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Abstract

In this notes,we introduce some interesting and important top-
ics in algebraic geometry: Shafarevich conjecture over function
field,moduli space of polarized projective Calabi-Yau manifolds
and the analogue Shafarevich Conjecture of families of Calabi-
Yau manifolds. The author taught some parts of the notes in a
short course of the 2003 summer school held in Center of Math-
ematical Sciences at Zhejiang University.
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1. Introduction to Shafarevich Conjecture

1.1. Shafarevich conjecture over function field. At the 1962 ICM in Stock-
holm, Shafarevich [26] conjectured: ”There exists only a finite number of fields of
algebraic functions K/C of a given genus g ≥ 1, the critical prime divisors of which
belong to a given finite set S.”

Let C be a smooth projective curve of genus g(C) over an algebraically closed
field k of characteristic 0 and S ⊂ C a finite subset. C and S will be fixed. A
family of curves is called isotrivial,if any two general fibers are isomorphic. We can
reformulate the conjecture:

Shafarevich Conjecture: Let (C, S) be fixed and q ≥ 2 an integer.

(I) There exist only finitely many isomorphism class of non-isotrivial families of
curves of genus q over C which have at most singular fibers over S.

(II) If 2g(C) − 2 + #S ≤ 0,then there exist no such families.

In one unpublished work, Shafarevich proved his conjecture in the setting of
hyperelliptic curves.The conjecture was confirmed by Parshin for the case of S =
∅,by Arakelov in general.

A deformation of a family f : X → C with the fixed base C is a family F : X →
C × T such that for some t0 ∈ T ,

X 	 Xt0 −−−−→ X⏐⏐�f ⏐⏐�F
C 	 C × t0 −−−−→ C × T

We say that two families X1 → C and X2 → C, have the same deformation type if
they can be deformed into each other,i.e.if there exists a family X → C × T such
that for some t1, t2 ∈ T , (Xti → C × ti) 	 (Xi → C) for i = 1, 2.

In order to prove that there are only finitely many non-isotrivial families,one can
proceed the following way.

(a) To prove that there are only finitely many deformation types,
i.e.(Boundedness)

(b) To prove that the family does not admit no-trivial deformations,
i.e.(Rigidity).

If (a) and (b) are right,every deformation type contains only one family and since
there are only finitely many deformation types,this proves the original statements.

A family (f : X → C) naturally corresponds to a map ηf : C \ S → Mq,and
since C is a smooth curve,that induces a morphism ηf : C → Mq(Here Mq the
coarse moduli space for smooth curve of genus q and Mq is for stable curve.So
shown by Mumford Mq is a projective and Mq ⊂ Mq as a open subscheme) Hence
parameterizing families translates to parameterizing these morphisms which can be
characterized by their graphs. The graph Γηf

of such ηf is a curve contained in
C ×Mq such that the first projection maps it isomorphically onto C.Therefore the
problem is translated to look for a parametrization in the Hilbert scheme of C ×
Mq.The Hilbert scheme is an infinite union of schemes of finite type,the components
corresponding to the different Hilbert polynomials represent the deformation types
of the families. One should prove the parameterizing scheme is of finite type,i.e.only
finite Hilbert polynomials can actually occur.
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In their original proofs of the conjecture,Paršin [2] and Arakelov [1] reformulate
the conjecture in the following:

A family f : X → B is called isotrivial if Xa 	 Xb for general points a, b ∈ B(C).

Conjecture 1.1. Fixing (C, S),let q ≥ 2 be an integer.

(B) Non-isotrivial families of curves of genus q with singular locus S are param-
eterized by T, a scheme of finite type .(Boundedness)

(R) All deformations of the non-isotrivial family is trivial,i.e.
dim T = 0.(Rigidity)

(H) No non-isotrivial families of curves of genus q exist if 2g(C) − 2 + #S ≤
0,i.e.T 
= ∅ ⇒ 2g(C) − 2 + #S > 0.(Hyperbolicity)

(WB) For an non-isotrivial family f : X → C,deg f∗ωmX/C is bounded above in term
of g(C),#S, g(Xgen),m.In particular, the bound is independent of f .(Weak
Boundedness)

In this case, because all graphs are isomorphic to C, the Hilbert polynomial is
determined by the first term which is the deg η∗fL for a fixed ample line on Mq. To
shown boundedness is just to show deg η∗fL is bounded. Due to Mumford ’s works
(one can refer theorem 3.9),it is sufficient to show (WB).Furthermore,the property
(WB) will imply both (B) and (H) when the fibers are curves:

Theorem 1.2. Fixing (C, S),let q ≥ 2 be an integer.

(I) (Bedulev − Viehweg[3]) (WB) ⇒ (B).
(II) (Kovács[14] ) (WB) ⇒ (H).

One will obtains rigidity in curve case by the well known de Franchis theorem
which is a key lemma in Faltings’s proof of Mordell Conjecture.

Exercise 1.3. f : X → C is a smooth family of curves where C is a smooth
projective curve with genus g(C) = 0 or 1.Then this family must be isotrivial.

Hint: Using the Torelli theorem which one can find in Griffiths-Harrris’s textbook.

1.2. The case of higher dimensional fibers. Let the base field is always complex
number field C. Define Sh(C, S,K) to be the set of all equivalent classes of non-
isotrivial family {f : X → C} such that Xb is a smooth projective variety with ’type’
K for any b ∈ C \ S. Two such families are equivalent if they are isomorphic over
C − S.

The general Shafarevich type problem is:

For which type K of varieties and data (C, S),is Sh(C, S,K) finite ?

Example 1.4. [8]Faltings has dealt with the case where the fibers are Abelian
varieties,and he formulates a Hodge theoretic condition for the fiber space to be
rigid. This condition is always called Deligne-Faltings (∗) condition:

A smooth family f : X0 → C \ S of Abelian variety satisfies (∗) if any anti-
symmetric endomorphism σ of VZ = R1f∗Z defines an endomorphism of X0(so σ is
of type (0, 0)).

Let Q be the sympletic bilinear form on R1f∗Z.By global Torelli theorem Q is
induced by a polarization of the Abelian scheme.It is shown by Faltings that the
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(∗)-condition is equivalent to

EndQ(V) ⊗ C = (EndQ(V) ⊗ C)0,0.

On the other hand,the Zariski tangent space of the moduli space of the Abelian
schemes over C − S with a fixed polarization type is isomorphism to

(EndQ(V) ⊗ C)−1,1.

Thus one obtains the rigidity.

Example 1.5. [24] If a family is not rigid,then the corresponding VHS is surely
nonrigid. By utilizing differential geometric aspects of the period map and the
associated metrics on the period domain,Peters extend Faltings’s result to general
polarized variation of Hodge Structure of arbitrary weight

A polarized variation of Hodge Structure underlying VZ is rigid if and only if
(EndQ(VQ) ⊗ C)−1,1 = 0.

Example 1.6 (Jost-Yau). Using techniques from harmonic maps Jost and Yau
analyzed Sh(C,E,Z) for a large class of varieties. See [10]. They gave differential
geometric proofs of above theorems.Their paper provided analytic methods to solve
rigidity problems, and also gave a powerful tool to analyze the Higgs bundles with
singular Hermitian metric.

The deformation of the family can be reduced to deformation of the corresponding
period map.It is interesting to study the case that the period domain is Hermitian
symmetric space.

Example 1.7 (Mok Ngaiming). Considering those arithmetic varieties arising as
moduli spaces for certain polarized Abelian varieties,Mok [20] proves a finiteness
theorem for the Mordell-Weil group (i.e., the group of holomorphic sections) of the
associated universal Abelian variety.

Let Ω/Γ be a quotient of a bounded symmetric domain by a discrete properly dis-
continuous subgroup Γ in Aut(Ω), Mok and Eyssidieux show that for any immersed
compact complex submanifold S ↪→ Ω/Γ, assume that the tangent subspaces are
generic in some algebro-geometric sense,S can be locally approximated by a unique
isomorphism class of totally geodesic complex submanifolds of Ω.

Example 1.8 (No rigid families of Abelian varieties). Faltings constructed examples
showing that Sh(C,E,Z) is infinite for Abelian varieties of dimension ≥ 8. See [8].
Saito and Zucker extended the construction of Faltings to the setting when Z is an
algebraic polarized K3 surface. They were able to classify all cases when the set
Sh(C,E,Z) is infinite.

For boundedness of above examples,one may refer to the works of [8],[22],[?].
It should be pointed out they were not considering polarized families.
In the case of fibers are curve, we assume the condition q = g(Xgen) ≥ 2 which is

equivalent to the condition that the canonical line bundle of generic fiber KXgen is
ample.

The role of the genus is played by the Hilbert polynomial, thus fixing g(Xgen) can
be replaced by fixing hKXgen

, the Hilbert polynomial of KXgen . And over C − S,the
family f : X → C should be smooth canonical polarized family .
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In higher dimension case,instead of fixing g(Xgen), it is reasonable to we think
about the polarized projective variety (X,L) such that L is ample line bundle on X
and χ(X,Lν) is a fixed Hilbert polynomial h(ν).

As pointed out in following section,by Matsusaka-Mumford Big theorem L can
be regard as a very ample line bundle such that N = h(1) − 1 is independent on
L,there is an embedding

j(X) : X ↪→ PN .

