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Abstract

In this paper we establish the existence and uniqueness of a transonic shock for the steady flow through
a general two-dimensional nozzle with variable sections. The flow is governed by the inviscid potential
equation, and is supersonic upstream, has no-flow boundary conditions on the nozzle walls, and a given
pressure at the exit of the exhaust section. The transonic shock is a free boundary dividing two regions
of C117% flow in the nozzle. The potential equation is hyperbolic upstream where the flow is supersonic,
and elliptic in the downstream subsonic region. In particular, our results show that there exists a solution
to the corresponding free boundary problem such that the equation is always subsonic in the downstream
region of the nozzle when the pressure in the exit of the exhaustion section is appropriately larger than
that in the entry. This confirms exactly the conjecture of Courant and Friedriches on the transonic
phenomena in a nozzle [10]. Furthermore, the stability of the transonic shock is also proved when the
upstream supersonic flow is a small steady perturbation for the uniform supersonic flow or the pressure
at the exit has a small perturbation. The main ingredients of our analysis are a generalized hodograph
transformation and multiplier methods for elliptic equation with mixed boundary conditions and corner

singularities.
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¢1. Introduction and the main results

In this paper we study the problem of the existence and uniqueness of a solution with a transonic
shock to the steady flow through a general 2-dimensional nozzle with variable sections. Phenomena
involving transonic flows and transonic flows with shocks is a fundamental subject in fluid dynamics,
especially in gas dynamics, and has been studied extensively in the literature ([10], [4], [24-25], [12], [15],
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[23], [27-30] and the references therein). Profound understanding has been achieved both physically and
mathematically by Morawetz [27, 30] and others ([10], [4]) on smooth transonic flows. While for transonic
flows with shocks, most of previous studies involve either experimental and numerically simulations or
analysis of special wave patterns ([10], [4], [16], [11]), except the rigorous results on the existence and
stability of the quasi-one dimensional transonic shocks (see [23] and [15]). Recently, some important wave
patterns involving truly multi-space-dimensional transonic shock wave have been established for various
models and geometries ( see [7], [6], [5], [31], [33] and the references therein). In this paper, we will study
the problem on the existence and uniqueness of a transonic shock to the steady flow through a general
2-dimensional nozzle with variable sections. As conjectured by Courant-Friedrichs in [10], the following
structure of transonic flows with shocks in a nozzle is expected: Given the appropriately large receiver
pressure p,, if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain
place in the diverging part of the nozzle a shock front intervenes and the gas is compressed and slowed
down to subsonic speed. The position and the strength of the shock front are automatically adjusted so
that the end pressure at the exit becomes p,.. One of the major goals of this paper is to establish the
existence and structural stability of the above-mentioned structure of the flow field in two-dimensional

nozzles with slowly-varying sections.

The Euler system for steady compressible flow in two dimensional spaces is

91 (pur) + 02(pu2) =0

81(P + pu%) + 82(pu1uQ) =0 (1 1)

01 (puruz) + 92(P + pu3z) =0 '
(

01 ((pe + zplul*)ur) + da2((pe + gplul*)us) = 0

where u = (uy,u2), P, p and e represent the velocity, pressure, density and the inner energy respectively.

Moreover, P = P(p,e) is a smooth function of p,e and ¢*(p,e) = 8,P(p,e) > 0 for p > 0.

Suppose that there is a uniform supersonic flow (w1, u2) = (go,0) with constant density po > 0 which
comes from negative infinity, and the flow enters the 2 — D nozzle from the entrance. In this paper, we
always assume that the two nozzle walls are a small perturbation of two straight line segments o = —1
and zo = 1 with —1 < z; < 1 respectively. Therefore, the flow in the nozzle can be approximately
considered to be irrotational. Besides, for weak shocks, the changes in the entropy is of third order
and so may be ignored [10]. Thus one may also assume the flow to be isentropic. In this case, one
can introduce the velocity potential to simplify the system (1.1) and obtain a second order quasilinear
equation which is called the potential equation. This equation and its variants have been extensively
studied in the literature, and are regarded as good physical models which are susceptible of rigorous
analysis (see [4], [10], [6], [30], [9]). Various interesting wave-phenomena involving this model had been
pointed out and investigated by Courant-Friedriches in [9] and numerous rigorous mathematical rigorous
theory (mainly on 2-dimensional smooth flows) had been surveyed by Bers in [4]. Particularly, Morawetz
has used the potential equation and its variants to treat many important problems in transonic flows, see
[27, 28, 29, 30] and the references therein.

Let p(z) be the potential of velocity, i.e. (01¢,d2¢) = (u1,us), then Bernoulli’s law implies that
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1 1
§|V<P|2 +hip) =Co = qu + h(po) (1.2)

where h(p) is the specific enthalpy. For the given state equation P = P(p) with P’'(p) = c?(p) > 0 and

P"(p) > 0 for p > 0, then 1'(p) = @.

Since h'(p) > 0, one then can define the inverse function of h(p) as H(s), namely,
1 2
p=H(Co— §|V<P| ) (1.3)
Substituting (1.3) into the first equation of (1.1) leads to
81(8199H) +82(82§9H) =0 (14)
The equation (1.4) can be rewritten as
((D1p)? = )i + 2010020050 + ((D2p)? — )3 = 0 (1.5)

It is easy to verify that (1.5) is strictly hyperbolic for [Vy| > ¢(p) and uniformly elliptic for V| < c(p).

Suppose that the two walls of the nozzle are given respectively by

z2 = fa(x1)  and w3 = fi(x) (1.6)
satisfying
d* dk
| (folx) =D <e, |z (Al) + D] <e, for 1< <1LE<4,keNU{0} (1.7)
dCCl dCCl

where ¢ is a suitable positive constant.

Without loss of generality and for the simplicity of presentation, it will be assumed that

AED =0 ==1, LD =RO=1,  fI=1)=0, for i=12 1<k<4
(1.8)
When the uniform supersonic flow (go,0) enters the entry of the nozzle, the potential ¢_(z) in the

nozzle will be determined by the following equation and the boundary conditions

((O1p-)? = )0 p— +201p_02p_0fpp— + ((O2p—)? — 2 )O3 =0
Y |ey=—1=—q

NP |e1=—1=qo

Oop— = fl(z1)01p—, on x2 = fi(z1), i=1,2

where c_ = c¢(H_) and H_ = H(Co — 1|Vp_|?).
It will follow from Lemma 2.1 in §2 that (1.9) has a C* solution ¢ _ (z) in the nozzle {(z1,z2) : —1 <
21 < 1, fi(z1) < 2z < fa(x1)}, moreover |V¥(p_(z) — goz1)| < Ce holds for |a| < 4 with a uniform

positive constant C.
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Let an appropriate pressure Py = P(py) be prescribed at the exit (right end) of the nozzle such that
the density p4 and the velocity |Vy| = ¢4 on x; = 1 satisfy the following relations

1
EQi + h(p+) = Co, P+4+ = Podo, and 0+ < c(p+) (1.10)

As stated in the first paragraph of the paper, it is expected that there appears a transonic shock z; = £(x»)
in the nozzle. To assure the uniqueness, we also require that the shock 1 = {(z2) goes through a specified
point, say, (0,0), namely,

£0)=0 (1.11)

Indeed, the position of the shock can be roughly determined up to a shift by the mass conservation law
(for details, see [10]). Under the assumptions (1.10) and (1.11), it will be shown that the transonic steady
flow exists uniquely. As indicated in [10] (pages 372), it is a question of great importance to know under
what circumstances a steady flow involving shocks is uniquely determined by the boundary conditions
and by the conditions at the entrance, and when further conditions at the exit are appropriate.

Denote by ¢4 (z) the potential across the shock x1 = &(x2). By the properties of the shock for the
second order equations [4,10], one may require that the potential (z) is continuous across the shock

front, i.e.,

pr@ = (2), om a1 =E) (1.12)
and the derivative of ¢4 (z) must satisfy the Rankine-Hugoniot condition
[O1p4+ H] = £ (22)[020+ H] =0,  on a1 =§(22) (1.13)
In addition, ¢4 should satisfy the physical entropy condition(see [9]):
1 2 1 2
H(Co— 5V ) <H(Co—5IVoiP),  on o1 =) (1.14)
The boundary condition at the exit of the nozzle is
1 2
H(Cy — §|Vnp+| ) =P+, on x1 =1 (1.15)
Finally, the velocity of the flow is tangent to the nozzle walls so that
Dy = fi(x1)opy, on  xx=fi(wr), i=1,2 (1.16)

The main purpose of this paper is to establish the existence and the uniqueness of the solution to the

equation (1.5) with the boundary conditions (1.11)-(1.16). Our main result is

Theorem 1.1. Assume that (1.7), (1.8) and (1.10) hold. Then for suitably small £ > 0, there exists
a unique pair (p(z),&(x2)) with the property that ¢(z) is piecewise smooth and

@) = { (), for o < ()
oy (2), for x> &(x9)

such that (¢(x),&(z2)) solves the problems (1.5), (1.9) and (1.11) - (1.16).
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1

Furthermore, for a fixed constant §y € (0, ), there exists a constant C' independent of ¢ with the

following properties
(i). (Regularity of the supersonic flow) p_(z) € C*() is a solution of the equation (1.9), here
Q={(z1,22): —1 <z <1, fi(z1) < z2 < fa(z1)}. Moreover

lo— (@) — qoz1llos(q) < Ce

(ii). (Regularity of the shock surface) Denote by P; = (xf,23)(i = 1,2) the intersection point of
x1 = E(xs) with 2y = fi(z1) and by |dy,| = min{dist(z, P\),dist(z, P»)} with & = (£(x3),x2). Then
§(x2) € OV [2, 23] N C% (a3, 43), and

d*&(z2) Ce
I€(22)||ora-s0 < Ce, | dx; | < iz for k=23,  as € (2},22)

(iii). (Regularity of the subsonic flow) Denote by Q4 = {(z1,22) : &(z2) < 21 < 1, fi(21) < 22 <
fa(z1)}. For x € Q, write |d| = 121124{di5t(1r,]5i)} with P; = (1,1) and Py = (1, —1). Then ¢4 (z) €
_7/_
OV (0, ) N O3(Qy \ UL, Pi) and satisfies

; Ce
o+ (2) = qraallcra-s < Ce,  |[Vi(py(2) — gyar)| < 2T for k=23 reQy
T

(iv). The physical entropy condition (1.14) is satisfied on z; = &(x2).

Remark 1.1. It should be noted that the transonic shock in the theorem is perpendicular to the walls
of the nozzle. This fact follows easily from the boundary conditions (1.12), (1.16), and the ones on the

nozzle walls for ¢_(x) in (1.9).

Remark 1.2. Following the proof of Theorem 1.1, one can also obtain the stability of the solution
¢(z) and the shock x1 = £(x2) with respect to small perturbations of the initial state at the entrance or
the pressure at the exit of the nozzle in the sense that if

£ (@-(=Liaz) + qo)] < & and | (01p-(=1,25) = qo)| < & or |45 (p+(L,w2) = p4)| < € hold for

0 < k < 4, then the corresponding solution pair (¢4 (z),£(z2)) still satisfies

16+ 0) = @il sy @my S € M@ orimsgay iz < C

where O, = {(z1,22) : £(x2) < 71 < 1, fi(21) < 23 < fola1)}, (xAll,xAé)(z = 1,2) are the intersection

points of 1 = &(x2) with x2 = f;(x1), and the constant C' is independent of «.

Remark 1.3. The condition (1.10) is needed to fix the shift of the shock location as shown in the case
of a nozzle with constant sections where the location of the shock is not uniquely determined by (1.5),
(1.9), (1.12) - (1.15).

