML(M) is a finite over the moduli
space ML(M) then the Weil-Petersson volume of ML(M) will be a rational
number. Theorem 58 is proved. �

In the paper [33] the authors proved that the Weil-Petersson volumes of the
moduli space of CY manifolds are finite.

7 The Theory of Determinant Line Bundles and
the Quillen Metric

7.1 Geometric Data

In order to construct the determinant line bundle, we need the following data:

1. A smooth fibration of manifolds π : X →ML(M). In our case it will be
the smooth fibration of the family of CY manifolds over the moduli space
as defined in Theorem 47. Let n=dimCM.

2. A metric along the fibres, that is, a metric g(τ) on the relative tangent
bundle T (X/ML(M)). In this paper the metric will be the families of CY
metrics g(τ) such that the class of cohomology [Im(g(τ))] = L is fixed.

From this data we will construct the determinant line bundle L over the
moduli space of CY manifolds ML(M). We will consider the relative ∂X/ML(M)

complex:

0 → ker∂X/ML(M) → C∞(X )
∂0,X/ML(M)→ Ω0,1

X/ML(M)

∂1,X/ML(M)→
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∂1,X/ML(M)→ Ω0.n−1
X/ML(M)

∂n−1,X/ML(M)→ Ω0.n
X/ML(M) → 0.

For each τ ∈ ML(M) and k, we will define D to be:

Dk := ∂k,X/ML(M) +
(
∂k,X/ML(M)

)∗
and

Dk,τ := Dk |Mτ = ∂k,τ +
(
∂k,τ

)∗
.

Definition 59 We will call the above complex the relative Dolbault complex.

Let us define (
Hk

)
τ

:= L2(Mτ ,Ω0,k
τ ).

Furthermore, as τ varies over ML(M), the spaces
(
Hk

τ

)
fit together to form

continuous Hilbert bundles Hk over ML(M).2. Thus we can view ∂k,X/ML(M)

as bundle maps:
∂k,X/ML(M) : Hk → Hk+1.

The Hilbert bundles Hk carry L2 metrics by definition.
Now we are ready to construct the Determinant line bundle L of the operator

∂X/ML(M). We will recall some basic consequences of the ellipticity of Dτ . Each
fibre Hk

τ of the Hilbert bundles Hk decomposes into direct sums of eigen spaces
of non-negative Laplacians D∗

kDk and D∗
kDk. The spectrums of these operators

are discrete, and the nonzero eigen values {λk,i} of D∗
kDk and DkD∗

k agree and
Dk defines a canonical isomorphisms between the corresponding eigen spaces.

Definition 60 1. Let

Ua : {τ ∈ ML(M)|a /∈ Spec(DkD
∗
k)

for 0 ≤ k ≤ n and any a > 0}. (Ua are open sets in ML(M) and they form an
open covering of ML(M) since the spectrum of D∗

τDτ is discrete.) 2. Let the
fibres of Hk

a be the vector subspaces in Hk
τ,a spanned by eigen vectors with eigen

values less than a over Ua. Then we can define the complex:

0 → Γ(Ua,OUa
) → H0

a

∂0,X/ML(M)→ ...

...→ Hn−1
a

∂n−1,X/ML(M)→ Hn
a → ker(Dn−1 ◦D∗

n) → 0.

If b > a we set Hk
a,b := Hk

b /Hk
a. The spaces Hk

a form smooth finite dimensional
C∞ bundles over an open set Ua ⊂ ML(M). For the proof of this fact see [1].

2These bundles are not smooth since the composition L2×C∞ → L2 is not a differentiable
map.
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7.2 Construction of the Generating Sections det(Da) over
Ua

Definition 61 Let

ωk
1 , .., ω

k
mk
, ψk

1 , .., ψ
k
Nk
, φk

1 , .., φ
k
Mk

be an orthonormal basis in the trivial vector bundle Hk
a over Ua, where

Dkω
k
i = 0, ∂

∗
k(∂kψ

k
j ) = λk

jψ
k
j , ∂k(∂

∗
kφ

k
j ) = λk

jφ
k
j , φ

k
j ∈ Im ∂k−1,X/ML(M)

and
ψk

j ∈ Im(∂
∗
k,X/ML �(M))

for 1≤ i ≤ k and 0 < λj < a for 1≤ j ≤ N . Let

det(∂k,a) =

ωk
1∧...∧ωk

mk
∧(∂k−1,X/ML(M)ψ

k−1
1 )∧...∧

(
∂k−1,X/ML(M)ψ

k−1
Nk

)
∧
(
φk

1 ∧ ... ∧ φk
Mk

)(−1)k

.

We will define the line bundle L restricted on Ua as follows:

La := L|Ua
= ⊗n

k=0

(
∧dimHk

aHk
a

)(−1)k

.

Definition 62 The generator det(∂a) of La := L|Ua is defined as follows:

det(∂a) := ⊗
k

det(∂k,a).

We will define how we patch together La and Lb over Ua ∩ Ub3. On that
intersection we have:

Lb = La ⊗ La,b,

where
La,b := ⊗k(detHk

a,b)
(−1)k

on Ua ∩ Ub. We can identify La, b over Ua ∩ Ub with the line bundle spanned
by the section

det(∂a,b) = ⊗n
k=0 det(∂k,a,b)(−1)k

,

where
det(∂k,a,b) :=

=
(
∂k−1,X/ML(M)ψ

k−1
1

)
∧ ... ∧ (∂k−1,X/ML(M)ψ

k−1
Nk

) ∧ φk
1 ∧ ... ∧ φk

Mk
,

φk
j ∈ Im ∂k−1,X/ML(M), ψ

k
j ∈ Im(∂

∗
0,X/ML(M)),

Δkφ
k
j = λk

jφ
k
j , Δk(∂(ψk−1

i )) = λk
i (∂(ψk−1

i ))

and a < λk
i < b.