Let C be a fixed nonsingular projective curve and S be fixed finite points on C.Let
f : X → C be a family which is asked to satisfied the following condition:

Over C \S, (f : (X ,L) → C \S) is a polarized family such that Lb = L|Xb
ample

on Xb and
χ(Xb,Lνb ) = h(ν)

the fixed Hilbert polynomial for any b ∈ C \ S.

With the polarization condition, we define Sh(C, S,K) to be the set of all equiv-
alent classes of non-isotrivial family {f : X → C} as above such that Xb is a smooth
projective variety with ’type’ K for any b ∈ C \S. Two such families are equivalent
if they are isomorphic over C − S as polarized families.

One can formulate the problem into:

Conjecture 1.9 (Higher dimensional Shafarevich conjecture ). Fixing (C, S)
and the Hilbert polynomial h(ν).

(B) The elements of Sh(C, S,K) are parameterized by T,a scheme of finite type
over C.

(R) dim T = 0.
(H) T 
= ∅ ⇒ 2g(C) − 2 + #S > 0

The important works of Viehweg on Moduli problem together with so called Arakelov-
Yau inequality guarantee the Boundedness of Analogue Shafarevich conjec-
ture for the family of polarized of Calabi-Yau manifolds.

One also can refer to the paper [18] for the proof by using the well known Schwarz-
Yau lemma and Bishop compactness.

In higher dimensional fibers case,one also have the weak boundedness conjecture:

(WB) For a family (f : X → C) ∈ Sh(C, S,K),deg f∗ωmX/C is bounded above in
term of g(C),#S, h,m.In particular, the bound is independent of f .

These theorem and proposition together with so called Arakelov-Yau-Schwarz
inequality guarantee the Boundedness of Analogue Shafarevich conjecture for the
family of polarized of Calabi-Yau manifolds.

(WB) ⇒ (H) is still true for the canonically polarized families.But it is an enigma
whether (WB) implies (B) in higher dimensional fibers case.

Example 1.10. (New important results).

(M-K-Z) Migliorni,Kovác and Zhang Qi proved that any family of minimal algebraic
surfaces of general type over a curve of genus g and m singular points such
that 2g(C)− 2+#S ≤ 0 is isotrivial. See [13], [19], [40] and [3]. Oguiso and
Viehweg[23] proved the same results for families of elliptic surfaces.
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(B-V) Bedulev and Viehweg [3] have proved the boundedness for families of alge-
braic surfaces of general type over a fixed algebraic curve, the weak bound-
edness for family of canonically polarized varieties.

(V-Z) Recently Viehweg and Zuo have obtained very important results [32][33] [34]:
Brody hyperbolicity was proved for the moduli space of canonically polar-
ized complex manifolds. They proved the boundedness for Sh(C,E,Z) for
arbitrary Z, with ωZ semi-ample. They also established that the automor-
phism group of moduli stacks of polarized manifolds is finite. The rigidity
property for the generic family of polarized manifolds has been proved too.

(L-T-Y-Z) In their preprint“The Analogue of Shafarevich’s Conjecture for Some CY
Manifolds”, Liu,K.,Todorov,A.,Yau,S.T.,Zuo,K give a simple and readable
proof of the boundednes( Their idea is to use Schwarz-Yau lemma and Bishop
compactness).They spend most chapters to deal with rigidity by the idea of
using Yukawa coupling.

Remark: A complex analytic space N is called Brody hyperbolic if every holomor-
phic map C → N is constant.

Certainly,we have an algebraic version:algebraic hyperbolic.The essential fact is
that if the moduli space is algebraic hyperbolic,then (H) in Shafarevich conjecture
will hold. It is the motivation for us to study the Brody hyperbolic.

Here are the new process on the conjecture:

Notations 1.11 (Key Observation by Viehweg and Zuo[36]). The rigid prop-
erty for the generic family of polarized manifolds has been proved by Viehweg and
Zuo. Now they point out that the conjecture will fail for general condition though
most families of Calabi-Yau manifolds are rigid. They construct some important
counterexamples and show a principle that there always exist a product of the mod-
uli space of hypersurface of degree d in Pn embedded into the moduli space of
hypersurface of degree d in PN where N > n.

So the first key step for Shafarevich conjecture is to find a more
fine condition.

Question : Can we find the necessary and sufficient condition? It is also
interesting to classify the non-rigid families of Calabi-Yau manifolds.

Example 1.12 (Zhang [41][42]). In his Thesis,Zhang proves
(1) Lefschetz pencils of Calabi-Yau manifolds of odd dimension are rigid.The

proof depends on the special properties of Lefschetz pencils. As Deligne
showed in his proof of Weil conjecture I,the VHS of Lefschetz pencils can
be decomposed into two sub VHSs: One is invariant space and another
is vanishing cycles space which is absolute irreducible under the action of
fundamental group π1(P1\S) where S is set of singular values(this is essential
the Kazdan-Magulis theorem).

According to this observation, Zhang shows that for arbitrary given non-
trivial pencil of CY manifolds,the vanishing cycles space is not empty and
the pieces of (n, 0)-type and (0, n)-type of the VHS are both in the vanishing
cycles space. But on the other hand,assuming the family is not rigid,one can
obtain a flat non zero (−1, 1) type endomorphism σ of the VHS. It makes
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the local system splitting such that (n, 0) and (0, n) are in different factors
by local Torelli theorem. Therefore,it is a contradiction.

(2) Zhang obtains a general result on so called strong degenerate families( not
only for families of Calabi-Yau manifolds)which certainly are of ”gen-
eral” type.We call a family over any closed Riemann surface strong degen-
erate if it has a singular fiber such that every component is dominated by
projective space Pn. The author shows this family must be rigid. He uses
the similar trick in (1) to get a nonzero endomorphism σ.By the properties
of Higgs bundles,he identifies this σ to be a monodromy-invariant section
of the VHS of the self-product family by Künneth formula.Finally, using
the properties of the strong degenerate singular fiber,he shows the endomor-
phism σ is zero so that the family must be rigid.As a corollary,he obtains a
weak Arakelov theorem of high dimensional version.

(3) Following the recent works of Liu-Todorov-Yau-Zuo and Viehweg-Zuo,
Zhang gives another proof of a criterion of rigidity by using the technique of
Higgs bundles: A Calabi-Yau family with nonzero Yukawa coupling should
be rigid. As an application of this criterion,with the arguments of Schmid
and Simpson on the residues of vector bundles over singularizes,the author
shows that families of CY manifolds admitting a degeneration with maximal
unipotent monodromy must be rigid.

1.3. Appendix: Arithmetic version of Shafarevich conjecture. Let (R,m)
be a DVR, F = Frac(R),and C a smooth projective curve over F .C is said to have
good reduction over R if there exists a smooth projective variety B over Spec(R)
such that

C
�−−−−→ BF −−−−→ B⏐⏐� ⏐⏐�

Spec(F ) −−−−→ Spec(R)

.

Therefore,let R be a Dedekind ring,F = Frac(R),and C a smooth projective curve
over F . C has good reduction at the closed point m ∈ Spec(R) if it has a good
reduction over Rm.

Conjecture 1.13 (Shafarevich). Let q ≥ 2 be an integer,F a number field,R ⊂ F

the ring of integers of F ,and Δ ⊂ SpecR a finite set.Then there exists only finitely
many smooth projective curves over F of genus q that have good reduction outside
Δ.

The Shafarevich’s conjecture was inspired by the well-known Hermit theorem in
algebraic number theory :

the number of extensions k′/k of a given degree whose critical prime divisors
belong to a given finite set S is finite.

Therefore,we can get the function field version of the conjecture is :
Let q ≥ 2 be an integer,F = K(B) the function field of B,R the subring of F such

that B − Δ = Spec(R) a number field,R ⊂ F the ring of integers of F .Then there
exists only finitely many smooth projective non-isotrivial curves over F of genus q
that have good reduction over all closed points of Spec(R).
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The arithmetic version was confirmed by Faltings in 80s and he used it to prove
the

Conjecture 1.14 (Mordell). Let F be a number field and C a smooth projective
curve of genus q ≥ 2 defined over F . Then C(F ) is finite.
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2. The Modern Proof of Original Shafarevich Conjecture

Here we will give a sharp proof due to the Viehweg and Zuo.

2.1. Moduli of Curves. Recall that a reduced projective curve C is called stable, if
the singularities of C are normal crossings(it is locally isomorphic to the singularity
of the plane curve xy = 0), and if ωC is ample.

Theorem 2.1 ((Mumford [21])). For g ≥ 2, define

Mg(C) = { stable curves of genus g, defined over C}/ ∼= .

Then there exists a projective coarse moduli scheme Mg for Mg, of dimension 3g−3.
i.e. a variety Mg and a natural bijection Mg(C) ∼= Mg(C) where Mg(C) denotes
the C-valued points of Mg.

Let
Mg(C) = { smooth curves of genus g, defined over C}/ ∼= .

Similar, there is a quasi-projective coarse moduli scheme Mg for Mg and Mg ⊂ Mg

as Zariski open set.

Remarks :

1. Stable curve means Deligne-Mumford stable curve,the definition is equivalent to
a reduced irreducible projective curve with only ordinary doubles as singularities
and only finitely many automorphisms. The restriction on the number of auto-
morphisms thus means that every smooth rational component of a stable curve
intersects the remaining components in at least three points.

2. The moduli scheme Mg is normal, connected and reduced.The subscheme Mg,
corresponding to non-singular curves of genus g, is open in Mg. As in GIT,one
can use “level μ-structures”to shown that the moduli schemes Mg have finite
coverings φ : MΓ

g → Mg which carry a universal family

g : XΓ → MΓ
g .

