GRADIENT KAHLER-RICCI SOLITONS AND A
UNIFORMIZATION CONJECTURE

ALBERT CHAU! AND LUEN-FAI TAM?

ABSTRACT. In this article we study the limiting behavior of the K&hler-
Ricci flow on complete non-compact Kéhler manifolds. We provide suf-
ficient conditions under which a complete non-compact gradient Kahler-
Ricci soliton is biholomorphic to C™. We also discuss the uniformization
conjecture by Yau [15] for complete non-compact Kéahler manifolds with
positive holomorphic bisectional curvature.

1. INTRODUCTION

In this paper, we show when a complete non-compact gradient Kéhler-
Ricci soliton is biholomorphic to C™. We will also discuss when a general
solution to the Kahler-Ricci flow on a non-compact Kéahler manifold con-
verges after rescaling to a complete flat Kéhler limit metric.

Canonical examples of such solitons on C™ were first provided by Caol[l, 2.
These examples are all rotationally symmetric with positive holomorphic
bisectional curvature. It would be interesting to know how many other
complete gradient Kéhler-Ricci soliton metrics there are on C™. Our results
may be of use here. Another reason for our interest in gradient Ké&hler Ricci
solitons is that they may serve as models for the uniformization conjecture by
Greene-Wu [6], Siu [14] and in the most general form by Yau [15] which states
that any complete non-compact Kéhler manifold with positive holomorphic
bisectional curvature is biholomorphic to C". Using our techniques and
ideas we shed light on recent approaches to proving this conjecture using
the Kéhler-Ricci flow [11, 12, 10].

A gradient Ricci soliton is defined as follows. Let g;;(z,t) be a family of
metrics on a Riemannian manifold M satisfying the Ricci flow equation:

0
(1.1) o0 = —2i; = 2095

for 0 < t < oo, where R;; denotes the Ricci tensor at time ¢ and p is
a constant. g;;(z,t) is said to be a gradient Ricci soliton of steady type, if
p = 0 and if there is a potential function f and a family of diffeomorphisms ¢,
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generated by the gradient of — f with respect to g;;(z, 0) such that g;;(z,t) =
©; (9ij(,0)). If p > 0 (respectively p < 0), then it is said to be of ezpanding
type (respectively shrinking type). If g;;(x,t) is a gradient Ricci soliton with
potential function f then one has
(1.2) fij = 2Ri;(x,0) + 2pg;;(, 0)
where f;; is the Hessian of f with respect to g;;(x,0).

If (M, g,5(x,0)) is a Kihler manifold, (1.1) is referred to as the Kéhler-
Ricci flow and is written as

0
(13) agag = _RQB - 2pga5

A gradient Ricci-soliton solution to (1.3) is referred to as a gradient Kahler-
Ricci soliton . In this case (1.2) takes the form

fag = Rag+ 20943
fag = 0.

Hence the gradient of f is a holomorphic vector field and the diffeomorphism
¢ is a biholomorphism. At times, we may refer to a Riemannian manifold
(M, gij) as a Ricci-soliton if the corresponding solution to (1.1) is a Ricci-
soliton . We do likewise in the Kahler case.

We consider gradient K&hler-Ricci solitons which are either (i) steady
with positive Ricci curvature so that the scalar curvature attains maximum
at some point; or (ii) expanding with nonnegative Ricci curvature. Under
either of these conditions, it is not hard to prove that there is a unique
equilibrium point p where the gradient of the potential function f is zero.
Our main result for gradient Kéhler Ricci solitons is:

(1.4)

Theorem 1.1. Let (M, gag) be a complete non-compact gradient Kdhler-
Ricci soliton with potential f satisfying either of the conditions mentioned
above, and let g,5(z,t) be the corresponding solution to (1.3). Let p be the

equilibrium point and let v, € T,}’O(M) be a fixed nonzero vector with |vplo =
1. Then for any sequence of times t;, — oo, the sequence of complete Kdhler

metrics #ga/@(m,tk) subconverges on compact sets of M to a complete

‘VpEk
flat Kdhler metric h,z on M if and only if R,53(p) = B9,5(p) att =0
for some constant 3. In particular, if the condition is satisfied then M is
biholomorphic to C™.

Here for a tangent vector v on M, |v|; denotes the length of v in the
metric g(t).