3We may suppose that b > a.
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Remark 63 We can view det(∂a,b) as a section of the line bundle La,b over
Ua ∩ Ub. It defines canonical smooth isomorphisms over Ua ∩ Ub :

La → La ⊗ La,b = Lb(s→ s⊗ det(∂a,b)

for all 0 < a < b.

We define the determinant line bundle L by patching the trivial line bundles
La over Ua by using the canonical isomorphism defined in Remark 63.

7.3 The Description of the Quillen Metric on the Deter-
minant Line Bundle

We now proceed to describe the Quillen metric on L. Fix a > 0. Then the sub-
bundles Hk

a of the Hilbert bundles Hk on Ua inherit metrics from Hk. According
to standard facts from linear algebra, metrics are induced on determinants, du-
als, and tensor products. So the La inherits a natural metric. We will denote
by ga the L2 norm of the section det(∂a). Clearly,

ga =
n∏

k=0

(
λk

1 ...λ
k
nk

)(−1)k

,

and λk
i are all nonzero eigen values of the operators ∂

∗
k∂k−1which are less than

a.
If b > a, then under the isomorphism defined in Remark 63, we have two

metrics on Lb and their ratio is a real number equal to the L2 norm of the
section

∥∥det(∂a,b)
∥∥2

. The definition of the section det(∂a,b) implies that we have
the following formula:

∥∥det(∂a,b)
∥∥2

=
n∏

k=0

∏
i=1

∥∥φk
i

∥∥2
n∏

j=1

(∥∥∂ψk
j

∥∥2
)(−1)k

=

=
∏
i=1

∥∥φk
i

∥∥2 ∏
j=1

〈
∂
∗
k∂k−1ψ

k
j , ψ

k
j

〉(−1)k

=
n∏

k=1

(
λk

i

)(−1)k

where λk
i are all the non-zero eigen values of the operators ∂

∗
k∂k−1 such that

a < λk
i < b. In other words, on Ua ∩ Ub

gb = ga
∏

a<λk
i <b

(
λk

i

)(−1)k

.

To correct this discrepancy, we define

ga = ga det(∂
∗
∂) |λ>a ,

where

det(∂
∗
∂) |λ>a =

n∏
k=1

(
det(∂

∗
k∂k−1 |λ>a )

)(−1)k

,
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det(∂
∗
k∂k−1 |λ>a ) = − exp(− d

ds
ζa
k (s)|s=0),

and

ζa
k (s) =

∞∑
λi>a

(
λk

i

)s
.

The crucial property of this regularization is that it behaves properly with re-
spect to the finite number of eigen values, i.e.

det(∂
∗
k∂k−1 |λ>b ) = det(∂

∗
k∂k−1 |λ>a )

N∏
a<i<b

λk
i

on the intersection Ua ∩ Ub. From the last remark we deduce that ga and gb

agree on Ua ∩ Ub. Thus ga and gb patch together to a Hermitian metric gL on
L. The metric gL will be called the Quillen metric on L.

Definition 64 We will define the holomorphic Ray Singer analytic torsion
I(M) for CY manifold M as follows:

I(M) := log

(
n∏

q=1

(det(
′
q)

(−1)q

)
.

See [39].

Remark 65 It is easy to see that if M is a CY manifold and dimCM=2n, then
logI(M)=0. We know that for odd dimensional CY manifolds I(M) �= 0. So from
now on we will consider only odd dimensional CY manifolds.

We will need the following result from [5] on p. 55:

Theorem 66 The Quillen norm of the C∞ section det(∂a) on Ua of L is equal
to exp(I(M)).

Proof:It follows from Definition 61 of the section det(∂) |Ua of L and the
definition of the Quillen metric that at each point τ ∈ ML(M) the following
formula is true: ∥∥det(∂)τ |Ua

∥∥2

Q
= exp(I(Mτ ))|Ua ,

where
∥∥det(∂)τ |Ua

∥∥2

Q
means the Quillen norm of the section det(∂)τ |Ua . The-

orem 66 is proved. �

8 Construction of a C∞ Non-Vanishing Section
of the Determinant Line Bundle L for Odd
Dimensional CY Manifolds

8.1 Some Preliminary Results

Let us denote by
π∗

(
ωX/ML(M)

)
:= π∗

(
Ωn,0

X/ML(M)

)
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the relative dualizing sheaf. The local sections of π∗
(
ωX/ML(M)

)
are families of

holomorphic n-forms ωτ on Mτ .

Theorem 67 If the dimension of the CY manifold is even, then L is isomor-
phic to the dual of the line bundle π∗

(
ωX/ML(M)

)
. If the dimension of the CY

manifold is odd, then L is isomorphic to the line bundle π∗
(
ωX/ML(M)

)
over

ML(M).

Proof: The definition of CY states that:

dimC H
q(M,OM) =

{
1 q = 0 or q = n
0 for q �= 0 or n . (117)

(117) and the definition of CY manifolds imply that

Rqπ∗OM =
{ (

π∗ωX/ML(M)

)∗
q = n

OML(M) for q �= n
. (118)

From the definition of L it follows that

L �
n∏

q=0

(−1)q det (Rqπ∗OM) .

Combining (117) and (118) we directly deduce Theorem 67. �

Corollary 68 Let M be a CY manifold of odd dimension n = 2m + 1. Then
the index of the operator ∂ on the complex defined in Definition 59 is zero.

