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Abstract

In a singularly perturbed limit of small diffusivity € of one of the two chemical species, equi-
librium spike solutions to the Gray-Scott model on a bounded one-dimensional domain in the low
feed-rate regime are constructed asymptotically using the method of matched asymptotic expan-
sions. Two classes of such equilibrium solutions are constructed: symmetric spike patterns where
the spikes have equal heights, and asymmetric patterns where each spike can have two different
heights. The solution branches of symmetric k-spike patterns are found to have a saddle-node
bifurcation structure in terms of certain non-dimensional parameters in the Gray-Scott model.
To determine the stability of these branches of symmetric spike patterns, it is shown that there
are two classes of eigenvalues in the spectrum of the linearization that need to be analyzed: the
large eigenvalues for which A = O(1) as € — 0, and the small eigenvalues for which A = O(¢?)
as € — 0. Precise conditions in terms of the non-dimensional parameters for the stability of
symmetric k-spike equilibrium solutions with respect to both classes of eigenvalues are obtained.
For a symmetric k-spike pattern with & > 1, it is shown that an instability with respect to the
large eigenvalues leads either to a competition instability, whereby certain spikes in a sequence
are annihilated, or an oscillatory instability (typically synchronous) of the spike amplitudes as a
result of a Hopf bifurcation. In contrast, an instability with respect to the small eigenvalues leads
to a slow drift of spike layer locations away from their equilibrium values. As a control parameter
is increased we show that such an instability, which results in the birth of a traveling wave, can
occur as a result of a Hopf bifurcation. Finally, we show that there is a precise and surprising
equivalence between spectral properties of the Gray-Scott model in the low feed-rate regime and
the Gierer-Meinhardt model of morphogenesis.
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1 Introduction

We study the existence and stability of spike patterns in the one-dimensional Gray-Scott model in
the low feed-rate regime. The Gray-Scott system, introduced in [10], models an irreversible reaction
involving two reactants in a gel reactor, where the reactor is maintained in contact with a reservoir

of one of the two chemicals in the reaction. In nondimensional variables, this system can be written

as
Vi =D, Vxx — (F+k)V +UV?2, 0<X<L, T>0, (1.1a)
Ur=D,Uxx +F(1-U)-UV?, 0<X<L, T>0, (1.1b)
Ux=Vy=0, X=0,L. (1.1c)

Here D, > 0, D, > 0 are the constant diffusivities, F' > 0 is the feed rate, and k£ > 0 is a reaction-
time constant. For various ranges of these parameters, (1.1) and its two-dimensional counterpart,
are known to posses a rich solution structure including the existence of stable standing pulses, the
propagation of traveling waves, pulse-replication behavior, and spatio-temporal chaos (cf. [2]-[5],
[7], [15], [17], [18], [26], [29], [30], [31], [32], [33], [34], and [36]).

We will analyze (1.1) in the singularly perturbed limit where D, /D, is asymptotically small. In

our formulation, it is convenient to introduce the change of variables
v=V/VF, &=-1+2X/L, t=(F+k)T. (1.2)

This leads to the dimensionless system

v = 2050 — v + Auv?, —l<x<l, t>0, (1.3a)
Tug = Dugg + (1 — u) — uv? —l<z<l, t>0, (1.3b)
Ux(:tlat) = u:v(:l:lat) =0; Q)(III, 0) = ’Uo((II) ) ’U,((II, 0) = ’U,()(ZE) : (13C)

Here A >0, D, 7 > 1, and ¢ < 1, are defined in terms of D,,, D,, L, F, and k, by

4D, ) 4D, _F+k VF

= = = — A= ——b0.
FL2°  ° " IXF+k)’ - F F+k

(1.4)

The non-dimensional system (1.3) is particularly convenient in that it shows that, for e < 1, the con-
struction of equilibrium solutions depends only on the two parameters A and D, while the reaction-
time constant 7 > 1 only influences the stability of these solutions. The parameter D measures the

effect of the finite domain and the strength of the inter-spike interactions. For a k-spike pattern,



the finite domain and the inter-spike interactions are only significant when kv/D = O(1). When
kvD < 1, an equilibrium k-spike pattern for (1.3) is composed, to leading order, of k identical
copies of a one-spike solution for the infinite-line problem, where (1.3) is defined on —oco < z < oc.

We will analyze the existence and stability of equilibrium k-spike patterns for (1.3) in the limit
e — 0 and for D = O(1), where the finite domain and inter-spike coupling cannot be neglected. There
are three regimes for A where different behaviors are obtained. For the parameter range A = O(e'/?),
referred to here as the low feed-rate regime, there is a saddle-node bifurcation structure of equilibrium
k-spike patterns, and we find that the stability of these solutions depends intricately on A, D, and
7. For the intermediate regime, where O(e'/2) < A < O(1), there are certain scaling laws in terms
of a universal nonlocal eigenvalue problem that determine the stability of equilibrium spike patterns.
In this regime, the finite domain and inter-spike coupling do not play a central role. Finally, in
the regime where A = O(1), the equilibrium spike patterns again exhibit a saddle-node bifurcation
structure, and this regime is intimately connected with a pulse-splitting behavior of spike patterns.
In this regime, which is studied in the companion paper [16], the effect of the finite domain is crucial
in the analysis.

We now summarize some of our findings for the low feed-rate regime. In the low feed-rate regime,

we introduce new variables A and v defined by
A=A, v=e, (1.5)

In terms of (1.5), (1.3) is transformed to

l/t:€2l/xx—V+./4’U,l/2, —-1l<x<l, t>0, (1.6a)
Tug = Dugy + (1 — u) — e tur? —l<z<1l, t>0, (1.6b)
ve(£1,t) = ugp(£1,) =0; v(z,0) = &' ?vy(z), u(z,0) = ug(z) . (1.6¢)

For symmetric k-spike equilibrium patterns where the spikes in v have a common amplitude, we show
that for each k = 1,2... there are two branches of such solutions for (1.6) when A > Aj.. These

branches are referred to as the small and large solution branches. They meet at the saddle-node

=\ [—— =D /2. 1.

These solution branches are conveniently parameterized in terms of a parameter s, with 0 < s < o0,
defined by

bifurcation value

_1-Us 1 AZ

Uy == [1+4/1- 1.8
Uy D) A? (18)
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Our next result concerns the existence of asymmetric k-spike patterns where the spikes have different
heights. The resulting spike patterns have the form SB..BS, where there are k1 > 0 small spikes
S and ke = k — k1 > 0 large spikes B arranged in any order across the interval. Neglecting the
orientation of large and small spikes in a spike sequence, we show that there are kK — 1 asymmetric

k-spike equilibrium patterns that bifurcate from the symmetric k-spike small solution branch at the

o= o (2] w5

The k& — 1 bifurcating branches correspond to the number of small spikes S in a spike sequence

value A = Ay, where

SB...BS. In Fig. 1, for D = 0.75, we plot a bifurcation diagram of the norm of v versus A for
the symmetric k-spike solution branches for £ = 1,...,4. The dotted curves in Fig. 1 show the
asymmetric k-spike patterns that bifurcate off of the symmetric k-spike solution branch at A = Ay,.
The asymptotic construction of symmetric and asymmetric k-spike equilibrium patterns is given in
§2. The construction of asymmetric patterns, and symmetric k-spike patterns on a finite domain,
are new results, although similar techniques have been used in [37] and [14] to construct equilibrium
spike patterns in the Gierer Meinhardt (GM) model. A dynamical systems approach to construct

asymmetric patterns for the GM model is given in [6].

12.0

10.0

lvla 60

Figure 1: Bifurcation diagram of symmetric (solid curves) and asymmetric (dotted curves) spike
patterns in the low feed-rate regime A = Ae'/2 for D = 0.75 and k = 1,2,3,4. The saddle-node
values A, increase with k.

In §3 we derive a nonlocal eigenvalue problem that governs the stability of the symmetric k-spike



equilibrium solutions constructed in §2 with respect to eigenvalues of order O(1) in the spectrum of
the linearization. These eigenvalues, referred to here as the large eigenvalues, are associated with
the initiation of profile instabilities, whereby the spike amplitudes will either oscillate, typically with
a common frequency and phase, or else undergo a competition instability leading to the monotonic
annihilation of spikes in a spike sequence. From this nonlocal eigenvalue problem, we prove in
Proposition 3.10 that the large solution branch is unconditionally unstable for any 7 > 0 and D > 0.
The stability properties of the small solution branch is significantly more intricate. In particular, for
each k =1,2...and D > 0 fixed, we prove that there exists a threshold value Ay, with Agr > Age,
such that the small solution branch is stable with respect to profile instabilities for A > A, provided
that 7 < 7,1,. An explicit formula for Ay, is given below in (3.27b). For the range A > Ay, there
is a Hopf bifurcation as 7 exceeds some critical value 7,;. This bifurcation typically leads to a
synchronous oscillatory instability in the spike amplitudes. The precise results are given below in
Propositions 3.11 and 3.13-3.15. On the range A, < A < Agp, for the small solution branch, the
spectrum of the linearization of (1.6) around a symmetric k-spike equilibrium solution contains at
least one (unstable) real and positive eigenvalue. The existence of real positive eigenvalues in this
parameter range is the mechanism for the initiation of competition instabilities whereby certain
spikes in a spike sequence are annihilated. Precise results for the spectrum of the linearization for
this range of A is given below in Proposition 3.12. We believe that these competition instabilities,
due to real eigenvalues crossing into the right half-plane, are closely related to the overcrowding effect
discussed in [17] for multiple spot patterns in the two-dimensional Gray-Scott model, and observed
experimentally in the ferrocyanide-iodate-sulphite reaction.

We now illustrate these instabilities for (1.6) for the parameter set k =4, D = 0.1, and € = 0.01
(this is Example 3 of §3.3). For this example, our theory yields Ay, = 8.127. For the value A = 8.0,
in Fig. 2(a) we show a 1% perturbation in the equilibrium pattern, which we use as the initial
condition for (1.6). Since A < Ay, our theory predicts the initiation of a spike competition process.
In Fig. 2(b) we plot the spike amplitudes, defined as the values of v at its local maxima, versus
time showing a spike competition process leading to the annihilation of two spikes. In Fig. 3(a)
where A = 8.302 > Ay, we show a synchronous decaying oscillation in the spike amplitudes when
7 = 3.8. In Fig. 3(b), where 7 = 4.1 exceeds the Hopf bifurcation value, we show a synchronous
oscillatory instability leading to the simultaneous collapse of the four spikes. A mathematical theory
to characterize the initiation of these fast instabilities is given in §3. For D = O(1), this intricate
spectral behavior of competition and oscillatory instabilities in the Gray-Scott model (1.6), which
have not been observed previously, occurs as a result of the finite domain and a strong inter-spike

coupling mediated by the concentration field u.
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Figure 2: The parameters are k = 4, D = 0.1, A = 8.0, ¢ = 0.01, and 7 = 2.0. Left figure: the
initial condition for v (solid curve) and u (dashed curve). Right figure: The spike amplitudes v,.
The second and fourth spikes are annihilated by a spike competition. Of the two remaining spikes,
the third spike has the largest amplitude.

Similar types of competition and synchronous oscillatory instabilities of equilibrium spike patterns
have been analyzed in [38] for the Gierer Meinhardt (GM) model of morphogenesis introduced in
[9]. This model, which has been widely used to model localization processes in nature, such as cell
differentiation and morphogenesis (cf. [11]), biological pattern formation (cf. [20]), and the formation
of sea-shell patterns (cf. [21]), can be written in dimensionless form for an activator a and an inhibitor

h concentration field as

D
at:&tQam—a—i—%, l<z<l, t>0, (1.10a)
m
Tht:Dhm—ths*ljl—s, l<z<l, t>0, (1.10b)
az(£1,t) = hy(£1,t) =0; a(z,0) = ag(z), h(z,0) = ho(x). (1.10c)

Here 0 < €2 < 1, D > 0, and 7 > 0, represent the activator diffusivity, inhibitor diffusivity, and
reaction-time constant, respectively. The usual assumption on the exponents (p, ¢, m, s) of the GM
model (cf. [9]) are that they satisfy

p>1, q>0, m>1, s>0, with (=

—(s+1)>0. (1.11)
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Figure 3: Spike amplitudes for k = 4, D = 0.1, A = 8.302, and ¢ = 0.01. Left figure: synchronous
decaying oscillation in the spike amplitudes for 7 = 3.8. Right figure: synchronous oscillatory
instability for 7 = 4.1, leading to a collapse of the four spikes. In these figures, the amplitudes of the
spikes trace out identical trajectories.

The relationship between oscillatory and competition instabilities in the Gray-Scott and Gierer Mein-
hardt models is made clear in Proposition 3.3 below where we prove that the nonlocal eigenvalue
problem for instabilities in the Gray-Scott model in the low feed-rate regime is identical to the non-
local eigenvalue problem for the Gierer Meinhardt model with exponent set (p, q,m,s) = (2,s,2,s),
where s is defined in (1.8). This spectral equivalence principle is a new result, and allows us to use
many of the detailed spectral results derived in [38] for the GM model.

For the low feed-rate regime A = O(e'/?) (or equivalently A = O(1)), in §4 we analyze the
stability of symmetric k-spike equilibrium patterns with respect to the small eigenvalues of order
O(£?) that govern instabilities with respect to translations of the spike profile. In Proposition 4.4
we prove that, for any 7 = O(1), the k-spike pattern is stable with respect to translations only
when A > Ag,, where Ay, is the critical threshold for the emergence of asymmetric k-spike patterns
from a symmetric k-spike small solution branch. As A decreases below Aj,, there are k — 1 small
eigenvalues that simultaneously cross into the unstable right half-plane Re(\) > 0 along the real axis.
We prove that A, > Air. Hence, when Ay < A < Ag,, an equilibrium spike profile is stable with
respect to fast O(1) instabilities when 7 is sufficiently small, but that there is a slow O(£?) instability

with respect to translations of the profile. Numerical computations are performed to illustrate spike



dynamics for (1.6) in this range of A. This analysis of the small eigenvalues for the Gray-Scott model
is new, although a similar analysis has been done previously in [14] for the GM model.

The intermediate regime where O(1) < A < O(¢~'/?) is analyzed in §5. In this regime, there
are no competition instabilities, and we show in Proposition 5.2 that there is a universal nonlocal
eigenvalue problem, independent of D and k, that governs the stability of a symmetric k-spike
equilibrium solution with respect to oscillatory instabilities. In terms of a certain critical value of
this universal nonlocal eigenvalue problem, a scaling law for the Hopf bifurcation value of 7 is derived
in Proposition 5.3 that yields the Hopf bifurcation value in terms of D and k. In this regime for A,
the Hopf bifurcation value is 7 = O(A*), and so there are no oscillatory instabilities when 7 = O(1).
For 7 = O(1), we show in Proposition 5.4 that the small solution branch is stable with respect to
the small (translation) eigenvalues of order O(g?) in the spectrum of the linearization.

Since the Hopf bifurcation value has the scaling 7 = O(A*) > 1 in the intermediate regime,
we may observe an instability with respect to the small eigenvalues before the onset of the Hopf
bifurcation for large values of 7. This interchange in the instability mechanism as 7 is increased was
suggested in [23] and [24] in the context of the infinite-line problem. For a one-spike equilibrium
solution, in §5.1 we show that there is a traveling wave, or drift, instability that is associated with a
small O(£?) eigenvalue when 7 = O(A 27 2). As 7 increases past some critical value, this instability
with respect to translations of the profile occurs from a Hopf bifurcation and leads to oscillations in
the spike layer location. As 7 is increased even further, the oscillations in the spike location ceases
due to a complex conjugate pair of eigenvalues merging onto the positive real axis. When this occurs
there is a slow monotonic drift of the spike to the boundary of the domain. A related type of Hopf
bifurcation, followed by a monotonic drift instability, as a reaction-time constant is increased has
been analyzed in [12] and [22] for hyperbolic tangent-type interfaces associated with a two-component
reaction diffusion system with bistable nonlinearities. Alternatively, for a three-component reaction-
diffusion system it was shown numerically in [28] that the Hopf bifurcation occurs after the onset of
a monotonic drift instability as a reaction-time parameter is increased.

The previous equilibrium and spectral results for the Gray-Scott model in [4], [5], [7], [2], and
[3], have been based on a different nondimensionalization of the Gray-Scott model. This alternative
formulation is presented in detail in §6, where we give a precise discussion of the relationship between
our results and theirs. In §6, §5.1, and in §3.4 we also relate our results to those in [23] and [24].
The main point is that our results have a clear overlap with these previous results only in the
intermediate parameter regime for 4 and for the infinite-line problem. Our analysis of synchronous
spike oscillations and competition instabilities, which occur on a finite domain with kvD < 1, and

instabilities resulting from the small eigenvalues, is novel. In §6 we also list a few open problems.



2 Symmetric and Asymmetric k-Spike Equilibria: 4 = O(1)

For ¢ — 0, and with A = O(1) and D = O(1), we construct a symmetric k-spike equilibrium solution
to (1.6) using the method of matched asymptotic expansions. The spike locations z;, for j = 1,...,k,

for this pattern satisfy

25 —1
Gi=1 ik (2.1)
k
For a symmetric spike pattern the spikes have equal height. Hence, we have u(z;) = U, where U is

z;=—-1+

independent of j.

Since the asymptotic construction of a symmetric k-spike pattern to (1.6) for ¢ < 1 is similar
to that done in [14] for the Gierer Meinhardt model, we will only sketch the derivation of the
result. In §5, where we consider the intermediate regime O(1) < A < O(s~'/?) we will give a
detailed derivation of the equilibrium solutions for (1.3) and (1.6) and include formal error estimates
associated with the inner and outer expansions.

In the inner region near the jth spike, we let y = e'(z — ;). In each inner region, we obtain

that u ~ U + O(g). Therefore, from (1.6a), the leading-order inner solution for v is

1
v~ ﬁw(y) ) (2.2)

where w(y) = 3sech? (y/2) is the homoclinic solution to

w' —w+w? =0, —00 <y <00, (2.3a)
w—0 as |y| = oo; w (0) =0, w(0)>0. (2.3b)
In the outer region, defined away from O(g) regions near the union of the z;, for j =1,...,k, we

obtain that v is exponentially small and that the term e~ 'ur? in (1.6b) can be approximated by a

delta function. Consequently, the outer solution for u satisfies

k
6
Dumx—i—(l—u)—mZé(aE—xj) =0, (2.4a)
j=1
ugp(—1) =uzx(1) =0. (2.4Db)
In obtaining (2.4a), we used [° w?dy = 6. The solution to (2.4) is

k
u(z) =1-— ASU > G(ziz)), (2.5)
j=1

9



where G(z;2;) is the Green’s function, satisfying
DG,y — G = —d(x — xj), -l<z <1 G.(£l;25) =0. (2.6)

A simple calculation gives,

v _ J gjcosh[f(1 4+ x)] / cosh [Op(1 4 x)], -l1<z<ua;, .
Gla;og) = { g;cosh [0o(1 — z)] / cosh [Bp(1 — xj)]a zj <z < 1,] (2.7a)

where )
%= 75 (tanh [0p(1 — z;)] + tanh [Bp(1 + z;)]) ™", 6= D2, (2.7b)

We define a, = Zle G(zj;x;), where the spike locations satisfy (2.1). A simple calculation using
(2.7) shows that a, is independent of j, and that

k —_
ag = Glajiz;) = [2\/5 tanh (Ho/k)] B (2.8)

i=1
Evaluating (2.5) at « = z;, where u(z;) = U, we obtain a quadratic equation for U
UU-1)=—-——. (2.9)

In this way, we obtain the following result for symmetric k-spike equilibrium solutions to (1.6):
Proposition 2.1: Let ¢ — 0, with A = O(1) and D = O(1) in (1.6). Then, when A > Ay, there

are two symmetric k-spike equilibrium solutions to (1.6) given asymptotically by

1 o
vi(z) ~ AU, ;w [e Nz —2y)] , (2.10a)
k
Us(z) ~ 1 — (l_aiUi) > Glasg). (2.10b)
g j=1

We label uy, vy and u_, v_ as the large and small solution, respectively. In (2.10), w and G satisfy
(2.3) and (2.6), respectively. In addition, Uy are the roots of (2.9) given by

1 B A2

=—|1£4/1 - —f£ 2.11
U:I: 9 AZ ’ ( )

10



where the existence threshold is Ay = \/24a,, so that

Ape = [ g =P (2.12)

The existence threshold (2.12) for a finite domain with & spikes is a new result. It shows that
we have a saddle-node bifurcation of symmetric k-spike equilibria on the finite line when A = Ag,.
These existence thresholds correspond to the fold points in Fig. 1 separating the upper and lower
branches of symmetric k-spike equilibria (solid curves in this figure). As a remark, we notice that
Apge is an increasing function of k. For D < 1 and with VDk < 1, we get that Age ~ V12D,
Thus, when D < 1, the saddle-node bifurcation value Ayg, for symmetric k-spike equilibria is roughly
independent of k provided that v Dk < 1.