Remark 1.4. It should be noted that the main assumption in theorem 1.1 is that the walls of the
nozzle vary slowly, i.e., € is suitably small. This is in general necessary for the existence of such a transonic
shock wave pattern as described in theorem 1.1. Since for general nozzle, there might be supersonic shocks
in the supersonic region, and furthermore, there may be supersonic bubbles surrounded by subsonic flow,
see [4, 10].
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Remark. 1.5. The method in this paper can be used to show the stability of a transonic shock
for the uniform supersonic flow past a curved sharp wedge when the appropriately large downstream
pressure is given. As described in [10] (pages 317-318), when a uniform supersonic flow (FPy, po, qo), which
comes from negative infinity, hits a sharp wedge with the angle 0y, and if 6k is less than a critical
value determined by Py, pg and ¢o, then two oblique shock fronts are possible through which the flow
turned through the angle 65, a weak and a strong one. The questions arise which of the two actually
occurs. It has frequently been stated that the strong one is unstable and that, therefore, only the weak
one could occur. A convincing proof of this instability has apparently never been given. Quite aside
from the question of stability, the problem of determining which of the possible shocks occurs cannot
be formulated and answered without taking the boundary conditions at infinity into account. The flow
may be considered as the limiting case of the flow in a duct as the duct becomes infinitely wide and the
inclined section infinitely long. If the pressure prescribed there is below an appropriate limit, the weak
shock occurs in the corner. If, however, the pressure at the downstream end is sufficiently high, a strong
shock may be needed for adjustment. Under appropriate circumstances the strong shock may begin just
in the corner. Indeed, by applying the ideas and method developed here, one can easily treat this problem
to prove the existence and structural stability of a steady flow pattern with a transonic shock through the

vertex of the wedge. Since the analysis is similar to the nozzle problem, we will not present the details.

Remark 1.6. Many of the ideas developed here are also useful for the treatment of the problems
of transonic shocks in a multi-dimensional nozzle with variable sections. This will be reported in a

forthcoming publication [32].

We now comment on the proof of Theorem 1.1. One of the main difficulties is the treatment of the
free boundary - the transonic shock. A typical method is to perform a transformation to fix the unknown
shock. One useful approach to fix a shock is the partial hodograph transformation introduced in [26]
and [24]. The partial hodograph transformation corresponding to our problem is to take the unknown
function ¢¥(z) = p_(x) —p4 (x) as the X; —variable in the new coordinates X = (X, X5). In this case, the
shock z; = £(z2) becomes the fixed boundary X; = 0. However, the fixed boundary z; = 1 will become
unknown. To overcome this difficulty, as in [8] and [9], we need to introduce a generalized hodograph
transformation which will fix the shock while at the same time change the fixed boundary z; = 1 into a
new fixed boundary X; = 1. In addition, to avoid the undesirable effects due to the possible appearance
of negative eigenvalues for the linearization of the nonlinear boundary value problem of the second order
nonlinear elliptic equation derived from (1.5) - (1.16) by the partial hodograph transformation, one needs
to have a better choice of the partial hodograph transformation than that used in [8, 9]. This will
be given explicitly in §2. With this transformation, the quasilinear equation (1.5), whose coefficients
contain only the first order derivatives of ¢(x), will become a new second order nonlinear equation with
its coefficients and source term containing the unknown function V(X) and its first order derivatives
VxV(X). Correspondingly, the boundary conditions (1.13), (1.14) and (1.16) are also transformed into
the new nonlinear boundary conditions which contain V(X) and VxV(X). Thanks to the appropriate
choice of the hodograph transformation, we can avoid discussing the eigenvalue problems of the resulting
linearized problem since the coefficients of V(X) and VxV(X) in the second order elliptic equation
and the coefficients of V' (X) in the boundary conditions are all suitably small in appropriately weighted

spaces. This fact plays a key role in all our analysis.



TRANSONIC SHOCK IN A NOZZLE I, 2-D CASE 7

To solve the new nonlinear elliptic equations with the corresponding nonlinear mixed boundary con-
ditions, we intend to use the Schauder fixed point theorem to show the existence of the solution. It is
here that one has to deal with another main difficulty, the corner singularities. Indeed, since the domain
under consideration has four corners, then one cannot expect that the solution has the C?% or even C?
regularity up to the boundaries (for some fixed o > 0). It should be noted that the issue of singularities
due to the corners at the boundaries is more pronounced here for the potential equation in that the
coefficients of the principal terms in (1.5) depend on both the unknown and its first order derivatives.
We will employ some weighted Holder spaces to deal with the corner singularities as motivated by the
works in [13,19-21]. In order to apply the Schauder theorem, one needs an L estimate on the solution
of the corresponding linear problem. This is achieved by getting the a priori H? estimate by looking for
suitable multipliers. It seems difficult to use the maximum principle to obtain the L estimate as in [20]
since our linear equation and the boundary conditions do not satisfy the requirements in Lemma 1.1 or
Corollary 2.4 in [20]. After we establish the existence of the solution, the uniqueness can be proved by
the energy estimates based on new choices of multipliers.

Next we would like to discuss some of the recent notable studies on multi-dimensional transonic shocks
for various models (see [2], [5-7], [31,34] and the references therein). In particular, we comment on two
recent interesting works which are closely related to this paper. The first one is the study of the two-
dimensional transonic small disturbance equation (T'SDE) by Canic-Keyfitz-Lieberman in [6]. The TSDE
can be derived by taking the first term in the geometric optics expansion to (1.5) near a certain physical
boundary, and can be formulated into a second order quasilinear equation of mixed type with coefficients
depending only on the unknown function itself. In [6], the authors establish the existence and the stability
of a uniform planar transonic shock. As already pointed in [6], the property that the coefficients of the
TSDE are independent of the gradient of the unknown function plays a key role in the analysis of [6].
However, as commented in [6], it seems difficult to transform the potential equation (1.5) into such a from
since the coefficients of (1.5) depend on the gradient of the unknown function. Thus we need a different
approach from that in [6] to treat the transonic shock problem for (1.5).

The second one is the study of the multidimensional transonic shocks for the nonlinear potential
equation of mixed type in [7], where Chen and Feldman prove the existence and stability of a steady
multidimensional transonic shock when the flow in the flat channel © = (0,1)"~" x (—1,1) with a Dirichlet
boundary condition for the potential at the exit of the channel, which gave an impetus for us to investigate
the transonic shock flow in a general nozzle. Note that the boundary of Q in [6] is straight, and so the
domain  can be extended periodically and the solution may be thought to be periodic. As a result, the
influences of the corners of Q are avoided. Furthermore, due to the Dirichlet boundary condition for the
potential imposed at the exit in [7], Chen and Feldman can apply the maximum principle to establish
some key a priori estimates for the existence and use the technique of shifting the free boundary to achieve
the uniqueness as in [2]. These seem to be crucial ingredients in the analysis in [7]. However, it seems
to be difficult to modify the approach in [7] to treat our problem due to the curved section of the nozzle
and boundary condition prescribingat the sure at exit of the nozzle. Thus, our approach in this paper is
quite different from those in [7]. Furthermore, by use of the method introduced in this paper, one can
also deduce the corresponding results in [7], see Remark 7.1 in §7.

The rest of the paper is organized as follows. In Sect.2, we reformulate the problem (1.5) with the

boundary conditions (1.11)-(1.16) by introducing a generalized hodograph transformation and state the
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main results on the reformulated problem. Although the computations in this section are very tedious,
the concrete expressions of the resulting equation and boundary conditions are important to obtain the
uniform estimates on the solution of the corresponding linear problem so that one can apply the Schauder
fixed point theorem to show the existence of solution to the nonlinear problem. Besides, these expressions
are also very useful in order to show the uniqueness in §6. In Sect.3, some preliminaries results on the
linearization of the reformulated problem will be given. The aim in this part is to find a second order linear
elliptic equation with linear boundary conditions related to the nonlinear problem in §2. Furthermore,
the detailed analysis on the coefficients of the linear equation and its boundary conditions is also carried
out. In Sect.4 and Sect.5, the L°°-norm estimates and the higher order estimates for the solution to the
linear problem in §3 are derived respectively. Besides, we will complete the proof on the existence in
Theorem 2.2. In Sect.6, we prove the uniqueness of the solution in Theorem 2.2. The proof of Theorem
1.1 and some remarks are given in §7. Finally, some of elementary but important formulas used in §2
and §3 are computed in the appendix (§8).

We will use the following convention in this paper:

O(Me) means that there exists a generic constant C' such that |O(Me)| < CMe, where C' is indepen-
dent of M and e.

§2. The reformulation of the problem and the generalized hodograph transformation

As outlined in the introduction, with the help of the solution to the initial-boundary value problem,
(1.9), for a nonlinear second order hyperbolic equation, the original problem of transonic shocks in a
nozzle (1.5), (1.9), (1.11) - (1.16), which is an initial-boundary value problem for a nonlinear mixed-type
equation, can be reduced to a boundary-value problem for a second order quasi-linear elliptic equation
with a free boundary. In this section, we will introduce a generalized hodograph transformation and a
coordinate transformation to reduce the free-boundary value problem, (1.5), (1.11) - (1.16), to a bound-
ary value problem for a quasi-linear elliptic equation with nonlinear mixed boundary conditions on a
rectangular domain @ = [0,1] x [—1, 1]. The structure of the new reformulated problem will provide some
keys to our later on analysis. We start with an estimate on the potential for the hyperbolic flow, ¢_(x)

n (1.9). Recall that ¢ is the measurement of the variation of the nozzle sections, see (1.7).

Lemma 2.1. Under the assumptions (1.7) and (1.8), the problem (1.9) has a C*(Q) solution o_.

Moreover, for small € > 0, there exists a constant C' independent of ¢ such that
llp—(z) — qor1lca(q) < Ce

Proof. Set ¢(x) = ¢_(z) — gox1. Then @(x) solves the following problem

((q0 + 019)* — %)@ + 2(qo + O19)D2p07,@ + ((029)* — 2 )05¢ =0
&(@)|21=—1 =0

hP(@)]zy=—1 =0

0o = fl(x1)01@ + qo fl(x1), on x2 = fi(zy1), 1=1,2

(2.1)

where ¢ = ¢(H(Cy — %(|QO + 0197 + |024%))).
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It follows from (1.8) that the initial-boundary values in (2.1) satisfy the compatibility conditions up
to the third order.

Since qo > ¢(po), then (2.1) is strictly hyperbolic with respect to z; —direction for the small perturba-
tion of solution. By the standard Picard iteration and the characteristics method (for example, see [18]),
for small & we know that (2.1) has a C*({2) solution and there exists a constant C' independent of & such
that

1e(@)llos(e) < Ce

Hence Lemma 2.1 is proved.

With ¢_(z) at hand, the original problem is reduced to find a solution to the free-boundary-value
problem, (1.5), (1.11) - (1.16). Rescaling and shifting if necessary, without loss of generality and for the
sake of convenience in presentation, we may assume that f;(0) = —f>(0) and ¢o — ¢+ = 1 from now
on. To fix the free boundary and meanwhile keep the fixed boundary fixed, we introduce the following

hodograph type transformation:

X, = 2oa—(fitf)(en) (2:2)

1 _ 1—
{ X1 =l - 5 e
f2(z1)—f1(z1)

As it will be shown that [0% (o4 (z) — ¢ya1)| < Ce for B = 0,1, it follows from Lemma 2.1 that
01 (p-(z) — p1(x)) = 0i(p-(2) — Q1) — 01 (p+(2) — q421) + o — g > 5 > 0 for small e. This
implies ¢_(z) > ¢4 (z) when z; > &(x2). Thus, (2.2) is an invertible transformation from the domain
to Qy = {(X1,X2) : 0< X; <1,-1 < X, < 1}. Correspondingly, the boundaries x; = &(x3), 11 = 1,
x2 = fi(x1) and xo = fo(x1) are changed into X; = 0, X1 = 1, Xy = —1 and X5 = 1 respectively. In
addition, the origin (x1,x2) = (0,0) becomes Py = (0, %) = (0,0).