8.2 Construction of a C∞ Section of the Determinant Line
Bundle L with Quillen Norm Ray-Singer Analytic Tor-
sion

Definition 69 Let
H+ = ⊕

k
L2

(
M,Ω0,2k

M

)
,

H− = ⊕
k
L2

(
M,Ω0,2k+1

M

)
and

D = ∂X/ML(M) + ∂
∗
X/ML(M).

Theorem 70 Let M be an odd dimensional CY manifold. Then the (1, 1) form
ddcI(Mτ ) is a good form on ML(M) in the sense of Mumford.

Proof: The definition of the Ray Singer analytic torsion together with The-
orem 35 imply that

ddcI(Mτ ) =
2n∑

q=0

(−1)q+1ddc log det Δ
′
τ,q =
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2n∑
q=0

(−1)q+1

⎛⎝√
−1
2

∑
i,j

⎛⎝∫
M

Tr
(
F ′ (

q + 1, φi ◦ φj

))
vol(g)

⎞⎠ dτ i ∧ dτ j

⎞⎠ .

(119)
Let us define the (1, 1) forms βq(1, 1) on ML(M) as follows:

βq(1, 1) =
√
−1
2

∑
i,j

(
∂2

∂τ j∂τ i

(
− log(det(
”

τ,q))
))

dτ j ∧ dτ i. (120)

From Theorem 35 and (120) we deduce that we have the following equality:

βq(1, 1) =
√
−1
2

∑
i,j

Tr
(
F ′

τ

(
q + 1, φi ◦ φj

))
dτ i ∧ dτ j . (121)

Lemma 71 Pointwise on ML(M) we have

βq(1, 1) ≤
(

2n
q − 1

)
ImW.P. . (122)

Proof: We need the following Proposition:

Proposition 72 Let F be a linear map of a vector space V of dimension n.
Then the linear operator F∧id as defined by (23) acting on ∧qV has a trace
given by the formula:

Tr(F ∧ id) =
(
n− 1
q − 1

)
Tr(F ).

Proof: The proof of Proposition 72 is an exercise in linear algebra. �
From Proposition 72, the definition Tr

(
F ′

τ

(
q, φi ◦ φj

))
and the fact that

Tr
(
F ′

τ

(
q, φi ◦ φj

))
+ Tr

(
F”

τ

(
q, φi ◦ φj

))
=

∫
M

Tr(
(
φi ◦ φj

)
∧ idq−1)vol(g) =

=
(

2n
q − 1

)∫
M

Tr
(
φi ◦ φj ∧ idq−1

)
vol(g).

we can conclude that pointwise on ML(M)

Tr
(
F ′ (

q, φi ◦ φj

))
≤ Tr

(
F

(
q, φi ◦ φj

))
=

(
2n
q − 1

)
ImW.P.. (123)

From (123) we deduce (122). Lemma 71 is proved. �
According to Theorem 52 ImW.P. is a good form and so Lemma 71 implies

that βq(1, 1) will be good forms. From here we deduce that ddcI(Mτ ) will be a
good form. Theorem 70 is proved. �
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Corollary 73 Let L be the extended line bundle of the relative dualizing sheaf
on ML(M) with respect to the good metric h as defined by 102. Then ddcI(Mτ )
represents the Chern class of the extended line bundle L. (For the fact that h is
a good metric see Theorem 52.)

Corollary 74 The determinant line bundle L is trivial as a C∞ bundle.

Proof: We know that exp(I(Mτ )) is a globally defined function on ML(M)
which is non zero. It defines a metric on the determinant line bundle which we
proved that is isomorphic to L := π∗ωX/ML(M). Thus ddc(I(M)) defines a good
form by Theorem 70 and is the first Chern class of π∗ωX/ML(M).Thus the first
Chern class of the line bundle π∗ωX/ML(M) is zero and Cor. 74 is proved. �

Theorem 75 There exists a global C∞ section det(∂) of the determinant line
bundle

L →ML(M)

which has no zeroes on ML(M) and whose Quillen norm is the exponential of
the Ray Singer Analytic Torsion when M is an odd dimensional.

Proof: The proof of Theorem 75 is based on the following Lemma:

Lemma 76 There exists a nonvanishing global section det(∂) of the determi-
nant line bundle L such that the Quillen norm of det(∂) is exp(I(M)).

Proof: From Corollary 74 we can conclude the existence of a global C∞

section ωτ of the line bundle
L →ML(M)

which has no zeroes on ML(M) and which for each τ ∈ ML(M) has L2 norms 1,
i.e. we have ‖ωτ‖2 = 1. Since Mτ is an odd dimensional CY manifold we know
from Theorem 67 that L is isomorphic to π∗(ωX/ML(M)). The nonvanishing
section ωτ of the determinant line bundle L can be interpreted as a family of
(2n+1,0) forms ωτ which generate the kernel of

D∗ : H− → H+.

The kernel of
D : H+ → H−

is generated by the constant 1. This follows directly from the definition of the
CY manifold.

From Definition 61 of the section det(∂a) on the open set Ua in ML(M), the
existence of a global C∞ family of antiholomorphic forms ωτ with L2 norm 1,
which trivializes R2n+1π∗(OX ) over ML(M), and the definition of the transition
functions {σa,b} of L with respect to the covering {Ua}, we deduce that for b > a
we have on Ua ∩ Ub

det(∂b) = det(∂b) (σa,b) .
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This fact and Theorem 66 imply that we have constructed a global C∞ section
det(∂) of L whose Quillen norm is exp(I(M)). So the determinant line bundle
L is a trivial C∞ line bundle. Theorem 75 is proved. �

In [5] a canonical smooth isomorphism is constructed between the holomor-
phic determinant of the Grothendieck-Knudsen-Mumford and Quillen determi-
nant bundle. More precisely, the following theorem is proved:

Theorem 77 Let
π : X →ML(M)

be a holomorphic fibration with smooth fibres. Suppose X admits a closed (1,1)
form ψ which restricts to a Kähler metric on each fibre. Let E → X be a
holomorphic Hermitian bundle with its Hermitian connection. Then the deter-
minant line bundle L →ML(M) of the relative ∂ complex (coupled to E ) admits
a holomorphic structure. The canonical connection (constructed in [3]) on L is
the Hermitian connection for the Quillen metric. Finally, if the index of ∂ is
zero, the section det( ∂E) of L is holomorphic.