To display our results graphically, it is convenient to define a norm of v by

1 1/2
lv]e = (51/ v? d:z:) . (2.13)
-1

Using (2.10a) and (2.11), we calculate

—1

2/ 2
|1/|2~—6k 141 = Be
A A?

(2.14)

For A = 9.0 and ¢ = 0.02, in Fig. 4(a) and Fig. 4(b) we plot the small solution when D = 0.75
and D = 0.1, respectively. Notice that as D decreases, the Green’s function in (2.10b) decays more
rapidly away from the spike locations. Hence, for D small, u should approach the asymptotic value
u = 1 in the outer regions. This asymptotic value w = 1 in the outer region is also relevant to the
infinite-line problem, where we seek a one-spike solution to (1.6) on —oo < z < co. However, as seen
from Fig. 4(b), even with D = 0.1, u is not so close to its asymptotic value in the outer regions.
Therefore, this suggests that there is range of values of D for which boundary effects due to the finite
domain will be important in the analysis.

The classification of large and small solution refers to high and low concentrations of u in the
core of the spike. Smaller concentrations of u in the core of the spike generate larger amplitudes for
v. Hence, each upper branch (upper solid curve) in Fig. 1 corresponds to the small solution, while
each lower branch corresponds to the large solution. As shown in §3 — §5, a particularly convenient

way to parameterize these symmetric k-spike solution branches is to introduce a parameter s defined

by
_I—Uj:

Uy '

S

0<s<o0. (2.15a)

11



(a) D =0.75 (b) D=0.1

Figure 4: Left figure: three-spike small solution when D = 0.75, A = 9.0, and £ = 0.02. Right figure:
three-spike small solution when D = 0.1, A = 9.0, and ¢ = 0.02.

Using (2.11), we can write A in terms of s as

A (1+5)
Y TN A (2.15b)

Hence the small solution u_, v_ corresponds to the range 1 < s < oo, while the large solution

corresponds to 0 < s < 1. The existence threshold A, corresponds to s = 1.

To analyze the stability of symmetric k-spike equilibrium solutions we let
u($7t) = ui($) + eAtﬂ(ff) ) V(:E,t) = Vi($) + e)\tqs(]:) ’ (216)

where 7 < 1 and ¢ < 1. Substituting (2.16) into (1.6) and linearizing, we obtain the eigenvalue

problem
£2¢ps — ¢+ 2Aus v + Anl/i =\, -l<z<1, (2.17a)
Dnpe —n—e 'Win — 2 usvagp = 7hy,  —l1<z <1, (2.17b)
¢z(£1) = nz(£1) =0. (2.17c)

12



In §3 we analyze the spectrum of (2.17) corresponding to those eigenfunctions that are not locally
odd functions near each spike. The corresponding eigenvalues, which determine the stability of the
symmetric k-spike profile with respect to instabilities occurring on a fast O(1) time-scale, are referred
to as the large eigenvalues. We will show that the large solution u, and vy is always unstable. For
the small solution, we show that there are two different types of instabilities that can occur depending
on the parameter ranges of D, A, 7, and k. A competition instability, whereby spikes in a spike
sequence are destroyed, can occur only for k£ > 1 when A is close to Ag.. This instability results from
a certain eigenvalue on the positive real axis Re(A) > 0. On the other hand, oscillatory instabilities
in the amplitudes of the spikes as a result of a Hopf bifurcation can occur for any A > Ak, when 7
is sufficiently large.

In §4 we analyze the spectrum of (2.17) corresponding to those eigenvalues that approach zero as
¢ — 0. To leading order, the corresponding eigenfunction is locally an odd function near each spike.
These eigenvalues, referred to as the small eigenvalues, are O(e?) as € — 0. These eigenvalues are
related to translational instabilities, and are intimately connected with the small-scale dynamics of
spike locations near their equilibrium positions. They are also related to the bifurcation of asymmetric

k-spike equilibria from a symmetric k-spike solution branch.

2.1 Asymmetric Spike Patterns

We now construct asymmetric equilibrium spike patterns, where the spikes can have different heights.
To determine how spikes of different heights can arise, we proceed as in the analysis of [37] for the
GM model (1.10) by first constructing a one-spike solution centered at the origin for (1.6) posed on
—l <z < I, with uy(£l) = v, (£l) = 0. For ¢ < 1, such a solution has the property that v and u
are even, that v(l) is exponentially small, and that u(l) = O(1). We would like to find all different
values of [, labeled by [y,..,l,,, such that u(l;) =,...,= u(l,). For a certain range of the parameters
as obtained below there are exactly two such values of [. These “local” solutions are then used to
construct a global asymmetric equilibrium k-spike pattern for (1.6) on [—1,1].

To construct a solution to (1.6) on —I < x < [ with a spike at the origin, we proceed in a similar

way as was done earlier for the symmetric pattern. We obtain that

1 6
v(z) ~ Wi (z/e), u(z) ~1— i

Here w(y) satisfies (2.3), and Gi(z;0) is the Green’s function on —! < z < [ satisfying

Gi(z;0). (2.18)

DGy — G = —(5(:5), -l <z <l le(ﬂ:l;O) =0. (2.19)

13



A simple calculation gives,

6o ) cosh [( — |&[)6o] (2.20)

Gi(z;0) = ( 2 sinh (16))

The constant U in (2.18), representing the leading-order approximation for « in the inner region, is

obtained by setting u(0) = U in (2.18). Solving the resulting quadratic equation we get
1 th (6ol ~
U=5 (1= 1—COT(2°) . A= 1200A. (2.21)
To construct asymmetric patterns, we must calculate u(l). Using (2.18) and (2.20), we get

ul) =1 _ Gi((;0)
U-1  G4(0;0)

Combining (2.22) and (2.21), we obtain the key formula for u(l),

= sech (1) . (2.22)

u(l) = Bx(z) =1+ %sech(z) 11— CO%Z) . 2=0l. (2:23)

The minus and plus signs in (2.23) refer to small and large solutions, respectively. In (2.23), we
require A > 1. Moreover, when A > 1, the function E.(z) is defined only on the range where
coth(z) < A2. This yields that z > z, where

A2+ 1
A2 -1

1
zp=—=1In

2

. (2.24)

Clearly F1(z) > 0 for z > zy. For z > zy, we readily derive some key properties of F(z).

Proposition 2.2: Let A > 1. Then, on the range z > zy we have that E' (z) > 0 with E4(z) < 1
and E(z) = 1 as z — co. Alternatively, we have E_(z) < 1 with E_(z) < 0 for zy < z < 2z,
and E(z) > 0 for z > z,. Moreover, E_(z) — 1 as z — co. The point z, where E_(z) has its

minimum value is the unique root of
A = [tanh z]7Y/? [tanh(22)] 7" . (2.25)

Proof: Clearly F1(z)) < 1 and Ey(z) — 1 as z — oo. In addition, by differentiating (2.23) it is
immediately clear that E', (z) > 0 for z > zy. For E_(2), we calculate

g () sinh z L+ coth z sechz  csch?z (2.26)
z) = ———— \/1-—— - — . .
B 2 cosh? z A2 A2 ] _ cothz

A2
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Therefore, E' () < 0 only when

~ th th
2A4%tanhz |1 — 22 41— 2021 S coch?z . (2.27)
A A?
Manipulating (2.27), we get that E (z) < 0 if and only if
th h(2
g cothe - coshZ2) g (2.28)

A2 242 sinh? 2

It is easy to see from (2.28) that there exists a z, such that E' (z) < 0 for zp < z < zp, and
E' (z) > 0 for z > z,. To determine where E_(z) = 0, we square both sides of (2.28) to obtain

h(2 ? h
1—t:<w—l> .= (2.29)
2sinh” 2z A2
Solving for t > 0 we get ¢t = tanh?(2z). Since, A% = coth z/t, we obtain (2.25) for A. [ |

0.0 1.0 2.0 3.0

Figure 5: Plot of E_ versus z for z > z) when A = 3.

Therefore, when A > 1, we conclude that for any z in zg < z < 2, there exists a unique z, with
% > 2y, such that E_(z) = E_(%). In Fig. 5 we plot E_(z) versus z when A = 3. Since z = yl and
Z =0l , the implication of this result is the following: Given any [ with 2y < lfy < z,,, there exists a

unique [, with 16y > z,,, such that u(l) = u(l~ ). This implies that in any asymmetric pattern of this
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form using E_(z) there are only two distinct values for the heights of the spikes. Furthermore, since
E. (z) is monotonically increasing we cannot construct asymmetric patterns for the large solution.
For E_(z), we refer to solutions of length [ and [ as S-type and B-type spikes, respectively. We
now construct asymmetric k-spike equilibrium solutions to the global problem (1.6) on the interval
[—1,1] with k; > 0 spikes of type S and ks = k — k1 > 0 spikes of type B arranged in any particular

order from left to right across the interval as

SBSSB...B,  k; —S’s,  ky — Bs. (2.30)

To do so, we use translation invariance and the fact that u(l) = u(l) to glue S and B type spikes
together to satisfy C'! continuity for the global function u defined on [—1,1]. The global function v
is exponentially close to being C' continuous since the local function is such that v(I) and v(l) are
exponentially small when ¢ < 1.

Since the supports of an S-spike and a B-spike are 2/ and 2l~, respectively, we get the length

constraint 2k[ + 2kgl~ = 2. This condition can be written as
kiz + kozZ =0y = D™/2, (2.31a)
The other condition, which ensures that v is C' continuous is
E_(z) =E_(2), (2.31b)

where E_(z) is defined in (2.23). Equations (2.31a) and (2.31b) are a coupled nonlinear system for
z and Z. In terms of this solution, the half-lengths of the supports of the spikes are given by

1=20%, I=2z6,", 6y=D'2 (2.31c)

This leads to the following result for asymmetric k-spike patterns:
Proposition 2.3: Let | and | be found from the coupled system (2.31) for a given A>1and D > 0.
Then, for e — 0, an asymmetric equilibrium k-spike pattern for (1.6) with ki spikes of type S and

ko = k — k1 spikes of type B is characterized by

k
1 -1
v_(z) ~ AU(lj)w ez —=5)] , (2.32a)
where U(l;) satisfies
U(l;) = % 1—/1- % . A= V1200A. (2.32b)



Here for each j, l; =1 orl; = l~, where | and [ are determined in terms of ki, ka, 0y, and A by
(2.31). The value l; =1 must occur k1 > 0 times, while [; = [ must occur ko = k — k1 > 0 times.
The small and large spikes can be arranged in any sequence. Finally, the equilibrium outer solution
u(zx) is given asymptotically by

k
2
u(r) =1 — ]Zl m [1-U()]G(z;25), (2.32¢)

where G(x;xj) satisfies (2.6). The spike locations x; are found from

r1=10—1, xp=1-—1, xj+1:xj+lj+1+lja jg=1,.,k—2. (232d)

To recover the symmetric k-spike equilibrium solutions constructed earlier, we set z = zZ = 6y /k,
which solves (2.31a). Then, (2.31b) has a solution only when z = Z = z,,. Therefore, setting z = 6y /k
in (2.25) we obtain the critical value of A for the emergence of the asymmetric branch. This leads
to the following bifurcation result:

Proposition 2.4: The asymmetric k-spike equilibrium solutions bifurcate from the k-spike symmet-

ric small equilibrium solution branch of Proposition 2.1 at the value A = Ay,, where

-1
Ape = Ape [tanh <%>] . (2.33a)

Here Ay, are the existence thresholds for the symmetric branch given in (2.12). Alternatively, for a
fired A > Ay, the asymmetric k-spike branches bifurcate off of the small symmetric k-spike solution
branch when D = Dy, where

D; 4 rz[l—A—ze]_l/Q (2.33b)
(o)) b AL |

By solving the system (2.31) using Newton’s method, we plot two different asymmetric 3-spike
patterns from (2.32) when ¢ = 0.02 and D = 0.75. In Fig. 6(a) we show a BSB pattern with k; = 1,
ko =2, when A = 10.5. In Fig. 6(b), we show a SSB pattern with k; = 2, ks = 1, and A = 9.0. To
display the bifurcation diagram for the asymmetric branches for D = 0.75, we calculate the norm in

(2.13) using (2.32a) to get 1/2

1 6k1 6k2

1 _ 2.34
A\wOr "y’ -

V]2 ~



(a) BSB pattern (b) SSB pattern

Figure 6: Left figure: BSB pattern with D = 0.75, A = 10.5, ¢ = 0.02. Right figure: SSB pattern
with D = 0.75, A = 9.0, and £ = 0.02.

The dashed lines in the bifurcation diagram Fig. 1 of §1 correspond to plots of (2.34) versus A for
all of the asymmetric branches that emerge from the symmetric branches at the bifurcation values
A = Ag,, for k£ =1,...,4. In this bifurcation diagram, the key relevant quantity is k; and ko, as
the ordering of spikes on the interval is invisible to the norm (2.34). From (2.31), (2.34), and Fig. 1,
it can be seen that an asymmetric branch with %k small spikes asymptotes to the symmetric branch
with & — k1 spikes as A — oo.

3 Large Eigenvalues: Fast Profile Instabilities for A= O(1)

In this section we analyze the stability of the symmetric k-spike equilibrium solutions of Proposition
2.1 with respect to the large eigenvalues.
3.1 The Nonlocal Eigenvalue Problem

We begin by deriving a nonlocal eigenvalue problem that is central to the stability analysis. This
derivation is similar to that done in [38] for the GM model (1.10), and was originally motivated by
the approach used in [27] to analyze pulses in the Fitzhugh-Nagumo system. As in [38], we look for
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a localized eigenfunction for ¢ in (2.17) in the form

k
() ~ chfl) ez —z5)] , (3.1)
j=1

for some coefficients c;. These coefficients are determined below to be related to eigenvectors of a
certain matrix eigenvalue problem. The large eigenvalues are characterized by eigenfunctions ®(y)
for which ffooo w(y)®(y) dy # 0. Alternatively, the small eigenvalues of order O(e?), studied in §4,
correspond to translation modes for which this condition is not asymptotically satisfied.

Since ¢ is localized near each z;, the coefficients in (2.17b) can be approximated by certain Dirac

masses. In particular, using (3.1) and (2.10), we obtain near = ; that

_ 6
e lyi AQ—U:?:(s(IL' - IL']) , (32&)
1 QC]' o0
e usvag~ 22 ([ wwetay) o - o). (3.2b)

Here 6(z) is the delta function, and we have used [*_w?dy = 6. Substituting (3.2) into (2.17b), we
obtain that n satisfies

k k
6 2 e
Dnm—<1+T)\+A2—[]i2r;5(x—xi)>nzz(/oow@dy> lcié(x—xi), |z] <1, (3.3a)

Ne(=1) =ny(1) = 0. (3.3b)
This problem for 7 is equivalent to
D — (L+7N) =0,  ny(£1) =0, (3.4a)
M, =0, i=1.,k, (3.4b)
(D], = —w; + AQLU:{H(%)’ i=1, .k (3.4¢)

In (3.4), we have defined [¢]; = &(z4) — (24— ), and w; by

mz—%-zw@mw@. (3.4d)

To determine the eigenvalue problem for A\, we first need to compute n(x;) from (3.4). To do

so, we solve (3.4a) on each subinterval and use the jump conditions (3.4b) and (3.4c) to patch the
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solution together across each subinterval. This calculation results in the matrix problem

2¢ [

Byn=[1+7ND] " ?w, w= -] wwe)dy. (3.5)
Here we have defined the vectors w, ¢, and 0, by w! = (wy,...,w;), ¢! = (c1,...,cx), and gt =
(m,-..,mK), where ¢t denotes transpose. The matrix B in (3.5) is given in terms of a tridiagonal
matrix By by
6
B =By + I 3.6
°" 202 /T +ND (3.6)
Here I is the k x k identity matrix, and By has the form
dy fA 0 -~ 0 0 0
Ix ex fa - 0 0 0
0 f)\ (Y . 0 0 0
Bo=| : : - SO I (3.7a)
0 0 0 (5 f,\ 0
0 0 0 Ixoex

with matrix entries

20 0 20 20
dy = coth (f) + tanh (f) : ex = 2coth (f) : fr = —csch (T/\> . (3.7b)

In (3.7b), ) is the principal branch of the square root function defined by

0 =00V1+7A, Oy=D"'?, (3.7¢)

Next, we substitute (3.1) and (3.6) into (2.17a). This yields the nonlocal eigenvalue problem for
O(y), fori =1,.., k,

12w?

" o0 @d
e (07— @+ 200) - 505 (1470 DI (B_lc)i<f_°°w y
+

Jo T ) 2e®, 3.8
foooo w2 dy ) Ci ( )

with ®(y) — 0 as |y| — oco. Therefore, we must calculate the spectrum of the matrix eigenvalue
problem

Be = kc. (3.9)
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From (3.6), we have

K= ko + [(1+7A)D]"Y? | (3.10)

6
A2U%
where kg and c is an eigenpair of By. The eigenpairs of By were calculated explicitly in Proposition
2 of [14], where the following result was obtained:

Lemma 3.1: The eigenvalues koj, ordered as 0 < ko1 < ... < Kok, and the normalized eigenvectors

c; of By are

j—1
koj = 2tanh (0)/k) + 2 [1 — cos (%)] csch (20, /k) j=1,...,k, (3.11a)
1 2 (5 —1) )
cﬁ:ﬁu,...,n; cl,j:\/%cos(T(l—lp)), §=2,...,k. (3.11b)
Here ¢! denotes transpose and c§- = (Clyjy s Chiyj)-

Substituting (3.9), (3.10), and (3.11), into (3.8), we obtain the following spectral problem for the
large O(1) eigenvalues of (2.17):
Proposition 3.2: Assume that 0 < ¢ < 1. Then, with ® = ®(y), the O(1) eigenvalues of (2.17)

satisfy the nonlocal eigenvalue problem

Lo® —yw? [ 52— | =20, -—c0<y< oo, (3.12a)
[ wdy
® -0, as |yl = oo. (3.12b)

Here the operator Ly, referred to as the local operator, is defined by
Ly®d=3" — &+ 20d. (3.12¢)

The multiplier x = x(z;7) in (3.12) is given explicitly by

x = x(z;7) =2s <s + % tanh (0, /k) + C _Sclzslrl[?Q(g);kl))/k])])l , (3.13a)
where
z=1X\, O=0V1+z, Gy=D 12, (3.13b)
and s is defined by -
s= =, (3.14)
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Here Uy is determined in terms of A/ Age by (2.11). The global eigenfunction ¢(z) is given by (3.1),
where the coefficients ¢! = (c1,...,ci) are the eigenvectors of By given in (3.11b).