Next, we consider general complete non-compact Kéahler manifolds with
nonnegative holomorphic bisectional curvature. In [11, 12] (see also [10]),
W.-X. Shi proved that on a complete noncompact Kéhler manifold (M, gaB)
with bounded nonnegative holomorphic bisectional curvature such that

1 C
1.5 R —
( ) Vl‘(r) /Bm(r) T 1+
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for some constant C' for all x € M and for all r, the Kéhler-Ricci flow

0
aga5<$7 t) = _Raﬁ(xa t)

with initial condition g,5(z,0) = g,5(z) has a long time solution. More-
over, useful estimates were obtained. In [11], an approach by Shi to prove
the uniformization conjecture of Greene-Wu-Siu-Yau for manifolds satisfy-
ing (1.5) is to use the Ké&hler-Ricci flow to produce a complete flat Kéhler
metric h t{le Kaéhler manifold M. More precisely, one considers the rescaled

metrics Wgag(x,t) and shows that a subsequence will converge to a flat
plit

complete Kihler metric h. Here v, is a fixed vector in Tp*(M) and |v,|; is
its length in g(t). However, the proof in [11] is not quite satisfactory. First,
as noted in [3] the completeness of h is unclear from [11] and has yet to be
verified. On the existence of h, the authors would like to point out that the
proof in [11] depends critically on a bound for a quantity @ (see (4.3) for
more details) and that Shi’s proof of this bound appears to be incorrect.
More specifically, the formula on [11, p.156] for %Q seems to be incorrect.
In this paper we partially rectify these issues by providing a proof for the
completeness of h assuming we have an a priori bound for (). We do this
in section 4 (Theorem4.2). In general, in the absence of such a bound, we
prove that completeness is in many cases a natural condition that follows
from the existence of h alone. In this direction our main result is:

Theorem 1.2. There exists a constant C(n) depending only on n such that
if M™ is a complete noncompact Kahler manifold with bounded nonnegative
holomorphic bisectional curvature satisfying:

(i)

1 C(n)
— R <
Vx(T) /Bx(r) — 142

for all x € M and for all v > 0; and
(ii) there exist a point p € M and a sequence t, — oo such that at p
1

Wg(p, ty) are uniformly equivalent to g(p,0), where vy, is a fized
p tk

vector in Ty (M) with [vp|o = 1.

Then the metrics %g(x,tk) subconverge uniformly in the C° topology
tk

[vp
in compact sets to a complete Kahler flat metric on M. In particular, the
universal covering space of M is biholomorphic to C™.

The authors would like to thank Prof. S.T.Yau for helpful discussions and
support. The first Author would also like to thank Prof. Richard Hamilton
for helpful discussions.

2. A NECESSARY CONDITION FOR CONVERGENCE

In this section, we prove the necessary part of Theorem 1.1. In fact, we
have the following:
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Theorem 2.1. Let g;j(x,t) be a gradient Ricci soliton with function f and
diffeomorphisms ¢ generated by Vo(—f), where Vg is the covariant deriv-
ative respect to g;j(x,0). Suppose the flow ¢ has an equilibrium point p
and suppose there exist a subsequence ty, — oo and positive numbers o(ty)
such that o(ty)gij(z,ty) converges uniformly in a neighborhood of p to a
Riemannian metric hij. Then at t =0, R;;(p) = Bgi;j(p) for some constant

g.

Proof. In the following g;;(x,0) will simply be denoted by g and the metric
at time ¢ will be denoted explicitly by g(t).
Choose a coordinate neighborhood V' of p with coordinates x = (z!,..., 2")

2
such that x(p) = 0, gi;(0) = d;j, 5259:j(0) = 0, 52L-(0) = \idyj. By (1.2),
it is sufficient to prove that A\; = A; for all ¢, j.

Let vo € T,(M) such that
0
_ E k
(21) Vo = - Vo W

Let Fi(x) = gij(x)%(x). Since p is an equilibrium point, ¢:(0) = 0 for all
t, Vof(p) = 0. Hence F*(0) = 0 and %(0) = iy

We may assume that there is a constant Cy such that |F'(x)| < C1[x[ on
V, where |x|? = 3, (z%)%. Hence for any T > 0, there exists a constant a > 0

such that the equation

B F(x(1))
dt
(2.2) {X(O): .

has a unique solution on [0,7] with image inside V whenever |xo|> =
> (956)2 <a’.

Consider the curve a(s) = (sv}, ..., svf) so that o/(0) = vo. There exists
so > 0 such that |a(s)] < a for all 0 < s < s¢. Hence for all 0 < s < sg, the
solution x (t; a(s)) of (2.2) with initial value a(s) is defined on 0 < ¢ < T

with image inside V. Since ¢:(0) = 0 for all ¢, (¢), (vo) = %g@t(a(s))‘ €
T,(M). Denote (¢), (vo) by

(2.3) > k() aik'

Iniocal coordinates p¢(a(s)) = x(t;a(s)) = (z! (G a(s)),..., 2" (ta(s)))