From now on we will consider the family of CY manifolds X →ML(M) as
defined in Remark 48 together with the trivial line bundle L over ML(M). It
is easy to see that the family X →ML(M) fulfills the conditions of Theorem 77.
So we get the following Corollary:

Corollary 78 The determinant line bundle as a holomorphic bundle is flat over
ML(M).

9 The Regularized Determinant det Δτ,1 are Bounded

9.1 Invariants of the Short Term Asymptotic Expansion
of the Heat Kernel

Theorem 79 Suppose that M is a three dimensional CY manifold and g is a CY
metric. Then the coefficients a2k for k = 3, 2, 1 and 0 in the expression (124) for
the short term assymptotic expansion of Tr(exp(−tΔτ,1)) are constants which
depend only on the CY manifolds and the fixed class of cohomology of the CY
metric.

Proof: We know that the Heat kernel has the following asymptotic expan-
sion:

Tr(exp(−t
τ,1)) =
a−n(g)
tn

+
an−1(g)
tn−1

+
an−2(g)
tn−2

+ ...+a0(g)+h(t, τ, τ). (124)

(See [38].) We will apply (124) for three dimensional CY manifolds. In [18] on
page 118 one can find the following formulas for a−3(g), a−2(g) and a−1(g) :

α−3(g) =
vol(g)

4π
, a−2(g) =

−
∫
M

k(g)vol(g)

24π
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and

a−1(g) =
−12

(∫
M

Δg(k(g))vol(g)
)

+ 5 ‖Ric(g)‖2 − 2 ‖R(g)‖2

1440π
(125)

where k(g) is the scalar curvature of the metric g, ‖Ric(g)‖2 is the L2 norm of
the Ricci tensor of g and ‖R(g)‖2 is the L2 norm of the curvature of the metric
g. Using the fact that g is a Calabi-Yau metric, i.e. Ric(g) = k(g) = 0, we
obtain:

α−3(g) =
vol(g)

4π
, a−2(g) = 0 and a0(g) =

−‖R(g)‖2

720π
. (126)

In [11] Calabi proved on page 264 the following Proposition:

Proposition 80 The following formula holds on a complex Kähler manifold M
with a fixed cohomology class L of the imaginary part of a Kähler metric:

2 ‖Ric(g)‖2 − ‖R(g)‖2 −
∫
M

k(g)2vol(g) = −
∫
M

c2(M) ∧ ωn−2
g , (127)

where c2(M) is the second Chern class of M.

Applying formula (127) to a CY metric, we obtain that on a three dimen-
sional CY manifold with a Calabi Yau metric g we have:

a−3(g) =
1
4π

∫
M

Ln, a−2(g) = 0 and a−1(g) = − 1
720π

∫
M

c2(M) ∧ Ln−2. (128)

Theorem 79 follows directly from (128) since (128) implies that a−3(g), a−2(g)
and a−1(g) are topological invariants. We need to prove that a0(g) is a constant
in order to deduce Theorem 79.

Lemma 81 Let

Tr(exp(−tΔτ,1) =
a−n

tn
+
a−n−1

t
+ ...+ a0 +O(t)

be the asymptotic expansion of Tr(exp(−tΔτ,1) with respect to a CY metric with
a fixed class of cohomology of its imaginary part. Then the coefficient a0 is a
constant, i.e.

∂

∂τ
a0(τ, τ) = 0.

Proof: According to [7] the following equality is true:

ζτ,1(0) = a0(τ), (129)

where a0 is a real valued function on the moduli space of polarized CY manifolds.
Since

ζτ,q(s) = ζ
”

τ,q(s) + ζ
”

τ,q+1(s)
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it will be enouph to prove
∂

∂τ i

(
ζ”
q,τ (0)

)
= 0 (130)

then Lemma 81 will follow directly from (130).
From Lemma 30 we know that

∂

∂τ i

(
ζ”
q,τ (s)

)
=

1
Γ(s)

∞∫
0

Tr

(
exp(−t
”

τ,q) ◦ 

”

τ ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
tsdt =

1
Γ(s)

∞∫
0

Tr

(
d

dt

(
exp(−t
”

τ,q)
)
◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
tsdt. (131)

By integrating by parts the expressions in (131) , we obtain:

∂

∂τ i

(
ζ”
τ,q(s)

)
=

s

Γ(s)

∞∫
0

Tr

(
exp(−t
”

τ,q) ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
ts−1dt. (132)

We can rewrite the integral in the right hand side of (132) as follows:

s

Γ(s)

∞∫
0

Tr

(
exp(−t
”

τ,q) ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
ts−1dt =

s

Γ(s)

1∫
0

Tr

(
exp(−t
”

τ,q) ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
ts−1dt+

s

Γ(s)

∞∫
1

Tr

(
exp(−t
”

τ,q)T ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
ts−1dt. (133)

From the short term asymptotic expansion of the heat kernel

Tr

(
exp(−t
”

τ,q)T ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂0

)
=

cn(τ)
tn

+ ...+
c1(τ)
t

+ c0(τ) + ψ(t) (134)

we deduce on the basis of Lemma 9.34 on page 300 of [7] that

s

Γ(s)

∞∫
0

Tr

(
exp(−t
”

τ,q) ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂τ

)
ts−1dt =
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s

Γ(s)