3. We will give the precise definition of a coarse moduli scheme late. Let us just
explain that the “natural” meaning of coarse moduli space :

For each flat family g : X → Z, whose fibers g−1(z) belong to Mg(C), the
induced map Z(C) → Mg(C) comes from a morphism of schemes φ : Z →
Mg.(Hence for every family (g : X → Z) of stable curves of genus of g,there
exists a morphism ηg : Z → Mg such that for all z ∈ Z,ηg(z) = [Xz].)

It follows from the construction of Mg, that for all ν > 0 and for some p � ν

there exists an invertible sheaf λ(p)
ν , such that for all families g : X → Z,

det(g∗ωνX/Z)p = φ∗(λ(p)
ν ).

Proposition 2.2 ((Mumford [21])). For ν, μ and p sufficiently large and divisible,
for

α = (2g − 2) · ν − (g − 1) and β = (2g − 2) · ν · μ− (g − 1)

the sheaf λ(p)α

ν·μ ⊗ λ
(p)−β·μ
ν is ample.
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Definition 2.3. E be a locally free sheaf on a curve Y ,We say E numerically effec-
tive(nef) if OP(E)(1) is nef line bundle on projective space P(E).Similiarly we get the
definition of ample vector bundle.

Remark: [31]Let H be an ample line bundle on Y ,U Zariski open set of Y .

• It is not difficult to show that E is nef if and only if for all finite covering π : C → Y

and for all invertible quotients π∗E � N ,one has degN ≥ 0.
• It is shown by Hartshone that E is ample(with respect to U) if and only if for

some η > 0 there exists a morphism⊕
H −−→ Sη(E),

surjective (over U).
• It is natural that we have the definition weakly positive:

E is weakly positive over U ,if for all α > 0 the sheaf Sα(E) ⊗ H is ample with
respect to U .

• One can use this properties to give similar definition on a quasi-projective variety
Z.Ther is a little modification: E is called nef on Z, if for all morphisms π : C →
Z, from a curve C to Z, and for all invertible quotients π∗E � N one has
deg N ≥ 0.

Exercise 2.4. Given d ∈ N, assume that for all δ ∈ N−{0}, there exists a covering
τ : Y ′ → Y of degree δ such that τ∗E ⊗H is nef, for one H of degree d(hence for all
invertible sheaves of degree d). Then E is nef.

2.2. Rigidity property.

Conjecture 2.5 (Viehweg). On U = Z − S, for ϕ : U → Mg induced by a family

(a) ϕ generically finite =⇒? Ω1
Z(logS) weakly positive?

(b) ϕ generically finite =⇒? det(Ω1
Z(logS)) big ?

Viehweg-Zuo’s Theorem[33] For η � 1 there is an invertible subsheaf

L ⊂ Sη(Ω1
Z(logS))

with κ(L) ≥ dim(ϕ(Z)). Therefore,one has Conj.(a) =⇒ Conj.(b).

Theorem 2.6 (Zuo[44]). Conjecture (a) holds true if the fibres of X0 → U satisfy
local Torelli theorem.

Because local Torelli theorem always holds for curve case,the conjecture (a) holds
for families of algebraic curves(Originally,this fact is bellowed to Mumford in his
works on Moduli space of curves.)

Corollary 2.7. Zuo’s theorem implies the Rigidity property of the Shafarevich
conjecture.

Proof. Assume a non-isotrivial family over curve Y is not rigid then there exists
curve T0 and smooth extended family of curves

X0 −−→ Z0 = T0 × Y0,

and the induced morphism φ : Z0 →Mg is generically finite.
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In fact, it is impossible by Zuo’s theorem. Otherwise, replacing Y0 and T0 by
some covering, one would find for compactifications T and Y of T0 and Y0 the sheaf

Ω1
T×Y (log (T × (Y − Y0) + (T − T0) × Y )) =

pr∗1Ω
1
T (log (T − T0)) ⊕ pr∗2Ω

1
Y (log (Y − Y0))

to be ample over some dense open subset. Obviously this cannot be true: Choose a
generic quasi-projective curve Y0 × t,still denote it Y0, then
Ω1
T×Y (log (T ×(Y −Y0)+(T −T0)×Y ))|Y0 will be ample over Y0.But it is impossible

because
(pr∗1Ω

1
T (log (T − T0))

⊕
�)|Y0 = ⊕OY0

⊕
�|Y0 .

�
Remarks :
1. That the canonical morphism is generically finite is equivalent to that there are

no isotrivial subfamilies including a general fiber.
2. Using the argument in Chapter 4, we will have a nonzero section

OT0 → φ∗(Ω∨
T0

),

then we get a contradiction.

2.3. Boundedness. Here I would like to give a proof by using the arguments of
Kefeng Liu in [15],[16].

2.3.1. Teichmüler space Tg and period map. Fix a compact Riemann surface R0 of
genus g.Consider a pair (R,H) of a compact Riemann surface R and a homotopy
class H of orientation-preserving homeomorphisms from R0 to R.Define an equiva-
lence relation
sim:

(R,H) ∼ (R′, H ′) ⇐⇒ H ′ ◦H contains a biholomorphic map from R to R′.

Let Tg := {(R,H)}/ ∼,the classic Teichmüler theorem tell us that Tg has a complex
structure and is a smooth complex ball. Fix a symplectic basic

{α1, · · · , αg, β1, · · · , βg}
of H1(R0,Z).Then,for (R,H) the set

{H(α1), · · · , H(αg), H(β1), · · · , H(βg)}
is a symplectic basis of H1(R,Z).We choose a basis {ω1, · · · , ωg} of holomorphic
1-form on R such that ∫

H(βi)
ωj = δij , 1 ≤ i, j ≤ g.

Then these integral determine uniquely on the equivalence class a point

(
∫
H(αi)

ωj)

of Siegel upper half space Dg. Exactly,there is a holomorphic map

τ : Tg −→ Dg,

[(R,H)] �−→ (
∫
H(α)

ωj).



Shafarevich Conjecture for Calabi-Yau Varieties 11

The standard Teichmüler theory tell us there is a modular group Modg which is a
subgroup of Sp(2g,Z) such that

Mg = Modg\Tg.
Thus τ descends to a holomorphic map

j : Mg → Ag = Sp(2g,Z)\Dg,

and dimC Ag = g(g + 1)/2.
Geometry on Tg : For a compact Riemann surface of genus g ≥ 2,we know

H2(R,ΘR) = 0 and dimCH
1(R,ΘR) = 3g − 3.This implies that the base space

T of the Kuranishi family U → T is a smooth complex manifolds with dimension
3g−3 and the Kuranishi family is universal at each point of T because H0(R,ΘR) =
0.Moreover,there is a complex analytic family

π : R → Tg
of the compact Riemann surface of genus g and that it is universal at every point of
Tg.However there is no analytic family over Mg,this is why we call it coarse moduli
space.We have
Torelli Theorem

(1) τ : Tg → Dg is locally injective,
(2) j : Mg → Ag = Sp(2g,Z)\Dg is injective.

2.3.2. Weil-Petersson metric. Let π : X → Tg be the universal family over the
Teichmüller space. The Poincaré metric on each fiber patches together to give a
smooth metric on ΩX/Tg

. Then π∗Ω⊗2
X/Tg

, the push-down of Ω⊗2
X/Tg

, is the cotangent
bundle of Tg. Recall that for any point s ∈ Tg

R0π∗Ω⊗2
X/Tg

|s = H0(Xs,Ω⊗2
Xs

) ⊗ k(s)

where Xs = π−1(s).
There exists a natural inner product on π∗Ω⊗2

X/Tg
induced from the Poincaré metric

on each fiber.
GWP (s)(μ1, μ2) =

∫
Xs

< μ1, μ2 >ρ(s)

where μ1, μ2 ∈ H0(Xs,Ω⊗2
Xs

) and ρ(s) is Poincáre metric on Xs. This inner product
induces the Weil-Petersson metric on π∗Ω⊗2

X/Tg
.Moreover,shown by Wolpert [37]

(2.7.1) π∗c
2
1(ωX/Tg

) =
1

2π2
ωWP.

where ωWP is the Kähler form of GWP .So Weil-Petersson metric is Kähler met-
ric,furthermore it is not complete.

Properties 2.8. Important facts:

(1) Shown by Alforhs the sectional curvature of GWP is bounded from above by

− 1
2π(g − 1)

.

(2) There is a obvious fact that the Weil-Petersson metric is invariant under
the modular group Modg,thus the equation 2.7.1 still hold for the universal
family over Mlevel

g .



12 Yi Zhang

(3) It can be shown that,as currents the equation 2.7.1 holds on Mlevel
g .

2.3.3. Weak Boundedness. Given a family f : X → Y over projective curve,we
always assume it is stable family(!we can do it) and the restricted family f : X0 →
Y0 = Y − S is smooth. Moreover we can assume the image of moduli map is in the
fine moduli space Mlevel

g ) with level structure(we can get it by Galois covering).The
family is uniquely induced from the universal family U → Mlevel

g ,then the Weil-
Petersson metric can descend to Mlevel

g .
Remark: Mlevel

g will be of Γ\Tg where Γ is subgroup of Sp(2g,Z) with a level
structure.

We have the moduli map g : Y0 → Mlevel
g and

(f : X0 → Y0) ∼= U ×g Y0 → Y0.

we have the intersection(Calculated by Liu,K.F in [15] [16]).