Set

V(X)) =1 =21+ (p-(2) — o4 (2))-

Later on, V(X) will be chosen to be the new unknown function to study the equation (1.5) with the
boundary conditions (1.11)-(1.16). It follows from the previous discussion that V(X) = 1 + O(e) and
VxV(X) = O(e). These properties will be important in our analysis.

Note that

rp =1+ (X1 - 1)V(X)

T2 = %<X2(f2 — )@+ (fi + fz)(m)) (2.3)

:L‘1:1+(X171)V(X)

In terms of the new variables, one can rewrite equation (1.5) in the domain @ as follows:

a1 (X, V,VxV)0x,V 4 2a12(X,V,Vx V)%, x,V + a2 (X, V,VxV)0x,V + Fy(X,V,VxV) =0, (24)

where a;;(X,V,VxV)(,j = 1,2) and Fo(X,V,VxV) are smooth functions and can be explicitly

computed as given in the appendix. It is important to note that the quasilinear equation (2.4) is uniformly
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elliptic in the regime we are interested provided that ¢ is suitably small. This and other important
properties of a;; (X, V,VxV) and Fy(X,v,VxV) are listed in Lemma 3.5 in the next section.

Next, we turn to the forms of the boundary conditions (1.11) - (1.13), (1.15) and (1.16) in the new
coordinates. First, it follows from (1.12) that the boundary condition (1.13) is equivalent to the following
equality:

[01pHO1 (94 — p-) + [02pH]O2(p4 —9-) =0 on 1 =¢§(a2).

which has been transformed into
GX,V,VxV)=0 on X, =0 (2.5)
where
GX.V,VxV) = H(Co — 5((14 00,V = 010 )" + (30, — p-)")) ((al@_ 0,V — 1)(140,,V)
F@up = 0100V ) — Gup- (1+00,V) + Bsp- 00V VH (Co = 2IVp )

Similarly, (1.15) and (1.16) become respectively

1

H(Co — —((1+3a:1V—319L)2 + 00,V =29 )) =py, on Xi=1 (2.6)
(—fi,1 ) VxV fill=dip )+dp, on Xy=-1 (2.7)
(—f3:1 ) VxV fs(1=01p )+ 0ap, on Xy=1 (2.8)

where the variable x = (21, 22) is a function of X = (X, X3) and V(X). It will be clear from next section
that boundary conditions (2.5) and (2.6) represent the nonlinear uniform oblique derivative boundary

conditions for (2.4). Finally, it follows from (1.11) and the assumption on Py = (0,0) that
V(0,0) = 1. (2.9)

Thus, our problem is reduced to solve the quasilinear equation (2.4) on the domain (4 with the
nonlinear boundary condition (2.5) - (2.9). Then the main results on this reformulated problem are the

following theorem:

Theorem 2.2. Let dy € (0,%) be a given fixed constant. Assume that conditions (1.7), (1.8),
and (1.10) hold. Then there exist positive constants g and C' depending only on py,q+ and dp such
that, for ¢ € (0,ep), the equation (2. 4) with boundary conditions (2.5)-(2.9) has a unique solution

V(X) € CH1=%(Q4) N C3%(Q4 \ UL P;) satisfying
V(X)—1 W < C VEV(X)| < —CF k=23 2.10
IV(X) = |gra-s < Ce, VX V( )|_Wv for =249 (2.10)
k
sup > ldx, |1+250|V VX) =V VIl Ce, (2.11)

X,YeQi\Ui, P 5 |X — Y% a

where P1 = (0,—1),P2 = (0,1),P3 = (1,1),P4 = (1,—1),RX = Xl(]. —Xl) + (]. —Xz)(l +X2) and
dX’y :min{Rx,Ry}.
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Once Theorem 2.2 is established, Theorem 1.1 can be verified directly based on Theorem 2.2 and the
generalized hodograph transformation. It thus remains to prove Theorem 2.2, which will be done in the

rest of this paper.
63. Some preliminaries for the reformulated problem

In this section, we state some preliminary results and estimates on the reformulated problem, which
are basics for the proof of Theorem 2.2.
To prove Theorem 2.2, we will use a Schauder fixed point theorem on a weighted Holder space. The

following version of the Schauder fixed point theorem will be used.

Theorem 3.1. (Theorem 11.1 in [14]) Let K be a compact and convex subset of a Banach space B,

and let J be a continuous mapping from K into itself. Then J has a fixed point in K.

The suitable Banach space will be a weighted Holder space defined as

B = {W(X) € CH' (@) N COH Qi \ULP) : [Wlowas, £C sup|Rx[PIT5W] < C.

5 5 |[VEW(X) — VW (Y <1
sup | Rx| W <0 sup 3 iy el VI 5 5, <
X XY €Q4\UiL, Pi g X =Yz (3.1)

The norm in B is defined to be

3
Wile =1Wllgra-s + ngl(p |Rx|* 20 VW I+
k=2

s |[VEW(X) = VEW (Y
sup Z |dx y|'F2% | (X) 5 ()l for W eB (3.2)
X, YEQu\UiL P j—3 X -Y[Z

It is easy to verify that B is a Banach space with this norm (or see the reference [13]). The role of
Rx in B is to measure the loss of regularity of W (X) near the corners P;(i = 1,2,3,4). Sometimes we
neglect the subscript X in Rx for convenience.

Next, we define a compact and convex set K in B as

K= {W(X) e CH" Q) NC**(Qy \ U, P)IIW = 1||g1a-5 < M,
sup |R|%®|VEZW| < Me,  sup |R|*T|VLW| < Me,
X X

ap Sy P20 YW VIO gy =1y, (33)
X,YeQi\UL P 5 | X = Y[%
where M > 1 is to be determined.
It should be clear that K is a convex subset of B. Furthermore, it can be shown that K is also compact
in B by the reference [13].
In order to prove Theorem 2.2, we will define a continuous map J, which maps K into itself, by solving
an appropriate boundary value problem for some second order linear elliptic equation on a fixed domain
with linear boundary conditions, which is an appropriate linearzation of the nonlinear problem (2.4)-(2.9).

More precisely, for any W € K, we define

JW=V+1 (3.4)
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where V is required to solve

a1 (X, W, VxW)0%, V + 2a12(X, W, Vx W), x,V + a22(X, W, VxW)3%,V
+ Fy(X,W,VxW)=0 on Q+ (3.5)
with boundary conditions on 0@, which are suitable linearization of the nonlinear boundary conditions

(2.5) - (2.8). Since the forms of these boundary conditions will be important for our analysis, here we

discuss them in some details.
We start with the boundary condition for V on X; = 0. Note that the nonlinear boundary condition

(2.5) can be rewritten as

2
ST BL(X,V,.VxV)x,V + Bi(X,V,VxV)(V - 1) = G(X,1,0,0), on  X;=0 (3.6)
=1

where
1
B1i(X,V,VxV) :/ Doy vG(X,0(V = 1)+ 1,6VxV)df, i=1,2,  and
; :
1
B (X,V,VxV) :/ IvG(X,0(V —1)+1,0VxV)d6.
0

It can be shown that the coefficients in (3.6) have the following estimates:

Lemma 3.2. Assume that W € K. If ¢ is small such that Me < 1 and M?e < I, then it holds that

3
. 1
k=0

B (X, W, 1) = 220 = q+)(62()p+) ~9) (1 1 o(ue))
Bio(X,W,VxW) = O(Me),  By(X,W,VxW) = O(Me),

Me

V%Bli(x,w7va)=0<m), k=12 i=1,2,

k.. _vkpB,.
1200 B = VBl _ sy 21,

sup |
X,YEQ4\UL, P; ,;2 | X —Y[%
VFBi(X) = VEB (Y
sup Z|dx,Y|1+26°| ITX)_ v (@ = O(Me),

X7Y6Q+\U?:1Pi k=2

where C' depends only on py and ¢.

Proof. We will only prove the first inequality here. The rest of the Lemma 3.2 is proved in the
appendix. It follows from the definition of G(X,V,VxV) that

G(X,1,0,0) = (H(Co = 5((1 =010 + (Gap)Oup- ~ 1) = H(Co - 5IVo-FI015-) )@

with Z = (Z1, Z2) given by

Ty :le
{ Ty = 5(Xao(fo(X1) = f1(X1)) + (f1(X1) + f2(X1))).
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Making use of Lemma 2.1, one can compute that

61X,1,0,0) = (H(Co ~ §an = 1? + 0E)an ~ 1+ O6)) = H(Ch ~ 3 + 0o + 06 )@

1 1 _
= (H(C0 = 30~ 1)00 = )~ H(Co~ 58000 ) (2) + OC).
It now follows from (1.10) and the assumption, ¢y — ¢+ = 1, that

|G(X,1,0,0)] < Ce

with C a uniform constant depending only on p; and ¢4. Similarly, one can show that
3
> IVAG(X,1,0,0)] < Ce,
k=1

where we have also used the assumption (1.7). Thus, we have shown the first inequality in Lemma 3.2.
The rest of the Lemma 3.2 can be proved by lengthy computations and the details are given in the

appendix.

We can now require that V satisfies the following linear boundary condition on X; = 0:

2
ZBM(X,W7VXW)8X1V+B1(X7W,VXW)(W—1) =G(X,1,0,0), on X; =0. (3.7)
i=1
Since ¢(p+) < g+ < qo, so Lemma 3.2 implies that By1 (X, W,V xW) # 0 for suitably small e. Thus
one can rewrite the boundary condition (3.7) as

6X1‘7 + Bll(Xa W7 VXW)asz + Bl (Xv Wv VXW) = 07 on Xl =0. (38)

It follows from Lemma 3.2 that the coefficients in (3.8) have the following estimates:

Lemma 3.3. Assume that W € K. If Me < % and M?2e < %, then

By (X, W,VxW) = O(Me¢),
Bl (Xv Wv VXI/V) = 0(6)7

B Me
Vi Bu (X, W, VW) =O0(gr—ss)» k=12
B 15
vé‘Bl(X’WVXW):O(m), k=1,2,
[VEB11 (X) = VFBL (V)]
=t dx v [ = O(Me),
XyYEQ+\U;1:1Pi é |X — Y|(50
IVEBL(X) = VFBL(Y)
sup |dX,Y|1+25“ _ O(g)
XyYEQ+\U;1:1Pi é |X — Y|50

Here we emphasize that the fact, By (X, W,VxW) = O(¢), is critical to determine the constant M in
K

Next, we determine the appropriate boundary condition for V(X Jon X; =1.
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Set,
- 1 1
G(X,V,VxV)=H(C, — §((1 + 0.,V =010 )2 4 (04,V — 020 )?)) — H(Co — 5qi)

It follows from H(Co — 2¢%) = p4 that the boundary condition (2.6) becomes

GX,V,VxV)=0 on X =1,
which may be rewritten as

2
> By(X,V,VxV)ox,V + Bo(X,V,VxV)(V = 1) = G(X,1,0,0), on X;=1

=1

where

1
B%(X,V,VXV):/ Doy, vG(X,0(V = 1)+ 1,6VxV)df,
0

1
Bo(X,V,Vx V) = / Oy C(X,0(V — 1) + 1,6V x V)b,
0]

G, 1,0,0) = (H(Co = (1= 0o P+ @up ) = H(Co - 32) ) @),

Direct computations as in Lemma 3.2 yield

Bar (X, W, VW) = =525 (1+ O(Me)),

BQQ(X7W7VXW) = O(]\46)7
Byo(X, W, VxW) = O(Me),

G(X,1,0,0) = O(e).
Naturally, we pose the following boundary condition for V on X; = 1:
2 ~ ~
> Boi(X, W, VxW)x,V + Bo(X, W, VxW)(W — 1) = G(X,1,0,0), on X;=1
i=1