⎛⎝ 1∫
0

(
cn(τ)
tn

+ ...+
c1(τ)
t

+ c0(τ)
)
ts−1dt+

∞∫
1

ψ(t)ts−1dt

⎞⎠ =

s

Γ(s)

(
c0(τ)
s

+ d0(τ) +O(s)
)
, (135)

where

ψ(t) = Tr

(
exp(−t
”

τ,q) ◦
(
∂τ

)−1 ◦ F ′
(q,

∂

∂τ i
φ(τ)) ◦ ∂τ

)
−cn(τ)

tn
+...+

c1(τ)
t

+c0(τ)

From (135) and the fact that

s

Γ(s)
= s2 +O(s3)

we get that

∂

∂τ i

(
ζ”
0,τ (s)

)
= s2

(
c0(τ)
s

+ γ0(τ) +O(s)
)

= c0(τ)s+ s2γ0(τ) + ....

From the last formula we obtain that

∂

∂τ i

((
ζ”
τ,q

)
(s)

)
|s=0 = 0.

Lemma 81 is proved. �
Lemma 81 implies Theorem 79. �

9.2 The Regularized Deeterminant is Bounded

Theorem 82 For CY threefolds the regularized determinants of the Laplacians
Δτ,0 of the Calabi Yau metrics g(τ, τ) with a fixed cohomology class L are
bounded as function on the moduli space, i.e. we have:

0 ≤ det (
τ,1) ≤ C.

Proof: The bound of det(
τ,1) is based on the following expression for the
zeta function of the Laplacian acting on functions:

ζ1(s) =
1

Γ(s)

∞∫
0

Tr(exp(−t
τ,1)ts−1dt = b0 + b1s+O(s2).

From the definition of det(
τ,1) it follows that

det(
τ,1) = exp(−b1(τ)). (136)

So if the function b1(τ) is bounded from bellow, i.e.

c1 ≤ b1(τ) (137)
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then Theorem 82 will be proved. The bound of b1 is based on several facts.
The first fact that we will use is the following explicit formula for b1 as stated

in [1]:

b1 = γa0 +
3∑

k=1

a2k

k
+ ψ1 + ψ2, (138)

where γ is the Euler constant, ψ1 is given by the formula

ψ1(t, τ, τ) =

1∫
0

(
Tr(exp(−t
τ,1)) −

3∑
k=0

a2k

tk

)
dt

t

and ψ2 by

ψ2(t, τ, τ) =

∞∫
1

Tr(exp(−t
τ,1))
dt

t
.

The second fact is Theorem 79 which implies that the expression:

γa0 +
3∑

k=1

a2k

k

in (138) is a constant. Clearly

ψ2(t, τ, τ) > 0.

The third fact is that
ψ1(t, τ, τ) ≥ c0,

where c0 is a constant. Combining all these facts we get (137). Combining (137)
with the explicit formula (138) for the det(Δτ,1)we will obtain that

0 ≤ det(Δτ,1) ≤ C <∞.

So we need to prove the following Lemma:

Lemma 83 The following inequality holds:

ψ1(t, τ, τ) ≥ c0.

Proof: Let

h(t, τ, τ) = Tr(exp(−t
τ,1)) −
3∑

k=0

a2k

tk
(139)

We also know that h(t, τ, τ) = th1(t, τ, τ). According to Theorem 79, the ex-
pression

3∑
k=0

a2k

tk
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is a function which does not depend on τ and τ .We also know that Tr(exp(−t
τ,0))
is a strictly positive function for t > 0 which depends on t, τ and τ . These two
facts imply that for each t > 0, inf

τ
h(t, τ, τ) exists. Let φ(t) := inf

τ
h(t, τ, τ) for

fixed t. On the other hand, we know that at t = 0,

h(0, τ, τ) = 0.

So in the interval 0 ≤ t ≤ 1, φ(t) is a well defined function. It is an easy exercise
to prove that φ(t) is a continuous function in [0, 1]. Let c0 = min

0≤t≤1
φ(t). So we

have
1∫

0

(h(t, τ, τ) − c0)dt ≥ 0.

On the other hand, we have

1∫
0

(h(t, τ, τ) − c0)dt =

1∫
0

h(t, τ, τ)dt− c0 = ψ1(t, τ, τ) − c0 ≥ 0.

So ψ1(t, τ, τ) ≥ c0. Lemma 83 is proved. �
Theorem 82 is proved. �

Theorem 84 Let M be an odd dimensional CY manifold, then

det Δ
′
τ,1 det Δ”

τ,1 = det Δτ,1

defines a good metric in the sense of Mumford. For CY manifold M there exists a
global holomorphic section σ of the dual of the extended determinant line bundle
L on ML(M) such that ‖σ‖2

L2 = det Δτ,1. If M is three dimensional then

‖σ‖2
L2 = detΔτ,1 < C1. (140)

The extension L of the determinant line bundle L on ML(M) with respect to the
good metric det Δτ,1 is the same as the extension to the good metric h defined
by (102).