We now establish an important spectral equivalence principle between the nonlocal eigenvalue
problem (3.12) and a corresponding nonlocal eigenvalue problem derived in Proposition 2.3 of [38]
for the GM model (1.10) with exponent set (p,q, m,s). For this general exponent set, Proposition
2.3 of [38] shows that the nonlocal eigenvalue problem for the GM model with exponent set (2, q,2, s)
has exactly the same form as in (3.12), except that x in (3.13) is to be replaced with

Nige (1 —cos[x(j — V/EDT) "
fanh Go/F) tanh (05 /k) + < (26, 7F) D : (3.15)

x = x(z7) =2q (8+

Therefore, we conclude that the nonlocal eigenvalue problems for the GM model and the Gray-Scott
model are identical if we take ¢ = s, to get the GM exponent set (p,q,m,s) = (2,s,2,s), where s
is given in (3.14). However, in the GM model, the usual assumption on the exponents (p,q,m,s)
are that they satisfy ( = gm/(p — 1) — (1 +s) > 0. The spectral results in [38] for the GM model
were obtained under this condition. With the exponent set (2,s,2,s), we calculate ( = s — 1. Since
0 < s < 1 corresponds to the large solution, while s > 1 corresponds to the small solution, we obtain
the following spectral equivalence principle between the Gray-Scott and the GM models:

Proposition 3.3: In the limit ¢ < 1, consider the large eigenvalues of (2.17). The nonlocal eigen-

value problem for the stability of the small k-spike symmetric equilibrium solution u_, v_ of the
Gray-Scott problem (1.6) is identical to the related nonlocal eigenvalue problem for the GM model
with exponent set (p,q,m,s) = (2,s,2,8), where s > 1 is given in (3.14). The spectral problem for
the large solution of the Gray-Scott model is also equivalent to that for a GM model with exponents
(2,s,2,5), except that ¢ <0 in (1.11).

In the context of the Gray-Scott model, the eigenvalue problem (3.12) is new. The equivalence
principle of Proposition 3.3 allows us to immediately analyze the stability of the small solution of
the Gray-Scott model by directly appealing to the results of [38] obtained for the GM model with
arbitrary exponent set (p,q, m, s) satisfying (1.11). For the large solution u, v, we have to extend
the analysis in [38] to allow for a GM model with exponent set (2,s,2,s), but with { =s—1 < 0.

Next, we reformulate (3.12) into a form more amenable to analysis. Let 1(y) be the solution to
Loy =9 — b + 2wip = Ap + w?; Y —0 as |yl — 0. (3.16)

Then, the eigenfunctions of (3.12) can be written as

_ ffooo w® dy
D = x(TX;5)9J J ="

Ea (3.17)
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We then multiply both sides of (3.17) by w and integrate over the domain. Assuming, as mentioned
earlier, that ffooo w® dy # 0, we then obtain that the eigenvalues of (3.12) are the union of the zeros
of the functions g;(A) = 0 for j =1,.., k, where

® w (Lo —\)"tw?d
gi(N) =C;A) = f(A),  f) = J }oc? ) Z (3.18)

- w2 dy

Here we have defined C;(\) = [x(7);7)] ', so that from (3.13a) we get

N = 5 + gt TR (;(])\/k) tanh (6 /k) + _;Zi[?éggkl))/ D (3.19)

After establishing the theoretical results in §3.2, in §3.3 we numerically determine the roots of
(3.18) by following a similar approach as in [38]. We use a combination of Newton’s method coupled
to the numerical solution to the boundary value problem (3.16) obtained by COLSYS [1]. Although
(3.16) can be solved explicitly in terms of hypergeometric functions [4], we avoid this approach since

with these special functions it is then difficult to prove rigorous results for the spectrum of (3.12).

3.2 Theoretical Results on the Spectrum: Large Eigenvalues

We begin by looking for roots of (3.18) on the non-negative real axis A = Ag > 0. The first
observation is that f(Ag) has a singularity on the positive real axis as a consequence of Theorem
2.12 of [19].

Lemma 3.4: (From [19]): Consider the local eigenvalue problem Log; = o¢y for ¢, € H'(R). This
problem admits the eigenvalues og > 0, o1 =0, and 0; < 0 for j > 1. The eigenvalue og is simple,
and the corresponding eigenfunction ¢y has one sign.

A simple calculation yields o9 = 5/4. Therefore, f(Ar) = +00 as Ag = o, . In [38] a detailed
study of the behavior of f(Ag) on the positive real axis was given. The following rigorous result is
a consequence of Proposition 3.5 of [38]:

Proposition 3.5: (From [38]): For A > 0, the function f(Agr) in (3.18) has the local behavior,
[ Ly 'w)” dy

37 N
f(AR)N1+TR+nCA%{+O(>\%), as Ap—0: k.= ™ wtdy >0.  (3.20a)

In addition, we have the global behavior

FOR) >0 and f (Ag) >0, for 0<Ap<oy. (3.20D)
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Moreover, f(Ar) — +00 as Ar — o, . On the other side of the singularity we have
f(Ar) <0, for Agr>o0p. (3.20c)

Proof: This result is simply Proposition 3.5 of [38] for a GM model with exponents p =m =2. R

Next, we summarize the key properties of Cj(A) when A = Az > 0 is real.
Proposition 3.6: For any fired T > 0, we have a monotonicity result for Ap > 0 that

Cr(Ar) > Ch_i(AR) > ... > Ci(Ar) >0,  Cr(Ar) < Cr_1(Ar) <...<Ci(Ar).  (3.21a)
In addition, for T > 0, and for each 5 =1,...,k, we have for Agp > 0 that
Ci(Ar) >0,  Cj(Ar) <0,  Ci(Ag)=0(r"?), as 71— +cc. (3.21b)

Define the coefficients Bj by B; = Cj(0) for j = 1,..,k. These coefficients are independent of T and

have the following properties:

1
By <By<...<By, 31:(3;; ) (3.21c)
dB; dB;
—7 f =2,...,k; —7 f =1,...,k. 21
oD >0, for j U ¥ T <0, for j ook (3.21d)

Proof: This is Proposition 5.1 of [38] for a GM model with exponents (p,q,m,s) = (2,s,2,s). The

monotonicity result for B; with respect to s is immediate from (3.19). u

As shown below, the critical values of D and A where B; =1 for j = 2,...,k play a central role
in the analysis. We now calculate these values. The first observation is that for the large solution
branch where 0 < s < 1, we have from (3.21c) that B; > 1 for j = 1,..., k. Therefore,

1 < C1(0) < C5(0) < ... < Ck(0), for 0<s<1. (3.22)

For the small solution branch where s > 1 we calculate the values D = D; for which B; = 1 for
j =2,...,k. Note that since B; < 1 for any D, there is no threshold value D;. A simple calculation
using (3.19) and B; = C}(0), yields that

1 1 Vi 7T(j—l)>
Bi==(14+-)4— ¥ =1—cos [TV 3.23
) ( + s) * 4ssinh? (0y/k) K €08 ( k (3.23)
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Setting B; = 1, for j = 2,...,k, and solving for the thresholds D;, we get

4 . ;i
D; = =2....k; =1
J ) s vy T] s—1

J 2>
k2 [ln (rj + /77 - 1)]
Alternatively, for a fixed D, we can calculate thresholds A = A; for which B; = 1. Using (2.15b),
which relates s in terms of A, we set B; = 1 in (3.23) to get

[('yj/2) + 2sinh? (90/k)]
([3/2) + 25inb? (80/R)]” = (13/2)%)

Here Ay, are the existence thresholds for symmetric k-spike patterns given in (2.12). Since A is an
increasing function of s for s > 1, it follows from (3.21c), (3.21d), (3.24), and (3.25), that

+1, j=2...k. (3249

Aj = Ape =2,...,k. (3.25)

1/2? .7

Ay < Az < ..o < Ay, Dy < D1 <...<Dy. (3.26)

Therefore, when D < Dy, or when A > Aj, we have that B; < 1 for j = 2,...,k. We label these

important critical values as

4 Yk s
D, =Dy, = 5 5 ry=——+1, Yy =1+cos|(—), (3.27a)
k2 [ln(rk—i-\/r,%—l)} s—1 (k)
2) + 2sinh? (6y/k
R (77 R X S OYLG) oy

([(7k/2) + 2sinh? (90/7*17)]2 - (%/2)2)1/2 |

Next, we look for roots of (3.18), or equivalently eigenvalues of (3.12), on the non-negative
imaginary axis A = i\;, with A; > 0. Substituting A = 7A; into (3.16) and (3.18), and extracting
real and imaginary parts, we obtain that the eigenvalues of (3.12) with A = ¢A; and A\; > 0 are the
roots of the coupled system gr; = gr; = 0, where

gri(A1) =Cri (A1) = fr\1) ,  giAD) =Cry (M) = fr(Ar),  G=1,...,k, (3.28a)
and
* wly [L2+ 2] ' w?d A w L2+ 23] T w?d
fr(Ar) = Joww Of[foo = dly] “Yooon (A1) = 1o wf[foowQ dly] il (3.28b)
Here we have defined gr;j(Ar) = Re[g; (4A1)], g1;(Ar) = Im|[g; (iA1)], and
CRj()\]) = Re [Cj (Z)\I)] ) C[j()\[) =Im [C] (’L)x[)] . (3.28(3)
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To analyze the spectrum of (3.12) on the imaginary axis, we need some qualitative properties of
the functions fg, fr, Crj, and Cy;. The key properties are summarized as follows.
Proposition 3.7: The functions fr and fr in (3.28b) have the asymptotic behavior

fr\) ~1— mc)\% + O(X}), as A —0; fr(A) =0 (A;2) , as Af — 00, (3.29a)

3X
fr(Ar) ~ TI +OM), as A —0;  fiAn)=0(A;Y), as A — . (3.29b)

Here k. is given in (3.20a). Moreover, the functions fr(Ar) and fr(Ar) have the global behavior
frA) <0, fi(A1) >0, for A >0. (3.29¢)

For A\ > 0 and 7 > 0, the functions Cg; and Cf; satisfy

Crj(0) = Bj, Cgi(A\1) >0; Cr;(0) =0, Cr (A1) >0, (3.30a)
Cri(Ar) = O(r'/?), Cri(Ar) =0(r"?), as 7 — o0, (3.30D)
CRJ'(A[) = CRj(O) + 0(7')\]) , C]j()\]) = O(T)q) , as 17 —0. (3.30C)

Here Bj are the values Cj(0) = Bj, whose properties were given in (3.21c) and (3.21d).

Proof: The proof of the results in (3.29) are a special case of Propositions 3.1 and 3.2 of [38]
corresponding to setting p = m = 2 in the GM model (1.10). The proof of (3.30) is immediate from
setting A = 7\ in the definition of C}(X) in (3.19). [ |

A critical ingredient for determining the number of eigenvalues in the right half-plane Re(A) > 0
is to derive a winding number criterion. Specifically, we calculate the winding number of g;()),
with A = Ar + iA; in (3.18) over the counterclockwise contour composed of the imaginary axis
—iR < Im)\ < iR and the semi-circle I'g, given by |A\| = R > 0, for —7/2 < arg\ < 7/2. Assuming
that there are no zeros of g;(\) on the imaginary axis, we let R — oo and use the argument principle
to determine the number of zeros of g;(A) in the right half-plane. The function g;(A) in (3.18) is
analytic in the right half-plane, except at the simple pole A = oy > 0, where oy = 5/4 is the unique
positive eigenvalue of the operator Ly (see Lemma 3.4 above). For any 7 > 0, we have from (3.19)
that Cj(\) ~ O(v/A) as |A| = oo in the right half-plane. Moreover, f(\) — 0 as |A\| — oo. Thus, for
any 7 > 0, the change in the argument of g;(\) over I'r as R — oo is m/2. By using the argument

principle, and g;(A) = g;()), we then obtain the following winding number criterion:

Proposition 3.8: Let 7 > 0 and assume that there are no zeros of gj(\) on the imaginary azis for
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j=1,...,k. Then, the number of eigenvalues M of (3.12) in Re(\) > 0 satisfies

7
=7 + = Z arg ;] - (3.31)
J=1

Here [arggj]rl denotes the change in the argument of gj(\) along the semi-infinite imaginary azis
I'r =iXr, 0 < A7 < o0, traversed in the downwards direction.

Using the properties given in Propositions 3.6 and 3.7, there are only a few possible values for
[arg g;]p., - This leads to a more specific winding number criterion.
Proposition 3.9: Let 7 > 0. Then, there are three distinct possibilities:

(1): if gr; <0 when gg;j=0, then [argg;l. = —5m/4, (3.32a)
(2): if gr; >0 when gg; =0, then |argg;l. = 3m/4, (3.32b)
(3): if gr; >0 forall \; >0, then [argg;l. = —m/4. (3.32¢)

Proof: Let 7 > 0. From (3.30) and (3.29) we have that Cr;(A;) is a positive monotone increasing
function, whereas fr(A7) is a positive monotone decreasing function. Therefore, gr; = 0 has at most
one root. First suppose that Cr;(0) < fr(0) = 1 so that gr; = 0 has a root. Then, using (3.30)
and (3.29) we have that gr; ~ by/A; and gr; ~ by/Ar as \j = +oo for some b > 0. In addition,
from (3.29b) and the condition Cr;(0) = 0, we have that gr; < 0 and gr; = 0 at A\ = 0. This
implies that argg; = 7/4 as A\ = +o00, and argg; = —m at A\; = 0. Since the root to gg; = 0 is
unique, this shows that the change in the argument, [arg gj]FI, is either 57/4 or —3m/4 depending
on the sign of g; at the unique root of gr; = 0. This proves (3.32a) and (3.32b). Next, suppose that
Cr;(0) > fr(0) = 1. Then, since gg;j(0) > 0 and g}zj()q) > 0 from (3.29¢) and (3.30a), we conclude
that gr; > 0 for Ay > 0. In this case, argg; = 0 at Ay = 0. Since gg; > 0 for all A\; > 0, the result
(3.32¢) follows. [ |

There are many consequences of Propositions 3.5-3.9. The first concerns the stability of the large
solution uy, vy.

Proposition 3.10: For any 7 > 0, D > 0, and 0 < s < 1, the large solution uy, vy is unstable. In

this case there are exactly k eigenvalues of (3.12) in the right half-plane, and they are all located on
the positive real azis in the interval 0 < \r < o9 = 5/4. These k real eigenvalues have a common

leading-order asymptotic behavior

)
)\RNZ+61/TI/2+...’ as T — 00, (333&)
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where 61 is defined by

(o2 wno dy) (2, wduo dy)

Coo ffooo w? dy ’

E

5= — [tanh (6 /k)] " . (3.33b)

Coo =

N

S

Here ¢y is the principal eigenfunction of Ly (see Lemma 3.4), normalized so that ffooo ¢120 dy =1.

Proof: Let 7 > 0 and 0 < s < 1. Since Cg;(0) = Bj > 1 for j = 1,...,k from (3.22), we have
gr;(0) > 0, and consequently gr;(Ar) > 0 for Ay > 0. Therefore, for 7 = 1,...,k, condition (3)
of Proposition 3.9 applies. From (3.31) this yields that there are M = k eigenvalues in the right
half-plane for any 7 > 0 and 0 < s < 1. Next, we show that these eigenvalues are real and positive.
For any 0 < s < 1, (3.21c) and (3.21d) yield that 1 < By < By < ... < Byj, and consequently
1 = f(0) < C1(0) < ... < Ck(0). Proposition 3.6 proves that C;(Ag) is a positive increasing and
concave function, while f(Ag) is a positive increasing convex function on 0 < Ar < o(. Hence, it
follows that g;j(Ar) = 0 has exactly one root for each j = 1,...,k on the interval 0 < A < oy.
Since f(Ag) < 0 for Agr > o9 from (3.20c), there can be no roots on Ar > 0. Hence, we have k real
positive eigenvalues for (3.12) on the interval 0 < Ag < 09 = 5/4. The asymptotic behavior (3.33)
is obtained by expanding Ag and % in fractional powers of 7 similar to that done in Proposition 3.9
of [38] for the GM model, and noting from (3.19) that Cj(Ag) ~ coo7'/? as T — co. We leave these
details to the reader. [ ]

The next result gives a criterion for the stability of a one-spike small solution u_, v, and for a
k-spike small solution when D < Dy, or A > Agp. Here Dy and Ay, are the thresholds given in
(3.27).

Proposition 3.11 Let 7 > 0, k = 1, and consider the small solution w_, v_, where s > 1. For

such a solution, we have M = 0 when 7 < 1 and M = 2 when 7 is sufficiently large. Moreover,
there exists a value T = Ty, depending on A and D, such that there is a pair of complex conjugate
etgenvalues on the imaginary axis. For a multi-spike solution where k > 1, suppose that D < Dy,
or A> Agr,. Then, M =0 when 7 < 1 and M = 2k when 7 > 1. For k > 1, and for 7 sufficiently
large, these eigenvalues are real and are on the interval 0 < Ap < o9 = 5/4. There are k eigenvalues
Apj that tend to o9 = 5/4 from below as T — oo, and k eigenvalues \g; that tend to zero as T — oc.
The Agj for j =1,...,k have the common asymptotic behavior (3.33), while the asymptotic behavior
of Asj 1s given by

Asj~%+0(f2), j=1,... k. (3.34)

Here w; is the unique positive root of Cj(w;77 1) = 1.
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Figure 7: Parameter values are D = 0.75, k = 3, A = 9.023, and 7 = 2.0. Left figure: Crj(A1),
for j =1,...,3, and fr(A;) (solid curve). Right figure: Cr;(Ar) and fr(Ar) (solid curve). In these
figures Cr; and Cf; are the heavy solid curves.

Proof: Let 7 > 0, s > 1, and k > 1. Assume for k > 1 that D < Dy, or equivalently A > Agy.
We first show that M = 0 when 7 < 1 and M = 2k when 7 > 1. In this case, we have Cg;(0) =
B;j < fr(0) =1 for j = 1,...,k. This, implies that gr;(0) < 0, and so by the monotonicity of gg;,
we have that gr; = 0 has a unique root for each j = 1,...,k. Moreover, since Cg; is monotone
increasing in A; for 7 > 0, these roots must lie in the interval (0, A\;.), where ;. is the unique root
of Cr1(0) = fr(Ar). Hence, Ar. is independent of 7. Since Cj; — 0 uniformly as 7 — 0 for any
fixed A\; from (3.30c), it follows that for 7 < 1 we have g;; < 0 whenever gr; = 0. Hence, for
7 < 1 condition (1) in Proposition 3.9 applies. Then, from the winding number criterion (3.31)
we get M = 0. Alternatively, since at each fixed A7, C; increases without bound as 7 — oo from
(3.30b), we have that gr; > 0 at the unique root of grj = 0. Therefore, for 7 >> 1, condition (2)
in Proposition 3.9 holds, and we get M = 2k from (3.31). Next, we show that for £ > 1, and
7 > 1 that there are 2k eigenvalues on the real axis in 0 < Ag < 9. Along the real axis, we have
from Proposition 3.5 that f(0) = 1, and f(Ag) is an increasing, convex, function on 0 < Ag < 0.
Moreover, f(Ar) = 400 as Ag = 0, , and f(Ag) < 0 for Ag > 0¢. In contrast, from (3.21b) we have
that Cj(Ag) is a monotone increasing concave function, with an unbounded derivative for 7 > 1.
When D < Dy, or when A > Ajp,, we have that C;(0) = B; < f(0) =1 for j = 1,..., k. Therefore,
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as 7 is increased, there must be a critical value 7,,; > 0 where C;(Ag) and f(Ag) first intersect
tangentially. For 7 > 7,,; there must be two roots to g;(A) = 0. The values 7 = 7,5 for j =1,...,k
are the values where complex conjugate eigenvalues merge onto the real axis. Clearly, as 7 — oo,
one root of each g;(Agr) = 0 tends to o, while the other root tends to zero. The precise asymptotic
behavior of these roots as 7 — oo is obtained in a similar way as in Propositions 3.8 and 3.9 of [38].
We leave these details to the reader. Since for k =1 we have M =0 for 7 < 1 and M =2 for 7 > 1,

the existence of a Hopf bifurcation value 75,1 (possibly non-unique) follows by continuity. |

Figure 8: Plots of Cj(Ag), for j =1,2,3, and f(Ag) (solid curve). The heavy solid curve is Ci(ARr).
Left figure: parameter values are D = 0.75, k = 3, A = 9.023, and 7 = 80.0. Right figure: parameter
values are D = 0.75, k = 3, A = 8.357, and 7 = 36.93. For these values, C1(Ar) intersects f(AR)
tangentially. For this data we have Ay < A < Ajsy.