(ω2
X/Y ) =

∫
X
c21(ωX/Y ) =

∫
Y
f∗c

2
1(ωX/Y )

By the current property in 2.8,∫
Y
f∗(c21(ωX/Y )) =

∫
Y0

f∗c
2
1(ωX0/Y0

) =
1

2π2

∫
Y0

g∗ωWP .

But ∫
Y0

g∗ωWP < 2π(g − 1)
∫
Y0

ωP = 2π(g − 1)(2g(Y ) − 2 + #S)

where ωP is the Poincaré metric on Y0.The last step is Gauss-Bonnet and the in-
equality is the following :

Theorem 2.9 (Schwarz-Yau Lemma). Let R be a compact Riemann surface (g >
1)with curvature −1 or an affine Riemann surface of hyperbolic.Let N be Hermitain
manifolds with holomorphic sectional curvature strictly bounded above by negative
constant −K.Then for any non-constant holomorphic map f from R to N ,one has

f∗ωN <
1
K
ωR

where ωR, ωN denote respectively the Kähler form of R,N .

Using a inequality of Xiao Gang

deg f∗ωX/Y ≤ (
g

4g − 4
)(ω2

X/Y )

we get (WB).By the theorem of Bedulev-Viehweg [3],(WB) ⇒ (B).

Remark:Exactly,Deligne proved that

deg f∗ωX/Y ≤ g

2
(2g(Y ) − 2 + #S).

Jost and Zuo have a smart proof the weak boundedness.Moreever,Zuo has a se-
ries works on the powerful Arakelove-Yau inequality in case of higher dimensional
fiber. Using Miyaoka-Yau inequality,Tan S.L proved the Beauville’s conjecture(In
the papers of Liu which I mention above,he also solved the problem by the method
I show),then got a more fine estimate: for semistable fiberation with g ≥ 2

deg f∗ωX/Y <
g

2
(2g(Y ) − 2 + #S).
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3. Moduli Properties of Families of Calabi-Yau Manifolds

3.1. Family of polarized algebraic manifolds. In last chapter of the thesis,the
author will study the rigid problem of the family of polarized variety. Why should
we study the polarized family ?

Generally,for technical reason, we should endow Moduli stack of the geometric
object with the given type a nice algebraic structure such that every family of the
given type is induced geometrically from the it(Universal property). In fact, in most
cases the fine moduli scheme (which other family is uniquely induced from) does not
exist.Fortunately,Viehweg has shown that the coarse moduli space of polarized vari-
eties with semi-simple canonical line bundle and given Hilbert polynomial exists and
is quasi-projective. As an application,one obtains the quasi-projective moduli space
for K3 surfaces,Abelian varieties and Calabi-Yau manifolds.With these results and
recent works of Zuo Kang on Arakelov-Yau’s inequalities,one can obtain the bound-
edness of the Shafarevich conjecture for Calabi-Yau manifolds. On the shoulder
of Viehweg and Zuo’s working, it is meaningful to consider the rigid problem of
Shafarevich conjecture.

Now, Let the ground field be complex field C.

Definition 3.1. (Moduli Problem [31])

1. The objects of a moduli problem of polarized schemes will be a class F(C),
consisting of isomorphism classes of certain pairs (W,H), with:
a) W is a connected equidimensional projective scheme over C.
b) H is an ample invertible sheaf on Γ or, as we will say, a polarization of W

2. For a scheme Y a family of objects in F(C) will be a pair (f : X → Y,L) which
satisfies
a) f is a flat proper morphism of schemes,
b) L is invertible on X,
c) (f−1(y),L|f−1(y)) ∈ F(C), for all y ∈ Y ,
d) some additional properties, depending on the moduli problem one is interested

in.
3. If (f : X → Y,L) and (f ′ : X ′ → Y,L′) are two families of objects in F(C) we

write (f,L) ∼ (f ′,L′) if there exists a Y -isomorphism τ : X → X ′, an invertible
sheaf F on Y and an isomorphism τ∗L′ ∼= L ⊗ f∗F . If one has X = X ′ and
f = f ′ one writes L ∼ L′ if L′ ∼= L ⊗ f∗F .

4. If Y is a scheme over C we define the Moduli Functor

F : (Sch/C)o −−→ (Sets)

by

F(Y ) = {(f : X → Y,L); (f,L) a family of objects in F(C)}/ ∼ .

The natural functor transform for any τ : Y ′ −−→ Y with Y, Y ′ ∈ (Sch/C) is

F(τ) : F(Y ) −−→ F(Y ′)

by sending (f : X → Y,L) in F(Y ) to (pr2 : X ×Y Y
′ → Y ′, pr∗1L) ∈ F(Y ′).

Let us introduce a coarser equivalence relation on F(C) = F(Spec(C)) and on
F(Y ), which sometimes replaces “∼”.
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Definition 3.2. Let (f : X → Y,L) and (f : X ′ → Y,L′) be elements of F(Y ).
Then (f,L) ≡ (f ′,L′) if there exists an Y -isomorphism τ : X → X ′ such that
the sheaves L|f−1(y) and τ∗L′|f−1(y) are numerically equivalent for all y ∈ Y . By
definition this means that for all curves C in X, for which f(C) is a point, one has
deg(L ⊗ τ∗L′−1|C) = 0.

Then one defines functors PF from the category of C-schemes to the category of
sets by choosing

1. On objects: For a scheme Y defined over C one takes for PF(Y ) = F(Y )/ ≡ the
set defined as in 3.1, 4).

2. On morphisms: For τ : Y ′ → Y one defines

PF(τ) : PF(Y ) → PF(Y ′)

as the map obtained by pullback of families.

We will call F the moduli functor of the moduli problem F(C) and PF the moduli
functor of polarized schemes in F(C), up to numerical equivalence.

If F′(C) is a subset of F(C) for some moduli functor F then one obtains a new
functor by choosing

F′(Y ) = {(f : X → Y,L) ∈ F(Y ); f−1(y) ∈ F′(C) for all y ∈ Y }.

We will call F′ a sub-moduli functor of F.

In order to make sense of the definition of 3.1,one should make precise the pairs
in 1) and the additional properties in 2).Thus,we have

Definition 3.3. (Moduli problem on polarized manifolds)

1. Polarized manifolds: M′ is the moduli functor such that

M′(C) = {(W,H); W a projective manifold, H ample invertible on W}/ ∼

and defines again M′(Y ) to be the set of pairs (f : X → Y,L), with f a flat
morphism and with L an invertible sheaf on X, whose fibres all belong to M′(C).

2. Polarized manifolds with a semi-ample canonical sheaf:
M is the moduli functor given by

M(C) = {(W,H); Γ a projective manifold, H ample
invertible and ωW semi-ample }/ ∼

and, for a scheme Y , by defining M(Y ) to be the subset of M′(Y ), consisting of
pairs (f : X → Y,L), whose fibres are all in M(C). We write P instead of PM

for the moduli functor, up to numerical equivalence.

Remark 3.4. Let h(T ) ∈ Q[T ] be a polynomial with h(Z) ⊂ Z,then for the moduli
functor F as one of above functors,one defines Fh by

Fh(Y ) = {(f : X → Y,L) ∈ F(Y );h(ν) = χ(Lν |f−1(y))for all ν and all y ∈ Y }.

Thus for (Γ,H) ∈ F(C),h(T ) is the Hilbert polynomial of H.Moreover,

F(Y ) =
•⋃
h

Fh(Y ).
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If the Moduli functor can be represented(i.e F = Hom(−,M) for some scheme
M), then we say the Moduli scheme exists.Geometrically,it just means whether the
universal family exists.

Definition 3.5 (Moduli Space). Mumford’s definition in GIT [21]

(A) A fine moduli scheme for F consist of a scheme M and a universal family
(g : X →M,L) ∈ F(M).Here universal means,that for all (f : X → Y,H) ∈
F(Y ),there is a unique morphism τ : Y → M with

(f : X → Y,H) ∼= F(τ)(g,L) = (X ×M Y
pr2−−→ Y, pr∗1L).

(B) A coarse moduli scheme for F is a scheme M together with a bijection
μ : F(C) ↔ M(C) such that for any family (f : X → Y,L) ∈ F(Y ):
(1) The induced map of set φ : Y (C) → M(C) comes from a morphism

Y → M.

(1) Given a scheme N/C and a natural transformation

Φ : F → Hom(−, N),

the map of set Φ(C) ◦ μ−1 : M(C) → N(C) comes form a morphism.

Exercise 3.6. It is easy to check the coarse moduli space is unique in the following
meaning: For any two coarse moduli space (Mi, μi) i = 1, 2 of the functor F, there
is an isomorphism Ψ : M1 → M2 such that Ψ ◦ μ1 = μ2.

Theorem 3.7 (Viehweg,E.[31]). The Existence of Coarse Moduli

1. Given a polynomial h ∈ Q[T1, T2] of degree n such that with h(Z × Z) ⊂ Z,
Then,there exists a coarse quasi-projective moduli scheme Mh for the sub-moduli
functor Mh(same for PMh),of polarized manifolds (W,H) ∈ M(C),with

h(α, β) = χ(Hα ⊗ ωβW ) for allα, β ∈ N

Furthermore,the moduli functor Mh(same for Ph) is bounded by Matsusaka Big
theorem.