Proof: The proof of Theorem 84 is based on Theorem 37. In [43] we proved
that

ddc log 〈ωτ , ωτ 〉 = − ImW.P. (141)

From Theorem 37 and formula (141) we deduce that on any open set U ⊂
ML(M) we have

det Δτ,1|U =
(
det Δ

′
τ,1 × det Δ

”

τ,1

)
|U = 〈ωτ , ωτ 〉 |fU |2, (142)

where fU is a holomorphic function on U. Thus from 142 we can conclude
that the holomorphic functions fU define a global section σ of the dual line
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bundle of the determinant line bundle on ML(M). Theorems 82 and 70 imply
that the function det Δτ,1 = det Δ

′
τ,1 × det Δ

”

τ,1 is bounded on ML(M) and
it defines a good metric. So we can conclude that the holomorphic section
σ is globally defined and has a L2 norms equal to det Δτ,1. From Theorem
37 and formula (141) we deduce that the Chern classes of the extended line
bundles obtained from the determinant line bundle, with respect to the to the
good metrics det Δτ,1 and h defined by (102) have the same Chern classes on
ML(M). So from here we conclude that the extension L of the determinant line
bundle L on ML(M) with respect to the good metric det Δτ,1 is the same as
the extension to the good metric h.Theorem 84 is proved. �

10 The Dedekind Eta Function for CY Mani-
folds

10.1 Construction of the Dedekind η Function

In this paragraph we will construct a holomorphic section ηN of some power of
the dual of the determinant line bundle for any odd dimensional CY manifold.
The construction of the Dedekind eta function is based on the following Theorem
of Kazhdan:

Theorem 85 For any arithmetic groups Γ of rank ≥ 2 the abelian group Γ/[Γ,Γ]
is finite. See [10].

According to Sullivan the subgroup Γ of the mapping class group Γ(M)
defined in Section 7.1 is an arithmetic group of rank ≥ 2

Theorem 86 Let M be an odd dimensional CY manifold. Let N = #ΓL/[ΓL,ΓL].
Then L⊗N is a trivial complex analytic line bundle over ML(M).

Proof: According to Theorem 67

L � R0π∗(ωX/ML(M)),

where dimC M = 2n + 1. Therefore, L is a subbundle of the flat vector bundle
R2n+1π∗C, where C is the locally constant sheaf on X , and

π : X →ML(M)

is the versal family of CY manifolds over ML(M). We know from Theorem 47
that

ML(M) = T (M)/ΓL,

where T (M) is the Teichmüller space and ΓL is a subgroup of finite index in
the subgroup the mapping class group of M that preserve the polarization class.
According to [41], ΓL is an arithmetic group.
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If we lift the flat bundle Rnπ∗C on T (M), then R2n+1π∗C will be the trivial
bundle, i.e.

R2n+1π∗C �T (M) ×H2n+1(M0,C).

Let us denote by
σ : T (M) → ML(M) = T (M)/ΓL

the natural projection map. Clearly σ∗(L) will be a flat complex analytic sub-
bundle of the trivial bundle T (M) ×H2n+1(M0,C).

Proposition 87 Let N be a quasi-projective variety, E � Cn×N be a trivial
bundle and L be a flat line bundle over N such that the dual L∗ of L satisfies

L∗⊂ E ,

then L is also trivial.

Proof : The proof of Proposition 87 is obvious. �
Proposition 87 implies we that σ∗(L) will be a trivial line bundle. So we get

that
L � C×T (M)/ΓL,

where ΓL acts in a natural way on the Teichmüller space and it acts by a
character

χ ∈ Hom(ΓL,C
∗
1) � Hom(ΓL/[ΓL,ΓL],C∗

1)

of the group ΓL on the fibre C. For CY manifolds ΓL is an arithmetic group of
rank ≥ 2 according to [41]. From here and Theorem 85 we deduce that LN will
be a trivial bundle on ML(M), where

N = #ΓL/[ΓL,ΓL]. (143)

Theorem 86 is proved. �

Definition 88 We will define D∞ as follows; Let

D := ML(M) � ML(M)

be the discriminant locus then a point τ∞ is in D∞ if around τ∞ we can find a
disk D such that

τ∞ ∈ D, D � τ∞ ⊂ ML(M)

and over D �τ∞ the family of polarized CY manifolds has a monodromy group
of infinite order in Hn(Mτ ,Q).

Theorem 89 Let M be a three dimensional CY. There exists a holomorphic
section ηN of (L∗)⊗N such that it can be prolonged to a holomorphic section
ηN of the line bundle

(
L∗)⊗N

such that for each point m ∈ ML(M) ηN (m) �= 0,
i.e. the support of the zero set of ηN is contained in the support of the divisor
D or it is equal to it.
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Proof: Let D =
⋃
i

Di be the decomposition of the divisor D on irreducible

components. Theorem 86 implies that the line bundle (L∗)⊗N is holomorphic
trivial bundle on ML(M). N is defined as in (143) . So we can conclude that(

L∗)⊗N
� O

ML(M)
(
∑

j

kjDj), (144)

where Dj are the components of D. We will prove that the multiplicities ki are
non negative integers. Indeed we know from Theorem 52 that the metric defined
by formula (102) on the line bundle L is a good one in the sense of Mumford.
So the Chern form c1(L∗,h) of the good metric h defined by (102) is a positive
current on ML(M). The Poincare dual of the cohomology of the current

[c1(L∗,h)] ∈ H2(ML(M),Z)

is
P ([c1(L∗,h)]) =

∑
j

kj [Dj ] ∈ H2n−2(ML(M),Z). (145)

where the coefficients ki are defined as in (144). The positivity of the current
c1(L∗, h) implies that its Poincare dual current∑

j

kj [Dj ]

is positive. From here we can conclude that the coefficients ki are positive
integers. Indeed, let [ωDi

] ∈ H2n−2(M,Z) be such classes of cohomology that:∫
Dj

[ωDi
] = δij . (146)

Since the current
∑

j

kj [Dj ] is positive (146) implies

〈∑
j

kj [Dj ], [ωDi
]

〉
= kj ≥ 0. (147)

From (147) Theorem 89 follows. �

Remark 90 It is not difficult to prove that in the case of odd dimensional CY
manifolds the points τ in ML(M) around which we can find one parameter fam-
ily of polarized CY manifolds whose monodromy operator acting on the middle
homology is of finite order form a complex analytic submanifold of codimension
greater or equal to 2 and are contained in ML(M).
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Theorem 91 Let M be a three dimensional CY manifold and let

N = #ΓL/[ΓL,ΓL].