For convenience, one can rewrite this as
Ox,V + Boa (X, W, VxW)x,V + Bo(X,W,VxW) =0, on X;=1 (3.9)

where 322 and Bz have the same properties as Bll and Bl do in Lemma 3.3 respectively.
In a similar way, one can derive from (2.7) and (2.8) the desirable boundary conditions for V on

X5 = —1 and X, = 1 respectively as follows:

Ox,V + Bss(X,W,VxW)0x,V + B3 (X, W) =0, on Xy=-1 (3.10)
8X2V+B44(X,W,VXW)8X1V+B4(X,W) =0, on X, =1 (3.11)
where
VEBi(X,W)=0(), k=0,1; i=34 |,
.~ € )
V}S(Bl(X,W) :O(m)v k:273a Z:374 )

VEBi(X) — VFB (Y
sup Z|dX,Y|1+26O| Z(X) Y % e
X YeQ\UiL, Pi =3 X =7

= 0(e), t=3,4
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and Bj; (i = 3,4) possess the same properties as By does in Lemma 3.3.
Thus we have derived the boundary conditions (3.8) - (3.11) for V. Finally, in light of (2.9), one may

require V to satisfy

V(0,0) =0 (3.12)

It will be shown that the problem, (3.5) and (3.8)-(3.12), has a unique solution V so that the mapping J
in (3.4) is well-defined, continuous on K, and V +1 € K for an appropriate constant M. To this end, more
information on a;; (X, W, VxW) and Fo(X,W,VxW) in (3.5) is desired. We list some of the important
properties in the following lemma without proofs since they involve mainly tedious computations, see the

appendix.

Lemma 3.4. Assume that W € K. If Me < % and M?2e < %, then

an (X, W, VxW) = (*(p+) — ¢1)(1 + O(Me))
a12(X, W, VxW) = 0O(c + Me)

a2 (X, W, VxW) = c(p)(1 + O(Mce))
Fo(X, W, VxW) = 0(c)

; Me
VIE(GZJ(X,W7VXW) :O(W)7 k:1,2
. €
Vi Fo(X, W, VxW) =O0(gr—sy ), k=12

vk . X _ vk .. Y
sup > |dx,yll+260| = (X) Y 50%( . OMe) —ij=1,2
X, YE€Q4\Ui_, P j— X =Y

So far we have outlined the construction of the mapping J, and derived some preliminary estimates on
the coefficients of the equation (3.5) and the boundary conditions (3.8)-(3.11). In the subsequent sections,

we will focus on solving (3.5) with (3.8)-(3.12) and deriving the necessary estimates on the solutions.

64. The basic L*°-estimates

With the preparations in §3 at hand, we can proceed to derive a priori L*° estimate on V(X ). It should
be noted that it seems to be quite difficult to bound the ||V]| L>(Q4) by using the maximum principle for
the following reasons: First, the Hopf lemma cannot be applied directly here since the domain @ does
not satisfy the interior ball condition. Second, it is known that the maximum principle is available for

solutions to the following uniform oblique derivative problem for linear second elliptic equation

n

- Z Qij (x)afju + Zn: bi0iu + c(x)u = f(x), n Q0

ij—=1 i—1
Z Bidu + p(z)u = g(z), on 0N
i=1

where (a;;(z)) is a positive definite matrix, without requirement that the domain Q has interior ball
property provided that c(z) > 0 and p(z) > 0 with c¢(z) + p(z) > 0 (for details, see [20-22] and
the references therein). However, this theory does not apply directly to the problem (3.5) with (3.8)-
(3.12) since c(z) = pu(z) = 0 in this case. Our approach is to estimate the H?-energy fo+(|V(X)|2 +
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IVxV(X)]? +|V%V(X)[?)dX. Then ||[V||;~(q,) is bounded by the Sobolev’s imbedding theorem. Our

main estimate in this section is the following proposition.

Proposition 4.1. Assume that W € K. If V(X) € C%'=%(Q,) N C3%(Q, \ UL, P,) is a solution of
(3.5) with the boundary conditions (3.8)-(3.12), then for small ¢, there exists a constant Cy independent
of M and ¢ such that

V(X)|<Coe  for XeQy (4.1)

Proof. First, we show that the solution to (3.5) and (3.8)-(3.12) is unique.

Indeed, if there are two solutions Vi (X) and Vz(X) to equation (3.5) with boundary conditions (3.8)-
(3.12), then U(X) = V1 (X) — Va(X) solves

a1 (X, W, VxW)d%, U + 2a12(X, W, VXW)8§(1X2U + an (X, W, VxW)0%,U =0
dx,U + By1 (X, W, vXW)aXO on  X;=0

Ox, U + By (X, W,V xW)dx, 0, on X =1

dx,U + Bas(X, W,V xW)dx, 0, on Xo=-1

dx,U + Byy(X, W, VXW)E)Xl 0, on Xp=1

U(0,0)=0

By the Corollary 2.4 in [20], one deduces that U = C with a constant C. Since U(0,0) = 0, then U = 0.
Namely, the solution V is unique.

Next, we establish the a priori L>-estimate (4.1). We start with the L2-estimates on the derivatives of
V. To overcome the difficulties caused by the uniform oblique derivative boundary condition on V' ([21]),
we will introduce two vector-fields D; and D> so that DJ/ solves a new second order elliptic equation
with some mixed boundary conditions, which can be estimated by energy method.

Set

Uy(X) =0x,V +711(X)dx,V = DV,
Us(X) = 0x,V +72(X)dx,V = DoV,
where
71(X) = (1 — X1)B11 + X1 Bos,
1 - -
72(X) = 5((1 — X2)B33 + (X2 + 1)B44).

)
Uy(X) = —B(X,W,VxW), on X1 =0
Uy(X) = —Bo(X,W,VxW), on X =1 (42)
Us(X)=—Bs(X, W), on Xy=-1 ’
Us(X) = —By(X, W), on Xo=1

Moreover Uy, Us € CT=%(Q,) N C*%(Q4 \ UL, P;) by the assumption on V. Next, we determine the
boundary conditions for U; on Xo = —1, X5 =1 and U on X; = 0, X; = 1 respectively,
Let Ny = 0x, + T1(X)0x,, here T1(X) will be determined later. Then

NU; = (1 + Twl)c‘)f(lxzv + T18§(1V + ’718?{2‘7 + (8){271 + TlaXl'Yl)aXZV
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On the other hand, (4.2) implies that
O, x,V = —120%,V — 0x,720x,V — 0x, Bs(X, W), on  Xp=-1

This, together with the equation (3.5), yields that

.2 - - 2a550 -~ 2a150x,Bs — F
R e A
a9 @22 22
Hence
_ (27v2a12 — a11)V1 | o~ 2a12710x, 72 ~
N1U1 = (Tl — (1 + Tl"}/l)"}/Q + a—)ﬁle + (0,7 — (1 + T171)8X172)8X1V
22 22
5 - 2a1,0x, B3 — F,
+ (8X271 + Tlaxl”yl)axzv — (1 + T171)8X133 + 71( 12 ;212 3 0)7 on Xo=-1
Setting
1 2 — _ _
T, = oo - 202 Z 0Ny ¢ 1o () 1 (2@ \ UL, P)
1 — 717 az2
and noting that
aX ‘N/ — Uil
1 1—y172 (43)
Ox,V = G520
one then arrives at
NU; + dl(X)Ul + dz(X)Uz = g(X), on Xs = -1, (44)

where d; (X), d2(X) and g(X) can be written explicitly. However, their explicit forms are not important
here. One needs only to know that di (X), d2(X),g(X) € C1%(Q4 \ UL, P;) and

CMe Ce
|9(X)| < R

|du ()] +[d2(X)| < 5

which follow from the explicit forms and the estimates in §3, as can be checked easily. Here and below C'

represents a generic constant independent of M and e.

Similarly, one has
N1U1+(j1(X)U1 +d_2(X)U2 :g(X), on X2 = ]., (45)

where d; (X), d>(X), and g(X) have the same properties as d;(X), do(X), and g(X) do respectively.

In a similar way, one can choose Ny = 0x, + T20x, with

1 2 - _ _
T2 — - { L — ( Y1Q12 Uz22)71 } € 01760(Q+) N 02,50 (Q+ \ U;}lei)
— 7172 a1l
such that
N2U2+€1(X)U1+62(X)U2 :h(X), on Xl =0 (46)
N2U2+é1(X)U1+éQ(X)U2 :7’1,()()7 on X =1 (47)

where e (X), e2(X), h(X),&1(X),8(X), h(X) € C(Q4 \ UL, P;) and

CMe
R’

Ce
Rdo

lex (XO)] + le2(X)] + |en (X)] + |2 (X)] < [(X)] + [A(X)] <
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Next we derive the equations satisfied by U; and Us.
Note that
auag(l (8X1f/) + 2@1283(1)(2 (8X1f/) + a228§(2 (8x,f/) + 8Xia118§(1f/ + 28X,.a128§(1X2f/
+0x,a220%,V + 0x,Fp =0, i=1,2
By using the relation (4.3), Lemma 3.3 and Lemma 3.4, one can derive

Au(X)ag(lUl + 21412( )8X X2U1 + Aoo X)@X U, + Al(X)axlUl + AQ(X)8X2U1 + A3(X)8X1U2

+ Ay (X)0x,Us + C1(X)Uy + C2(X)Us + F(X) =0, (4.8)
/IH(X)ag(l U + 2A12( )8X1X2U2 + A22 X)@X Us + A1 (X)axl U, + AQ(X)8X2U1 + A3(X)8X1 Us

+ A4(X)0x,Us + C1(X)U; + Co(X)Us + F(X) =0, (4.9)

Ai(X) € CV(Q4 \
eC (Q+\Uz IP)

(
)
(
)

where Aj; = Ay = a; € C72(Q4) NC**(Q1 \ UL Pi)(i,j = 1,2); Ai(X),
U?:lpi)(i = 1727374); Ci(X)v C_’( ) 060(Q+ \ U )(Z =1 2) F(X)7 (X)

Furthermore,

A (X) = (4 —¢3) (1 + O(Me))
(M

A12(X) = O(Me)

Aga(X) = 2 (14 O(Mz))
vXAij(X)ZO(}A;f), ij=1,2
AZ-(X):O(%L i=1,2,34
04}():0(%), =12
F(X) = 0(55)

and A;;(X), A;(X),Ci(X) and F(X) have the same properties as those of A;;(X), A;(X),C;(X) and
F(X) do respectively.
Now we can derive the basic energy estimates on U; and Us. Indeed, multiplying (4.8) and (4.9) on

both sides by U; and U, respectively and integrating by parts over the domain (), one gets

UL + |02 Uil + |Us]
// (VUL + VU [?) dX<CM5// | 1|R;5|02| AX +e //Q | 1|+| O+ 1]y 422 4101 +10),
+

(4.10)
here one has used the estimates on A;;, A;;, A;, 4;, C;, C;, F and F'. Besides, @ and @ represent the

boundary integrals as follows:

1
Q= / {((A1101U1 + 2A120:U1)U1) (1, X2) — ((A1101U1 + 2A120:U1) U1 ) (0, X2) }d X
—1
1
+/ ((Ass®oU1 U ) (X1, 1) — (AsaaU7 U1 ) (X1, —1)}d X,
0
1
Q= / {((A1101U2 + 24120,U,)Us)(1, X32) — ((A1101Us + 2A120,U5)U3) (0, X2) }d X,
—1

+ /1{(A2282U2U2)(X1, 1) — (AQQ@QUQUQ)(X17 —1)}dX1
0
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The terms in the right hand side of (4.10) will be treated separately as follows.