2. Given a polynomial h of degree n such that h(Z) ⊂ Z,there exists a quasi-
projective scheme Mh of finite type over C for the set

{(X,L);ωX semi-ample,L ample on X and χ(X,Lν) = h(ν)for all ν}/ ∼ .

Furthermore,Mh is bounded by Matsusaka Big theorem.
As in item (I), the quasi-projective coarse moduli space for PMh exists and is

bounded too.

Here L semi-ample means that if for some μ > 0 the sheaf Lμ is generated by global
sections.

Corollary 3.8. In particular,adding the condition as canonical line bundle trivial(
the deformation invariant condition),one may get the coarse quasi-projective moduli
space for K3 surfaces, Calabi-Yau manifolds and Abelian variety.Also these Moduli
functor are bounded.

Proposition 3.9 (Mumford-Viehweg [31]). Let the family (g : X → Y ) be induced
by the morphism φ : Y → Mh.
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(I) Assume all Γ ∈ Mh(C) are canonical polarization manifolds.For η ≥ 2 with
h(η) > 0,there exists some p > o and an ample invertible sheaf λ(p)

η on Mh

such that
φ∗λ(p)

η = det(g∗ω
η
X/Y )p

(II) Assume for some δ > 0,one has ωδΓ = OΓ all manifolds Γ ∈ Mh(C)
(for example,K3 surfaces,Calabi-Yau manifolds,Abelain varieties,etc). There
exists some p > o and an ample invertible sheaf λ(p)

η on Mh such that

φ∗λ(p) = g∗ω
δ·p
X/Y

Theorem 3.10 (Matsusaka-Mumford Big Theorem). Assume the ground field is
always zero.Let M be the set of isomorphism of polarized smooth projective varieties
with a fixed Hilbert polynomial h. Then M is bounded,i.e, ∃ an integer m0 indepen-
dent of the choice of (X,H) ∈ M such that m0H is very ample for m ≥ m0 on X and
in fact one can also suppose that Hj(X,mH) = 0 for j > 0 and m ≥ m0.Hence,the
complete linear system |m0H| gives a closed immersion:

i : X ↪→ PN

with N = h(m0)−1.In particular the Hilbert polynomial of i(X) is h1(m) = h(mm0)
and hence independent of (X,H) ∈ M.

Therefore, geometrically,the families we study are

f : X →M

where X and M are algebraic manifolds defined over C and f is surjective morphism
with following conditions:
(a) f is a smooth morphism with every closed fiber f−1(t) a connected and reduced
smooth projective variety.
(b) f is a projective morphism i.e. there exists a projective space PN such that the
diagram is commutative:

X
i−−−→ PN ×M

�
��

f �
��

π

M
(c) the varieties X and M and every closed fiber Xt = f−1(t) are connected. More-
over,let ωt = OPN (1)|Xt then (Xt, ωt) is a polarized algebraic variety such that the
embedding it : Xt ↪→ PN is determined by the very ample line bundle ωt,thus ωt is
also a Kähler structure of Xt.

Remark: We can assume the conditions (b) and (c) according to the Matsusaka-
Mumford Big theorem.Because of the flatness of f ,the dimension of the closed fiber
is a constant.

3.2. Deformation theory and Torelli theorem.

3.2.1. Deformation theory. Let f : X →M be a smooth family of complex manifolds
over a complex manifold M ,Let t0 ∈M such that X = Xt0 = f−1(s0).Such a family
is called a deformation of the complex manifold X.

There exists an exact sequence of OX-homomorphisms

0 −−→ TX/M −−→ TX −−→ f∗TM −−→ 0
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Form the exact sequence one obtains a long exact sequence

· · · −−→ f∗TX −−→ f∗f
∗TM = TM

κ−−→ R1f∗TX/M −−→ R1f∗TX −−→ · · ·
Then the OM -homomorphism

κ : TM −−→ R1f∗TX/M

is just the Kodaira-Spencer map,i.e. κ is in the class H0(M,R1f∗TX/M ⊗ Ω1
M ).At

any point t ∈M ,
κ(t) : TM,t −−→ H1(Xt, TXt).

Let M be the moduli space of the polarized algebraic variety (X,L),while D is
the classifying space of the polarized Hodge Structure of weight n associated to
(X,L),there is a natural mapping

φ : M → D/GZ

which is an extended variation of Hodge structures.
Intuitionally,the Kuranishi base (refer to the Kodaira’s textbook)is the maximal

deformation space of X which is contained in Euclidean space H1(X,ΘX). In gen-
eralization, The Kuranishi family always exists for each complex manifold X, and if
dimCH

0(Xs,ΘXs) keeps constant in the neighborhood of t0,the family is universal
(refer to Kuranishi’s works). Given a orientation η ∈ H1(X,ΘX),whether X can be
deformed along η is dependent on the corresponding [η, η] ∈ H2(X,ΘX). The set of
all [η, η] inH2(X,ΘX) is called obstruction class.Thus if the obstruction class van-
ish,the Kuranish base is a smooth complex manifold of dimension dimCH

1(X,ΘX).
In particular,for the example when H2(X,ΘX) = 0.

Bogomolov,Todorov,Tian, Ran and Kawamata proved that

Theorem 3.11 (BTT). Let X be a compact Kähler manifold with trivial canon-
ical bundle,then the Kuranishi family is universal, and the base is a smooth open
set of dimension dimCH

1(X,ΘX). In particular,the result holds for X Calabi-Yau
manifold.

Remark 3.12. Actually, the family is universal at every point of the base and K-S
mapping is an isomorphism at every point of the base.

3.2.2. Torelli theorem. What’s the meaning of Torelli theorem? Roughly speck-
ing,the question is equivalent to that for a compact Kähler manifold, whether the
Hodge Structure determines the complex structure.

Suppose a compact Kähler manifold X admits a universal Kuranishi family

f : (X, X) → (S, 0)

with a nonsingular base S which is isomorphic to the open set in H1(X,ΘX) .
Certainly,this may not be polarized family. There is a well-defined holomorphic
map (period map)

λ =
∏

λp : S →
∏

Gr(hp, H)

The infinitesimal Torelli theorem is just to ask whether (dλ)0 is injective.Now
one think about the Kuranishi family of the polarized variety (X,L) where X is
projective manifold and L an ample very bundle.
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Consider the submanifold Sc1(L) ⊂ S,the deformation space determined by c1(L),
the restriction of f over Sc1(L) is the universal Kuranishi family of the polarized
algebraic variety (X,L) ( i.e any deformation φ : (Y, X) → (T, 0) of polarized variety
(X,L) is locally obtained from f by a unique base change π : (T, 0) → (Sc1(L), 0)).
We also have

TSc1(L),0 = H1(X,Θ)c1(L) := Ker(H1(X,ΘX)
∧c1(L)−−−−→ H2(X,OX))

Suppose Φ is the period mapping for f over Sc1(L) and ΦT is period mapping for
T ,Thus the diagram is commutative(locally,then in this case Γ = {1} )

T
π−−→ Sc1(L)

�
��

ΦT
�

��
Φ

D

It is said that infinitesimal Torelli theorem holds for a polarized algebraic variety
(X,L) if Φ is local embedding. The condition is equivalent to that dΦ and dλ is
injective on holomorphic tangent space ΘSc1(L),0.

On the other way,the bilinear ΘX × Ωn−1
X defines a paring

H1(X,ΘX) ×Hn−p,p → Hn−p−1,p+1

It gives a homomorphism,

μ : H1(X,ΘX) →
⊕

Hom(Hn−p,p, Hn−p−1,p+1)

Thus,there is a homomorphism

μ0 : H1(X,ΘX)c1(L) →
⊕

Hom(Pn−p,p, Pn−p−1,p+1)

Theorem 3.13 (Griffiths).
(dλ)0 = μ0 ◦ ρ

where ρ = κ(0). κ is the Kodaira-Spencer map for the family f over Sc1(L).In
the case ρ is injective ,then the infinitesimal Torelli theorem will follows from the
injectivity of μ0.

When X is algebraic manifold with trivial canonical line bundle, the first piece
of μ

H1(X,ΘX) → Hom(H0(X,Ωn
X), H1(X,Ωn

X))

is naturally injective.

Corollary 3.14. If (X,L) is algebraic manifold with trivial canonical line bun-
dle,then the infinitesimal Torelli theorem holds for the Kuranishi family . In partic-
ular,it holds for X Calabi-Yau manifold.

Definition 3.15 (Local Torelli). we say Local Torelli Theorem holds for (X,L) if
the differential dφ is an injection from tangent space T[X] into Tφ([X]) while [X] ∈ M

a closed point corresponds to (X,L).(For example, Calabi-Yau manifolds,etc)

Remarks 3.16. Infinitesimal Torelli theorem ⇒ Local Torelli theorem. But the
converse is not true.For example,the family of hyperelliptic curves.
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3.2.3. The Weil-Petersson metric on the moduli space. Let

f : X → M

be a maximal subfamily of the Kuranishi family of Calabi-Yau manifolds with a
fixed polarization [ω].