SUk
(2.4 Saals)| =% ats))]|_ o
Hence v*(t) is given by
Ox*
(2.5) o (t) = 55 Bals)| -
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Now for 0 <t < T,

d 9 ozF
Evk(t) = 5 95 (t;a(s)) [,
0 Oxk
= 5 ot (t;a(s)) ‘s:O
(2.6) = 3P x|
o Ozt
= 8xiFk (x(t; als))) 5~ (x ( a(s)))
= MeOgiv' (1)
= Ao (t),

where we have used (2.5), the fact that x(t;a(0)) = x(¢;0) = 0 because

F(0) = 0, and the fact that 9FL — N8, at 0. Using the initial condition,
oz

we conclude that

s=0

(2.7) o*(T) = exp(\.T)vh

and

(2.8) (or1), (Z vé%) = Zexp()\kT)vgik.
- T - ox

Hence

i\2
(2.9) \V0|§(T) = \VO\?p*T(gO) = [ (¢r), V0|3 = ZEXP(Q/\ZT) (Uo)

for all T > 0. Suppose there exist t;, — oo, o(tx)g(tx) converges in C'™°
topology to a Riemannian metric h on a neighborhood of p. Then there
exists a constant Cy > 0 such that for any v, w € T,(M) with |v|, = |w|g,
and for all k, we have

Vloea)
(2.10) Cyl < — I < Oy,
’W|‘7(tk)9(tk)
In the coordinates (z!,---,2™), by (2.9), we have
i\ 2
(2.11) Oyt < 22 XPCA) (v5)
N Zz eXp<2)\Z’tk) (’Lué)2 N

for all k, whenever ), (1)8)2 =5 (wé)2 = 1. Since t;, — 00, A\; = A; for all

1
1 and j. O
3. A SUFFICIENT CONDITION FOR CONVERGENCE

In this section we prove the sufficient part of Theorem 1.1. First, we have
the following on the existence of an equilibrium point.
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Lemma 3.1. Let (M",gag) be a complete non-compact gradient Kdhler-
Ricci soliton with potential f satisfying either of the following two conditions:

(1) Att =0, f,3 = R,3 and R,5 > 0 so that the scalar curvature R
attains mazrimum at some point in M.
(2) Att =0, f,5=R,3+ gop and R,5 > 0.
Then there is a unique point p € M at which Vo f(p) = 0, where Vy is the
covariant derivative with respect to g(0). Also, M is diffeomorphic to R?".

Proof. 1t will suffice to show that f is a strictly convex exhaustion function,
see [5, Theorem 3.
In case (1), this follows from the proof of [9, Theorem 20.1], see also[4].
In case (2), we begin by noting that (2) together with (1.4) imply that
the Hessian of f with respect to g(0) satisfies D?f > ¢(0), thus f is indeed
strictly convex. Next, let ¢ be a fixed point and consider an arbitrary geo-
desic y(s) originating at ¢ parametrized by arc length in g(0). Then along

v(s) we have %(’y(s)) = D2f(4/(s),7'(s)) > 1. Integrating this we get

F(s)) = F@) =£(3(5)) — F4(0)
s T 72
[\ Gaeonds - o)) ar

(3.1) > [([ an-vori) ar

> /0 “(r — IVofl(a))dr

52

25 —|Vofl(q)s

where V is the covariant derivative with respect to ¢(0). It is now clear
that f is an exhaustion function on M. This completes the proof of the
lemma. O

The sufficient part of Theorem 1.1 will follow from Lemma 3.1 and the
following lemmas. In the following, when we say case (1) (respectively case
(2)), we mean that the potential f in Theorem 1.1 satisfies condition (1)
(respectively condition (2)) in Lemma 3.1.

Let p be the equilibrium point in Theorem 1.1, whose existence is implied
by Lemma 3.1. B;(R) will denote the geodesic ball of radius R with respect
to the metric ¢g(t) with center p. In particular By(R) is the geodesic ball of
radius R with respect to the initial metric ¢g(0).

Lemma 3.2. With the same assumptions and notations as in Lemma 3.1,
for any R > 0, the following are true:

(i) Bt,(R) C Bt,(R) for all t1 < tg;

(ii) for any T >0, q € Br(R), w, € T (M),

(wyle < exp (=Cr(t = T)) [w|r
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for allt > T, where Cr > 0 is a constant depending only on R and
9(0); and
(iii) for any integer k >0, for any t > 0,

IVFRm(t)|| 4 < C(R, k)

on Bo(R) for some constant C(R, k) depending only on R, k and
9(0), where Vy is the covariant derivative with respect to g(t) and
Rm(t) is the curvature tensor of g(t).

Proof. Let ¢ be the biholomorphism of M generated by the gradient of
—f so that g(t) = ¢;(g9(0)). Then ¢;(p) = p by the definition of p. Since
R,5 > 0 in both cases in the assumptions of Lemma 3.1, g,5(t2) < g,5(t1)
if t1 < to. From these, it is easy to see that (i) is true.