To illustrate this result, we take the parameter values D = 0.75, k = 3, A = 9.023, and 7 = 2.0.
For these values, we calculate from (3.27b) that A > Az;, = 8.686, so that Proposition 3.11 applies.
In Fig. 7(a) we plot the numerically computed fr(A;) and Cgj(Ar) for j =1,...,3. A similar plot
of fr(Ar) and Crj(Ar), for j =1,...,3, is shown in Fig. 7(b). For this small value 7 = 2.0 it is clear
from these figures that whenever g, = 0 we have gr; < 0. Since condition (1) of Proposition 3.9
holds for each j = 1,2, 3, we get from (3.31) that M = 0. Hence, there are no eigenvalues of (3.12)
in the right half-plane. In Fig. 8(a) we plot Cj(Ar) and f(Ag) with 7 = 80.0, and for the same

parameter values given above. For this large value of 7, each C;(Ag) intersects fr(Ar) exactly twice.
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Hence, we have six real positive eigenvalues on the interval 0 < A\ < 5/4.

For a one-spike solution, the main limitation of Proposition 3.11 is that we are not able to prove
that the Hopf bifurcation value 737 is unique. In particular, we cannot theoretically rule out the case
that there are N, with IV > 1 and odd, values of 75,1 where there are complex conjugate eigenvalues
on the imaginary axis. To show that N = 1, and hence that 7,1 is unique, one would have to prove
a strict transversal crossing condition that states that whenever 7 > 7,1 there are two eigenvalues
in the right half-plane, so that M = 2 for all 7 > 7;. From all of the numerical experiments that
we have performed it appears that such a crossing condition does in fact hold. However, Proposition
3.11 does guarantee that there will be two real positive eigenvalues for all 7 > 7,,1.

For the small solution branch, the qualitative difference between the spectrum of (3.12) for a
one-spike and for a multi-spike solution is that only for a multi-spike solution can eigenvalues cross
through the origin along the real axis Im(\) = 0 as D or A is varied. However, when D < Dy,
or A > Apgp, there are no real positive eigenvalues when 7 < 1. The real eigenvalues that exist
when 7 > 1 have occurred from the merging of complex conjugate pairs of eigenvalues onto the real
axis. These complex conjugate eigenvalues arise from a Hopf bifurcation. Notice that since C;(0) is
independent of 7, the eigenvalues of (3.12) can never cross through the origin along the real axis as 7
is increased. Therefore, instabilities as 7 is increased can only occur from Hopf bifurcations, whereas
instabilities that occur as D is increased or A is decreased occur from real eigenvalues entering the
right half-plane.

The next result characterizes the number of eigenvalues in the right half-plane for a multi-spike
solution for other ranges of D and A, where there may be positive real eigenvalues when 7 < 1.
Proposition 3.12: Let 7 > 0, k > 1, and consider the multi-spike small solution u_, v_, where
s > 1. Suppose that there exists a j* with 2 < j* < k such that either Dj~ < D < Dj-_1, or
Aj-1 < A< Aj-. Here Dj and Aj for j = 2,...,k are given in (3.24) and (3.25), respectively.
Since there are no thresholds for 7 = 1, we conveniently label D1 = oo and A; = Aje, where A, is
the existence threshold of (2.12). Then, for any T > 0, the number of eigenvalues M of (3.12) in the
right half-plane satisfies the bounds

l+k—j"<M<k-1+j". (3.35)

Moreover, there are at least Mp = 1 4+ k — 7% eigenvalues on the positive real azis in the interval
0 < Ar <oog=>5/4 for any T > 0.

Proof: The proof is simple. For the range of D and A stated above, we have Cg;(0) > 1 for
j =7j%...,k, and Cgj(0) < 1 for j = 1,...,5* — 1. Hence, grj(A;r) > 0 for j = j*,... ,k, and
condition (3) of Proposition 3.9 holds. This yields [arg g;|, = —m/4 for j = j*,...,k and any 7 > 0.
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For the other indices, we proceed as in the proof of Proposition 3.11, to get [arg gj]FI = —5m/4 for
j =1,...,5% — 1 when 7 is sufficiently small, and [arg g;], = 3m/4 for j = 1,...,5* — 1 when 7
is sufficiently large. Substituting these values into the winding number criterion (3.31) we obtain
(3.35). It is clear that there are at least Mr = 1+ k — 5* eigenvalues on the real axis when 7 < 1.
This follows since C;(0) = B; > 1 = f(0) for j = j*,...,k, and the fact that for any 7 > 0 the curve
Cj(Ar) must intersect f(Ag) exactly once for each j = j*,... k. |

As a special case of this result, we set 7* = 2 to obtain £k — 1 < M < k 4 1. Therefore, when
D > Dy, or when A < As, there will be at least k£ — 1 eigenvalues on the positive real axis. Here Dy
and Ay are given in (3.24) and (3.25), respectively. This range of the parameters is the near-shadow
limit, since we know that a k-spike solution for the shadow problem, obtained by letting D — oo in
(1.6), will have k — 1 eigenvalues on the positive real axis when 7 = 0. Hence, this qualitative feature

of the spectrum is preserved for finite values of D up until D crosses below Ds.
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Figure 9: Parameter values D = 0.75, k = 3, A = 8.357, and 7 = 6.183. Left figure: Cr;(\1),
for j =1,...,3, and fr(Ar) (solid curve). Right figure: Cr;(Ar) and fr(Ar) (solid curve). In these
figures Cr1 and C7; are the heavy solid curves.

To illustrate Proposition 3.12, we take the parameter values D = 0.75, k = 3, A = 8.357 and
7 = 36.93. For these values, we calculate from (3.25) and (3.27b) that Ay = 6.86 and A3z, = 8.686,
so that Ay < A < Asr. Therefore, this corresponds to setting 7* = k = 3 in Proposition 3.12 to get
1 < M < 5. In Fig. 8(b) we show the graphical determination of the eigenvalues of (3.12) on the
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positive real axis by plotting Cj(Ag), for 7 =1,...,3, and f(Ag). Since C3(0) > 1, we only get one
root of g3 = 0 for any 7 > 0. For the value 7 = 36.93, we have that C intersects fr tangentially.
For 7 > 1, it is clear that we will have M = 5. For the smaller value 7 = 6.183, in Fig. 9(a) we plot
fr(Ar) and Crj(Ar) for j =1,...,3. A similar plot of fr(A;) and Cr;(Ar), for j =1,...,3, is shown
in Fig. 9(b). For this value of 7, we have gr1 = gr1 = 0. In addition, we have gjo < 0 when ggs = 0,
and that grs(Ar) > 0 for all Agp > 0. Therefore, condition (1) and condition (3) of Proposition 3.9
holds for j = 2 and j = 3, respectively. Then, from (3.31), it is clear that this value of 7 corresponds
to where (3.12) has complex conjugate eigenvalues on the imaginary axis, together with one positive
real eigenvalue.

The method of proof of Proposition 3.12 shows that there exists a value 7 = 75,; > 0 (possibly non-
unique) such that grj = gr; = 0. At this value of 7, there is a complex conjugate pair of eigenvalues on
the imaginary axis. The minimum 737, of these values determines the stability threshold. Therefore,
we define

The = Min (755 j = 1,..,k) . (3.36)

This critical value depends on k, D, and A. The main stability results obtained in this section can
now be summarized succinctly as follows.

Proposition 3.13: Let 7 > 0, k > 1, and consider the multi-spike small solution u_, v_, where

s > 1. For D < Dgp,, or A > Ay, the solution will be stable with respect to the large eigenvalues
when 0 < 7 < 7p,. Alternatively, suppose that D > Dyr, or Ag. < A < Ayp, then the solution is
unstable for any T > 0.

Although we have not been able to prove a strict transversal crossing condition, all of the nu-
merical experiments that we have performed below indicate that the values 75,; are uniquely defined.
Specifically, when 7 increases past a particular 7;,; an additional pair of complex conjugate eigenval-
ues enters into the right half-plane and remains in this plane for all 7 > 73;. Therefore, we believe
that when D < Dyp, or when A > Ay, the multi-spike solution will be unstable for any 7 with
T > T, When D > Dyy, or when A < Ay, there is at least one positive real eigenvalue for any
7 > 0. In this range of D or A, there may be additional complex conjugate pairs of eigenvalues in
the right half-plane if 7 is large enough.

Next, we discuss the two types of instabilities that can occur for multi-spike solutions to (1.6).
We first discuss competition instabilities that occur as a result of eigenvalues on the positive real
axis. Suppose that D satisfies Dy;, < D < Dy_1, or equivalently Ax 1 < A < Ajr. Then, following
the idea of the proof of Proposition 3.12, there will be exactly one eigenvalue in the right half-plane

for 0 < 7 < 1,1, and it is located along the real axis. Therefore, on this parameter range, the j =k
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mode governs the instability. From Proposition 3.2, the unstable eigenvector is ¢ given in (3.11b).

This implies that the initial instability of the small k-spike pattern has the form
k
v =uv_+ e Rkl ¢(x) = chfb ez — 2,)] . (3.37a)
n=1
Here 6 < 1, Agk > 0 is the unique root of gi(Ag) = 0, and
E—1
Cn = CO8 <%(n—1/2)> , on=1,...k. (3.37b)

Since 2221 ¢n, = 0, this instability has the effect of locally preserving the sum of the heights of the
spikes. Hence, we refer to it as a competition instability. As shown in the numerical experiments
below, this mode initiates a spike competition process, decreasing the amplitudes of some spikes
while increasing the amplitudes of others. Numerically, it is found that this type of instability has
the ultimate effect of annihilating spikes.

Next, we discuss the type of oscillatory instability that occurs when D < Dy, or A > Agr, as
7 increases past 7,7. The value of j for which the minimum in (3.36) is obtained determines the
unstable eigenvector c; in Proposition 3.2. We now develop a criterion to determine which mode
goes unstable first as 7 is increased.

To do so, we first try to develop an ordering principle for Cr; and Cp;. From (3.19) and (3.28¢),
we readily calculate that for j = 1,..,k — 1 that

Crj+1 — Crj = BiRe[E(§)] , Crj+1 — Crj = pB;Im [E(E)] . (3.38a)
Here 5; > 0 and E({) are defined by

= (o) (M )70

E(¢) (3.38D)

sinh ¢’

where 90
= 70\/1 +iTAr. (3.38¢)

This leads to the following ordering principle:
Lemma 3.14: Suppose that Re[E(£)] > 0 and Im[E(§)] < 0 at each point on some interval 0 <
A1 < Ax. Then, we have the following ordering principle on 0 < Aj < A,

CR1(>\[) <. < CRk()\I)a CH(A[) >0 > Clk(AI) . (3.39)
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When this ordering principle holds, the mode that goes unstable first must be the 57 = 1 mode.
We state the result as follows.

Proposition 3.15: Let ¢ — 0, k > 1 and consider the small solution u_, v_. Let 1 correspond

to the minimum value of T for which gr1 = gr1 = 0. Label the corresponding root by A\j = Ap1.
Suppose that for the value T = 11, the ordering principle of Lemma 3.14 holds at each point on the
interval 0 < A < Ap1. Then, there are either zero or two eigenvalues in the right half-plane for T in
a sufficiently small neighborhood of T = 7.

Proof: The proof is simple. Since the ordering principle (3.39) holds when 7 = 73, it follows by
continuity that it holds in a sufficiently small neighborhood of 75,1. Therefore, we will have gr; < 0
whenever gr; =0 for j =2,..,k —1. This implies that condition (1) of Proposition 3.9 holds, and so
we get [argg;l. = —5m/4 for j =2,... k. From (3.31) we obtain M = 0 or M = 2 depending on
whether [arg g1]p, = —57/4 or [argg1]p, = 37/4. [ |
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Figure 10: Parameter values D = 0.75, k = 3, A = 9.023, and 7 = 8.049. Left figure: Crj(A1),
for j =1,...,3, and fr(Ar) (solid curve). Right figure: Cr;(Ar) and fr(Ar) (solid curve). In these
figures Cr1 and C7; are the heavy solid curves.

To illustrate Proposition 3.15, we consider the parameter values of Fig. 7 where D = 0.75, k = 3,
and A = 9.023 > A3r. For 7 = 8.049, in Fig. 10(a) we plot the numerically computed fr(Ar)
and Cg;(Ar) for j = 1,...,3. A similar plot of f;(A;) and Crj(Ar), for j = 1,...,3, is shown in
Fig. 10(b). For this value of 7 it is clear from these figures that the ordering principle (3.39) holds,
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and so the j = 1 sets the stability threshold. Therefore, for 7 = 8.049, it follows that (3.12) has no
eigenvalues in the right half-plane, but has a pair of complex conjugate eigenvalues on the imaginary
axis determined by the 5 = 1 mode. This is the Hopf bifurcation value.

Under the conditions of Proposition 3.15, it is guaranteed that the 7 = 1 mode goes unstable
first. The corresponding eigenvector ¢; is given in (3.11b) as ¢} = (1,...,1). In this way, we obtain

that at 7 = 7,1 the instability takes the form

k
v=v_+d6eMlptce, Pz)= chq) [5_1(:1: — wn)] , =1, n=1 k. (3.40)
n=1
Here c.c denotes complex conjugate, 6 << 1, and Ap; is the root of gg; = gr1 = 0, which occurs when
T = 71 The key observation is that since ¢, = 1, for n = 1, .., k, the initial form of the instability
is to synchronize the amplitudes of the spikes. We refer to this as a synchronous oscillatory
instability. Therefore, if the ordering principle in Lemma 3.14 holds, the 7 = 1 mode goes unstable
first, and the effect is to synchronize the small-scale oscillations in the spike amplitudes.
The critical condition in Lemma 3.14 is to determine the signs of Re [E/(£)] and Im [E(£)]. Writing
& = &g + &1, a simple calculation shows that Re [E(£)] > 0 if and only if

tanh &g cos &5 + g—lsinfl >0. (3.41a)
R
Similarly, Im [E(£)] < 0 if and only if
sin&; — E—Itanhflg cosér > 0. (3.41b)
R

From the definition of ¢ in (3.38¢), it is clear that both inequalities in (3.41) will hold when 7)\;
is small enough. Therefore, it is natural to look for a condition for which the j = 1 governs the
instability. The precise condition was stated in Proposition 3.15.

Finally, we remark on the possibility of having an asynchronous small-scale oscillation near the
Hopf bifurcation point 73,7. Such an asynchronous instability is governed by the 7 = k mode which, as
discussed above with respect to competition instabilities, has the effect of conserving the amplitude
of spikes. The j = k mode will govern the initial instability when both Re [E/(£)] and Im [E/(£)] have
exactly one zero-crossing on the interval 0 < A; < Apg, where A\f = App and 7 = 7 is the root of
grr = grr = 0. Although we show in Example 4 of §3.3 that asynchronous oscillatory instabilities are
theoretically possible in a narrow parameter range, we have not been able to realize such oscillations

in the Gray-Scott model in the low or intermediate feed-rate regime.
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Figure 11: Left figure: the Hopf bifurcation value 737 versus A/A;. for a one-spike solution. Right
figure: 7,1 versus A/ A, where the complex pair of eigenvalues merge onto the positive real axis.
The labels are D = 0.75 (dashed curve), D = 0.25 (solid curve), and D = 0.1 (heavy solid curve).

3.3 Numerical Results: Oscillatory and Competition Instabilities

We now give some numerical results for the stability thresholds studied rigorously in §3.2. Here we
will only consider instabilities of the small solution. To illustrate our results, we take D = 0.75 and
D = 0.1. For D = 0.75, the spike interaction is strong and oscillatory instabilities occur for small
values of 7. Moreover, for D = 0.75, spike competition instabilities due to positive real eigenvalues
can also occur far from the existence threshold Ag.. Alternatively, for D = 0.1, the inter-spike
interaction is relatively weak and the finite domain does not play a very significant role in generating
instabilities, unless we have many spikes. More specifically, for kv/D < 1, instabilities due to positive
real eigenvalues only occur very close to the existence threshold Ag.. Recall also from (1.4), that our
formulation of the Gray-Scott model required that 7 > 1. All of the stability thresholds for a Hopf
bifurcation computed below for D = 0.75 and D = 0.1 satisfy this requirement.

For a one-spike solution, in Fig. 11(a) we plot the Hopf bifurcation threshold 75, versus A/ A,
for D = 0.75, D = 0.25, and D = 0.1. These results suggest that 74; is an increasing function of
A/ Aie, and that the stability threshold 73 is larger for smaller values of D. This is intuitive since

for smaller values of D, the interaction of the spike with the boundaries of the domain is weaker.
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In Fig. 11(b) we plot the values 7,,; where complex conjugate eigenvalues first merge onto the real
axis. In Fig. 12(a) we plot the Hopf bifurcation frequency Ap; versus A/Aj.. This frequency tends
to a limiting value A\p1 = 0.53 for A/ A1, > 1 (see §5).
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Figure 12: Left figure: the Hopf bifurcation frequency Ay versus A/A;. for a one-spike solution with
D = 0.75 (dashed curve), D = 0.25 (solid curve), and D = 0.1 (heavy solid curve). Right figure Ay
for a two-spike solution with D = 0.75 (heavy solid curve) and D = 0.1 (solid curve).

Next we consider two-spike solutions for D = 0.75 and D = 0.1. From (2.12) and (3.27b), we

calculate the critical values As. and Asy;, as

Age =5.158, Agp, =5.633, for D =0.75; Age =6.427, Agp =6.433, for D =0.1.

(3.42)
In Fig. 13(a) we plot the Hopf bifurcation value 7,7, as a function of A4/ As. for both values of D.
This threshold is set by the 5 = 1 mode. In this diagram we have indicated, by a vertical line, the
value Ayr,/Age. Recall that below this value there are eigenvalues on the positive real axis for any
7 > 0. Since Ay, is very close to Ay, when D = 0.1, a competition instability for this value of D
occurs only in a narrow parameter regime. The corresponding frequency Ay is plotted in Fig. 12(b).
In Fig. 13(b) we plot a more detailed stability threshold for D = 0.75. In this plot we have indicated
by a dashed line the threshold 71,0 at which an additional pair of complex conjugate eigenvalues
enter the right half-plane. Hence, for A > Ay, and 7 > 7,9 there are four eigenvalues in the right
half-plane. From the theory developed earlier, the curve 75,5 versus A/ Az, terminates when 4 — A; I
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since the complex conjugate pair for the 7 = 2 mode coalesce at the origin A = 0. One eigenvalue
then moves along the positive real axis, while the other moves along the negative real axis as A is

decreased below Asy,.
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Figure 13: Left figure: the Hopf bifurcation value 75,7, versus A/ Ay, for a two-spike solution with
D = 0.75 (heavy solid curve) and D = 0.1 (solid curve). Right figure: 75, (heavy solid curve) and
The (dashed curve) for a two-spike solution with D = 0.75.

For three-spike solutions with D = 0.75 and D = 0.1, we calculate from (2.12), (3.25), and
(3.27b), that

Asze =6.145, Ay =6.864, Az =8.6857, for D =0.75, (3.43a)
Asze =6.960, A =6.978, Az =7.0904, for D =0.1. (3.43b)

Likewise, for four-spike solutions we obtain the thresholds

Age =7.023, Ay =7914, A;=1052, Ay =12.69, for D =0.75, (3.44a)
Age =7.589, Ay =7.619, A;=7.830, Ay =8.127, for D=0.1. (3.44b)

In Fig. 14(a) and Fig. 15(a) we plot 7,z versus A/ Ay, for three and four-spike solutions when
D = 0.75 and D = 0.1. For the larger value D = 0.75, in Fig. 14(b) and Fig. 15(b) we show the
detailed stability diagram by plotting 75,; for j = 2,...,k. In each case, the stability threshold 7,
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Figure 14: Left figure: the Hopf bifurcation value 73 versus A4/ As. for a three-spike solution with
D = 0.75 (heavy solid curve) and D = 0.1 (solid curve). Right figure: 75,7, (heavy solid curve) and
7y; (dashed curves) for j = 2,3 for a three-spike solution with D = 0.75.

is set by the 7 = 1 mode representing synchronous oscillations. The vertical lines in these figures
indicate where positive real eigenvalues enter the right half-plane. The information in Proposition
3.12 is succinctly contained in these detailed stability diagrams. For instance, from Fig. 15(b) for
D = 0.75, we see that if A satisfies 7.914 < A < 10.52, then there are two real eigenvalues in the
right half-plane when 7 < 73,1, and six eigenvalues (at least two real) in the right half-plane when
T > Tha.