Then the holomorphic section ηN of the line bundle (L∗)⊗N constructed in The-
orem 89 is the same up to a non zero constant as the section σN constructed in
Theorem 84. The zero set of ηN is a non zero effective divisor whose support
contains or is equal to the support of D∞, where D∞ is defined in Definition 88
and ∥∥ηN

∥∥2

L2 = (det Δτ,1)
N
.

.

Proof: According to Theorem 84 the extensions of L with respect to the
good metrics det Δτ,1 and h defined by (102) are the same on ML(M). Let ηN

be the holomorphic section constructed in Theorem 89. The sections σN and
ηN of L are defined on ML(M) and do not vanish on ML(M). From here we
conclude that

σN = ηN

after multiplying ηN by a suitable constant. Thus we can conclude that∥∥ηN
∥∥2

L2 = (det Δτ,1)
N
.

From here and Theorem 82 we deduce that for each point τ ∈ ML(M) and an
open set Uτ such that τ ∈ Uτ we have

det Δτ,1 =
∥∥ηN

∥∥2

L2 |U = 〈ωτ , ωτ 〉 |fUτ
(τ)|2 ≤ C1, (148)

where fUτ
(τ) is a holomorphic function in Uτ .

Proposition 92 Let us choose U such that U∩D∞ �= ∅. Let

τ∞ ∈ D∞ ∩ U .

Let fU (τ) be the holomorphic function defined by (148) in U �U∩D∞. Then fU
is well defined at the point

τ∞ ∈ D∞ = ML(M) � ML(M)

and fU (τ∞) = 0.

Proof: Indeed, we proved in Theorem 52 that 〈ωτ , ωτ 〉 have a logarithmic
growth around τ∞ ∈ D∞. Combining this fact with (148) we conclude that

lim
τ→τ0

fU (τ∞) = 0 (149)

From (149) we deduce that fU can be continued analytically around any point

τ∞ ∈ D = ML(M) � ML(M).

Proposition 92 is proved. �
Theorem 91 follows directly from Proposition 92. �
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11 Open Problems

It is natural to ask if the generic point of the discriminant locus of an odd
dimensional CY manifold corresponds to a manifold with conic singularity. This
is not true. Let us take double covers of CP

3 ramified over eight planes in a
general position. After the resolution of the singularities we will get a CY
threefold. The discriminant locus corresponds to a double covering which is
ramified over eight planes three of them meeting in one point. So the generic
point of the discriminant locus does not correspond to a threefolds with conic
singularities since the monodromy group around these points is finite. The
monodromy group of a conic singularity is infinite.

Problem 1. Show that the moduli space of CY threefolds that are double
cover of CP

3 ramified over eight planes in a general position is a locally sym-
metric space associated with SU(3, 3)/S(U(3)×U(3)). If the moduli space of CY
manifolds that are double covers of CP

n ramified over 2n+ 2 planes is a locally
symmetric space then it should be SU(n, n)/S(U(n) × U(n)).

One can show that the moduli space of a CY threefold is a locally symmet-
ric space of rank greater or equal to two if and only if the Yukawa coupling
has no quantum corrections. It is a well known fact that any moduli space
of CY manifolds that is one dimensional is a locally symmetric space and the
famous example of Candelas and coauthors shows that there exists a CY mani-
folds whose moduli space is one dimensional locally symmetric space and there
are quantum corrections. In the Candelas example the action of the mapping
class group on the upper half plane is not arithmetic. It will be interesting to
construct CY manifolds whose moduli space is one dimensional and action of
the mapping class group is arithmetic on the upper half plane. I do not know
how arithmeticity is related to the existence of quantum corrections to Yukawa
coupling.

Problem 1 was also discussed in [8]. It was stated that I. Dolgachev con-
jectured that the moduli space of CY manifolds that are double covers of CP

n

ramified over 2n+2 planes is the tube domain Sn(C)+
√
−1S+

n (C), where Sn(C)
is the space of n×n Hermitian matrices and S+

n (C) is the space of positive Her-
mitian matrices.

The basis of proposing Problem 1 is the following Lemma:

Lemma 93 Let C2n be equipped with a Hermitian metric 〈u, u〉with signature
(n, n). Let

C2n = V ⊕ V ,

where 〈u, u〉 when restricted to V is positive and on V is negative. Then ∧n(V ⊕
V ) is a variation of Hodge Structures of weight n with dimC H

n,0 = 1. This
variation of Hodge structures is parametrized by SU(n, n)/S(U(n) × U(n)).

Problem 2. Suppose that M is a CY manifold whose moduli space is
not a locally symmetric space. Is it true in this case that the generic point
of the discriminant locus corresponds to a CY manifold with a conic singular-
ity? Characterize all CY three folds whose moduli spaces are locally symmetric
spaces.
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B. Gross in [21] classified all the symmetric domains that are also tube
domains and over them one can cocntsruct a variations of Hodge structure of
weight three with dimH3,0 = 1. It is an open problem posed by B. Gross can one
find a geometric realization of the variations of the Hodge structure described
in [21]?

Problem 2 is closely related to Miles Ried’s conjecture that the moduli spaces
of all CY threefolds are connected. So one can ask the following question:

Problem 3. Is it true that a CY threefold such that its moduli space is
a locally symmetric space and the moduli space is contained in the discrim-
inant locus of the moduli space a CY manifold and the generic point of the
discriminant locus corresponds to a manifold with a conic singularity?

Let τ ∈ ML(M). Then we know that τ correponds to a CY threefold Mτ . Let
us denote by ωτ a non zero holomorphic three form on Mτ . Let β ∈ H3(M,Z),
then we will denote by

〈τ, β〉 :=
∫
β

ωτ .