Since ¢ : (M, g(t)) — (M,g(0)) is an isometry and ¢i(p) = p, ¢ will
map (B(R),g(t)) isometrically onto (By(R),g(0)). Hence by (i) if ¢t > T,
the greatest lower bound of the Ricci curvature of g(t) in Br(R) is no less
than the greatest lower bound of the Ricci curvature of g(7') in Br(R),
which is the same as the greatest lower bound of the Ricci curvature of g(0)
on Bo(R)

Now let ¢ € Br(R) and if w = w, € TH(M),

(3.2) % (gaﬁ(q’t)wawg) = (~Ro5(a,t) — 2pga3(a. ) wu®

S _Clgaﬁ(Q7 t)wawﬂ

for some constant C; > 0 depending only on R and ¢(0). In fact, if case
(2) is assumed so that p = 1/2, then Cy can be taken to be 1. If case (1) is
assumed so that p = 0 then C; can be taken to be twice the greatest lower
bound of the Ricci curvature of ¢g(0) in By(R), which is positive. Dividing
both sides of the above inequality by g,5(q, t)ww® and integrating from T
to t, (ii) follows.

Since By(R) C Bi(R) for t > 0 and since (B;(R),g(t)) is isometric to
(Bo(R), 9(0)), it is easy to see that (iii) is true. O

Lemma 3.3. With the same assumptions and notations as in Lemma 3.1,
let R >0 and T > 0. Then there exists a constant Cr > 0 which depends
only on R and g(0) with the following property: For any q € Br(R), u, €
TYO(M), wg € THO(M) with [up|r = |wy|r,

= |wqle
forallt >T.

Proof. For any t > T > 0, let ¢, w, and u,, as in the assumptions. Let y(s)
be a minimal geodesic from p to ¢ in the metric g(t). Let w(s) be a parallel
vector field with respect to g(t) along ;(s) such that w(v:(d)) = w,, where
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d = di(p, q) is the distance between p and ¢ in g(¢). Then in both case (1)
and case (2)

(3.4)
2 1o Jas (P thugup | Rapla,hu (w’(d)  Rsp,t)ugup
ot gag(q,t)wg‘wg gag(q,t)wa(d)wﬁ(d) gag(p,t)ugvg

(

Here we have used the assumption that R,5(p,0) = B9,5(p,0) for some
constant 8 and hence R, 5(p,t) = B9,5(p,t) for all ¢t because pi(p) = p.
Since ¢ € Br(R), by Lemma 3.2(ii) for all t > T', we have

d < Rexp(—=Ci(t = 1))

for some positive constant C depending only on R and ¢g(0). By Lemma
3.2(iii), we have

9, [ o (s t)us Uy

o 8 3

9o5(q, YwGwy

where C5 is a constant depending only on R and ¢(0). Integrating (3.5)
from T to t, using that fact that |up|r = |wg|r, the resut follows. O

(3.5) < CaRexp (—Ci(t = 1))

Lemma 3.4. With the same assumptions as in Lemma 3.1, for any sequence

of times t;, — 00, the sequence of complete Kdhler metrics h(k) = ﬁg(tk)
k

has a subsequence converging in C*° on compact sets of M to a flat Kdhler
metric H on M.

Proof. For any t > 0, let h(t) = ﬁg(t), where o (t) = |v,|7. In the following

}/2771(75) and V will denote the curvature tensor and the covariant derivative
of h(t), and Rm(t) and V will denote the curvature tensor and the covariant
derivative of g(t).

By Lemma 3.2, for any interger m > 0 and R > 0, there is a constant C
depending only on m, R and ¢(0) such that

(3.6) [V Rm(8)|[7 ) = ™ ONIV™ Bmllyq) < Cro™ (1)
on By(R) with
(3.7) o(t) < exp(—Cat)

for some constant Coy > 0 depending only on ¢(0). By Lemma 3.3 and the
definition of A(t), there is a constant C5 > 0 depending only on R and ¢(0)
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such that
(3.8) C5'g(0) < h(t) < Csg(0)
for all t > 0.
Let (2%,...,2™) be a fixed local coordinates in an coordinates neighbor-
hood U C By(R). We want to prove that
0

for some constant Cy for all x € U and for all ¢.
Let T 5 be the Christoffel symbols of h(t) which is also the Christoffel

symbols of ¢(¢) in the coordinates z* and let f;i be the Christoffel symbols
of g(0). Let A7, =T, — 1:25, then A7, is a tensor and

vfgaﬁ = Agﬁg‘rﬁ
where V is the covariant derivative with respect to 9(0). Then the norm of

A with respect to g(0) is given by

IAIS = 555" 55 AL A

By (1.3), we have

B T _
(3.10) 5 1Al = 8,597 | 977 VaReo A + AgggéavﬁRCﬁ]

Since the equality does not depends on coordinates, we choose holomorphic
coordinates (u',...,u") in U such that 9o = Oaps Yo = Aadag at a point.
Then
(3.11)

35075 5"V Res Al | < Cs | 30 A [VaRes! | N1Allo
(17§7A

11 1 1

< (s Z A Aa? A 2Ay 2 [VaRes| | [IAllo
a,&

< Crexp(=C7t)[|VaRes | || Allo

< Cgexp(—Crt)||Allo

for some constants C5 — Cs depending only on R and ¢(0) where we have
used Lemma 3.2 and Lemma 3.3. Combining this with (3.10), we have