We now consider some examples of the theory, and we compare the results with full-scale numer-
ical simulations of (1.6). The solution to (1.6) is computed using the routine DO3PCF of the NAG
library [25] with 1500 uniformly spaced meshpoints. In each of the experiments below, we have taken

the initial condition for (1.6) in the form

k

v(2,0) = v_(z) [140.01)_ b;cos (M) e @@ MRy (2,0) =u(z).  (3.45)
j=1

Here b; = 1 if j is odd and b; = —1 if j is even. The k-spike equilibrium solution, v, and u_, is

given in Proposition 2.1.

Example 1: We first consider one-spike solutions to (1.6). In Fig. 16(a) we plot the spike amplitude
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Figure 15: Left figure: the Hopf bifurcation value 73, versus A/ A4 for a four-spike solution with
D = 0.75 (heavy solid curve) and D = 0.1 (solid curve). Right figure: 75, (heavy solid curve) and
7y; (dashed curves) for j = 2,3,4 for a four-spike solution with D = 0.75.

Vm = v(0,t) versus t for the parameter values D = 0.75, A = 4.563, and ¢ = 0.01. From this figure,
we see that when 7 = 7.5 we get decaying oscillations, whereas the oscillations grow when 7 = 7.8.
From the data used to generate Fig. 11(a), we get the Hopf bifurcation value 737, = 7.7. In Fig. 16(b)
we plot the spike amplitude v, = v(0) versus ¢ for the parameter values D = 0.1, A = 6.59, and
e = 0.01. The oscillations are found to decay when 7 = 8.6, and they grow when 7 = 8.8. The
Hopf bifurcation value from Fig. 11(a) is 7,7, ~ 8.7. Although our theory correctly predicts the
Hopf bifurcation value, it does not explain the large-scale oscillations seen in Fig. 16(b) whereby the
instability ultimately leads to the annihilation of the spike.

Example 2: Next, we consider a three-spike solution to (1.6) with D = 0.75 and ¢ = 0.1. We first
take the parameter values A = 8.6 and 7 = 2.0. Since A satisfies Ay < A < A3z, from (3.43a),
and 7 is below the Hopf bifurcation value, we expect a competition instability. In Fig. 17(a) we
plot the initial condition (3.45) used for the numerical solution of (1.6). In Fig. 17(b) we show the
competition instability that occurs from the unique real positive eigenvalue in the right half-plane.
Although we can correctly predict the onset of the competition instability, the nonlinear mechanisms
leading to the annihilation of the second spike as seen in Fig. 17(b) is an open problem. Next, we
take the slightly larger value A = 8.86, so that now A > As;, = 8.6857. For this value, the data
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(a) v versus t (b) vy, versus t

Figure 16: Example 1: Plots of v, versus t for kK = 1 with ¢ = 0.01. Left figure: D = 0.75 and
A = 4.563. The labels are 7 = 7.5 (heavy solid curve) and 7 = 7.8 (solid curve). Right figure:
D = 0.1 and A = 6.59. The labels are 7 = 8.6 (heavy solid curve) and 7 = 8.8 (solid curve).

used to generate Fig. 14(a) yields the Hopf bifurcation value 7, ~ 7.5. For 7 = 7.25, in Fig. 18(a)
we show a synchronous decaying oscillation in the spike amplitudes. For the slightly larger value
T = 7.6, in Fig. 18(b) we show both the onset of a synchronous oscillatory instability, and the
ultimate simultaneous annihilation of the three spikes.
Example 3: This is the four-spike example for D = 0.1 and € = 0.01 shown in Fig. 2 and Fig. 3
of the introduction §1. Since Az = 7.83 and Ay, = 8.127 from (3.44b), we will get a competition
instability when A = 8.0 and 7 is below the Hopf bifurcation value. This is precisely what is seen
in Fig. 2(b) where 7 = 2.0. For this value of A, from the data used to generate Fig. 15(a) we will
have a Hopf bifurcation when 7 = 3.4. At this value of 7 there is a pair of complex conjugate
eigenvalues on the imaginary axis, together with a positive real eigenvalue. Therefore, for 7 = 3.2,
the instability should be a superposition of a competition instability and a synchronous decaying
oscillation in the spike amplitudes. This is shown in Fig. 19. These two types of instabilities lead to
an initial synchronization of the oscillations of the spike amplitudes, followed by a spike competition.
Alternatively, suppose we take A = 8.3 so that A = 8.3 > A4;. From the data used to plot
Fig. 15(a) we calculate, for this value of A, that the Hopf bifurcation occurs when 7 ~ 4.0. In

Fig. 3(a) we show a synchronous decaying oscillation in the spike amplitudes when 7 = 3.8. In

42



175 ' ' e
P
1.50 I B
1.00 - B!
1.25 B
100 ﬁ .
v, u Um
0.50 - B 0.75 - B
0.50 b
.................... 095 1 |
/ \ | / | \ 1 / \ 1 1 1 | \ 1
0.00 0.00
-1.0 -0.5 0.0 0.5 1.0 0 50 100 150 200 250
t t
(a) The initial condition (b) vy, versus t

Figure 17: Example 2: Here k = 3, D = 0.75, A = 8.6, ¢ = 0.01, and 7 = 2.0. Left figure: the
initial condition for v (solid curve) and u (dashed curve). Right figure: The spike amplitudes vy,.
The middle spike is annihilated, and the other two spikes have a common amplitude.

Fig. 3(b) we show a synchronous oscillatory instability in the spike amplitudes when 7 = 4.1 leading
to simultaneous spike annihilation. Since D is small for this example, we might intuitively expect
that the inter-spike interaction is very weak. However, for four spikes, the interaction is sufficiently
strong so that these instabilities occur rather far from the existence threshold A4, = 7.589.
Example 4: In this example we try to determine asynchronous oscillations of a two-spike solution.
We let D = 0.25 and we compute the critical values 75; and 7,9 versus A/Ay. where complex
conjugate pairs of eigenvalues enter the right half-plane. The plot is shown in Fig. 20(a). The Hopf
bifurcation value 757, is the minimum of these two values. From this figure we notice that the two
curves 7p1 and Tpo cross exactly once at some value of A/ As., and that they both asymptote to
a common limiting behavior as A4/ A, — oo. This limiting behavior is analyzed in §5 when we
study the intermediate regime. On the range where 73,1 < 739 in Fig. 20(a) we expect synchronous
oscillations as 7 is increased beyond 7,1. Asynchronous oscillations should occur on the narrow range
where 7p9 < 751 as 7 is increased. As a remark, when D = 0.25 we compute that Ay, = 5.614 and
Asp, = 5.681. Hence, there will be no competition instabilities due to real eigenvalues crossing into
the right half-plane when A > 5.681.

To illustrate the resulting spike dynamics we take A = 7.9377 and ¢ = 0.01. We compute that

43



T T T T T T T T
125 + g 25 7
2.0 B
15+ B

VIH 1.20 b VIH

1.0 - B
0.5 B

1 15 1 1 1 1 00 1 1 1 1

0 20 40 60 80 100 0 50 100 150 200 250
t t
(a) v versus t (b) vy, versus t

Figure 18: Example 2: The parameters are k = 3, D = 0.75, A = 8.86, and ¢ = 0.01. Left figure:
synchronous decaying amplitude oscillations when 7 = 7.25. Right figure: synchronous oscillatory
instability for 7 = 7.6, leading to a collapse of the three spikes. The amplitudes of the spikes trace
out identical trajectories.
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Figure 19: Example 3: The spike amplitudes when k =4, D = 0.1, e = 0.01, A = 8.0 and 7 = 3.2.
The synchronized oscillations of the spike amplitudes is followed by a competition leading to the
annihilation of the second spike and then the fourth spike. Of the two remaining spikes, the third
spike has the largest amplitude.
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Figure 20: Example 4: Left figure: The critical values 75,; (solid curve) and 732 (dashed curve) versus
A/ Ay for a two-spike solution with D = 0.25. Right figure: Spike amplitudes for D = 0.25, ¢ = 0.01,
with 7 = 30 (dashed curve), 7 = 34 (solid curve), and 7 = 40 (heavy solid curve).

Th1 = 36.1 and 7x9 = 35.6. Hence, the complex eigenvalues that first enter the right half-plane as 7
is increased corresponds to the asynchronous mode. In Fig. 20(b) we plot the numerically computed
spike amplitudes for three values of 7 starting from the asynchronous initial condition (3.45). For each
of these values of 7, the spike amplitudes are found to synchronize very quickly in time. For 7 = 40,
the spike amplitudes both collapse, for 7 = 34 they exhibit a large-scale periodic oscillation, and for
7 = 30 the oscillations relax back to the equilibrium state as ¢ increases. We have done many other
examples to try to determine asynchronous oscillations in the low feed-rate regime without success.
However, asynchronous oscillations for the spike amplitudes have been observed in the pulse-splitting
parameter regime where A = O(e~'/2), or equivalently where A = O(1) (see [16]). There are two
possibilities for not observing such oscillations in the low feed-rate regime. One possibility is that
the asynchronous mode is unstable in the weakly nonlinear regime. The second possibility results
from our observation that whenever 7,7, = 71k, so that stability is set by the asynchronous mode,
the threshold for the synchronous mode 75,7 has a numerical value that is typically very close to
The- Hence, whenever asynchronous oscillations are theoretically possible as 7 is increased, we have

typically found that the more dominant synchronous mode is essentially also present.
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3.4 The Infinite-Line Problem

Next, we determine the stability threshold for the infinite-line problem where (1.6) is posed on
—00 < z < oo. We will only consider the stability of a one-spike solution centered at x = 0. Results
for the infinite line problem were obtained using dynamical systems techniques in [4] and [5], and
using a formal asymptotic analysis in [24].

The only main modification needed to the analysis leading to Propositions 2.1 and 3.1 is that the

Green’s function G(z; ;) in (2.6) must be replaced with G(z;0), where
DGy — G = —6(x), —00 <z < 00} G—0 as |z] = 0. (3.46)

The solution to (3.46) is

G(z;0) = (9—20> e~hlel gy = D712, (3.47)

Since the asymptotic construction of the one-spike equilibrium solution parallels that in §2.1, we only
give the result.
Proposition 3.16: Let ¢ — 0, with A = O(1) and D = O(1) in (1.6) defined now on the infinite

line —oo < x < 0o. Then, when A > Aie, there are two one-spike solutions given asymptotically by

1
~an”

6

A2—UiG($; 0). (3.48)

vi(x) [e7tz] ; ug(z) ~1—

We label uy, vy and u—, v_ as the large and small solutions, respectively. In (3.48), w and G satisfy
(2.3) and (3.47), respectively. Moreover, Uy are given by

2
1£4/1— %] . A=v12D7V4, (3.49)

Since the derivation of the nonlocal eigenvalue problem is similar to that done in §3 for a multi-

Uy =

1
2

spike solution on the finite interval, we only give the highlights of the derivation. We introduce ®
and n by
v(z) = vi(z) + M [e7a] u(z) = us(z) + eMy(z). (3.50)

Substituting (3.50) and (3.48) into (2.17b), we obtain in place of (3.4) that n satisfies

Dnye — (1+7A)n =0, —00<z<00; n—0, as |z|]— oo, (3.51a)

=0, Dy = )+ 5 [ wlew)ay. (3.51)
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Substituting (3.50) and (3.48) into (2.17a), we obtain in place of (3.8) that ®(y) satisfies

n(0)

" — 4 2uwd
+ 2w +AUi

w? = \®, —00 <y <00, (3.52)

with ®(y) — 0 as |y| — oco. The nonlocal eigenvalue problem analogous to (3.12) is obtained by
solving (3.51) for n(0), substituting the resulting expression into (3.52), and then using (3.49) for
U.. In this way, we obtain that ®(y) satisfies the conditions of Proposition 3.2, except that now y
in (3.13) is to be replaced with

2s 1-Ux
=, s = .
X s+vV1+7A Ut

Notice that the multiplier x in (3.53) can be obtained by taking the limit D — 0 in the multiplier in

(3.53)

(3.13) corresponding to a k-spike symmetric pattern on the finite line. In place of (3.18) and (3.19),

we then obtain that the eigenvalues A are the roots of g(A) = 0, where

> w(Ly—N)""w?d VIETA
gN) = C(N) = F(N), f(A)Ef_‘x’ }02 wQZly v 0(A):%+%N (3.54)

The rigorous spectral approach used in §3.2 can be applied directly to this problem. In this way, we

obtain the following result:

Proposition 3.17: Let ¢ — 0 and consider a one-spike solution to (1.6) on the infinite line. The

large solution uy, vy, where 0 < s < 1, is unstable for any 7 > 0 as a result of a positive eigenvalue
on the real axis. The small solution u_, v_, where s > 1, is stable with respect to the large eigenvalues
for T sufficiently small, and is unstable with respect to the large eigenvalues for T sufficiently large.
There ezists a value T, = T(s) (possibly non-unique) where there are complex conjugate eigenvalues
on the imaginary axis.

Using the numerical method described briefly in §3.3, we compute 7, = 7 (s) numerically. Using
(3.49) and s = (1 — Uy)/Uy, we get 75, as a function of A/ A1, = (1 + s) [2\/5]71. In addition, we
can compute the value of 7, labeled by 7,,(s), where the complex conjugate eigenvalues merge onto
the real axis. A simple calculation using (3.53) and the local properties of f(A) as A — 0 given in
Propositions 3.5 and 3.7 above, shows that when s = 1 we have a double root to g(A\) =0 at A =0
and 7 = 3. The numerical results for 7, and 7, as a function of A/A;, are shown in Fig. 21(a).
Although we cannot prove that 73, is unique, numerical evidence suggests that when 7 > 73, there are
always two eigenvalues in the right half-plane. In Fig. 21(b) we plot the function A;p versus A/A;.
where we have a Hopf bifurcation. In this figure we also plot the function Ag,, versus A/ A, where

complex conjugate eigenvalues in the right half-plane first merge onto the real axis. From this figure,
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Figure 21: Left figure: the Hopf bifurcation value 7, (heavy solid curve) versus A/ A;.. The
plex eigenvalues merge onto the positive real axis when 7 = 7, (solid curve). Right figure:

corresponding critical values Aj; (heavy solid curve) and Agy, (solid curve).

com-
The

we notice that A\, and Agp, have limiting behaviors for s > 1. This limiting behavior is analyzed in

a more general context in §5.

The critical value 7, for this infinite-line problem can be obtained by taking the limiting v Dk < 1
in all of the results of §3.2 for the finite domain problem (1.6). Therefore, the results for D = 0.1 and

k=1,...,3 computed above in §3.3 should closely approximate those for the infinite-line problem.

Finally, we relate our results for the infinite-line problem with those of [24]. To show the equiv-

alence of our results with those in [24], we integrate (3.12) over —oco < y < 0o to obtain

(2—X)/Oow<1>dy:(>\+1)/oo<1>dy.

—o0 —00

(3.55)

Solving (3.55) for [*°_ @ dy, we substitute the resulting expression into (3.12) and use [*_w? dy = 6

to get
1 o0
Lo® — Muﬁ/ By = A0
6(2 - X) —00

(3.56)

Finally, using the definition of y in (3.53) together with w(y) = 2sech?(y/2), we can write (3.56) for
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the small solution as

3" — & + 3sech? (g) ® — o sech® (g) /OO Ddy =\, (3.57a)

— 00

2
342 (14 [ &,

The nonlocal eigenvalue problem (3.57) is given in equation (2.13) of [24]. Our plots of 7, and Ay,

where

are equivalent to those in Fig. 2.4c and Fig. 2.4d of [24]. In Appendix B of [24], a computer-assisted
approach was used to determine qualitative properties of the spectrum for (3.57). Our rigorous
approach to the nonlocal eigenvalue problem, with results summarized in Proposition 3.17, provides

a simpler alternative proof of the stability properties.

4 Small Eigenvalues: Slow Translational Instabilities for A = O(1)

In this section we determine the conditions for which the small eigenvalues of order O(e?) for (2.17)
lie in the stable left half-plane Re(A) < 0. The importance of these eigenvalues is not only that
they determine stability thresholds, but that they are also closely related to the existence of the
asymmetric patterns constructed in §2. In particular, for £ > 1, we will show that asymmetric
patterns emerge from the symmetric k-spike, small solution, equilibrium branch when £ — 1 small
eigenvalues cross through zero.

We will calculate an explicit formula for the small eigenvalues for both the small and large solution
branches uy, v4. The first part of the analysis is to reduce (2.17) to the study of a matrix eigenvalue
problem. Since this matrix eigenvalue problem is similar to that studied in [14] for the GM model
(1.10), we can readily analyze this problem by appealing directly to results from [14].

We begin by writing (2.17) in the form

Lep+ Al =xp, -l<z<l, (4.1a)
Dnpw — (L4+mA+e i) =2 ugvsg, —-1<z<l1, (4.1b)
¢z (£1) = 1y(£1) =0, (4.1c)
where
Lep=ppp — ¢+ 2Ausvigp. (4.1d)

Here u4 and v4 are as given in (2.10) of Proposition 2.1. Since A = O(g2), we observe from (4.1b)
that 7A < 1 unless 7 = O(e2). In the derivation below, we assume that 7 = O(1), and so the small

eigenvalues are asymptotically independent of 7 when 7 = O(1).
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Since v4 is localized near each spike z;, the spike pattern is nearly translationally invariant. To

show this, we differentiate the equilibrium problem for (1.6a) with respect to x to get
Lovy, = —Auimyi . (4.2)

For z near z;, we calculate from (2.10a) that

1 g1
AU:E w] 9 V:l:l' ~ AU:t w_] 9

V4 ~

(4.3)

where we have defined w; = w;(y;) = w [¢7'(z — z;)], and w satisfies (2.3). Substituting (4.3) into
(4.2), we obtain
ng;- ~ —8U:E1U:|:xw]2- =0(e), (4.4)

for  near x;. This suggests that we look for an eigenfunction to (4.1) in the form
p=¢ot+epr+---,  nz)=enlz)+---, (4.5a)

where, for coefficients ¢; to be determined, we have
k k
do = chwj [5_1(:5 —z;)] , b1 = Z cidij [6_1(36 —z;)] . (4.5b)
j=1 j=1

Here and below we have defined ((); = (¢(z;+) 4+ ((z;-))/2 and [(]; = ((z;+) — ((z;-), where
((z;+) are the one-sided limits of {(z) as £ — zj1. In particular, the equilibrium positions for z;
given in (2.1) are such that

(uig); =0,  j=1,...,k, (4.6)

where uy is the outer solution given in (2.10b).
We substitute (4.5a) into (4.1a), and use (4.4) with A = O(?). For z near z;, we get that ¢;;(y)

satisfies

ciLegpij ~ f(z; + 6yj)w32~, (4.7a)
where f(x) is defined by
_ ciugg(z)  mo(z)
fla) =T T (4.7b)

Substituting (4.5a) into (4.1b), we obtain that 7y satisfies
Drogs — (L+e i) mo = 26 2usvy (¢o+e¢1), —-1<z<I, (4.8)
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with 7o, (£1) = 0. Since ¢y is a linear combination of w; ;» it follows that the term multiplied by ¢
on the right-hand side in (4.8) behaves like a dipole near = z;. Hence, for ¢ < 1, this term is a
linear combination of &' (x — zj) for j = 1,..,k, where §(x) is the delta function. Thus, 7y will be
discontinuous across x = ;.

Since 7o is discontinuous across & = z;, it appears at first glance that f(z) in (4.7b) will also
be discontinuous across x = x;. However, this is not the case, as we find that the first term on
the right-hand side of (4.7b) cancels this singularity. To see this, we differentiate the equilibrium
problem for (1.6b) with respect to z, and subtract appropriate multiples of the resulting equation
and (4.8), to find that the dipole term proportional to ¢g cancels exactly. Thus, f(z) is continuous
across ¢ = zj, and so (f); = f(z;). However, since (ui,); = 0 from (4.6), we get from (4.7) that

ciLeduy ~ Fleg . flay) =~ (49)

Then, since L.w; = w]2~ + O(¢), we determine ¢;; as
cipij ~ flxj)w;. (4.10)

Therefore, since ¢;; has one sign, the term in (4.8) proportional to ¢; behaves like a linear combi-
nation of 6(z — z;) when € < 1 and, most importantly, is of the same order in € as the dipole term
proportional to ¢o. This clearly shows that to calculate an eigenvalue of order O(e?), we need to
determine the asymptotic eigenfunction for ¢ in (4.5a) to both the O(1) and O(e) terms.