(i). The estimate on fo U240z ]2 5

R1+60

By (4.2), Lemma 3.3 and the Poincare’s inequality, one has

// |U1|2dX§// |U1+Bl|2dX+// |B12dX
Q+ @+ Q+

50(//62 |V(Uy, + By)?dX + &?)

<C(//Q VU |?dX +&?). (4.11)

In addition, Sobolev’s imbedding theorem implies

</ -/Q+ |U1|de)11J <Gy (/ /Q+(|U1|2 + |VU1|2)dX)%, for  pe[l,+x) (4.12)

Hence, combining (4.11) with (4.12), one shows that

<//Q+|U1|de> <c, // VULPAX + &)1,

bl ([ b))’
——dX < Up|*P2dX
/‘/; R1+2(50 R(1+2§() 1 Q+| 1|
gc(// |U1|2p2dX) (4.14)
Q+

wherep1:m>landpl—l+ L =1
Similar estimates hold for [ fQ Rlﬂfz‘&o dX.
It follows from (4.13) and (4.14) that

// 0 + |U2|2dX§C(//Q (VUL 2 + |VU[?)dX + &2). (4.15)

R1+6o0

wl»a

for p € [1,+00). (4.13)

Then

(i). The estimate on e [ [, ‘Ull!;,(‘)U”ldX

Since for small constant § > 0, there exists a constant C's > 0 such that Eg{é‘ < Cs—~ Rooo + 8|UL|?, then
it follows from (4.11) and (4.12) that

// |U1|+|U2 ngC(0552+5// (VUL + VU, [2)dX) (4.16)
Q+ Q4

(iii). The estimate on |Q)].

FiI’St, we treat the term Il = fil((AnalUl + 2A1282U1)U1)(1,X2)dX2 in Q

Since

U = 0%,V + 0%, x,V + 0x,719x.V,
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and 3 ) i
agfzv + 726?(1X2V + 8X2728X1V = 82U2,

0%, x,V + 0%,V + 0x,m0x,V = 0:U1,
anc‘)?(lf/ + 20/128%(1)(2‘7 + a228§(2‘7 + Fp =0,

then one has the following expression for 0;Uq,

where Pl(X),PQ(X)7P3(X) € Cl_éo(Q )ﬂ 02(Q+ \ U 1‘ and El( ) EQ(X) € 01’60(Q+ \ U;l:lpi).

Moreover

Z|P <O, |P(X)] < O,

2

CMe 2 CMe
Do IVxP(X)| < Ro dOIE(X)] < T
i=1 i1

Substituting (4.17) into I, integrating by parts, and using the boundary conditions (4.2), we obtain

1 X,) (1, Xa)
L] < O +M/ Ui(LXa) / 5|U2R60 2 ix,) (4.18)

In addition, by the trace theorem and the argument as for (4.11) one has

</11|U2(17X2)|PdX2) <cC (// (U + VU, [?) dX)

< Cp< |VU,|?dX +62) 2, for  pe[l,+o0)
[]..Fv o

So it follows from the Holder inequality and (4.19) that

=

L] < O(Cse® + (M6+6)// VU, |2dX) (4.20)
Q4

Similarly, one can obtain

1
|[2| = |/ ((A1181U1 + 2A1282U1)U1)(07X2)dX2| < 0(0562 + (ME + (5) // |VU2|2dX) (421)
-1 Q+

Next7 we estimate [3 = fol((AQQaQUlUl)(Xl, 1))dX1 in Q
Note here that the term I, = [ ((A2282U1U1) (X1, —1))dX; in Q can be treated similarly.
It follows from the boundary condition (4.5) that

1
I3 = / (A22(g — diUy — doUs — T101U)UY) (X1, 1)d X
0

By the properties of Ays,§,d;, and Ty, one obtains by using the Holder inequality and integration by

! . LU (X, 1
|.73|§C<62+M5(/ |U1(X1,1)|4dX1)5+s/ %d}(l)
0 0

parts that
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Similar argument as for (4.20) leads to
|I3] < C(Cse® + (Me + 6)// |VU|?dX).
Q4
Collecting all the estimates on I, I, I3 and Iy, we arrive at

Q| < C(Cse® + (Me + 6) //Q (VUL + VU, [2)dX). (4.22)

(iv). The estimate on |Q)|.

By a similar treatment as for (), one can show that
|Q| < C(Cse* + (Me +9) // (VUL |? + |VU)?)dX). (4.23)
Q+

Therefore, substituting (4.15), (4.16), (4.22) and (4.23) into (4.10) and choosing Me and ¢ small
enough, then one gets
// (|UL)? +|Us? + |VUL|? + |VUs?)dX < C&?, (4.24)
Q4

(4.24), together with (4.3) and Lemma 3.3, yields the desirable estimate on [f,, (IVV]?+ V2V |2)dX
Finally, we estimate [ [V|2dX.
Since V(0,0) = 0, then

Xz Xl
V(X)=V(X)-V(X1,0)+ V(X;,0) = V(0,0) = dx,V (X1, Xo)dX, + dx, V(X1,0)dX,
0 0

Hence, one obtain by the trace theorem that

1
/ / VPdx < / / 10, V24X + / 10, 7(X1, 024X, )
Q+ Q4+ 0

< c//Q+(|VV| FIVTPEX (4.25)

Noting (4.13), (4.14) and (4.24), then one has from (4.25) that

2 2
// I dX<C// (UL + [Us)? + VUL + |VUs|?)dX + 2 // |U1|R':61U2| dX)
Q+

< c(// (|U1|2+|U2|2+|VU1|2+|VU2|2)dX+52>
Q+

< Ce? (4.26)
Combining (4.24) with (4.26), we obtain
// (V]2 +|VV]? + |V2V2)dX < Ce?,
Q+

which implies (4.1) by Sobolev’s imbedding theorem. Thus Proposition 4.1 is proved.

Remark 4.1. It follows easily from the proof of Proposition 4.1 that we actually obtain the uniform
C*(Q.) estimate on V(X) since H2(Q,) C C*(Q.) for any fixed 0 < a < 1.
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65. The higher order estimates and the proof of the existence in Theorem 2.2

With the L™ estimate on V at hand, we can now give the higher order estimates for V.

Proposition 5.1. Assume that W € K. If V(X) € OV (Q,) N C*% (Q, \ UL, P,) is a solution of
(3.5) with the boundary conditions (3.8)-(3.9), then for small ¢, there exists a constant Cy independent
of M and ¢ such that

||V||Cl‘l—50 S 006,
sup RF21%0 | VA V| < Coe,  k=2,3,
X

VEV(X) = VEV (Y
D Y e a4t
X,YEQ+\U?=1P,' k=3 | |

< C()E.

Proof. By Lemma 3.4, without loss of generality and for simplicity, we may assume that
a11:1+O(M5), 022:1+O(M€)

Denote by I't = {X; =0,-1< Xo <1}, [ ={0< X; <1, Xy =1}, T3 ={X; =1,-1 < X5 < 1},
and I'y = {0 < X; < 1,Xy = —1}. Then 0Q4+ = m Consider a subdomain @; of Q4 with
the property that 9Q; N Q. lies in the interior of Q4. Since the solution V is unique, then by the
classical Schauder estimates on the second order elliptic equation with the uniform oblique derivative
boundary conditions(see [13] or [19]), there exists a constant C(||Bii]|cr.a—s (Q1)7 -+ | Baallcra—so (@1))
which depends on || Bjil|c1.1-50 (g, ) (¢ = 1,2,3,4) such that

IVllc21-30(G,) < CUIBllora-s0(Gy)s - 1Baallora-so @) IV L= (@4 + I Follor-s0 (a4

4
+Z||Bi||01~1*50(Q+)) (51)

=1

Thus, the main task is to estimate V and its derivative near the corners.
Let G;(ro)(i = 1,2, 3,4) represent the part of the disk centered at P; with radius 0 < rg < 11—6 which is
included between I'; and I';_; (here we define I'y = I'y). Define a C'*° function y;(X) such that
1, X € Gi(R)
Xi(X) = { o 2
0, X e Q+\Gi(§7“0)

We divide the proof of Proposition 5.1 into four steps.

Step 1. There exist constants C} and C§ (1 <i < 4) such that

S (X)) (V(X) = (V(P) + Cj (X1 — X}) + C5(X2 — X1)))| < CeR*,

here P; = (X}, X3).



TRANSONIC SHOCK IN A NOZZLE I, 2-D CASE 23

Set Vi(X) = x1(X)(V — V(P,)). Then it follows from (3.5), (3.8) and (3.10) that Vi (X) satisfies the

following elliptic equation and the boundary conditions

ana%(lVl + 2@1283(1)(2‘/1 + a226§(2V1 = Fl(X)

Ix, Vi + B11(X)dx, 1 = 1(X), on X1 =0
8X2V1 +B33(X)8X1Vl = qQ(X), on Xy =-—1
Vi=0 on | X1)? + | Xa + 1) =12

(5.2)

where
Fi(X)=2 (a1181X13ﬂ7 + a2 (O x10:V + 0ax10,V) + a2232X13217> + (41107 x1 + 2012075 x1
+ azdxx1)V — x1Fo
@1 (X) = (Biidax1 + 0x1)V — x1 B
72(X) = (B33dix1 + Oax1)V — x1Bs
Without loss of generality, we may assume that P; is the origin (0,0) from now on (otherwise, one can

take a transformation: X'l = Xi, X2 = X, + 1 to achieve this).
Set Vi = Vi — x1(X)(CL X, + CLX3), here

ol — B5(0)B11(0) — B1(0)
! 1 — By1(0)Bs3(0)
L B1(0)Bs3(0) — B3(0)
> 1— B11(0)Bs33(0)

Then V; solves the following problem
anag(l ‘71 + 2@1283(1)(2‘71 + a228§(2‘~/1 = F'l ()()7

8X1f/1 +B11(X)8X2‘71 :q~1(X)7 on X1 =0 (5 3)
8X2‘71 + B33(X)8X1‘71 = qNQ(X), on X2 = 0
Vi=0 on NP+ X% =1

where

Fi(X) = A(X) = (C1 X1 + G2 X5) (a0 x1 + 2011075 x1 + a2203x1)
2@1181){1011 + 2@12(82){1011 + 81)(1021) + 2@2282){1021)
X1(X)(C] + C3B11(X)) = (C1 X1 + C3X2) (D1 x1 + Bi1(X)dax1)

Xl(X)(Czl + 0%333(X)) - (C%Xl + Cle2)(32X1 + 333(X)31X1)

(
— (
@ (X) =q(X) -
R(X) = ¢(X) -
with G;(0) = ¢2(0) = 0. In addition, it follows from Proposition 4.1, Remark 4.10, and Lemmas 3.3 - 3.4
that

G (Xl -0 @y + 122X | c1-s0 @iy < Cc

Noting V;(0) = VxV;(0) = 0, hence we need only to show |V xV;(X)| < Cer'=% to conclude Step 1,
here r = /X2 + X2. First, note that the boundary of G (rp) satisfies the uniform exterior ball property.