0
EHAH% < Cgexp(—Crt)||Allo

for some constant Cy depending only on R and ¢(0). Since A =0 at t =0,
we conclude that

1A][5 (2, 1) < C1o
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for some constant Cyg for all x € U and for all ¢. From this and (3.8), it is
easy to see that (3.9) is true.
Now

~ 0? or [ O 0
By (3.6)—(3.8), there is a constant C7; independent of ¢ such that
82
Z 0270z7 fap
S
in U. By [7, Theorem 8.32], for any open set U’ CC U there are constants

C12 > 0 and 1 > a > 0 independent of ¢ such that the C12 normed of ha[;
satisfies

|Aohgys| =4 < Cn

(3.13) |hagllau < Cra.
Also, by (3.6)—(3.8), we conclude that
0 =
@Ra@g <Ci3

in U for some constant C73 independent of ¢. Hence we can conclude from
(3.12) and (3.13) that the C* norm of Agh,z in U’ is also bounded by a
constant independent of ¢. Therefore the C*“ norm of hop inany U CC U
can be bounded by the constant independent of ¢t. Similarly, one can prove
that the C*® norm of h, is bounded by a constant independent of ¢. From
this, (3.6), (3.8) and (3.7) it is easy to see the lemma is true. O

Lemma 3.5. H is complete.

Proof. We may assume h(k) converge to H. Suppose H is not complete.
Then there is a divergent path v(7) : [0,00) — M from p such that g (y) =
L < 00, here £ is the length with respect to the metric H. Given 0 < € < L.
Let a > 0 be such that £y (7¥|(pq) = L — €/2. Since 7| 4 is compact, there
exists kg such that for all k > kg,

(3.14) L+e>l(]joa) =L —c¢

where /j; is the length with respect to h(t;). By Lemma 3.3 and by the
fact that h(k) > g(tx) because |vy|¢, <1 by Lemma 3.2, there is a constant
which is independent of k and kg, such that for any k& > kg, q € Eko (3L),
wy € TH(M), wy, € T (M) such that if [wy ko) = [Wpln(ke)» then

W lhk) <c

(3.15) c'< <
\Wq’h(k)

for some constant C' > 0 depending only on L and g(0). Here By, (3L) is
the geodesic ball of radius 3L in the metric h(kg) with center at p. Now
reparametrized by arc length s with respect to h(tg,). Let v|o<r<a) =
Y|(0o<s<p) Where b is the length of v|(9<,<q) With respect to h(ko). By (3.14),
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we have L—e < b < L+e¢. In particular, 2b < 3L and so ([0, 2b]) C Eko (3L).
By (3.15), for k > ko and for any b < s < 2b, we have

(3.16) Y () lny = CHA (b= ) lnw)

where we have used the fact that |v'(s)|ng) = [7/(b = 8)|n@y) = 1. Hence
(3.17) Ce(Ylpes<an)) = C (V] (0<s<p))

and

Ek(ﬂ(ogsgzb)) > (1 + Cil) gk(’ﬂ(ogsgb))

(3.18) > (1+C71)b
>(1+C ) (L—e).

Let kK — oo, we have
(3.19) Cr(Vo<s<amy) = (1+C71) (L —e).
Since C' does not depend on ¢, if we let ¢ — 0, we have
(3.20) Cr(Vo<s<awy) = (1+C7 1) L > L.
This contradicts the definition of L. O
Proof. (Sufficient part of Theorem 1.1 ): The first part of the conclusion
follows from Lemma 3.4 and Lemma 3.5. In particular, H is a complete flat
Kahler metric on M and thus M is biholomorphic to a quotient of C™ by a

group of biholomorphic isometries. But by Lemma 3.1 we know that M is
diffeomorphic to R?”. Thus we must have M biholomorphic to C". U

4. CONVERGENCE OF KAHLER-RICCI FLOWS

In this section we study a general solution to the Kéahler-Ricci flow focus-
ing on Shi’s program [11] for the uniformization conjecture of Greene-Wu-
Siu-Yau. We will study the Kéhler-Ricci flow equation

(4.1) (z,t) = —R,5(z,1).

o 9ed

More precisely, we are interested in the following situation. Let (M™, gag)
be a complete noncompact Kahler manifold with bounded nonnegative holo-
morphic bisectional curvature such that the scalar curvature R satisfies:

1 C
4.2 R< ——
) 0 Jy " T

for some constant C for all € M and for all r. By [11, 12, 10], we have
the following:

Theorem 4.1. Let (M",g) be as above. Then the Kdhler-Ricci flow (4.1)
has long time solution with initial value g,5(x,0) = g,5(z). Moreover, the
following are true:
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(1) for anyt >0, g(x,t) is Kdihler with nonnegative holomorphic bisec-
tional curvature;
(2) for any T > 0, there exists a constant Cy; > 0 such that

Crlg(2,0) < g(z,t) < Cig(x,0)

for allx € M and for all 0 <t < T}
(3) for any integer m > 0, there is a constant Co depending only on m
and the initial metric such that

_ G
(14 ¢t)2+m’
for all x € M and for all t if m = 0 and for allt > 1 if m > 1,

where V is the covariant derivative with respect to g(t) and the norm
is also taken in g(t).