By the BTT theorem,the Kuranishi space of Xt is unobstructed and the Kodaira-
Spencer map

ρt : TM,t → H1(Xt, TXt)ω ∼= H0,1

∂
(TXt)ω

is injective everywhere along M.According to Yau’s solution to Calabi’s Conjec-
ture,there is an unique Kähler Einstein( Ricci flat) metric g(t) on Xt in the given
polarization [ω(t)]. Then g(t) induces a metric on Λ0,1(TXt),so one can define Weil-
Petersson metric GWP on M :

for any v, w ∈ TM,t

GWP (v, w) :=
∫

Xt

< ρt(v), ρt(w) >g(t)

Let Ω(t) ∈ Γ(Xt,∧nΩ1
Xt

)) = Γ(Xt,OXt) be a flat holomorphic n-form on Xt with
respect to the K-E metric g(t), it had been shown by Tian and Todorov (cf.[29] [30])

GWP (v, w) =
Q(C(i(v)Ω(t)), i(w)Ω(t))

Q(C(Ω(t)),Ω(t))
= −

∫
Xt
i(v)Ω(t) ∧ i(w)Ω(t)∫

Xt
Ω(t) ∧ Ω(t)

where the morphism

H1(Xt, TXt)ω → Hom(Pn,0, Pn−1,1) ∼= Pn−1,1(Xt)

via v �→ i(v)Ω(t) is an isomorphism.
Here Q is the flat inner product on the VHS Pnf∗(Q).In fact,because TM is

mapped to Pn−1,1 isomorphically,the Weil-Petersson metric GWP is induced form
the Hodge metric h (i.e. h(·, ·) := Q(C·, ·)) on the n-th piece of the polarized VHS
associated to Pnf∗(Q),hence GWP is Riemannian metric on M .

Furthermore, the Kähler form of the metric GWP is

(WP) ωWP (t) = −
√
−1
2

∂∂ log h =
√
−1
2

Rich(Hn,0(Xt))

In particular,ωWP is independent of the polarization due to Hn,0 = Pn,0.

3.3. Appendix: Fundamental results of Calabi-Yau manifolds. The follow-
ing is the well-known theorem of Yau Shing-Tung :

Theorem 3.17 (Calabi-Yau Theorem[38]). For any compact Kähler Manifold X of
complex dimension n with KX = ∧nΩ1

X = OX (i.e. c1(X) = 0), then there is an
unique Ricci flat metric on M(ie. ∃ | Kähler metric gij such that R(g)ij = 0).

Definition 3.18 (Equivalence Definition of Calabi-Yau Manifold). Let X be a
compact manifold.

(a) Originally, X admits a Riemannian metric with global holonomy group

0 
= H∗ ⊆ SU(n).

(b) X is a compact Kähler manifold with trivial canonical bundle.
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Now, we give a sketch description the equivalence of the definitions.

As well known,SU(n) is the subgroup of U(n) preserving an alternate complex n-
form on Cn.Thus, a compact manifold X with holonomy H∗ 
= 0 contained in SU(n)
is really a Kähler manifold (of complex dimension m) with a non-zero parallel form
ωX of type (n, 0)(under the Levi-Civita connection D).By standard Riemannian
geometry,one has

d =
∑

�i ∧DXi

where {Xi} is moving frame of tangent bundle and {�i} is the dual frame in cotan-
gent bundle,So 0 = d(ω) = ∂(ω) + ∂(ω).Thus the non-zero (n, 0)- parallel form ω is
∂-closed,i.e. holomorphic.

Let ΘX be holomorphic tangent sheaf of X and Ω1
X = (ΘX)∗, the canonical

bundle KX := ∧nΩ1
X is flat holomorphic line bundle and ωX is the global nonzero

holomorphic section of KX .Therefore,the canonical line bundle KX is trivial. In
other words,by Calabi-Yau theorem there is unique Kähler metric on M such that
the Ricci curvature (which for a Kähler manifold is just the curvature of KX) is
zero.Thus the holonomy group H∗ is in SU(n).

Therefore, by Calabi-Yau theorem,the compact manifold X admits a metric with
holonomy contained in SU(n) if and only if X is Calabi-Yau manifold. As shown
above,let X be a Calabi-Yau manifold of n dimension, then

ΘX
∼= Ωn−1

X .

By the short exact sequence

0 → Z → OX → O∗
X → 0,

one will obtain

· · · → H1(X,Z) → H1(X,OX) → Pic(X) c1−−→ H2(X,Z) → · · · .
Because X is Calabi-Yau, so for 0 < i < n(using the following proposition 3.19),

hi(X,OX) = h0,i(X) = hi,0(X) = h0(X,Ωi
X) = hn,n−i(X) = 0

Thus
0 → Pic(X) → H2(X,Z)

Especially, by Lefschetz-(1, 1) Theorem

Pic(X) = H1,1
Z =: H1,1

⋂
H2(X,Z)

Proposition 3.19. Let X be a compact Kähler manifold with dimension n .

(I) If X has dimension n ≥ 3, with holonomy group H = SU(n),then

H0(X,Ωp
X) = 0

for 0 < p < n.Moreover, X is a projective variety.
(II) Let Kähler class be the set of the class in H2(X,Z) which forms Kähler

metrics,denote it K.It is obvious the Kähler cone K ⊗ R is open in

H1,1
R := H1,1

⋂
H2(X,R).

Thus, any compact Kähler manifold X with H0(X,Ω2
X) = 0 is projective.
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Proof of 3.19. Sketch :
(I) Because the global holomony group H∗ = SU(n), KX = ∧nΩ1

X 	 OX .Thus
one has a Ricci-flat Kälher metric by 3.17.

Let τ be any holomorphic tensor filed(covariant or contravariant), by Bochner
formula

Δ(‖τ‖2) = ‖∇τ‖2 +Ric(τ∗, τ∗) = ‖∇τ‖2

So τ is parallel.
Let x ∈ X and V = Tx(X),by Borchner formula, H0(X,Ωp

X) can be identified
with SU(n) invariant subspace of

∧p V ∗. Because SU(V ) acts irreducibly on
∧p V ∗,

the invariant space is zero unless p = 0 or p = n.
(H0(X,Ωp

X) �
∧p V ∗ for 0 < p < n,because the connection is not zero)

(II) Now,H2(X,C) = H1,1 and H1,1
R = H2(X,R),so Kähler cone is open in

H2(X,R).Therefore, the Kähler cone contains an positive integral class [ω] and
by

Pic(X) c1−−→ H2(X,Z) → H2(X,OX) = 0,
this [ω] corresponds a L in Pic(X). The well-known Kodaira embedding theorem
asserts :

A line bundle must be ample when its Chern Class is in Kähler class.
Thus, L is an ample line bundle,i.e. X is a projective manifold.
• (Continue I) From (II),when X is a Calabi-Yau manifold ,then

H0(X,Ω2
X) = 0.

So X is projective . �
In this Lecture, when we consider Calabi-Yau manifold, we always mean the

projective Calabi-Yau manifold,i.e.the manifold has Holomony Group

H∗ = SU(n).

Example 3.20 (Complete intersection). Let X ⊂ Pn+k be a varieties defined by
F1 = F2 = · · · = Fk = 0 and degFi = di.For generic choice of Fi X is smooth
manifold of dimension n. By adjunction formula,the canonical line bundle

KX = OX(
k∑
1

di − n− k − 1)

is trivial if
∑
di = n + k + 1.By Lefschetz’s hyperplane theorem, these manifolds

satisfy
H0(Ωi

X) = 0 for 0 < i < n.

Thus one obtains Calabi-Yau manifold of complete intersection type.

Example 3.21. Taking a double cover of P3 branched over 8 planes in general
position,blowing up along the 28 singular lines,then one will obtain a Calabi-Yau
threedfold.These works are started by S.T.Yau, and in a recent processing works of
Lian,Todorov and Yau,they want to show the moduli space of CY threefolds of this
type is

(G \ SU(3, 3))/S(U(3) × U(3))
(It really bellowed to a conjecture of Dolgachev.I) a Shimura variety which can be
embedded into the moduli stack of Abelian varieties.
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4. Rigidity on Families of Calabi-Yau manifolds

4.1. Endomorphism of Higgs bundles over product varieties. Let V be an
arbitrary polarized R-VHS over S0 × T 0 such that local monodromies around the
divisor at infinity are quasi unipotent.(it shown by Landman,Katz and Borel that
it is true for polarized Z-VHS). Extending the associated Higgs bundle E to the
infinity and one gets the quasi canonical extension Higgs bundle :

θ : E → E ⊗ Ω1
S×T (logD)

One can obtain a meaningful endomorphism σ on V|St (cf. Jost-Yau Theorem in
[10] and another proof of Zuo in [44]):
Hint: Consider the two projections pS : S × T → S and pT : S × T → T , One has then

Ω1
S×T (logD) = p∗SΩ1

S(logDS) ⊕ p∗T Ω1
T (logDT ),

and the Higgs map

(4.0.1) θ : p∗SΘS(− logDS) ⊕ p∗T ΘT (− logDT ) → End(E),

is really the sheaf map of the differential of the extended period map.
The restriction of the Higgs map to St, is

(4.0.2) θ|St
: (p∗SΘS(− logDS) ⊕ p∗T ΘT (− logDT ))|St

→ End(E)|St
.

Note that

p∗T ΘT (− logDT )|St
	

l⊕
OSt

,

where l is dimension of T ,let 1T ∈ p∗T ΘT (− logDT )|St
be any constant section, then one

obtains an endomorphism

(4.0.3) σ := θ|St
(1T ) : E|S0

t
→ E|S0

t
.