Next, we calculate, in the sense of distributions, the effect of the dipole and monopole terms
appearing on the right-hand side of (4.8). Using (4.3) for v+ and u4 ~ U4 near z = z;, we calculate
from (4.5b), (4.9), and (4.10) that, near z = z;,

22Uty — % (/_oo w? dy) § (z— zj) = %6 (z —z;), (4.11a)
_ 2f(x; o0 12(n

2 tusvig — félj) (/OO wJZ- dy) iz —zj) = AgUo'gJ é(x —zj), (4.11b)

el - AQLUié(x —zj). (4.11c)

Substituting (4.11) into (4.8), we obtain that 7y satisfies

k k
6 6 '
Drjgzs — 1+—A2Ui;5($—%> nozjl;cjé (z = ) = AQUQZno (2 =), (412)



with 7oz (£1) = 0. Using (2.9) for Uy, and the definition of s in (2.15), we can write

AZLUi:_g =i (4.13)

Here a4 is given in (2.8). Substituting (4.13) into (4.12), we get that (4.12) is equivalent to
Dioew =m0 =0, —l<z<l;  nog(£l)=0, (4.14a)
Dl =3+ Dmel;= ., G=1ok (4.14b)

Next, we estimate the small eigenvalue. Substituting (4.5) into (4.1a), we then multiply both

sides of (4.1a) by w;. By integrating the resulting equation across the domain, we get

k k k
Z (w;,cing;) +eA (ﬁoui,w;) + 62 (w;, ciLEqsu) ~ A Zci (w;,w;> . (4.15)
i=1 i=1

=1

Here we have defined (f,g) f f(x)g(x)dz. To within negligible exponentially small terms, the

dominant contribution to the sums in (4.15) arise from i = j, since w’

; is exponentially small away

from = x;. Thus, (4.15) reduces asymptotically to

cj (w L.w; ) +ecA (7707&7 ) +e (w;-,CngqSlj) ~ A¢j (w;-,w;-) . (4.16)

We then integrate by parts on the third term on the left-hand side of (4.16). Since L. is self-adjoint,
we can then use (4.4) for ng;- and (2.10a) for v4. Since the integrands are localized near z = z;,

we can write the resulting integrals in terms of y = ™' (z — z;) to get

526]' & dy + - 62 /oo 9 ! d 536]' /OO QZS 2 d A /OO 9 d
-—— w wu ww - — wu ~ EXC; w ,
Ui . +x QY AUi Tlo ay Ui . 1j +x QY il e Yy

(4.17)
where w satisfies (2.3). In this expression we have labeled ny = no(z; + ey) and vty = vty (z; +€y).

Using (4.10) for ¢1;, and (4.7b) for f(x), we can write (4.17) more compactly as

2 [0 9 e fla;) [ -
—5/ w w f(xj—i-sy)dy—i]/ Wiy (zj + ey) dy ~ elc; (/ w dy). (4.18)

—00 Uy —00 —00

The second integral on the left-hand side of (4.18) is O(e?) since (u1;); = 0 from (4.6). The function

f(z) in (4.18) is continuous, but not differentiable, at z = z;.
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The first term on the left-hand side of (4.18) is calculated by first expanding f(z; + €y) in
one-sided Taylor series, and then by integrating the resulting equation by parts. This yields,

© 19 15} ’ o0 3
/ w w f(xj—i-sy)dyw—g(f )J/ w” dy . (4.19)
Using (4.7b), and (2.4a), which yields (u444); = (U+ — 1) /D, we calculate
W (UL—1) 1
<f >j = - 2
U.D AUZ

(noz); - (4.20)
Then, we substitute (4.20) and (4.19) into (4.18), to get

e f ¢ (Ux—1) (Uod;’] J oo widy
7 ffooo ’UJIZ dy .

4.21
3 UrD AU2 ( )
Here (n9) is to be calculated from (4.14).

Finally, we re-write (4.21) and (4.14) in a more convenient form by introducing a new variable
7o defined by

=——"17- 4.22
o el (4.22)
In addition, we calculate the ratio of the two integrals in (4.21) using w(y) = %sech2 (y/2). In this

way, we obtain the following problem that determines the small eigenvalues:
Proposition 4.1: Let ¢ < 1 and 7 = O(1). Then, the eigenvalues of (2.17) of order O(£?) satisfy

- Cj .
Acj ~ 2e%s [(U0x>j — 5‘7] , j=1,...,k. (4.23)

Here (fjog); is obtained from the solution to the boundary value problem with jump discontinuities

Djoze — 10 =0, -I<z <l ﬁOx(il) =0, (4'243')
- Cj - -5, . .
Gg Gg

Here s is defined in (2.15a).

A problem very similar to (4.24) was derived in Proposition 8 of [14] in the context of the GM
model (1.10) with exponent set (p,q,m,s), where ( = gm/(p — 1) — (1 + s) and ¢ > 0. As was
observed in §3 in the study of the large eigenvalues, we also find that (4.24) for the Gray-Scott model

is equivalent to the corresponding problem for the GM model with exponent set (2,s,2,s), where
s=(1-Uy)/Ux.
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The system (4.24) can be solved using a lengthy matrix analysis as was done in section 4.2 of
[14] for the GM model (1.10). We now only give a brief sketch of that part of the matrix analysis
of [14] which is important for describing our results for the Gray-Scott model (1.6). The solution to
(4.24) is decomposed as

k k
- 1
o) = — | D ejglaizy) + Y miGlasag) | (4.25)
7 \y=1 j=1
for some coeflicients m;, for j = 1,...,k. Here G(z;z;) is the Green’s function satisfying (2.6), while

g(z; ;) is the dipole Green’s function satisfying
ng—g:—él(ac—xj), -l<z<1; gz(£1;25) =0. (4.26)

Define the vectors m! = (mq,...,m;) and ¢' = (c1,...,cx), where ¢ denotes transpose. Then,

satisfying the jump conditions in (4.24b), we get a matrix problem for m in terms of ¢ in the form

<—ig + I> m=—"P,c. (4.27)
g Gg
Here G and P, are matrices associated with G' and g, defined by
Gzi;21) -+ G(z1;2) (9(@iz)h - gl@;ap)
g= : . : ; Py = : : - (4.28)
G(zp;z1) -+ Glogzr) g(@pszr) - (g(ks p))k

The angle brackets in (4.28) again denote the average of the right and left-sided limits. This problem
(4.27) determines m in terms of c.
In (4.23) we must calculate (foz)’ = ((oz)1,- - - » (Toz)x). To do so, we use (4.25) to get

~ 1
(fl0z) = — (Gge +Pm) (4.29)
g9
where G, and P are two additional Green’s function matrices defined by
gz(z13m1) - gu(T15T8) (Ge(zi;z))r - Galz o)
Gy = T . P= z s - (430)
9e(k;21) - Go(Th; Tk) Ge(zp; o) - (Go(or; oe))k
Next, we define ¢ in terms of A by

A=""g. (4.31)



Combining (4.23), (4.29), and (4.31), we obtain a matrix eigenvalue problem for o and ¢ given by

Ggc +Pm = (U + %) c, (4.32)

where m is determined in terms of ¢ by (4.27).
Since the matrices G, G4, P, and P,, appearing in (4.27) and (4.32) are in general full, it appears
to be difficult to determine o explicitly. However, it was shown in [14] that the inverses of G and Gy

are in fact tridiagonal matrices, which can be written explicitly as

_ By
VD'’

Here By is the matrix defined by setting 7 = 0 in the matrix By of (3.7). The matrix B, has exactly

_ B!
T p3/2

g Gy (4.33)

the same tridiagonal form as in (3.7), except that the coefficients d, e, and f, in (3.7b) are to be
replaced with

d = coth(26y/k) + coth(6y/k) , e = 2coth(26y/k), = —csch(26y/k) , 6= D'/? .
(4.34)
A key condition in the analysis of [14] is that we can solve (4.27) for m in terms of ¢. This
requires a certain invertibility condition. Since (4.33) relates G to a matrix Byy whose spectrum was
calculated in (3.11) of §3, the invertibility condition is that

—s
——— +1#0, j=1,...,k, (4.35)
kojV Dag

where kg; is an eigenvalue of By when 7 = 0. Using (3.11) for xg;, and (2.8) for a4, we see that this

invertibility condition is equivalent to

i ! Y | 1= cos (x(j — 1)/h)]
3+ gm0 (F) ) # (436

From the analysis in §3, we see that the left hand-side of this expression is simply C; at A = 0, where

Cj is defined in (3.19). Recall from §3 that C; = 1 implies that there is a zero large eigenvalue.
Hence, we conclude that our invertibility condition is precisely equivalent to the condition that the
parameters s, k, and D, do not correspond to a zero large eigenvalue. For the large solution branch
U4, V4, the invertibility condition (4.36) always holds, since from Proposition 3.10 all of the large
eigenvalues are real and positive. For the small solution branch where 1 < s < oo, the invertibility
condition (4.36) always holds when k = 1. For k > 1, a sufficient condition for (4.36) to hold is that
A > Aip, (or equivalently D < Dygr), where Ay, and Dy, are given in (3.27).
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The eigenvalues £; and the associated normalized eigenvectors v; of By are essential to the main
result below. They were calculated in Proposition 9 of [14] as

260 260 '
¢; = 2coth Z0) _gesch [ 20 ) cos [ L j=1,...,k, (4.37a)
k k k
1 k+1 2 . (7 .
vgzv%(L_LL”.4_n+); Uw=:¢;$n(50—lﬂ0, j=1,....,k—1. (4.37b)
Here v! denotes transpose and vz- = (V1 - Vk,j)-

The next step in the analysis is to calculate o and ¢ explicitly. This was done in (4.37a)—(4.58)
of [14]. We will not repeat that calculation here. In this way, we obtain the following explicit main
result for the small eigenvalues of (2.17):

Proposition 4.2: Let ¢ < 1 and 7 = O(1). Assume that the invertibility condition (4.36) holds.
Then, the eigenvalues of (2.17) of order O(?) are given explicitly by

2e%s [1 — cos (mj/k) — 2 (cosh (20p/k) — 1) )
A~ — J =1,...,k. 4.38
D cosh (26y/k) — cos (77 /k) ’ I (4.38)
Here zj is defined in terms of s = (1 —U+)/U+ by
S 200 . ’/Tj .
2; = ————— csch? (—) sin? <—> , =1,...,k, 4.38b
T s ¢jagV'D k k g ( )

where & and ag are defined in (4.37a) and (2.8) respectively. The corresponding eigenfunction ¢
from (4.5) is given explicitly as

¢(£E) ~ Z (Cjw’ [g—l(x — :E])] + 68<ﬁ0>jw [g_l(x — (L‘])]) , (4.39&)
=1
where
]. S S -1
<7’0> = a_g I+ ag—\/ﬁ (BOO - ag—\/l_)l> ch. (439b)

Here By is the matriz By in (3.7) evaluated at 7 = 0, and Py is the matriz defined in (4.28). The
vectors ¢j = (c1,...,c;) are precisely the eigenvectors v; defined in (4.37b).

Next, we determine the sign of \; with respect to the parameters D, A, and k. Since 2z, = 0 in
(4.38b) it follows that A\ < 0 for any k, D and A. Therefore, there is always one negative eigenvalue.

Hence, there is always one stable direction for translational perturbations of the equilibrium solution.
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Repeating the analysis from (4.60)—(4.64) of [14] we conclude that \; <0 for j =1,...,k — 1 if and
only if
1 — s+ csch? <%> <0. (4.40)

For the large solution uy, v, , where 0 < s < 1, the left hand-side of (4.40) is always positive, and
so there are k — 1 positive small eigenvalues A;, for j = 1,...,k — 1. For the small solution where
s > 1, we can calculate stability thresholds from (4.40). This yields the following main result:

Proposition 4.3: Let ¢ < 1, and 7 = O(1). For k = 1, both the large and small solutions uy vy

are always stable with respect to the small eigenvalue. For k > 1, and for the large solution u,,
vy, there are always k — 1 positive small eigenvalues and one negative eigenvalue Ag. Similarly, for
k> 1, we also have A\ <0 for the small solution u_, v_. However, the other small eigenvalues Aj,
for j=1,...,k —1 are negative at a fized value of A/ Ak, if and only if D satisfies,

D < Dyg = 4 r [1—“4%6]1/2 (4.41)
T (D) Ay '

When D = Dyg, then A =0 is an eigenvalue of algebraic multiplicity k — 1.

We can readily obtain a similar criterion with respect to the parameter A. This leads to the next
result.
Proposition 4.4: Let ¢ < 1 and 7 = O(1). For the small solution u—_, v_, the small eigenvalues
Aj, for j=1,...,k —1 are negative at a fired value of D if and only if A satisfies

-1
A > Ak}S Ak}S = Ake [tanh <2kﬁ>:| . (4:4:2)

Here Ay, are the existence thresholds of (2.12).

Qualitatively, we summarize our results as follows. For a one-spike solution, the entire small
solution branch u_, v_ is stable with respect to the small eigenvalues for any D > 0 and A > Aq,.
For a multi-spike pattern with £ > 1, the small solution branch is stable with respect to the small
eigenvalues if and only if, at a fixed A, /A, the diffusion coefficient D is below the threshold Dyg, or
equivalently, at a fixed value of D, the constant A exceeds Agg. Notice that when D < 1, we have
Ars — Are — 0. The large solution branch is always stable with respect to the small eigenvalues
when k£ = 1, but is always unstable when k£ > 1.

Propositions 4.3 and 4.4 show that &k — 1 small eigenvalues cross through zero as either D crosses
through Dyg or as A crosses through Ayg. Comparing (4.42) with the result in Proposition 2.4, we

obtain the next result.
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Figure 22: Bifurcation diagram of |v|s, defined in (2.14), versus A for D = 0.75. The dashed portions
are unstable for any 7 > 0. The heavy solid portions are stable with respect to the large eigenvalues
when 7 < 7,1, but not the small eigenvalues. The solid portions are stable with respect to both the
large and small eigenvalues when 7 < 73

Proposition 4.5: For ¢ < 1, and k > 1, the asymmetric k-spike equilibrium solution branch

constructed in §2 bifurcates off of the symmetric k-spike equilibrium branch ot precisely the parameter
value A = Ayg where k—1 small eigenvalues associated with the small solution uw_, v_ cross through
zero.

Finally, we compare the stability thresholds Djgs and Ajg with the thresholds Dyr and Agr
calculated in §3 that guaranteed that the small solution was stable whenever 7 is sufficiently small.
The thresholds Dy, and Ay, signified the onset of competition instabilities. A simple calculation
shows that Dig and Agg can be obtained by setting j = k£ + 1 in (3.24) and (3.25), respectively.
This observation readily implies the following inequalities:

Ars > Agr, Dys < Dy, . (4.43)

Therefore, the stability thresholds with respect to the small eigenvalues are more stringent than
those for the large eigenvalues when 7 is small. The next result yields the main stability conclusion
for the small solution branch _ and v_.

Proposition 4.6: Let ¢ < 1 and consider the small solution branch u_, v_ of Proposition 2.1.

Suppose that T < 1,1, where 1,1, corresponds to the Hopf bifurcation value given in (3.36). Then, the
k-spike symmetric solution branch is stable with respect to both the large and the small eigenvalues
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when either D < Dyg, or equivalently when A > Ayg. For D satisfying Drs < D < Dygr,, or when
A < A < Ags, the solution is stable with respect to the large eigenvalues but is not stable with
respect to the small eigenvalues.

To illustrate our main result graphically, in Fig. 22 we plot the norm |v|; defined in (2.14) versus
A for the parameter values D = 0.75 and k = 1,...,4. The stability information of Proposition 4.6
is shown by different shadings of different portions of these branches. For smaller values of D, we

still have A, < Arr, < Ais for k& > 2, but in this case Ajg is close to Age.

1.3 T T T T T T

Vi 12 F\— Ty 050 - 1

1.1 1 1 1

0 500 1000 1500 2000 0 500 1000 1500 2000
t t
(a) vm versus t (b) z; versus t

Figure 23: Numerical solution to (1.6) with D = 0.75, k = 2, ¢ = 0.03, 7 = 2.0, and A = 6.5. Left
figure: plot of the spike amplitudes v, of v_ versus ¢. Right figure: plot of the spike location z9
versus t.

Although our analysis has only considered the stability of symmetric k-spike equilibrium solution
branches, the results above suggest local stability properties near the bifurcation point Agg for
the emergence of asymmetric k-spike branches. Since k — 1 small eigenvalues for the symmetric
branch cross into the stable left half-plane as A increases past Ayg, we conjecture that, locally, the
asymmetric branches are always unstable with respect to the small eigenvalues. However, since the
symmetric branch is stable with respect to the large eigenvalues at A = Aggs when 7 < 7,1,, we would
expect from continuity that, locally, the asymmetric solution branch is stable with respect to the
large eigenvalues when 7 is below some threshold.

Example: To illustrate our theory, and to show another significance of these small eigenvalues, we

99



16 F .
S 1
121 ]

Tj 0.0 bl Vm
/ T |

_7”"/
“05F ] 04 F .
_1.0 | | | 1 1 00 1 1 1 1

0 100 200 300 400 500 600 0 100 200 300 400 500

t t
(a) v versus t (b) z; versus ¢

Figure 24: Numerical solution to (1.6) with D = 0.75, k = 2, ¢ = 0.03, 7 = 2.0, and A = 6.0. Left
figure: plot of spike locations x; versus t. Right figure: plot of the spike amplitudes vy, versus ¢.

consider a specific example. In the full numerical simulations of (1.6), we take D = 0.75, k = 2,
e = 0.03, and 7 = 2.0. For this two-spike example, we calculate Ass = 6.296 and Asr, = 5.633.
Since 7 is below the stability threshold there is no Hopf bifurcation for the equilibrium profile. For
the initial condition for (1.6), we take the equilibrium solution of Proposition 2.1, with initial spike
locations z;(0), for j = 1,2, slightly offset from their equilibrium values of +0.5. The solution to
(1.6) is computed using the routine DO3PCF of the NAG library [25] with 1500 uniformly spaced
meshpoints.

We first take A = 6.5 > Asg, and z1(0) = 0.52, z2(0) = —0.48. For this value of A, the two small
eigenvalues are negative. Therefore, the solution should be stable with respect to translations of the
profile. In Fig. 23(a) we plot the spike amplitudes v,,, = v_(z;), for j = 1,2, as a function of time
showing the convergence towards a symmetric two-spike equilibrium solution over a long time-scale.
In Fig. 23(b) we plot z2 versus ¢ showing that zo — 0.5 as ¢ increases. A similar plot can be made
for z;.

Next, we take A = 6.0, so that Ao;, < A < Asg. We also take z1(0) = 0.52, 22(0) = —0.48.
In Fig. 24(a) we plot the locations of the two spikes as a function of time showing the divergence
away from the two-spike equilibrium locations £0.5. In Fig. 24(b) we plot the spike amplitudes v,

for the two spikes as a function of time. The solution v_ versus z is shown in Fig. 25(a) at different

60



1.6 - B!

v T2 0.50 - b
0.8 - i
04r i
0.48 F 4
00 L L 1 | 1
~1.0 ~0.5 0.0 0.5 10 0 100 200 300 400
z t
(a) v versus x (b) z; versus t

Figure 25: Left figure: plot of numerical solution to (1.6) at different times for the parameter values
of Fig. 24. The clustered solid curves correspond to ¢ = 0,150,300, and the heavy solid curve
corresponds to ¢ = 500. Right figure: plot of the spike location zo versus ¢ for the parameter values
of Fig. 24, except now with symmetric initial locations z;(0) = 0.52 and z2(0) = —0.52.

times. This example suggests the following scenario. For this value of A, the equilibrium two-spike
solution is stable with respect to profile instabilities (large eigenvalues), but is unstable with respect
to translations (small eigenvalues). Therefore, the locations of the two spikes diverge away from +0.5.
During their evolution, a competition instability occurs on a O(1) time scale as a result of a large
eigenvalue crossing into the right half-plane. Recall that we have only analyzed profile instabilities
associated with equilibrium spike solutions, and not quasi-equilibrium solutions. This competition
kills one of the spikes, and the other spike then tends to the stable one-spike equilibrium solution
centered at the origin. Since Ay < 0 in Proposition 4.3, a one-spike equilibrium solution is always
stable with respect to translations.