V™ R (x, ) <

For the rest of the paper, we will always assume the conditions of Theorem
4.1. For any T > 0, define

1

Qz,1:T) = (1 +gag(x’t)g’yg(x,t)gfg(x,T)%ggag(x,t)%égvg(x,t»5 ,

where ¢ > T, and V is the derivatives with respect to (7). In [11], a bound
on () was derived in order to prove the existence of a rescaled limit metric
h on M. However, the derivation of this bound seems to be incorrect. In
particular the formula of %_ctg on p. 156 in [11] is not correct. Moreover,
the proof of the completeness of h is absent in [11]. In the first part of this
section, we will prove that the limit metric is complete under the assumption
that a bound on @ exists.

Let p € M be a fixed point and let B;(R) denote the geodesic ball of
radius R in g(t) with center at p. Let v, € TH%(M) be a fixed vector with
length 1 in ¢g(0). As before, the norm of a vector in ¢(t) is denoted by |v|s.
We want to prove that:

Theorem 4.2. Same assumptions as in Theorem 4.1. Moreover, suppose M

has positive holomorphic bisectional curvature and suppose for any R > 0,

there is a constant C' such that

(4.3) Qz,t;T) < C

for all T > 0, for all x € Bp(R) and for all t > T. Then there ezists a

sequence t, — oo such that the metrics ﬁg(tk) converge uniformly in
plty,

C™ topology to a complete Kdhler flat metric on M. In particular, the
universal covering space of M is biholomorphic to C™.

The crucial point is Lemma 3.3, which is also true under the assumptions
of the theorem.

Lemma 4.1. With the same assumptions as in Theorem 4.2, let R > 0 and
T > 0. Then there exists a constant Cr > 0 which is independent of T with
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the following property: For any q € Br(R), w, € TY(M), w, € T (M)
with [wplr = |wq|r,

for allt > T'. The constant Cr is also independent of q, wp, q and wy.

Proof. This was basically proved in [11]. Let ¢, wj,, and w, as in the lemma.
Let v be a minimal geodesic with respect to g(7") from ¢ to p parametrized
by arc length and with length ¢ < R. Parallel translate w, along v with
respect to g(T') to obtain a vector field w(s) on « such that w(0) = wy.
At any point s € [0,¢]. Let V be the covariant derivatives with respect to
g(T). For any t > T, and for any s, choose an unitary frame near ~(s) such
that g,53(7(s),T) = dap and g,5(7(s),t) = Aadag. In the following, we write
g=g(t) and g = g(T'). Then

Vs B (S N 0 <) @By Vand
Vy GopW W = Vyga[g Vygw ww”wTw

N\ 2 -
< (gaéwawﬁ) > AN Vagasl
a75
where we have used the facts that gagwawﬁ = Y, Aa|w®|? and that w is
parallel with respect to ¢g(T'), and the Schwarz inequality. On the other

hand,
QQ(’Y(S)lt; T) ] ]
a5 2 9*°(v(), )97 (7(5), )85 (4(5), T) Vegaz (7(5), ) Vg 5(7(s), t)

= AN Vegasl
a7ﬂ7§

Combining (4.3), (4.4), (4.5) and the fact that |y/|r = 1, we have

V. (QQB(V(S)ytk)wawB) ‘2 =G (ga@wawB)Q

for some constant C7 which is independent of ¢, T', ¢ w,, and w,. Hence
and
o 2
5 (s
Integrating from s = 0 to s = ¢, we have

o 930w (1)
o (D0 (O (0)

N 2
<Cy (gagvavﬁ) .

(4.6) < O30 < C3R

for some constant C3 independent of ¢, T', ¢ and w, and w,. In particular,
if we take ¢t = 0, using the fact that the holomorphic bisectional curvature of
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g(x,0) is positive and hence the holonomy group is transitive [13], we may
prove as in [11] that

(4.7)

for some constant Cy, for all uy, ug € TZ}’O(M) such that gag(())uf{‘uf =

gaB(O)ug‘ug. Now if uy, up are such that gaB(T)uf‘uf = gaB(T)ugug, then
by (4.7), we have

3(t uauB (0 ulu?
gaﬁ() 1 ;gaﬁ( ) 2 2 Sexp(C'4)
gaﬁ(t)ugu2 gaB(O)U?Ul
and . )
S(Tudu? g 2(0)utu”
gaﬁ( ) 2 Zga,@( Jug % < exp(C)
gaﬁ(T)u%ul gaB(O)ung
and hence we have )
—(Hutu”
gaﬁ( Jug /13 < exp(2Cy)
gaB(t)ugUZ
for all ¢ > T. Combining this to (4.6), using the fact that
(48) 9ag(TIwSws = go5(T)wlw) )
= go5(T)w* (0)w (¢)
the lemma is proved. O