As σ is coming form Higgs filed, it must be of (−1, 1) type and over C.Moreover σ is a
morphism of Higgs sheaf,i.e the diagram

E|S0
t

θ
S0

t−−−−→ E|S0
t
⊗ Ω1

S0
t⏐⏐�σ

⏐⏐�σ⊗id

E|S0
t

θ
S0

t−−−−→ E|S0
t
⊗ Ω1

S0
t

is commutative because of θS0
t
∧ θS0

t
= 0 where

θSt
: ΘSt

(− logDSt
) ↪→ (p∗SΘS(− logDS) ⊕ p∗T ΘT (− logDT ))|St

→ End(E)|St

the Higgs map of E|St
.

Actually,it is shown by Zuo [44] that the image of the map 4.0.2 is contained in
the kernel of the induced Higgs map on End(E). Therefore, the image is a Higgs
subsheaf with the trivial Higgs field. The Higgs poly-stability of End(E)|St implies
any section in this subsheaf is flat. One sees also this flat section is of Hodge type
(−1, 1).

For a weight n R-VHS VR, we always have a non degenerate pairing VR × VR →
R(−n),then we get (VR)∨ = VR(n),a VHS by shifted (−n,−n).
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Similarly,when Higgs bundle E carries R-structure,then the dual Higgs bundle is

(E∨ =
⊕
p+q=n

E∨−p,−q, θ∨)

where E∨−p,−q = (Ep,q)∨ = Eq,p, θ−p,−q∨ = −θq,p and

θ−p,−q∨ : E∨−p,−q → E∨−p−1,−q+1 ⊗ Ω1
M

Thus we get the Higgs bundle

(End(E) =
⊕
r+s=0

End(E)r,s, θend)

with

(4.0.4) θend(u⊗ v∨) = θ(v) ⊗ v∨ + u⊗ θ∨(v∨).

Proposition 4.1. (Proposition 2.1 in [44]) Denote (End(E), θend) the system Hodge
bundles corresponding to the polarized VHS on End(VR) which is induced by the
polarized VHS on VR.Then

θend(dφ(TM )(− logD∞)) = 0

Using the generalized Uhlenbeck-Yau-Donaldson-Simpson correspondence on higher
dimensional quasi-projective manifolds(Jost-Zuo [11][43]),we obtain

Theorem 4.2 (Zhang [41],[42]). Let M be quasi-projective manifold with good
completion.Assume the Higgs bundle (E, ∂, θ) comes form tamed harmonic bundle
(V,H,∇). Let e be a holomorphic section of (E, ∂),then θ(e) = 0 if and only if e is
a flat section of (V,∇).

Remark: If M is compact Kähler manifold,the statement has already been shown
by Simpson.

Exercise 4.3. The endomorphism σ obtained above is a flat (−1, 1)-type section
of End(E)|S0

t
.Therefore, σ can be seen as a endomorphism of local system C,i.e.

(4.3.1) σ : VC|S0
t
→ VC|S0

t
.

Remark: Naturally, we have a question: What’s the conditions of family such that
σ is defined over R,more over Q?

4.2. Rigid criterion for families of Calabi-Yau manifolds. Here we should
declare
The infinitesimal Torelli theorem holds for all manifolds we study in the

following sections.
So, there is a natural condition for a smooth family f : X →M of n dimensional

projective manifolds not to be trivial:
(∗∗) The differential of the period map for Pnf∗(C) is injective at some points

of M .
The meaning of the condition:
We have dim Image(η) = dimC where η is the induced modular map C → M.

We say f is rigid, if there exists no non-trivial deformation over a non-singular
quasi-projective curve T 0.



24 Yi Zhang

Here a deformation of f over T 0, with 0 ∈ T 0 a base point, is a smooth projective
morphism

g : X →M × T 0

for which there exists a commutative diagram

X �−−−−→ g−1(M × {0}) ⊂−−−−→ X

f

⏐⏐� ⏐⏐� ⏐⏐�g
M

�−−−−→ M × {0} ⊂−−−−→ M × T 0

.

Observation: Let f : X → M be a smooth polarized family of n dimensional
projective manifolds. Following the infinitesimal Torelli theorem of CY manifolds,
if the deformation g of f is non-trivial,then the period map of the extended family
g is not degenerate along T 0-direction for some points of M × {0}.

At all, we obtain a criterion for rigidity from the previous subsection 4.1.

Theorem 4.4 (Criterion for Rigidity [44],[42]). Let f : X → M be a smooth po-
larized family of n dimensional satisfying the condition (∗∗),if the family f is not
rigid,then there is a non-zero flat section σ of End(Pnf∗(C))−1,1. And this endo-
morphism comes from a flat section of σ ∈ End(E)−1,1 where (E, θ) be a Higgs
bundle induced from Pnf∗(Q). Moreover, the Zariski tangent space of deformation
space of this family f is into

End(Pnf∗(C))−1,1.

One can also refer to the papers of Jost-Yau [10]and Faltings [8], to get the similar
criterion on Families of Abelian Varieties. With the same method,it is not difficult
to generalize this result to nonrigid polarized VHS.
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4.3. Some applications of the criterion.

4.3.1. Rigidity of Lefeschetz pencils of Calabi-Yau manifolds.

Theorem 4.5 (Zhang [41] [42]). Let f : X → P1 be Lefschetz pencil such that
f : X0 → P1 \ S is smooth and smooth fibers are Calabi-Yau n-folds. Assume f
satisfies the condition (∗∗),then n must be odd.

The local system of vanishing cycles space VQ will be in Pnf∗(Q) because V is
absolute irreducible with (VC)n,0, (VC)0,n ∈ Pnf∗(C).Actually,from the Lefschetz de-
composition

Rnf∗(Q) = ⊕kL
kPn−2kf∗(Q)

where Pn−2kf∗(Q) = ker(Lk+1 : Rn−kf∗(Q) → Rn+k+2f∗(Q)) with the polarization
L,we have the decomposition

Pnf∗(Q) = V ⊕ (Pnf∗(Q))π1(P1\S).

Remarks 4.6. Notes on the theorem:
(I) The Lefschetz pencil is just the set of hypersurfaces over a complex line,so

the singular fiber only has unique simple singularity. Lefschetz pencils have
very good properties.It should be noted that most pencils are Lefschetz
pencils.One can refer to Deligne’s paper for the strict definition.

(II) The proof the theorem is dependent on the moduli properties of Calabi-Yau
manifolds and the Kazhdan-Margulis Theorem[6] which is essential in
Deligne’s proof of Weil Conjecture I :

The image π1(P1 \ S) in Sp(VC, ( , )) is open.

Theorem 4.7 (Zhang [41],[42]). The above families must be rigid.

Proof. Let C0 = P1 \ S.Assume the statement is not true, we have the nontrivial
extension family

X \ f−1(S) ⊂−−−−→ X

f

⏐⏐� ⏐⏐�g
C0 × {0} ⊂−−−−→ C0 × T 0

.

where T 0 is a smooth quasi-projective curve.
The local system Pnf∗(C) defines a polarized VHS,then we have a associated

Higgs bundle (E, θ) .

Lemma 4.8. There is a splitting of the Higgs bundle

(E, θ) = Ker(σ)
⊕

(Ker(σ))⊥

for the flat (−1, 1)-type non zero endomorphism σ : E → E. The statement is also
true when C0 is replaced by M a higher dimensional quasi-projective variety.

proof of the lemma. First, the non-degenerate polarized Q and σ are flat and defined
over C. Thus,it is not difficult to obtain the splitting of the local system over C

Pnf∗(C) = Ker(σ) ⊕ (Ker(σ))⊥

which is compatible with the polarization Q. (Ker(σ))⊥ is orthogonal component
of Ker(σ) in Pnf∗(C). It is a special case of Deligne’s complete reducibility. Then,

Pnf∗(C) ⊗OC = Ker(σ) ⊕ (Ker(σ))⊥
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because σ is also a OC-linear map. Restricting the Hodge filtration of VHS to
these sub local system and taking the grading of the Hodge filtration,one obtains a
decomposition of the Higgs bundles.Exactly,we obtain a splitting of Complex Vari-
ation of Hodge Structure[27][28]. It is a example of generalized Uhlenbeck-Yau-
Donaldson-Simpson correspondence theorem. �

Back to the proof of the theorem:
E0,n ∈ Ker(σ) is always true along M ,but as non-triviality of the deformation of
the family,at one point s0 of P1 \S, σ : En,0|C0 → En−1,1|C0 is injective(local Torelli
theorem),thus at s0,

En,0 � Ker(σ) and E0,n ⊂ Ker(σ).

As for Lefschetz pencil,we have already shown that the fundamental representa-
tion into space of the vanishing cycles

ρ : π1(P1 \ S) → Aut(VC,s0)

is irreducible and En,0 and E0,n are all in VC(4.5). It is a contradiction. �
Comments 4.9. The proof of this theorem depends heavily on the structure of Lefschetz
pencils,Hard Lefschetz Theorem and properties of Moduli space of Calabi-Yau manifolds. It
seems that we can generalize this statement to l− adic cohomology.We also know Lefschetz
pencil is just algebraic geometry version of Morse theory. Can we find the Physics model of
this structure,or can we find the Witten-style proof of this theorem as Laumon has reproved
the Weil conjecture by replacing the technique of Lefschetz pencil of Deligne with the method
of deformation in Witten’s Morse theory.

Definition 4.10. Let V be a local system of Q-vector space on a quasi-projective
manifold S with monodromy representation

ρ : π1(S, s0) → GL(V ), V := Vs0 .

1. The monodromy group π1(S, s0)mon is denoted by the Zariski closure of the
smallest algebraic subgroup of GL(V ) containing the monodromy representation
ρ(π1(S, s0)).