Finally, we again take A = 6.0, but we now introduce a symmetric perturbation in the initial spike
locations so that z;(0) = —0.52 and z2(0) = 0.52. Although, the equilibrium solution is unstable
with respect to translations of the profile, the spike location x5 is shown, seemingly paradoxically,
in Fig. 25(b) to approach its equilibrium value. An identical convergence occurs for 1. To explain
this, we recall from Proposition 4.3 that, although A; > 0 for this value of A, we always have that
Ao < 0. Therefore, we have a saddle-structure for the two-spike equilibrium. From Proposition 4.3,

and from the form of the stable eigenvector vy in (4.37b), we note that symmetric perturbations of
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the initial spike locations such as given in this example are, locally, on the stable manifold of the
saddle point. Therefore, with sufficient numerical resolution it is possible that we can approach the

saddle point as t increases. This is what is observed in Fig. 25(b).

5 The Intermediate Regime: O(1) < A < O(e71/?)

The derivations of the spectral problems in Propositions 3.2 and 4.1 were based on linearizing (1.6)
around the solution constructed in Proposition 2.1. A crucial feature of this solution is that the
leading-order inner problems for u4 and vy decouple near each spike. In particular, this implies that
us+ = Ux + O(e) in the core of each spike. The eigenvalue problems in Propositions 3.2 and 4.1 are
valid for the range of A where such a leading-order decoupling of the inner problems for u4 and v4 can
be made. We now show formally that, when D = O(1), this decoupling property holds for the range
O(1) < A < O(e~1/2). For the intermediate regime, which we define by O(1) < A < O(e~/?), we
then derive certain scaling laws for the stability thresholds calculated in §3 and §4.

To construct a k-spike pattern, we proceed as in the study of asymmetric patterns in §2.1 by
first constructing a symmetric one-spike equilibrium solution to (1.6) on the interval — < x < I.
Then, by setting [ = 1/k, we obtain the result for a k-spike pattern for (1.6) on —1 < z < 1. In the

1

inner region near z = 0, we let y = ¢z, v;i(y) = v(ey), ui(y) = u(ey), and we expand the inner

equilibrium solution for (1.6) on —I < z <[ as

vi(y) = vio(y) + evin(y) + - -+, wi(y) = uioy) + euin(y) +--- . (5.1)

Substituting (5.1) into the equilibrium problem for (1.6), we collect powers of £ to get

"

1/;'0 — Vo + Auioulzo =0; uo =0, —00 <y < 00, (5.2a)

" 2 . " 2
vy — vin + 2Auioviovi = —Aupvyy; Du;y = uipvyy, —o0o <y < 0. (5.2b)

In terms of the solution w to (2.3), the solution to (5.2a) is

voly) = G0, () = U (5.3

In the outer region, v is exponentially small and e~ !upr?

can be represented as a Dirac mass,
which can be calculated using the leading-order inner solutions u;y and v;9. Therefore, the outer

solution wuy satisfies,

6
A2U
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The solution to (5.4) can be written in terms of the Green’s function satisfying (2.19) as

6 g cosh [(I — |z])bo]

) ) — — p-1/2
A2UG’(:1:, 0), G(z;0) 2 sinh (6o]) , 6o =D . (5.5)

up(z) =1—
To determine the matching condition for the inner and outer solutions for u, we expand wug in (5.5)
in right and left-sided limits as # — 0F. In this way, we obtain that U satisfies

U=1- 6%70(]0) G(0;0) = (%) coth (6ol) , (5.6)

and that the solution u;; to (5.2b) must have the far field behavior

6G.(0%;0)
el

Next, we introduce new inner variables ;1 and 7;; defined by

Uiy ~ — as y — +oo. (5.7)

1 1

“partt T papt 9

Ug1
Substituting (5.8) and (5.7) into (5.2), and noting that G, (0F;0) = F62/2, we obtain an explicit
two-term inner expansion. The outer expansion is obtained by substituting (5.6) into (5.5). Then,
identifying [ = 1/k, we obtain the following result for a k-spike pattern:

Proposition 5.1: For ¢ — 0, consider a k-spike equilibrium solution to (1.6). Then, when A > Apge

there are two such solutions; the small solution u_, v_, and the large solution uy, vy. The two-term

inner expansions in the core of each spike are

1 . .
vis(y) ~ wa@m(yw---] () ~ Us [1+@ui1(y)+--- ,

(5.9a)
where Uy and Age are given by

1 A2 126,
Uy == [144/1 - Zke e = 4| 0o =D /2, 5.9b
=72 yell R tanh (6 /k) ’ 0 (5.9b)

Here vj1(y) and 41 (y) satisfy the parameter-independent inner problems on —oo < y < 00

/\II ~ ~ ~ ~
Uy — Ui+ 2wy = — G w?, vip—0, as |yl = o0, (5.10a)
o

iy = w?, a1 ~ 3ly|, as |y| — oo. (5.10b)
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The corresponding outer solution for u on —1 < x <1 is

S Glzizy),  ag= [2\/5tanh (eo/k)y1 , (5.11)

=1

k
(1-Uy)
uole) =1~ L= 1)
J
where G(x;x;) is the Green’s function on —1 < z < 1 defined by (2.6).
From (5.9a), we obtain that the leading-order decoupling property for the inner solutions is valid

provided that
€

A2U%D

Since Uy — 1 as A — oo, the condition (5.12) holds uniformly as A — oo for the large solution u.,

< 1. (5.12)

vy. Alternatively, as A — oo, we have for the small solution that

Ake

R

Ay
+0 ( Af) , for A>1. (5.13)
Substituting (5.13) into (5.12), and using (5.9b) for Ag., we obtain that the decoupling condition
(5.12) holds when

O(1) < A< 3c Y2 coth[Op/k], 6y =D 2. (5.14)

Therefore, for D = O(1), we must have that A < O(e '/2). Although, (5.14) appears to hold
uniformly in D as D — 0, this is misleading since the existence threshold Ay, in (2.12) yields
Age = O(D'/*) as D — 0. Hence, for D < 1, the intermediate regime holds provided that
O(D~'*) « A < e /2. This requires that D > O(e?). Hence, there is no intermediate range for
A for the parameter regime studied in [29] where D = O(g?).

We now derive certain scaling laws in the intermediate regime where O(1) < A < O(e~'/?) and
D = O(1). In particular, in this regime we use (5.13) to obtain that the two-term inner expansion

for the small solution in the core of each spike satisfies

AvD e A? .
W(ngam@Jm%“w+(aaﬁ@95>m@*““y (5.15)
CO £ 2

Moreover, for A > 1, the outer solution (5.11) has the form

uo(x)~1—aig< 4A2>ZG$$] (5.16)
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In the intermediate regime, we can use (5.15a) to calculate the norm |v|2 in (2.13) as

1 1/2

vV6DEA

lv]o = (51/ v? dw) ~— . (5.17)
O 3 coth (6o /k)

The expansions (5.15) and (5.16) do suggest the following scalings of the inner and outer solutions

in the pulse-splitting regime A = O(e~1/2) studied in the companion paper [16]:
vi=0(E ), u=0(),  u =un+O0®). (5.18)

The spectral results of §3 and §4 are valid when the decoupling condition (5.14) holds. We now
derive scaling laws for the stability thresholds of the small solution w_, v_ in the intermediate regime.
Using (5.13), we obtain for A — oo that

1-U_ 44
=——=— -2 1), A— . 5.19
s il 2 +o(1) as 00 (5.19)
To calculate the stability threshold Dy, for the large eigenvalues, we let s — 0o in (3.27a). Using

(5.19), a simple calculation shows that for A > 1 we have

8.A2

Dy, = D5 +0(1), D>e = _"
kL (1) kL k_Q%Aze

where v; =1+ cos (%) . (5.20)
Hence, DS = O(A?) as A — oc.

To determine the thresholds for a Hopf bifurcation in the intermediate regime, we let s — oo in
(3.19) to get that C; = (1/2)+O(s™1) when 7 = O(1) and D = O(1). In this range of 7 and D, where
Cj ~ 1/2, there are no eigenvalues in the right half-plane (cf. [39]). Therefore, for D = O(1), an
instability can only occur when 7 > 1. The correct scaling law is to introduce a new O(1) parameter
Ty by

T = 7 tanh? (0 /k) 2. (5.21)

Substituting (5.21) into (3.19), and assuming that D = O(1), we let s — oo to get

Ci(A) ~ Co(\) + 0(s72),  Coo(N) = % 14 VA (5.22)

Notice that C(A) is independent of j, D, and the number of spikes k. The nonlocal eigenvalue
problem in the intermediate regime is then obtained by replacing x in (3.12) with x = 1/Cw.
Substituting (5.19) into (5.21), we obtain the key scaling law

164 A2 \?
T~ Toos Too = AT tanh? (6 /k) 0 (1 — 2}%) +o(1). (5.23)
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Here Ay are the existence thresholds of (2.12). This leads to the following result for the large
eigenvalues in the intermediate regime O(1) < A < O(e~1/2):

Proposition 5.2: Assume that 0 < ¢ < 1, D = O(1), and O(1) < A < O(e~?). Then, with
O = D(y), the O(1) eigenvalues of (2.17) for a symmetric k-spike small solution u_, v_ satisfy, for

each 7 =1,...,k, the following leading-order nonlocal eigenvalue problem:
* wdd
Lo® — Xoow? (%) =)\, —00 <y < 00, (5.24a)
—00

with ® — 0 as |y| — oo. Here the local operator Ly is given in (3.12c), and the multiplier X~ is

2
1+\/T0>\ )

The corresponding global eigenfunction ¢(x), representing the perturbation in v_, is

Xoo (5.24b)

k
¢(x) ~ Zc,@ (e oz — )] . (5.25)
i=1

Here ¢; for i =1,...,k are the components of any one of the k independent eigenvectors in (3.11).

The eigenvalue problem (5.24) was derived using a dynamical systems approach in [4], and studied
in [5]. In [4] and [5], hypergeometric functions were used to numerically compute a winding number
criterion for (5.24) over a wedge-shaped region that includes part of the left half-plane. Since the
continuous spectrum is on the negative real axis, with the approach in [5] there are many technical
difficulties that were overcome to count the number of eigenvalues near the origin. In our approach
of §3, by having derived properties of f(A) on the imaginary axis, we do not need to consider the left
half-plane and the difficulties with the continuous spectrum intersecting the origin. The only effect
of the continuous spectrum with our formulation is that C._(0) is infinite. Even with this change in
the property of C' in Proposition 3.6, the theory of §3 applies directly to (5.24), and proves that there
is a Hopf bifurcation value 7y, (possibly non-unique) where (5.24) has complex conjugate eigenvalues
on the imaginary axis at Ay, and that there is another critical value 7, where complex conjugate
eigenvalues in the right half-plane first merge onto the positive real at some Agp, as 7y is increased.
The proof is not computer assisted as in [5], since we do not use hypergeometric functions.

In Fig. 26(a) we plot the numerically computed path of the eigenvalues for (5.24) as 7 is increased,
up until these eigenvalues merge onto the real axis. The corresponding functions A\gp = Ar(7) and

Ar = Ar(7) > 0 are shown in Fig. 26(b). These numerical computations suggest the stronger result
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Figure 26: Left figure: plot of the path of A = Ar £ iA; as 7y increases past 7o, = 1.748 until it
merges onto the real axis at 7, = 8.567. Right figure: Ar (heavy solid curve) and A; (solid curve)
versus Ty.

that 7oy is in fact unique, and that there are always two eigenvalues of (5.24) in the right half-plane

when 7y > 71pp. Our computations yield the critical values,
Ton = 1.748, A, = 0.534; Tom = 8.567,  Agpm = 0.300. (5.26)

These values are consistent with those in [4]. To obtain our scaling laws, we substitute (2.12) for A,
into (5.23). In this way, and in analogy with Proposition 3.15, we can then summarize our stability
results for the small solution in the intermediate regime.

Proposition 5.3: Let ¢ < 1, and consider the intermediate regime O(1) < A < O(e='/?) for a

symmetric k-spike small solution u_, v_. Then, when D = O(1), the solution will be stable with

respect to the large eigenvalues when T < 7,.°, where

4 660,

2
D i annt (60/k) Ton <1 - m) +o(1). (5.27)

T ~

Moreover, for D = O(1), there are two eigenvalues on the positive real axis in the interval 0 < A\ < 5/4

when 7 > 7.7, where

4

D
=y Ag ganh? (8o/k) Tom (1 660

2
A2 tanh(6, /k))

+o(1). (5.28)
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Alternatively, suppose that D > 1, with D > D}, where D3 is defined in (5.20). Then, the small
solution u_, v_ is unstable for any T > 0.

This result shows that in the intermediate regime the roots of each g;(A) = 0 for j = 1,...,F,
where g; is defined in (3.18), are on the imaginary axis at asymptotically the same value of 7 and
A. This suggests a certain complexity in the dynamics near this bifurcation point, since there are k
possible eigenfunctions in (5.25) that occur when 7 crosses past 7,°. Since for a k spike solution each
of the k£ unstable modes crosses into the right half-plane at asymptotically the same value of 7, there
is no apriori guarantee that the spike oscillations will be synchronous in the intermediate regime.

The threshold for D can be written more explicitly by using (2.12) for Ag. in (5.20). In this way,
we obtain that there are no eigenvalues on the positive real axis when 7 is sufficiently small, provided

that D < Dy, where Dy is the unique root of

vD __2A (5.29)

tanh (ﬁ) 3k2

3.0 T T T 3.0 T T T

2.0 2.0

log;y(7)

w7

log;y(7)

L0 [

0.0 | | I | 0.0 | | I |

A/.Alg A/-A2e

(a) k = 1: log,o(7) versus A/ Aie (b) k = 2: log,o(7) versus A/ Aze
Figure 27: Comparison of numerical Hopf bifurcation value log,,(7,) (solid curve is D = 0.1, heavy

solid curve is D = 0.75) with the asymptotic scaling law log;((75°), where 7,° given in (5.27) (dashed
curves). Left figure: k = 1. Right figure: k = 2.

In Fig. 27 we compare the scaling law (5.27) for 7 for the Hopf bifurcation in the intermediate
regime with the corresponding numerical value computed from (3.12). In Fig. 27(a) and Fig. 27(b)
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we compare these critical values for £ = 1 and k = 2, respectively. From these figures, we observe
that the scaling law 7;° in (5.27) provides a good approximation to the numerically computed Hopf
bifurcation value except near the existence threshold Ajy,.

As a remark, a similar scaling law for a Hopf bifurcation can be derived for the infinite-line
problem studied in §3.4. Letting s — oo in (3.53), we obtain that the Hopf bifurcation value 7,° is

A'D 66 \ >
The ~ g Toh <1—A—§> +o(1), (5.30)

where 79, computed from (5.24), is given in (5.26). Setting D = 1, and writing A = ¢'/2A, we can

given by

write the leading term in (5.30) as
70 ~ 0.19422A4% 2. (5.31)

This result for the infinite-line problem is equivalent to equation (2.11) of [24].

Next, we derive a scaling law for the small eigenvalues studied in §4 that determine the stability
with respect to translations of a symmetric k-spike small solution _, v_. We let s — oo in the
formulae for the small eigenvalues A; of (4.38) as well as the corresponding eigenfunction given in
(4.39) of Proposition 4.2. Then, letting s — oo in (4.41) of Proposition 4.3, we obtain the scaling
law for the thresholds Dyg. Finally, using (5.19) to relate s to A, and (2.12) for Ay, we obtain the
following scaling law behavior for the small eigenvalues:

Proposition 5.4: Let ¢ < 1, D = O(1), 7 = O(1), and assume that O(1) < A < O(e~"/?). Then,

for the small solution u_, v_, the small eigenvalues of (2.17) have the scaling law,

4e2 A20, 0\ . 7] [1 — sech? (6 /k) cos? (7rj/(2k))]
A~ 3 tanh <Z> sin” (ﬁ) cosh (26y/k) — cos (7] /k) ’

j=1,....k, (5.32a)

where 0y = D~Y2. The corresponding eigenfunction ¢ has the scaling behavior

k
¢(x) ~ Z (ciw, [671(51,‘ — :ch)] — 6\/5(800ch)iw [871(51,‘ — (IIZ)]> . (5.32b)

i=1
Here By is the matriz By in (3.7) evaluated at 7 = 0, and Py is the matriz defined in (4.28). The
vectors ¢j = (c1,...,c,) are precisely the eigenvectors v; defined in (4.37b). Finally, the small

eigenvalues are negative in the intermediate regime only when D < D%, where

4.4

Dy =2
k2AZ,

+0(1). (5.33)

69



From (5.32), we have that A\; < 0 for j = 1,...,k when D = O(1) and 7 = O(1). Therefore,
when D = O(1) and 7 = O(1), we have always have stability with respect to the small eigenvalues in
the intermediate regime for A. However, stability can be lost when D or 7 is asymptotically large.
More specifically, using (2.12) to relate A, in terms of D, we obtain from (5.33) that the small
eigenvalues are all negative provided that D < Dgy,, where Dgo, is the unique root of

vD A (5.34)

tanh (ﬁ) 3k?

5.1 A Traveling Wave, or Drift, Instability: 7 = O(e~?)

The scaling law for 7 given in (5.27) for a Hopf bifurcation in the spike profile in the intermediate
regime shows that 7 = O(A*) > 1. In contrast, the instabilities associated with the small eigenvalues
studied in §4 only considered the regime where 7 = O(1). Therefore, it is natural to try to extend the
analysis for the small eigenvalues to see if an instability can occur on the range where 7 > 1. If such
an instability exists, then in some portion of the intermediate regime for A one could perhaps observe,
as T is increased, a small eigenvalue instability occurring before the onset of the Hopf bifurcation
instability associated with the large eigenvalues. Since, to leading order, the eigenfunction associated
with the small eigenvalue is w', this instability, referred to also as a drift instability, suggests the
initiation of a traveling wave. In the context of the infinite-line problem, such an idea was explored
in [23].

For the finite-line problem, we study the initiation of a traveling wave, or drift, instability for
a one-spike small equilibrium solution w_, v_ centered at the origin. More specifically, for 7 > 1,
the small eigenvalues can become complex, and we derive a formula for the critical value of 7, with
7 > 1, where such a traveling wave instability first occurs. For this one-spike solution, we show that
at some critical value of 7, with 7 > 1, a pair of complex small eigenvalues enters the right half-plane
through a Hopf bifurcation. This instability with respect to translations in the spike profile leads
to oscillations in the spike location, and is distinct from the Hopf bifurcation in the amplitude of
the spike profile studied in §3 and §5. As 7 is increased past this critical Hopf bifurcation value for
the drift instability, the complex conjugate pair of small eigenvalues will eventually merge onto the
positive real axis at some further critical value of 7. At this new critical value, the instability with
respect to translations leads to a monotonic drift of the spike towards the boundary of the domain.

For 7 = O(e72), we now derive a formula for the small eigenvalue associated with a one-spike

solution. Repeating the analysis leading to Proposition 4.1, we obtain the following result:
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Proposition 5.5: Let ¢ < 1 and 7 = O(¢72). Then, the small eigenvalue of (2.17) for a one-spike
small solution satisfies,

. 1
A~ 2e%s [(nmo - 5] : (5.35)
Here (njog)o is to be calculated from
- 1 . —s .
[Diioly = ——3  [Dfiozly = —(70)o - (5.36b)
Gg Gg

-1
Here (C)o = 5(C(0%) +¢(07). [Cly = C(04) = (07, s = (1~ U_)/U_ and a, = [2/Dtanhty] .
An eigenvalue A with Re(A) > 0 is called a traveling wave instability since, from (5.9) and (4.5),
the perturbation in v has the form

1

v-(@) ~ o

w(e ™ z) + deMw (7 ) + - ] , (5.37a)

where 6 < 1. This can be written as the Taylor series of

v_(x) ~ ﬁw(eil [z — zo(t)]), zo ~ —edeM (5.37b)

Hence, an instability with A > 0 and real leads to a monotonic drift of the spike away from z = 0,
whereas an instability with A = £:)\; leads to oscillations in the spike location around the equilibrium
value z = 0.