Then by the standard method of barrier functions (for example, see [17]) one can show that

|VX‘71|§C<€, on  Gi(ro). (5.4)
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To obtain the Holder continuity of Vx Vi at Py, further estimates are needed. As in the proof of
Proposition 4.1, we set
U = 9x,Vi + B110x, V1
Uy = 0x,Vi + Bs30x, Vi

Then by similar simplifications and an analogous formula as (4.17) in the proof of Proposition 4.1, one
has

( An(X)ag(l U, + 2A12(X)8§1X2U1 + AQQ(X)@%ZUH + A (X)axl U, + AQ(X)8X2U1
-l-Cl(X)Ul + Cz(X)U2 = Fll(X)

U1 :dl(X), on X1 =0 (55)
8X2U1 +T(X)3X1U1+d1(X)U1+d2(X)U2:g(X), on Xo=0
(U, =0, on X2+ X3 =r?

and
( /IH(X)ag(l Us + 2[112(X)8§(1X2 Us + AQQ (X)82 2UQ + Al (X)axl Us + AQ (X)8X2 U,
+C1 (X)Uy + Co(X)Uz = Fii(X)

axle + T(X)6X2U2 + Jl(X)Ul + JQ(X)UQ = g(X), on X;=0 (5.6)
Uz = ¢2(X), on Xo=0
([ =0, on  X{+X3=r}

where A;;, Ajj, Ai, Ay, Ci,Ci, T, T, d;, diy g1, 1, Fin and Fiq have the same properties as those of the cor-
responding terms in (4.8), (4.9), (4.4) and (4.6) respectively.

One can rewrite (5.5) as

A11(X)8§(1 U1 + 2A12(X)8§(1X2U1 + AQQ(X)@%{ZUI + A1 (X)axl U1 + AQ(X)8X2U1 = Hl(X)

U1:q~1(X)7 on X1:0
8X2U1 +T(X)8X1U1 :gl(X), on Xo=0
Ui =0, on X+ X3 =rf
(5.7)
where
€
Hy(X) = 0(355;)
€
0(¥) =0(—)

The strategy is to find some subsolution and supersolution of (5.7) so that one can get a control on Uy .
Set Wy (X) = —Coer' =% cos((1 — %0)9 + %0), here 6 = arctg32. Noting Vi = VZyy =0 for [X]| <22
and using the estimate (5.4), one shows by director computations that for large Cy (independent of M
and ¢) and 0 < ¢ < 7, there holds

( (A 0%, +24120%, x, + A20%, + A10x, + A20x,) Wi
= Coer 1 7%8,(1 — 38p)(cos((1 — )8 + ) + O(Me)) > —H,(X)

Weuwp < q1(X), on X1 =0
aszV[/sub + T8X1Wsub = 00(1 - 62_0)67'_60 (sm((l - 670)0 + 670) + O(M&‘)))
> —g1(X), on  Xo=0

L Waw <0, on X+ X3=rk



TRANSONIC SHOCK IN A NOZZLE I, 2-D CASE 25
By the comparison principle (see Corollary 2.4. in [20]), one knows that
Ui > Wsup
Similarly, one can prove

Ul S Wsup = _Wsub

Hence
|U1 | S 0067”1_60 .

Setting Weyy = —Coer' % sin((1 — )¢ + %) and Weup = —Weup, then we also have
|U2| S 0067”1_60.

Namely, |Vx Vi (X)| < Cer'=% holds.
Similarly, we can treat V (X) near the other points P, P; and Py. In addition, away from the domain
UL, Gi(ro), then (5.1) and Proposition 4.1 imply that

IV (X) < Ce

losa-s @roman <

Hence Step 1 is proved.

Step 2. We will show that |[V3 V| < CeR™%.

It will suffice to prove that |V Vi (X)| < CeR~% for X € G1(ro).
Motivated by the analysis in [3], we will consider the mixed boundary value problem (5.3) in the

following domains in G' (ro):

Dm:{XEG(ro),#STS%}, m=-2,-1,0,1,---, N,
Di=Di UD,UDy,, 1=0,1,--- N. (5.8)
D;=D;_5UD;UDyy»

We then rescale the independent variables by the transformation

X
This transformation changes D, Dy, and ]51 onto Dy, Dy, and ]50 respectively. Furthermore, set
_ . X . =z
Vi(X) = V1(§) for X € Dy
Then it follows from (5.3) that on 50, V1(X) solves the following elliptic problem:
Qi (X)@?zl ‘71 + 2&12()2)8?21;(2 _1 + Qoo (X)a?zz ‘71 = % _1 (X)7
g, Vi +Bui(X)og, Vi = 20(X) on X1 =0, (5.10)
8)22‘71 + BQQ(X)aleVi = %72()2) on XQ =0,
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Using the structures of those coefficients in (5.10), Lemma 3.3-3.4, Proposition 4.1, and the facts in
the proof of Step 1, one can show by lengthy computations that

155l 150 5,y < €

||Bil||cl 1— JU(D ) < CM&

N@ill o S0 (Bo) < 2~ 1=d0),

||F1||C1 S0 ( 0) < Ce.

(5.11)

It follows from the classical Schauder estimates on the second order elliptic equations with the uniform
oblique derivative boundary conditions (see Lemma 1 in [19]) and (5.10)-(5.11) that there exists a uniform

positive constant C' such that
_ 1.
Wil sy < OVl < 5, + 57101l cn s
# 5Bl ossu 5, + rllFiller-so(Bo)
< C(|[Vallu~ (Do) + 524(2760) +e272).
On the other hand, it follows from V; (0) = 0 and the estimate in Step 1 that

% ) —1(2—60)

||‘/1||Lao(f)0) S 062 0

Consequently, we arrive at
IVillcza-s0(5y) < Coe27/E700) (5.12)

Since v’;(f/l(fc) =5 Vh V1(X), one can deduce easily from (5.12) that
|VA Vi (X)] < Ce271(37h=00) for X e Dy, k=1,2
In particular, one has shown
IVXVA(X)| < CeR™™, X €Gy(ro) - (5.13)

A similar analysis shows that |V§(‘7Z| < CeR 7% holds for i = 2,3,4. Therefore the claim in Step 2 is

proved.

Step 3. It holds that |V V(X)| < CeR~'~% for an uniform positive constant C.

As in Step 2, it suffices to show that
VATL(X)[ < CeRT0 for X € Gy(n)

To this end we consider U; and U, introduced in Step 1. As in Step 2, we note that in Dy, the function
U (X) = Ui (2 ) solves the following problem:

/111()2)8% Ul + 21412()2)8?( - Ui + AQQ( )8 U1 + 1()2)85(1 Ul
(5.14)

05,01+ T(X)05, U1 + £di(X)U1 = 25:1(X) on  Xy=0,
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~ - A~~~ X
(Aij, Ay, Hy, Ty dy )(X) = (Agj, Ay, Hy T, da ) (

20)

Due to the structures of these coefficients as given in Step 1, one can show by using Lemmas 3.3-3.4,
(5.12), and (5.13) that

1 Ai;l|lo1ms0 (Do) < O, | Aillenso (Do) < CMe22%0l j j =12
| Tllcra-s0 (Do) < CMe,||di|| 1150 (Do) < CMe22%! i=1.2

11l c1-50 (Do) < C210, (5.15)
HQIHCZ-JO ([)0) < 062_1(1_‘50)7

||I:I1||01*50 (DO) < Ce2tdo

Now, by the classical Schauder estimates (see Lemma 1 in [19] and [1,3]) applying to (5.14) on domains
Dy and Do, one gets

- . 1 -~ 1. . _ ~
1illc=0(p0) < CUT N () + 5l + 57l s oy + ldille= (Do)

1 1 dol 16[ —1(1=6p)
ch(m+ﬁ20+§20+2 0)

= g2~ (1=%)

where we have used (5.15), Step 1, (5.12) in Step 2, and the choice of dp such that dg < 1 — dp. Thus

we have obtained that

|01 || o250 (Do) < Ce27H1=00), (5.16)
As a consequence of (5.16), one gets
IVXUL(X)| < CeRTI™%  for X € Gy(ro) (5.17)
In exactly same way, one can show that
IVXU2(X)| < CeR7V%  for X €G1(ro). (5.18)
It follows from (5.17), (5.18), and the relations between (Uy, Us) and VxV; that
|V3VL(X)| < CeR~ 1% (5.19)

where we have also used Lemma, 3.4.

Similar analysis yields that |V§(‘71| < CeR 1'% for i = 2,3,4. Consequently, we may conduct that

V5 V] < CeR™170%, (5.20)

Step 4. We claim that ||‘7||01,1_50(Q+) < Ce.
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To prove the claim, it follow from Proposition 4.1 and (5.4) that one needs only to prove

[VV(X) - VV(Y)]
su < Ce.
X,YepQ+ |X — Y10 -

As in the previous steps, it suffices to show

IVIA(X) - VIA(Y)]
sup < Ce. 5.21
X,Y€G(ro) |X — Y10 ( )

Without loss of generality, we may assume |Y| < |X]|.
If |Y| < 1|X], then | X — Y| > $|X|. Then it follows from Step 1 that

[VVA(X) = VVA(Y)] < Ce(IX]H% + Y[ ) < 01X,

hence (5.21) holds for V| < 1]X].

If Y| > 1| X|, as in Step 2, one can consider the domain
5 (% NE T
D= {X €Gilm): 5 <IX| <|X]}

Set, oI X 1!
P

(2

i=1,2.
o

Then the domain D is changed into D’ = {X' : LX< R
Let Wy (X') = Vl(%i(lX’). Then a similar argument as in the derivation of (5.12) in Step 2, shows
that
W1 (X")|| 2140 (pry < Ce| X P00, (5.22)

Obviously, (5.22) implies the following fact

[VVi(X) = Vi (V)]
< Ce.
Xy S Cf

X,yeD

This leads to (5.21). Therefore, ||‘71||Cl,1,50 Gitro)) S Ce. Namely, Step 4 is completed.

Step 5. It holds that

|dX y|1+250 |VAV(X) B VAV(YH

sup < Ce.
X,YeQi\UL, P 5 |X — Y%
As in Step 4, it suffices to show
VFV(X) — VRV (Y
sup Z|dX,Y|1+26U| 1( ) 1( )| ch

X,YEGl(’I‘[]) k=3 |X - Y|§0

with dxy = min{|X|,|Y]}.
Assume |Y| < |X|. If |Y| < 3|X], then it follows from Step 3 that

kY kY
3 1425, [V VI(X) = VEVI(Y) 1450 L 1
: ey [ X — Y[ < Cely| 0(|X|1+50 + |Y|1+60) < Ce
=3
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If Y| > @, as in Step 3 and Step 4, set Wi (X') = U1(2‘X|X ) and Wi(X') = Us (2‘X|X ), one can
obtain as for (5.16) in Step 3 that

W11 (X200 (pry + Wi2(X7)l200 (o) < Cel X[ (5.23)

This yields

2
1426 |V U ( )| 1426 1 ) .
REEP)> = m < O s DI ooy < O

ll|=2i=1 i=1

Since

7 _ Ui—B11 U
axlvi " 1-B11Bss

07— Ua—Ba3Us
Ox,V1 = 1—B11Bss

then

> VAL =D (CHX)VIUL + CRX)V!ITL) + Y (C3(X)V™UL + Cp (X)V™ )
|k|=3 [l|=2 |m|=1

+ C5(X)Uy + Cs(X)Us

where

Y (KX +ICFX)) <0 Y (VOHX)| + VO (X)) < %

= ll|=2

' ' CMe
Y (VLX) + [ VECr (X)) < TX]FFo0” k=0,1,

jml=1

X X M
VR Cs (X)) + [VHCo(X))) < oM

WT“F(SO, k = 0, ].
It then follows from Step 2 that

1426 [VETA(X) = VA (Y)]
| ’ Z |X Y|50

l 2
1425 VU - VUi(Y)|  CMe
<oppen (3 3 WV U0l U

|l|=2i=1

< Ce

Thus the claim in Step 5 is proved.

Combining Step 1 - Step 5, we have completed the proof of Proposition 5.1.