Proof. (Theorem 4.2) Let h(t) = ﬁ g(t). By the proof of completeness in
Lemma 3.5, because of Lemma 4.1 and Theorem 4.1 it is sufficient to prove
the existence a limit for h(t;). For this it is sufficient to show that in a
fixed coordinate neighborhood U C By(R) the Christoffel symbols of h(t)
are uniformly bounded. This can be proved as in Lemma 3.4. In this case,
using Theorem 4.1(3), Lemma 4.1, and the fact that g(¢) is nonincreasing,
we can conclude as in the proof of Lemma 3.4 that

0 _3
(4.9) a7l < CL1+ 67214l

where A is defined as in Lemma 3.4, which is the difference between the
Christoffel symbols of g(¢) and ¢(0) and ||A||o is the norm of A in g(0).
Here (] is a constant depending only on ¢(0), R and the constant C' in the
assumption (4.3) in the theorem. From this it is easy to see that ||A||o is
uniformly bounded in U x [0,00). Hence the theorem is true. O

In the second part of this section, we will prove the following:
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Theorem 4.3. There ezists a constant C(n) depending only on n such that
if M™ is a complete noncompact Kdhler manifold satisfying the conditions
in 4.1 and the following:

(i)

1 C(n)
R<
Ve (r) /Bm(r) T 142

for all x € M and for all v > 0; and
1

(ii) there exist a pointp € M and a sequence ty, — oo such that Wg(p, t)
plty

are uniformly equivalent to g(p,0), where v, is a fized vector in
Ty (M) with |vplo = 1.

Then the metrics #g(x,tk) subconverge uniformly in the C™ topology
Pt
in compact sets to a complete Kahler flat metric on M. In particular, the

universal covering space of M is biholomorphic to C™.
In order to prove the theorem, we need several lemma.

Lemma 4.2. Let (M™,g) be a complete noncompact Kdihler manifold with
nonnegative and bounded holomorphic bisectional curvature. Suppose there
exists a constant a > 0 such that

1 a
4.10 R< ———
( ) Va(r) /Bx(r) — 142

forallz € M for allr. Let g,5(x,t) be the long time solution of (4.1). Then
there exist constants C1 depending only on n and Cs depending only on a
and n such that

t
(4.11) / R(z,7)dr < aCilog(l+1t) 4+ Cs
0

for all x € M and for all t, where R(x,t) is the scalar curvature of g(t) at
x.

Proof. For fixed t, the scalar curvature R(z,7) of g(7) is uniformly bounded
on M x [0,t]. Let
t

4.12 t) = dr.
(4.12) M(t) mas | R(z,7)dr

By [10, Corollary2.1], there exist positive constants C3 and C4 depending
only on n such that if 2 = Cyt(1 + M(t)), then

M) gcg/or

(4.13) = —log (14 Cyt (14 M(t)))

as

T+ ds

IN

[log(1 4 Cy) +log(1 +t) + log(1 + M(t))] .
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Suppose M(t) > aCs, then
1
(4.14) log(1 4+ Mi(t)) < Ei)ﬁ(t) +log(1 + aCs).
3

By (4.13), we have

(4.15) M(t) < aCslog(l+ Cy) + log(1 +t) +log(l + aCs)].

Hence we have

(4.16) M(t) < aCslog(l + Cy) + log(1 +t) + log(1l + aCs) + 1].

From this the lemma follows. (]

Lemma 4.3. Let M™ be a complete noncompact Kdhler manifold satisfying
the conditions in Theorem 4.1 and let g(t) be the solution in (4.1). Then
for any R > 0 there is a constant Cr such that for any T > 1, q € Br(R)
and any t > T,

(4.17) Remax(q,t) — Remin(q,t) < Remax(ps t) — Remin(p, t) + Cr(1 +t)7%'

Here as before, p is a fixed point and Br(R) is the geodesic ball of radius R
with center at p in g(T).
Proof. For t > T, et v, and w, in TI’O(M) such that |vg|s = [wg[s = 1 and

R,5(q, t)vg vg = Remax(q,1), Rop(q,t)wg wq = Rcmin(q,t). Let v(s) be a
minimal geodesm from p to ¢ in g( ) Wlth length ¢ which is no greater than
R because Br(R) C B(R). Let v(s) and w( ) be parallel vector fields along
7v in g(t) so that v(¢) = v, and w(¢) = w,. Then

RCmax(Qa t) - RCmin(Q: t)

g, tyw(6)*w(t)?

= Roj(p, 1)0(0)*0(0)” = R, 5(p, t)w(0)*w(0)’

‘ _
+A % [RQB(V(S),t)U(S)WU(s)ﬁ _RQB(Y(S),t)w(S)aw(S)'B ds

a

< Remax(p,t) — Remin(p,t) + CR(1+1)"3

where C is a constant depending only on ¢(0), where we have used Theorem
4.1. This completes the proof of the lemma. ([
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Lemma 4.4. With the same assumptions as in Lemma 4.2, suppose € =
aCy < 1 in (4.11). For any R > 0, t > T > 1, q € Bp(R), vq, Wq €
TYO(M) such that |vq|r = |wy|r, we have

(4.19) Wale o o 4 abe.

where CRr is a constant independent of T', t, q, vq, Wy.