To derive an explicit formula for A\, we first calculate (7, )¢ explicitly. A simple calculation from
(5.36) yields

(oo = %tanh(%ﬁ) tanhfy, B=VITTX. (5.38)
Substituting (5.38) into (5.35), we obtain that
2e25s
A~ D [B tanh(6y0) tanh 6y — 1] . (5.39)
To analyze (5.39), it is convenient to introduce the new variables 74, w, and &, defined by
D 2s¢e?
T—<—2862>Td, )\—( D )w, §=Tqw . (5.40)
Substituting (5.40) into (5.39), we obtain that & satisfies F'(£¢) = 0, where
F(¢) = Té - G(6), G(€) = B tanh f tanh(6pB) — 1, B=\1+¢, 6,=D"1%. (541)
d
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In (5.41), the principal value of the square root is taken. In terms of the roots F'(£) = 0, the scaled
eigenvalues w are recovered from w = £/74.

Below, we will look for complex roots £ = {r + i1 to F(§) = 0. We will show that, for each
D > 0, the equation F(§) = 0 has a pair of complex conjugate roots on the imaginary axis {gr = 0
when 75 = 745. Increasing 74 past 745, this complex conjugate pair of roots merges onto the positive
real axis in the & plane when 74 = 74,,. At this value of 74, (5.41) has a double real root. For
T4 > Tam, (5.41) is shown to have two positive real roots.

Before analyzing the zeroes of (5.41), we examine the implications for the stability of a one-spike
solution in the intermediate regime O(1) < A < O(e~/?) as 7 is increased. Since s = O(A?) in
the intermediate regime, we obtain from (5.40) that a traveling wave instability will occur when
T=1rw = O (A_25_2). In contrast, from (5.27) a Hopf bifurcation in the spike profile will occur

when 7 =74 =0 (A4). Comparing the asymptotic orders of these two scales, we get

TH L TTW , when 1< A< O(E?), (5.42a)
Tw L TH, when O(e™'3) <« A< 012, (5.42b)

For the infinite-line problem, (5.42) was also observed in [23]. Therefore, there is some scaling regime
within the intermediate range O(1) < A < O(e~/?) where, as 7 is increased, a traveling wave
instability will occur before the Hopf bifurcation value associated with the spike profile.

We first look for roots of F'(¢) = 0 along the real axis. These roots correspond to the intersections
points of the line /74 with G(£). A simple calculation using (5.41) shows that

Ge(€) = taggeo [tanh(6p3) + Bbysech? (6pB)] , (5.43a)
tanh 90 2 9% 9
Gee(§) = i [6pBsech?(0o3) — tanh(6p3)] — 25 tanh 6y tanh(6y3)sech”(6pf3) . (5.43b)

Since zsech?z — tanhz < 0 for all z > 0, it follows that G(¢) is a monotonically increasing, and
concave, function on & > 0. In addition, G(0) = —sech?§; < 0. These properties of G(€) prove that
there are exactly two real roots to F(¢) = 0 when 74 > 74, and no such roots when 0 < 74 < Tg,.
Here 74, corresponds to the value of 74 for which the straight line £/7, intersects G(£) tangentially
at some point {,;,. By combining the equations F' = F; = 0 for the double root at 7 = 74, and

& = &, we obtain that &,, is the unique root of

tanh(6y0)

N (8% — 1) sech? (6pB) = 2 B=+1+E. (5.44)

2
(ﬁ + 1) Oy tanh @y’
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Figure 28: Left figure: 74y, (heavy solid curve) and w,, (solid curve) versus D. Right figure: graphical
determination of real roots to F' = 0 when D = 0.75: Here G(£) (heavy solid curve), and £/74 are
shown for 7; = 2.0 (dotted curve), 74 = 74, ~ 4.91 (solid curve), and 74 = 6.0 (widely spaced dots).

This yields &, as a function of 8y = D~1/2. In terms of &,,, we then calculate 74, and the eigenvalue
Wy from 74, = & /G () and wyy, = &/ Tam.-
By solving (5.44) numerically, we plot 74, and w,, as a function of D in Fig. 28(a). For D = 0.75

and D = 0.1, we calculate
D =0.7, 74n=4914, w,=0.717; D =01, 74n,=2229, wy,=0.116. (5.45)

For D = 0.75, in Fig. 28(b) we plot G versus ¢ together with the straight line /7,4 for three different
values of 74, one of which is the double root value 74 = 74,,. From this figure we see that there are
two real roots to F'(§) = 0 when 74 > 74, and none when 0 < 74 < Tgp,.

Fig. 28(a) suggests that 74, and w,, have limiting values as D — 0 and D — oo, respectively.
Let D — 0 so that 8y — oo. In this limit, &, — 0 from (5.44). Therefore, for D — 0, 74y,
corresponds to the value of 74 for which F'(¢) = 0 has a double root at the origin. Using (5.41), we
set F'(0) = F¢(0) =0, and let 6y — oo to obtain

1 1 1
—_— == [tanh2 0y + 6 tanh 6, sech290] — — as 0y — co. (5.46)
Tdm 2 2

Hence, 74, — 2 as D — 0, which is consistent with Fig. 28(a). To determine the limiting behavior
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of wy, as D — oo, we let 6y — 0 in (5.44) to conclude that &,, — oco. Using 8 ~ /£ when £ > 1, the

double root condition for F' can be written asymptotically as

Téd ~ /€0, tanh (\/500) -1, Tid ~ %E [90 tanh (\/500) + /€62 sech? (\/59())] . (5.47)

Assuming that /€0y — p as 0y — 0 for some p = O(1), we can combine the equations in (5.47) to
get that u satisfies
p tanh g — 2 = p? sech?p. (5.48)

The unique root of (5.48) is p = 2.2649. Then, since wy, = &y /Tgm and &, ~ Du?, we conclude that
wm — ptanhp — 1~ 1.2166 , Em — 5.1298D | Tgm — 4.2165D, as D —oo. (5.49)

Hence for D > 1, 74, is linear in D. The limiting behavior for w,, is clearly seen in Fig. 28(a).
Next, we look for roots of F'(£) = 0 on the positive imaginary axis £ = i{; with £ > 0. Separating

(5.41) into real and imaginary parts, we obtain

Fr(&r) = —Gr(&1), Fr(&r) = % - Gr(&r), (5.50)

where Fr(¢r) = Re(F(i&r)), Fi(&r) = Im(F(i&1)), Gr(&r) = Re(G(i€r)), and G1(&1r) = Re(G(i&r)).
Using (5.41), we readily see that for each D > 0 we have Gz(0) = —sech?fy < 0 and that G (&1)

is monotonically increasing with G — +o00 as £ — oo. Therefore, Fr(£r) = 0 has a unique root,

which we label by &;,. Then, setting F7(£;,) = 0, we determine the Hopf bifurcation value of 74 as

S ( f ) = Sh 2= I+ ibh. (5.51)

tanh 6 ztanhz)’

The corresponding value of w that determines the frequency of small scale oscillations is wy, = &, /7ap.
The resulting numerical values for 74, and w,, as a function of D are shown in Fig. 29(a). For D = 0.75

and D = 0.1, we calculate
D =0.75, 74, =2617, wp=0.772; D=0.1, 74,=1986, wp=0.115. (5.52)

Clearly, 74, = Tgm — 2 as D — 0.

By solving numerically for the roots of F/(§) = 0 with £ = £i + i&; on the range 745, < 74 < Tam
we obtain a path in the complex £ plane. Setting w = £/74, in Fig. 29(b) we plot this path in terms
of w for D = 0.75 and D = 0.1. These numerical results suggest that for each 74 > 74, there are

exactly two small eigenvalues in the right half-plane.
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Figure 29: Left figure: The Hopf bifurcation values: 74, (heavy solid curve) and wy, (solid curve)
versus D. Right figure: eigenvalues w = wg + iwy in the right half-plane for 7 > 74, when D = 0.75
(heavy solid curve) and D = 0.1 (solid curve).

To prove that, for each D > 0, there are exactly two small eigenvalues in the right half-plane
when 74 > 74, we must show that F(£) = 0 has exactly two roots in Re(§) > 0 when 74 > 74,. This
is done by calculating the winding number of F'(£) over the counterclockwise contour composed of
the imaginary axis —iR < Im¢ < iR and the semi-circle 'y, given by |{| = R > 0, for Re(¢) > 0. For
any 74 > 0, we have from (5.41) that F(§) ~ % 1+ 0(5_1/2)] as || — oo in the right half-plane.
Therefore, the change in the argument of F'(¢) over I'p as R — oo is 7. Since F'(£) is analytic in the

right half-plane, we then use the argument principle, together with F'(£) = F(£), to obtain that the
number M of zeroes of F'({) in the right half-plane is

M=+ g Fly, (5.53)
Here [arg F|. denotes the change in the argument of F'({) along the semi-infinite imaginary axis
Iy =1&7, 0 <& < o0, traversed in the downwards direction.

To calculate M we notice that F; = O(£;) and Fr = O(v/£1) as £ — oo, and that Fr(0) = 0
with Fr(0) > 0. This implies that arg F = 7/2 as {1 — 400, and arg F' = 0 at £ = 0. Since the
root to Fr(£7) = 0 is unique, we obtain that the change in the argument, [arg F|. , is either 3m/2

or —7/2 whenever Fr(&r) < 0 or Fr(&r) > 0, respectively, at the unique root of Fr(¢;) = 0. From
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(5.53), we obtain that M =2 or M = 0. Finally, since the root &, to Fr(£r) = 0 is independent of
74, we conclude that Fy (&) < 0 when 74 > 745 and Fr(&;) > 0 when 74 < 74,. This leads to a strict
transversal crossing condition at the Hopf bifurcation point. This result is illustrated in Fig. 30(a)
and Fig. 30(b) where we show a graphical determination of the roots of Fr(£7) =0 and F;(&r) = 0.

We summarize our results as follows:

T T
04 0l _
0.2
20 - 4
Re(G
O In(G)
10 .
—-0.2
_0.4 1 1 Il Il 00 . 1 Il 1 Il
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0
& 34
(a) Re(G(i&r)) versus &1 (b) Im(G(i&r)) versus &1

Figure 30: Graphical determination of the roots of F'(i{7) = 0 when D = 0.75. Left figure: Re(G(i&1))
versus &7. Right figure: Im(G(i€s)) versus &; (heavy solid curve). We also plot &;/74 for 74 = 1.5
(dotted curve), 74 = 745, = 2.6169 (solid curve), and 74 = 4.0 (widely spaced dots).

Proposition 5.6: Let ¢ < 1 and 7 = O(e2), and consider the small eigenvalues with A = O(g?).

Then, there is a complex conjugate pair of pure imaginary eigenvalues when 174 = 7q,. For any
Tq > Tgn there are exactly two eigenvalues in the right half-plane. These eigenvalues have nonzero
imaginary parts when Tqn, < Tq < Tam, ond they merge onto the positive real azis at Tq = Tgm. They
remain on the positive real axis for all T4 > Typm,.

We now compare the two thresholds of instability for a one-spike solution. Let 77 denote the
value of 7 for an instability due to a Hopf bifurcation in the spike amplitude, and let 77y denote the
value of 7 where an instability with respect to oscillations in the spike location is initiated. Then,
from (5.21), (5.26), and (5.40), we obtain

D
TH = 1.748 tanh2(90)32, TTTW — @Tdha (5.54&)
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where

1-U_ 1 [ AL 1y _ 126,
s = U U—Ell— 1—F] 5 A=¢ A, ./413: m, (554:b)

and §y = D~Y2. For D = 0.1 and D = 0.75, in Fig. 31(a) and Fig. 31(b), respectively, we plot
logo(7ar) and log;o(Trw) for two values of € on the parameter range €'/2A4;, < A < 1. Notice that

this range of A includes the intermediate parameter regime /24, < A < 1. We observe that
when ¢ is sufficiently small, the curves 7y and 7w will cross at some point in the intermediate
parameter regime. To determine this crossing point, we set 77 = 7w and solve for A. Using (5.54)
and s ~ 4e 1 A?/ A2, we obtain that the de-stabilization of a one-spike solution occurs by a traveling
wave instability when
eDT, dh 1/6

2 »Ale .

223.744 tanh?(6)

Alternatively, a de-stabilization by a Hopf bifurcation in the spike amplitude occurs when A < Agy,.

A> Agy ~ ( (5.55)

Although the value of 7 where a traveling wave instability first occurs in the intermediate regime is
asymptotically large as ¢ — 0, this analysis suggests that traveling wave instabilities will occur in
the pulse-splitting regime with A = O(1) when 771 = O(e~!). These instabilities are found to play
an important role in this regime (see [16]).

We now recover the result of [24] (see section 2.6 of [24]) for the infinite-line problem. To recover
this result from (5.55) we let §y — oo, £ = ¢/v/D, and A, = V/126,. Also, for D — 0, we found
above that 74, — 2. Hence, from (5.55), we obtain

Ay = 157885 g=¢/VD. (5.56)

This limiting result agrees with that derived in [24]. The result (5.55) for the finite domain problem
is new. Qualitatively, the effect of the finite domain on the traveling wave instability is to de-stablize
a one-spike solution through a Hopf bifurcation leading to a pulsating layer location. This pulsating
type of traveling wave instability depends critically on having a finite domain and does not occur for
the infinite-line problem.

Example 1: We conclude with a specific example to illustrate the analysis in this section. We take
D =0.75, A =0.96436, ¢ = .005, and the initial condition

v(z,0) = 60sech? [¢ ! (z +.01)] , (5.57)

which represents a layer initially located at xo(0) = —0.01. For D = 0.75, we calculate 74, = 2.6169,

and so from (5.54) a traveling wave instability first occurs when 7 = 7py &~ 935.4. Alternatively,
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Figure 31: Plots of log,o(7x) (increasing curves) and log,q(7rw) (decreasing curves) as a function
of A on the range e'/24;, < A < 1. The left figure and right figures are for D = 0.1 and D = 0.75,
respectively. The heavy solid curves are for € = 0.005 and the solid curves are for € = 0.01.
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Figure 32: Example 1: D = 0.75, A = 0.96436, and £ = 0.005. Left figure: Plots of xo(t) versus ¢
for 7 = 850 (heavy solid curve) and 7 = 920 (solid curve). Right figure: Plots of x((¢) versus ¢ for
7 = 950 (solid curve) and 7 = 1000 (heavy solid curve).
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the Hopf bifurcation in the spike amplitude occurs when 7 = 7y ~ 2066.0. For four values of 7,
we then compute the numerical solution to (1.3) and output the location of the maximum value of
v as a function of ¢. In Fig. 32(a) where 7 = 850 and 7 = 920 < 77y, we show that the spike
location has a decaying oscillation about the equilibrium value zy = 0. Alternatively, in Fig. 32(b)
where 7 = 950 > 7 and 7 = 1000 the oscillations are found to grow. The ultimate fate of these

large-scale oscillations in the spike-layer location is unknown.

6 Discussion and Comparisons

In this section we discuss more precisely the relationship between our results and those in the
literature. We also summarize which of our results are rigorous, and we list some open technical
problems together with a few interesting areas for further research.

A common dimensionless formulation of the Gray-Scott model (cf. [2], [3], [4], [7], [33], and [34])

takes the form

Vi =DVxx — BV +UV?2, 0<X<L, T>0, (6.1a)
Up=Uxx + Aq(1 —=U) =UV?Z, 0<X<L, T>0, (6.1b)
Ux=Vx=0, X=0,L. (6.1c)

In terms of our dimensionless groupings of (1.3), we have that

4 4D B
D= — 2 = =2 A .
A2 ° T B2 T4, By

E

(6.2)

Many of the spectral results in [7] and [4] concern the stability of a one-spike solution for the
case where D < 1 and /A;/By < 1. Therefore, the results in these works and in ours should
closely correspond in what we have labeled as the intermediate parameter regime and the infinite-
line problem.

Therefore, the key difference between our work and that of [4], [5], and [7]), is that in our analysis
we allow for kv/D = O(1). Hence, both the finite domain and the inter-spike coupling is important in
our analysis. In contrast, in [4], [5], and [7], the essential analysis concerns the stability of a one-spike
solution on an infinite domain. The spectral properties of this infinite-line problem is equivalent to
taking the limit kv/D < 1 in our spectral results for the low and intermediate feed-rate regime. In
this limit, we have that Agg > Ak > Age, but with Apg — Ag.. Therefore, when kvV/D < 1,
there are no competition instabilities unless A is very close to the saddle-nose bifurcation value Ag..

Moreover, in this limit, the Hopf bifurcation value 73,7, for A > A, depends only very weakly on k
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and on the effect of the finite domain. In the intermediate parameter regime for A, where both the
finite domain and the inter-spike coupling do not play a central role, the universal nonlocal eigenvalue
problem derived in Proposition 5.2 has been derived previously in [4], and studied rigorously in [5].
In addition, in [4] a scaling law was derived for the stability of periodic solutions on an infinite
domain (see equations (2.7) and (5.16) of [4]). Our scaling law for the Hopf bifurcation value 7 on a
finite domain given in Proposition 5.3 is a new and more explicit result. In addition, our method to
rigorously study the universal nonlocal eigenvalue problem is simpler than in [5] in that we need only
analyze the spectrum in the right half-plane. Moreover, our stability proof is not computer assisted
as in [b] since we do not rely on computations with hypergeometric functions.

The stability results of [24] for one spatial dimension again correspond to a one-spike solution
on the infinite line. As discussed in §3.4, our results for the infinite-line problem are consistent with
theirs. An advantage of our approach is that our proof of the existence of a Hopf bifurcation value
for the infinite-line problem is not computer-assisted as in [24].

Next, we make some remarks concerning the rigor of our approach. Although we have presented
only formal derivations of the nonlocal eigenvalue problem (3.12) for the large eigenvalues and (4.23)
for the small eigenvalues in Propositions 3.2 and 4.1, respectively, these derivations can be done
rigorously, and with the same result, as was done for the GM model in [40]. All of the spectral
results of §3.2 have been rigorously established, and our analysis of the universal eigenvalue problem
for the intermediate regime in Proposition 5.2 provides a simple alternative proof to the study in [5]
of the existence of a Hopf bifurcation value.

There are some key technical problems that await rigorous proof. The one central problem for
both the low feed-rate and intermediate regimes is to prove a strict transversal crossing condition
to guarantee that the complex conjugate eigenvalues on the imaginary axis when 7 = 75,1, remain in
the right half-plane for any 7 > 7,7. For the low feed-rate regime, a second problem is to study the
stability of asymmetric k-spike patterns constructed in §2. We conjecture that there are ranges of
parameters where these asymmetric patterns are stable with respect to the large eigenvalues, but we
expect that these patterns are always unstable with respect to the small eigenvalues.

There are many open problems concerning large-scale behavior away from bifurcation points.
In particular, in the low feed-rate regime A = O(1), an open problem is to analyze the large-scale
synchronous oscillatory instabilities and competition instabilities that occur after they are initiated.
Another open problem is to determine a wide parameter regime where asynchronous oscillations in
the spike amplitudes are possible. It would also be interesting to characterize the dynamics of quasi-
equilibrium patterns in the low and intermediate feed-rate regimes. For this problem, we expect

that the asymmetric equilibrium patterns should play an important role. Such an analysis of the
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dynamics of quasi-equilibrium patterns was done in [13] and [35] for the GM model (1.10) with
7 = 0. A two-spike evolution in the intermediate regime on the infinite line was analyzed in [2] and
[3]. Finally, since our analysis does not rely on dynamical systems techniques, much of it is readily
extended to treat the stability and dynamics of two-dimensional spot patterns for the Gray Scott

model. This work is in progress.
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