Based on Proposition 4.1 and Proposition 5.1, it follows from the standard continuity method as given
n [14] (or see Lemma 2.3 in [21]) that the linear equation (3.5) with the standard boundary conditions
(3.8)-(3.12) is solvable in the set K. Furthermore, Proposition 4.1 and Proposition 5.1 imply that one
can choose the constant Cj as the constant M in K. Hence the mapping J in (3.4) is well-defined and

maps from K into K. Furthermore, one has

Lemma 5.2. J is a continuous mapping from K — K.
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Proof. To prove Lemma 5.2, we need to verify the assertion:

IEW,(X), Wo(X) € Kand Wi (X) - Wp(X) in Kas — oo, then the corresponding solutions V;(X) —
Vo(X) in B. (5.24)

First, it follows from Proposition 5.1 that {V;(X)}°, and V;(X) are uniformly bounded in K To prove
(5.24), it suffices to show [|[V/(X) — Vo(X)|l¢(q,) — O by the interpolation inequality on the weighted
Holder space(see [12]).

Set V; = Vj(X) — Vu(X). Then V; solves the following problem

( an (X, W, VxW)0% Vi + 2a12(X, Wi, Vx W) 0%, x, Vi + aze (X, W, VxW)0%, Vi

+E(X)0x, (Wi — Wo) + FP(X)0x, (Wi — Wo) + FP (X)(W; — Wy) =0

9x, Vi + B (X, W, VxW1)0x, Vi + B (X)dx, (W, — Wo) + B2 (X)dx, (W, — Wo)
+B (X)) (W, — W) =0 on X, =0

0x, Vi + Boa (X, W, VxW))0x, Vi + Bl (X)dx, (W, — Wy) + B (X)dx, (W, — Wy)
+BL(X)(Wi —Wo) =0 on X =1 (5.25)

0x, Vi + Bs3(X, Wy, VxW))0x, Vi + B (X)dx, (W, — Wy) + B(X)dx, (W, — Wy)
+B,(X) (W, = Wo) =0 on  X;=-1

0%, Vi + Baa (X, Wy, VxW))0x, Vi + B}, (X)dx, (W, — Wy) + B} (X)dx, (W, — Wy)
+B,(X) (W, = Wo) =0 on  X;=1

where
F/(X)=) 0%, Vo/ (B, ;) (X, 0W; + (1 — 0)Wo, VW, + (1 — 8)VIWy)dh
=1 0

+20%, x, Vo /Ol(awi a12)(X,0W, + (1 — )Wy, 0VW, + (1 — 0)VIW,)db

+ /01(8W,.F0)(X,9W1 + (1= 0)Wo,0VW, + (1 — )V Wo)dd,  i=0,1,2
Bj;(X) = 9x, Vo /Ol(awiéjj)(x, OW, + (1 — 0)Wo,0VW, + (1 — 8)VIWp)d

+ /(Jl(aw,l?j)(X,GWz + (1 =)Wy, 0VW, + (1 — 0)VWp)df,  i=0,1,2;5=1,2
Bj;(X) = 9x, Vo /Ol(awiéjj)(x, OW, + (1 — 0)Wo, VW, + (1 — 8)VIWo)d

+ /Ol(awiéj)(x,ewl + (1 =)Wy, VW, + (1 — O)VWy)df,  i=0,1,2;j=3,4

here we have used the notations (Wy, Wy, Ws) = (W(X), dx, W, dx, W) for convenience.
It follows from the expressions of F/(X) and Bj;(X) and Lemmas 3.2 - 3.4 that

i CMe
|E (X)| S Rg[] ?
- CMe
IVxF/(X)] <
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Therefore, analyzing in a similar way as in the proof of Proposition 4.1 (in fact, it is even simpler), we

can obtain

/ /Q (T2 + IV Til + V3 TR)AX < CUIWE = Wollaaosaa,, + S IRV (Wi = Wo)lB~(q,))
+ k=2

This, together with the Sobolev’s imbedding theorem, implies
IVi(X) =Vo(X)legy =0 as  I—o0

Hence we complete the proof of Lemma 5.2.

Proof of existence in Theorem 2.2.
It follows from Proposition 4.1, Proposition 5.1 and Lemma 5.2 that the mapping J satisfies all the
requirements of Theorem 3.1. By the choice of J, one can obtain the existence of solution in Theorem

2.2.

It remains to prove the uniqueness of solution in Theorem 2.2. This will be given in the next section.

66. The proof of uniqueness for Theorem 2.2.

This section is devoted to prove the uniqueness of the solution to the nonlinear elliptic equation (2.4)
with the boundary conditions (2.5)-(2.9).

Proposition 6.1. (Uniqueness) If ¢ is a sufficiently small constant depending on M, p4, ¢+ and o,
then there exists at most one solution V' (X) to equation (2.4) with the boundary conditions (2.5)-(2.9)
such that

Me

Me
Sﬁv |V?))(V(X)|<

V(X)) = leri-soq,) < Me,  [VXV(X)] < e

(6.1)

Proof. If there exist two solutions V;(X) and V2(X), to the problem (2.4) - (2.9), both satisfy
the estimtes (6.1), one then can check through the expressions in (2.3) and the appendix that v(X) =
V1(X) — V2(X) solves the following problem

( an(X, i, val)ag(lU + 2a12(X, i, val)ag(lxz’v + a/22(X, i, val)ag(zU + bl(X)axlU
+by(X)Ox,v + c¢(X)v =0, X e+

Ox,v +71(X)0x,v + di (X)v =0, on X; =0,

0x,v + 72(X)0x,v + d2(X)v =0, on X; =1, (6.2)
x,v + 71 (X)0x,v + dy (X)v = 0, on Xy =-1,

x,v + 72(X)Ix,v + da(X)v = 0, on X, =1,

\ U(O) = 0,

with b;(X), ¢(X) € CY(Q4 \UL | P;) and v;(X), di(X),7:(X),di(X) € C*(Q+ \ UL, P)NC % (Q ) such
that
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2

: . Ce
Z|V§(bi(X)|+|V§(C(X)| S RETa k=0,1
=1

2
Z(“%Hcl—% + 1Filler-s0 + Nldillor-s0 + ldillcr-50) < Ce (6.3)
=1

2 —_
DUVl + VATl + IV dil + [V dil)

. =1

Ce

SW, k:1,2

Here and below the generic constant C' can depend on M.

Although the problem (6.2) is similar to the equation (3.5) with the boundary conditions (3.8)-(3.12),
there are some differences because (6.2) contains the low regularity coefficients in the first order derivative
Vxv(X) and the function v(X) itself. Hence additional care is required to treat the problem (6.2). In
addition, it seems to be difficult to use the maximum principle to prove the uniqueness of solution to (6.2)
since ¢(X),d;(X) and d;(X) can change their signs. Here we would like to emphasize that it is critical
to choose the “good” transformation (2.2) to study the uniqueness since we can obtain the “smallness”
estimates on ¢(X),d;(X) and d;(X) in some appropriate sense, which are the keys to show v(X) = 0 in
(6.2).

Set

{ v1 = 0x,v + ((1 = X1)71(X) + X192(X))0x,v + (1 — X1)di (X) + X1da (X))o,

va = dx,v + 3 ((1 = X2)71 (X) + (1 + X2)72(X))dx,v + 5((1 — Xo)d1 (X) + (1 + X2)CZ2(X))'U(-6 "

As in §4, one can show that v; and v solve the following problems respectively:

AH(X)ag(l’Ul + 2A12(X)8§(1X2v1 + AQQ(X)ag(Z'Ul + A (X)&lel + Ay (X)8X2U1 + A3(X)8X1 U2
+A4(X)0x,v2 + c1(X)v1 + ea(X)v2 + co(X)v =0,
v; =0, on X1 =0 and X =1,

Ox,v1 + T(X)0x,v1 + e1(X)v1 + ea(X)va + eg(X)v =0 on Xy =-1 and X =1

6.5)

—~ I

and

AH(X)ag(lm + 2;‘112()()8%(1)(21)2 + AQQ (X)8§(2v2 + Al (X)axl v + AQ (X)8X2U1 + A3 (X)axl’vg
+A4(X)8X2’02 + El(X)’Ul + EQ(X)'U2 + Eo(X)’U =0,
8X1v2 +T(X)8X2’02 +51(X)U1 +52(X)U2+60(X)’U:0 on X:1=0 and Xi=1

vy =0, on Xo=-—1 and Xo =1,
(6.6)

where Aj;(X), A (X) € C'(Q+)NC?*(Q+ \UL, Pi); Ai(X), Ai(X) € CH(Q+ \ULL, P2); ci(X), &(X) €
CQr \UL P); T(X) € C%(Q)NC?*(Q4 \ UL, P) and e;(X) € C1(Q4 \ UL, P;). Moreover,



TRANSONIC SHOCK IN A NOZZLE I, 2-D CASE 33

( An(X) = (4 —¢}) (1 +0(Me)),
A (X) = O(Me),
A22(X) C (]. +O(M€))
|VXA1J( )| < Igﬁw
Z|A I oe
. (6.7)
€
Z|cl R1+50
(%) < C
|VXT( | < RO(N
Z|el | - R50

while A;;(X), A;(X), &(X), T(X), and &(X) have the same properties as 4;;(X), 4;(X), ¢;(X),
T(X), and e;(X) do respectively.

Multiplying the two equations in (6.5) and (6.6) on both sides by v; and vy respectively, integrating
by parts over the domain @, and using the properties in (6.7), one can derive in a similar way as in §4
that

v1 ]2 + |vg]? v|?
//Q (IVxv1 | +]V x v2]? dX<C’{ (//Q |1|R1+log| dX+/ All%dx>+|q21|+|@1|} (6.8)
+ +

with

1
Q1 = / (A, 0001) (X1,1) — (Azix,000) (X, ~1)}dX,,

1
Q1 Z/ {(A110x,v209) (1, X3) — (A110x,v2v2)(0, X2) }dX>.
—1

Since v1 =0 on X; =0 and v = 0 on X3 = —1, then Poincare’s inequality implies

(//QJF(|U1|P+|U2|1’)dX);gCp<//Q+(|VXU1|2+|VXU2|2)dX>; for  pell4+x) (69)

In addition, as in §4, in light of v(0) = 0, one shows that

// v dX<C’// (|Vxv|? + |Viv]*)d (6.10)
Q+
From the definitions of v; and vs, one has
{ Ox,v =11(X)vy + 1r2(X)vs + r3(X)v 6.11)
aszzfl(X)Uz-l-Fz(X)Ul +73(X)’U '

where r;(X),7:(X) € C?(Q4+ \ UL, P;)) N C1=%(Q) such that

3 3
I+l < D (ml+Ir) <Cey D (IVar| + [Vxri]) <

i=2 i=1

Ce
R50
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Substituting (6.11) into (6.10) yields

2 2
// |v]2dX < C(// (Jo1]? + v2* + |[Vxvi|* + |[Vxv2]?)dX + &2 // w
Q+ Q4 Q+ R

42 il dXx)
Q+ R% '

It follows from the Sobolev’s imbedding theorem and (6.11) that

(//Q+ |v|de)% <c, (//Q+(|v|2+ |va|2)dX>%
scp(//m(w+|v1|2+|v2|2>dx)%, p e (1,+00).

Combining the Holder inequality with (6.13), one has from (6.12) that

// |v|2dX§C(// ([or2 + 02 + [V x01]? + |V xv]2)dX.
@+ Q+

Taking into account of (6.9), (6.13) and (6.4), we conclude from (6.8) that
[ [ 0Vsui + [9xnP)ix < ol + @i
Q4

Next we analyze @1 and Q.