Proof. By the proof of Lemma 4.3 we have for ¢ € Bp(R) and t > T,

(4.20) Remax(q:t) — Remin(q, 1) < Remax(pst) — Remin(p,t) + Ch(1+1) 72,

where (] is a constant independent of T, ¢, ¢. Hence for t > T,

log 3

9 [Valt <1 Raﬁ( )'U véj . R 5(q,t)w wg
ot 8wyl = 2 Go3(a, D)2 o g, gt

(4.21)
< ; (RCmaX( ) RCmm(p7 ) + CR(I + t)‘%)

Integrating from 7" to ¢ and using (4.11), we have

v 1
|’Wq‘|i 5elog(l +t) + Cy,
q

(4.22) log

where C is a constant independent of T', ¢, ¢, v4, w,. Hence the lemma is
true. ([l

As before, let Al 5= r l ﬁ_fl 5 where Fl 3 and fz 5 are Christoffel symbols
of g(t) and g = g(T') respectively. Consider the norm of A in g(7T"). Namely

(4.23) |A[[F = G55 AL AFz.

Lemma 4.5. With the same assumptions as in Lemma 4.2, suppose € =
aCy < 1in (4.11). Then for any R > 0, there is a constant Cr such that
for any T > 1 and for any t > T,

(4.24) [|[Allr < Cr
m BT(R)

Proof. As in (3.10), we have

0 S ;
(425) oA} = =G50 [T VaRer A + ALeg Vs oo
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Choose coordinates such that g,5 = dag, 9o = Aadag. Then in Br(R),

(4.26)
5,69"75%9 " VaRes Al | < C(n) D A VaRes| ||Allr
7,068
11 1 1 1 _1
=C(n) D NN 2N A T A6 [VaRes | 1Al
708
1 11 1
S Cp(1+1)2° ) A 2N 2Aa® [VaRes| [|Allr

¥,0,8
< Cs(1 4 1) 3% 29| Ay

for some constants Cs, Cs independent of ¢t and T, where we have used
Lemma 4.4, the fact that A, < 1 and the estimates for ||V Rc||. Combining
this with (4.25), since € < 1, and ||A||7(T) = 0, it is easy to see that the
lemma is true. ]

Lemma 4.6. With the same assumptions as in Lemma 4.2, suppose € =
aCy < 1in (4.11). For any R > 0 there is a constant Cr such that if
t>1T >1, then

af z,T)g . 5(x,t

e o1 < 9@ Dauslet)
9°0(p,T)g05(pst)

and
afB z,t)g z(x, T
9°8(p,t)9,5(p, T)

for z € Br(R).
Proof. We only prove (4.27) as the proof of (4.28) is similar. We want
to estimate ‘6log [gaﬁ(x,T)gaB(x,t)} ’ in Br(R), where V is the covariant

derivative of g(T'). At a point, choose a normal coordinates so that g,5(T") =
6a5 and g,5(t) = Aadap. Then

9°P (2, T) %905, )
9% (2, T)gos(, 1)

B 9% (2, T)Vegaz(z, 1)

9@, T)gap(x,t)

9P (2, T) AL g, 5, t)

0@, T)gap(a,t)

a% log [gaﬁ (2, T)gap(z, t)] =

(4.29)
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Hence for = in Bp(R

(4.30) ‘ log (x,T)gag(w,t)} ’ < %
< CRk,

where we have used Lemma 4.5. Hence

(4.31) ‘ﬁlog [gaﬁ(x, T)gag(x,t)} ‘ < Cp

in By(R). Integrating (4.31) along a minimal geodesic in g(7") from x to p,
(4.27) follows.

Lemma 4.7. With the same assumptions as in Lemma 4.2, suppose € =

aCy < 1 in (4.11) and suppose there exist t, — oo, tx, > 1, such that

ﬁg(p,tk) are uniformly equivalent to g(p,0), where v, is a fized vector
Plty

in Tpl’O(M) with |vplo = 1. Then for any R > 0 there is a constant Cr
independent of k and ko such that

|u<I‘tk < C
(Wl

for all q € By, (R), k > ko and ug, wy € Ty (M) with [ugls, = [Wqly,, -

Proof. By the assumption, there is a constant C' > 0 independent of k and
ko such that

97 (D, 11) 9o (Ds tro )97 (Ds tho ) 9,5(py 1) < C.

From this and Lemma 4.6, the result follows. ([l

Proof. (Theorem 4.3) By Theorem 4.1, Lemmas 4.5, 4.7, one can proceed
as in the proof of Theorem 4.2 to conclude that Theorem 4.3 is true. [l
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