Problem 4. Can one find a product formula for the analogue of the
Dedekind eta function of CY threefolds

ηN = exp
(
2π

√
−1 〈γ, τ〉

)
×

∏
i

(
1 − exp 2π

√
−1 〈τ, βi〉

)
,

around points of maximal degenerations, which would mean that around such
points the monodromy operator has an index of unipotency n + 1, βi are the
vanishing invariant cycles of the monodromy operators of infinite order and
τ =(τ1, ..., τN ) are the flat local coordinates? For a discussion of the product
formulas for automorphic forms see [9].

Problem 4 is closely related to paper [2] and more precisely to the counting
problem of elliptic curves on the CY threefold. For discussion of the

Problem 5. Prove that det Δτ,1 is bounded on the moduli space ML(M)
of any CY manifold M.

This problem will follow directly if one can prove that the coefficients ak for
k = −n, ..., 1 of the short term asymptotic expansion

Tr (exp (−tΔτ,1)) =
1∑

k=−n

ak

tk
+ a0 + ...

are constants. We prove that a0 is a constant if M is a CY. The solution of
Problem 4 will show that the analogue of the Dedekind eta function ηN vanishes
on the discriminant locus. This will imply that the section ηN constructed in
this paper will be related to the algebraic discriminant as defined by Gelfand,
Kapranov and Zelevinsky.
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tions Mathématiques, vol. 8.

[16] H. Fang and Z. Lu, ”Generalized Hodge Metric and BCOV Torsion on
Calabi-Yau Moduli”, DG/0310007.

[17] D. Freed, ”On Determinant Line Bundles”, Mathematical Aspects of String
Theory, ed. S.-T. Yau, World Scientific, Singapore, New Jersey, Hong Kong,
p. 189-238(1998).

[18] P. Gilkey, ”Invariance Theory, The Heat Equation, And the Atiyah-Singer
Index Theorem”, Mathematics Lecture Series vol. 11, Publish or Parish,
Inc. Wilmington, Delaware (USA) 1984.

[19] Ph. Griffiths, ”Periods of Integrals on Algebraic Manifolds” I and II, Amer.
Jour. Math. 90 (1968), 568-626 and 805-865.

[20] Ph. Griffiths and J. Harris, ”Principles of Algebraic Geometry”.

[21] B. Gross, ”A Remark on Tube Domains”, Math. Research Letters 1, 1-
9(1994).

[22] J. Harvey and G. Moore, ”Algebras, BPS States, and Strings”, Nucl. Phys.
B 463(1996), 315-368, hep-th/9510182 .

[23] J. Harvey and G. Moore, ”On the Algebras of BPS States”, hep-th/9609017.

[24] J. Jorgenson and A. Todorov, ”A Conjectural Analogue of Dedekind Eta
Function for K3 Surfaces”, Math. Research Lett. 2(1995) 359-360.

[25] J. Jorgenson and A. Todorov, ”Analytic Discriminant for Manifolds with
Zero Canonical Class”, Manifolds and Geometry, ed. P. de Bartolomeis, F.
Tircerri and E. Vesantini, Symposia Mathematica 36, (1996) 223-260.

[26] J. Jorgenson and A. Todorov, ”Ample Divisors, Automorphic Forms and
Shafarevich’s Conjecture”, Mirror Symmetry IV, ed. S-T. Yau and Phong,
AMS.

[27] J. Jorgenson and A. Todorov, ”Analytic Discriminant for Polarized Alge-
braic K3 Surfaces”, Mirror Symmetry III, ed. S-T. Yau and Phong, AMS,
p. 211-261.

[28] J. Jorgenson and A. Todorov, ”Enriques Surfaces, Analytic Discriminants,
and Borcherd’s Φ Function”, Com. Math. Phys. 191, (1998), 249-264.

[29] J. Jorgenson and A. Todorov ”Correction to ”Enriques Surfaces Analytic
Discriminants, and Borcherd’s Φ Function”, Com. Math. Phys. (1999).

[30] K. Kodaira and Morrow, ”Complex Manifolds”.

[31] K. Liu, A. Todorov, Shing-Tung Yau and K. Zuo, ”The Analogue of Sha-
farevich Conjecture for CY Manifolds I.”, preprint.

66



[32] Z. Lu, ”On the Curvature Thensor of the Hodge Metric of Moduli of Polar-
ized Calabi-Yau Threefolds”, J. Geom. Analysis, 11(2001), No 4, 633-645.

[33] Z. Lu and X. Sun, ”Weil-Petersson Geometry on Moduli space of Polarized
Calabi-Yau Manifolds.” preprint.

[34] T. Matsusaka and D. Mumford, ”Two Fundamental Theorems on Defor-
mations of Polarized Varieties”, Amer. J. Math. 86(1964).

[35] D. Mumford, ”Hirzebruch’s Proportionality Principle in the Non-Compact
Case”, Inv. Math. 42(1977), 239-272.

[36] R. Palais, ”On the Existance of Slices for Actions of Non-Compact Lie
Groups”, Ann. Math. (2) 73 (1961), 295-323.

[37] M. S. Raghunathan, ”Discrete Subgroups of Lie Groups”, Ergebnisse Der
Mathematik und Ihrer Grenzgebiete, Band 68, Springer-Verlag 1972.

[38] J.Roe, ”Elliptic Operators, Topology and Asymptotic Methods” Pitman Re-
search Notes in Mathematics Series 179, Longman Scientific & Technical,
1988.

[39] D. Ray and I. Singer, ”Analytic Torsion for Complex Manifolds”, Ann.
Math. 98 (1973) 154-177.
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