It follows from the boundary condition on v; and integration by parts that

[0 + [va]

1 1
|/ (14228)(21)11)1)()(17 1)dX1| S 06/ ( 5
0 0 Roo

By the Holder inequality and the trace theorem, one gets

1 2 1 1
|U1| 1 1 4 1
/0 (R% (X1, 1)dX; < ( i 7o) ( i log[*(X1,1)dX1)

<c [ [ P+ vxupix.
Q+

Similarly, it follows from the trace theorem, (6.13) and (6.14) that

1 2
/ (L;)—(L[])(Xl,l)Xmgc// (o + |VoP)dX
0 Q4

S C// (|’Ul|2 + |U2|2 + |V’U1|2 + |VU2|2)dX
Q+

)(Xl, 1)dX;.

aXx

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

The other terms in Q; and Q; can be treated similarly. Hence we can derive from (6.15)-(6.18) that

// (IVxo1]? + [V xwa|2)dX =0
Q+

It follows from (6.9) that

UlezEO
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Finally, (6.14) implies

Namely, Lemma 6.1 is proved.

Now, the uniqueness in Theorem 2.2 follows from Lemma 6.1.

§7. The proof of Theorem 1.1 and remarks

In this section, we will give the proof of Theorem 1.1.

Proof of Theorem 1.1.

First, the regularity and estimates on the supersonic flow, (i) in Theorem 1.1, follow from Lemma 2.1
directly.

Next, by the regularity and uniqueness of V(X) in Theorem 2.2, we conclude that the inverse trans-

formation, (2.3), has the following properties:
21(X), 22(X) € CH170(Q4) N CH(Q4) (7.1)

Since the shock z; = &(2) corresponds to X; = 0 in Q4 , then &(x3) € 1% [z} 23] N C3% (2}, 22),
where (z},23) = (21(P1),22(P1)) and (22,23) = (21(P2),22(P,)) with P, = (0,—1) and P, = (0,1).
Now, the other conclusions in Theorem 1.1.(ii), (iii) and (iv) follow easily from the properties of V(X)

in Theorem 2.2. We omit these simple proofs. Thus the proof of Theorem 1.1 is completed.
We now conclude this section by giving a remark.

Remark. 7.1. If instead of the boundary condition (1.11), one imposes a Dirichlet condition on the
potential ¢ () at the exit of the nozzle as in [7], then the similar conclusions as in Theorem 1.1 still hold.
Furthermore, the general approach introduced in the previous sections still works except the analysis is
much simpler in this case. This is due to the following reasons:

(i). If the potential ¢4 (z) is given at the exit of the nozzle, z; = 1, then, instead of the generalized
hodograph transformation (2.2), we can use the following partial hodograph transformation

X1 = (7) = pi(2),
X, = 2ot f)(e) (7.2)

f2(z1)=fi(z1)
and it also suffices to take x1 = x1(X) as the new unknown function for solving the induced nonlinear
problem. In the present case, the resulting equation after the transformation (7.2) is much simpler than
(2.4), and the boundary conditions, (2.5) - (2.9), are replaced by the analogues of (2.5), (2.7), (2.8), and
z1(X) =1 on the exit of the nozzle.

(i1). Thus, in this case, the linearized problem, corresponding to (3.5), (3.8) - (3.12), becomes the

following second linear order elliptic equation with the mixed boundary conditions

4 2 2
=Y ap(X)Zu+ Y bidu+c(Xu=f(X), in Q
i,j=1 =1

2
> Bidwu+p(X)u=g(X), on 0N
=1

l u=g(X), on 90y
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where ¢(X) > 0, u(X) >0, 99 = 99 UdNy, 9 and IQy are piecewise C!, and [09] # 0, |09 # 0.
The major advantage of (7.3) over (3.5) is the Dirichlet boundary condition on 9€2. Furthermore, the
boundary condition on 9€?; is uniform oblique. For appropriate singularity assumptions on the coefficients
of (7.3), the maximum principle is available for (7.3), so many difficulties encountered in the previous
sections can be avoided.

However, as described in [10], it is more natural and physical to prescribe the pressure at the exit of

the nozzle than prescribe the value of the potential function.

68. Appendix

In this appendix, we will provide some details on the structures of the coefficients of the boundary-
value problem, (1.5), (1.9) and (1.11) - (1.16) in the new variables after the generalized hodograph
transformation (2.2). First, we will study some properties of the hodograph transformation. Second, we
give the precise expressions of the coefficients in the equation (2.4). Finally, we will sketch the verifications
of Lemma 3.2 - 3.4.

First, by direct computations using (2.2), (2.3), and the definition of the new dependent variable V|

one gets

9Xs _ 2(fifs—fof)(z1) —2wa(fo—fi)(z1) _
39012 = s 2 %fg_lfl)(xlz) 1 —0(5)7

9Xs __ 2 _
Bes = Rl FiGn = LT O06),

oX; _ 1 oX
o = V+(X1—1)8X1V(1 - (X1 —1)0x,V 89012)’

X, _ _(1-X1)0x,V  9Xo
drs V+(X171)8X1V Ozo °

(8.1)

To compute the second order derivatives of the hodograph transformation, we use the following nota-

tions:

D(X,V,VxV) = preioe
e (X, V,VxV) =41 - X1)D(X,V,Vx V) (22 P 4 IX 0Ky - |l m =1,2
i Tj Tl T Tj (8.2)
(X, V,VxV) = —=D(X,V,VxV)(25: 5% 0 2K
+9519%2 4 (X — 1) 232 ) VXV
If follows from (8.1), (8.2), and direct lengthy computations that
; 02 Xo
ez =0,
92Xy _ _2(f1—f))(z1) =
axlag?g - (fz(l‘i)*fl(l‘i))z |x1:1+(X1—1)V(X) = 0(5)
Xa _ _d (2(fr1fs—faf)(z1) 2w (f3—f1)(21) —
oer = A hGn-hGEor - lm=m -y = 0() (8.3)

2
aole =D bH(X,V, VX V)O%,V + 05 (X, V, VX V)%, x,V
i=1

\ FUEUX,V,VXV), ki1=1,2
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Using (8.3) and (2.1), one can derive the new equation (2.4) from equation (1.5) by direct calculations.

Furthermore, the coefficients in (2.4) are given by the following formula:

2
0X; 0X; ”
ai (X, V,VxV) == ((Our04)” — ) o Do T AY)
k=1
12 1,0X,0X; 0X,;0X; o
+28x1¢+3x2¢+(b 81V 2(81‘1 axg —axl axQ , Z,] = 1,2 (8 4)

and
2

FO(X7 V7 VXV) = - VXV(Z((axq(p-i-)Q - C?i-)bg)l + 28x1<p+a$299+b(1)27

2
0? X, 0% X,
Z((aﬁ?:¢+)2 - Ci—) a 2 + 28131¢+813299+a 18502)

- Z((axi(p—)Q - (axi<p+)2 + 02+ - 0)2 - 2(890190—890299— - ax199+ax2<p+)ag1m2 ;

i=1 (8.5)
where ¢} = ¢(Hy) and Hy = H(co — 5|Vi[?)
We are now ready to complete the proof of Lemma 3.2.
Proof of Lemma 3.2. First, one notes that (2.3) and (8.1) imply that
% = Xl - ]-7
g = DX (f5(2) = fo(@) + (f(210) + @) Hor=1h -y
2(0.,V) v X, o
a(ox,V) v+(x171)axlva—m,-v Ly =
8.6
Zalj(p 81'] i = 172 ( )
200ip4) _ 2 % _ i aX] 1.2
| ;(a” o= 5y~ 0V a7 (Gr,) o
2
It follows from G(X,V,VxV) = G(Ve,, Vo ) = [0,,9H|0;(ps — ¢_) that
i=1
v 0X; 8X-
0 G=- 09,0, G=—240 t i =1,2
iV T (K —oxv QoG H e Gr0) =L
_ ~0(0194) ~0(0204) ~0(019-) ~0(0ap)
ovG = 831¢+G v +832¢+G oV +831¢7G v +ag—)2¢ G v
83 (erG Z( J(,QH 61] + (HJF(S” + aj¢+8l<p+H )(8]99+ — @cp)) = ].,2,
. 2
9o, G = — Z([aij]% + (H-0ij + 00— H _0ip-)0; (o4 — @—)) i=1,2, (8.7)

j=1
Replacing V(X)) by W(X) € K in the transformation (2.2) and (2.3), one obtains from (8.1) and the

assumptions on W in Lemma 3.2 that
00X,

. 0z

00X,

. 0z

WX, W, VxW) =61, +O(Me),  j=1,2

)(X, W, VxW) = 6y + O(e) (8.8)
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Similarly, it follows from (8.6), (8.8), and Lemma 2.1 that

G (X W) = 0(e)
9“’ *"+> (X, W) = O(e + Me) (8.9)

0,V
8((8)(; v)) (X, W, VxW) = 0;; + O(Me)

Next, we claim that

Oy, G = LX) 0h) (1 4 012,

G — po(g+— fh){))((p)( po)— qo)(l—i—O(Mé‘)), (810)

00,0, G = O(e + Me).
Indeed, note that we have normalized so that ¢+ — qo = 1. Then it follows from W(X) =1 —z; +
p—(x) — oy (x) that dipr = 0jp— — 613 — O, W = 0p— — 015 — VXWg—éi. Hence Lemma 2.1 and (8.8)
imply that

+

%o

881 ©—_

dip- =q + O(e)
1o+ = q+ + O(e + Me) (8.11)
Oapy = O(e + Me).

On the other hand, the Bernoull’s law, (1.2) and (1.3), yield that ¢*(H) = £. Thus, (8.7) yields,

Borpy G = [D19H] + (Hy — (D194 ) HY) (D101 — Drp—) + O1p10ap1 (Daipy — Oap— ) H

!

H
= (Ovp4Hy —O1p_H_) + Hy (1p4 — O1p—)(1 — (31<P+)2H—+) + O(Me)
+

= (as+ — dop0) + P (as — d0)(1 = q_%) +O(Me)
_ pelar — q02)(02(p+) -q) (1+0(Me)
(p+)

The others in (8.10) can be verified similarly.
It now follows from (8.6) - (8.10) and the formulas for By;(i = 1,2) and B; that

pilay — )P (py) —a3)
2(py)

Bll(X, W, VXW) = — (]. + O(M{:‘)),
Blz(X, W, VXW) = O(ME),

Bi(X,W,VxW) = O(Me).

The other properties on By;(X, W, VxW) and By (X, W,V xW) can be computed directly. Hence Lemma
3.2 is proved.
Finally, we sketch the proof of Lemma 3.4. By (8.4), we have

2

a1 (X, W, VxW) = — Z((axk<ﬁ+)2 —
k=1

0X1

8Tk)2 + i Ox, W)

0X1 00Xy

— 20, oot (017 .
0 1%‘94’8 2%‘94’( 116X1W 33?1 8502

It follows from (8.8), (8.11), (8.2), and the assumptions on W that

an (X, W, VxW) = —(¢§ — ¢*(p+))(1 + O(M¢)) (8.12)
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Similarly,
2 0X
@z (X, W, Vx W) = = 3 (Onp4)” = (G 2) + bhiox, W)
k=1
0Xs OX
—28x1<ﬂ+8x2<ﬂ+(b%§aX1W 81'12 81'22
0X
=2 (==2)2 + O(Me)
O0xa
=*(p4)(1 + O(Me)), (8.13)
and
2
0X, 0X. "
@12(X, W, VW) = = 3 (0np4)” = ) (5 5o + bisox, W)

k=1
1(8X1 8X2 8X1 aX?
2 8x1 61'2 61'2 8x1
= 0(c + Me). (8.14)

— 204, 040504 (b150x, W

Next, one can obtain from (8.2), (8.3), (8.8), and the properties of W that
625 (X, W,V xW)| = O(c + Me).
This, together with (8.5) and Lemma 2.1, leads to
|[Fo(X,W,VxW)| < O(e) + O(Me)(e + Me) = O(e) (8.15)

by the assumption M?2e < % The rest of the proof of Lemma 3.4 follows from similar line and direct

computations. Thus the proof of Lemma 3.4 is completed.
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