2. If V carries a nondegenerate bilinear formQ which is symmetric or anti-symmetric
and which is preserved by the monodromy group. We call the monodromy is big
if the connected component of origin π1(S, s0)mon0 acts irreducibly on VC.

Theorem 4.11. Let π : X → Y a non-isotrivial smooth family of CY manifold of
dimension n over the quasi-projective manifold Y and (Rnπ∗Q)prim carries a nature
polarized VHS. Suppose that there is a sub Q-VHS V with big monodromy and the
first Hodge piece is in VC.Then the family π : X → Y must be rigid.

4.3.2. General result on rigidity of families with strong degenerate. We assume all
families in this subsection satisfy the (∗∗) condition in section 4.2.

Definition 4.12. Let f : X → C be a family over a smooth projective curve C,
and {c0, · · · , ck} are singular values of f .Assume f satisfies the following condition:

a) Xi = f−1(ci) = Xi1 + · · ·+Xiri is a reduced fiber of a union of transversally
crossing smooth divisors for all i i.e. f is a semi-stable family;

b) the cohomology of every smooth component of X0 has type (p, p).
We say this family has strong degenerate at the singular fiber X0 = f−1(c0)
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Remark: The conception of strong degenerate comes from the literature of Hodge
Conjecture on Abelian variety.

Using the Künneth formula,we will get the following result immediately.

Corollary 4.13. If the family f : X → C has strong degenerate property at c0,then
the product family

π : Y � X ×C X → C

is also strong degenerate at c0.

Let M be a quasi-projective variety,(E, θ) be the Higgs bundle with positive
Hermitian metric H over M .We always assume (E, θ) has R-structure.

Exercise 4.14. By Künneth’s formula,as a vector space

(4.14.1) End(E)−1,1 ⊂ Rn+1π∗(Ωn−1
Y/M )

Theorem 4.15 (Zhang [41],[42]). Strong degenerate families(not only for families
of Calabi-Yau manifolds) over any algebraic curve must be rigid.

Proof. f : X → C is a strong degenerate family with

{c0, · · · , ck} = C − C0

the singular values of f and the fiber is a projective variety of dimension n. Let

f : X = f−1(C0) → C0

be the restricted smooth family.Define the product family

π : Y � X ×C X → C,

as shown in the above corollary,it is strong degenerate.Let Y := π−1
1 (C0) = X ×C0

X ,then we have the restricted smooth family

π : Y → C0

If f : X → C0 is not rigid, We will get a nonzero flat (-1,1) morphism

σ : Pnf∗(C) → Pnf∗(C)

Moreover, shown in the above lemma

σ ∈ (Rn+1π∗(Ωn−1
Y/C0

))π1(C0).

Following Deligne’s Hodge theory [5],we know the commutative diagram

Hn(Y ,C) i∗−−−−−−−−−−−−−−→ Hn(Y,C)

�
��

i
∗
t

�
��

i∗t

Hn(Yt,C)π1(C0,t)

where it : Yt ↪→ Y, it : Yt ↪→ Y are natural embedding;and

Hn(Yt,C)π1(C0,t) ∼= H0(C0, R
nπ∗(C))

is an isomorphism of Hodge Structure. As i∗t is surjective Hodge morphism for every
t ∈ C0, we have the following restriction maps induced by Yt ⊂ Y,

(4.15.1) rp,qt : Hq(Y,Ωp

Y) ↪→ Hn(Y,C)
i
∗
t−−→ Hn(Yt,C) → Hq(Yt,Ωp

Yt
)
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where p+ q = n.
From the restriction maps, we have

Claim 4.16. The component of type (p, q) of the group Hn(Yt,C)π1(C0,t) is the
image of Hq(Y,Ωp

Y) under rp,qt .

For each nonsingular dimensional n reduced algebraic cycle B ⊂ Y and each
α ∈ Hq(Y,Ωp

Y),we consider the integral∫
B
α ∧ α =

∫
B
α|B ∧ α|B

then ∫
B
α ∧ α = 0 ⇔ α|B = 0

WLOG, f is strong degenerate at c0, so is π. Denote

Y0 = D1 + · · · +Dk

Fixing p, q,if Hp,q(Dj) = 0 for each smooth component Dj of Y0,then

α|Dj = 0,∀j
So ∫

Y0

α ∧ α = 0.

The fiber Yt is homological equivalent to the singular Y0 for any t ∈ C0, and the
form α ∧ α is closed,therefore

0 =
∫
Y0

(α ∧ α)|Y0 =
∫
Yt

(α ∧ α)|Yt

We obtain α|Yt = 0,i.e. the restriction map

rp,qt : Hq(Y,Ωp

Y) → Hq(Yt,Ωp
Yt

)

is zero map.
Now, π is a family strong degenerate at c0, the cohomology of every smooth

component of Y0 has type only (p, p).Especially,

Hn−1,n+1(Dj) = 0

for all j.Therefore,the restriction map

rn−1,n+1
t : Hn+1(Y,Ωn−1

Y ) → Hn+1(Yt,Ωn−1
Yt

)

is zero map,i.e
(Rn+1π∗(Ωn−1

Y/C0
))π1(C0) = 0.

It is a contradiction.So the family f is rigid. �

In particular, form the theorem we get immediately

Corollary 4.17 (Weak Arakelov’s Theorem). Let f : X → C be a semi-stable
family over a smooth projective curve C, X0 is the singular fiber

X0 = f−1(c0) = D1 + · · · +Dr.

If every Di is dominated by Pn,then this family is rigid.
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Remarks 4.18. If this family is a fibration of curves,then we obtain a similar result
of rigid part of Shafarevich conjecture over function field.Though it is a weak result,a
family admitting strong degenerate are in general case.

Example 4.19. All one parameter family in Pn of type

F (X0, · · · , Xn) + t
d∏
i=1

Xτ(i) = 0

are rigid, where F is smooth homogenous polynomial with degree d.

4.3.3. Rigidity and Yukawa coupling. In this subsection, we show the relation be-
tween the rigidity of Calabi-Yau manifolds and Yukawa coupling, then we give ap-
plications.

• n-iterated endomorphism of σ and Yukama coupling

It is better to understand more and more about the endomorphism σ which has
deep background in string theory.

Anyway,there is n-iterated operator

σn = σ ◦ · · · ◦ σ︸ ︷︷ ︸
n

on E, and we know σk ≡ 0 if k >> 0.Furthermore, the following is held for Calabi-
Yau manifolds.

Proposition 4.20. Let f : X → M be a smooth family of polarized n dimensional
Calabi-Yau manifolds satisfying the condition (∗∗).If f is not a rigid family,then the
n-iterated endomorphism σ must be zero.

Proof. Assume the statement is not true,we have a non zero flat endomorphism
σn which is in fact a global holomorphic section of (L∗)⊗2 (under the holomorphic
structure ∂E of the associated Higgs bundle)where

L := R0f∗Ωn
X/M .

Therefore (L∗)⊗2 is trivial. But it is impossible for the following reason:
Let π : X → M be a maximal subfamily of the Kuranishi family of Calabi-Yau

manifolds with a fixed polarization [ω],by the BTT theorem,the Kuranishi space of
Xt is unobstructed and the Kodaira-Spencer map

ρ(t) : TM,t → H1(Xt, TXt)

is injective everywhere along M.Thus, we have the commutative diagram,

X Ψ−−−−→ X⏐⏐�f ⏐⏐�π
M

ψ−−−−→ M

By base change formula,

ψ∗R0π∗(Ωn
X/M) = R0f∗(Ψ∗Ωn

X/M) = R0f∗Ωn
X/M
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Denote
L := R0f∗Ωn

X/M .

We have∫
M

(c1(L))dimM =
∫
M

(c1(ψ∗R0π∗(Ωn
X/M)))dimM =

∫
M

(ψ∗c1(R0π∗(Ωn
X/M)))dimM

Due to the works of Todorev and Tian, one has the Weil-Petersson metric on M

and the formula (cf.[29],[30])

ωWP (t) = −
√
−1
2

∂∂ logH =
√
−1
2

RicH(Hn,0(Xt))

Here H is the Hodge metric on the polarized VHS Pnf∗(C). Thus∫
M

(c1(L))dimM =
∫
ψ(M)

(c1(R0π∗(Ωn
X/M)))dimM =

∫
ψ(M)

V OL(ωWP ) > 0,

Because ψ does not degenerate.
�

Definition 4.21. Let f : X0 →M be smooth family of n-dimensional CY manifolds
over a quasi-projective manifold M , (E, θ) is the Higgs bundle of Pnf∗(C).

Yukawa coupling is just the n-iterated Higgs field

θn : E → E ⊗ SnΩ1
M

which has deep background in string theory.Maybe you will find the definition is
different from other literature,but they essentially are compatible.

As the Higgs bundle (E, θ) can be splitting into

(E, θ) = (
⊕
p+q=n

Ep,q,
⊕

θp,q)

with
θp,q : Ep,q → Ep−1,q+1 ⊗ Ω1

M

Because of θ ∧ θ = 0,

θn,0 ◦ · · · ◦ θ0,n : En,0 −−→ E0,n ⊗
n⊗

Ω1
M

can factor through
θn : En,0 −−→ E0,n ⊗ SnΩ1

M .

So we have this definition.WLOG,the Yukama coupling can be written as

θn : SnΘM → Hom(En,0, E0,n) = ((R0f∗Ωn
X0/M

)∗)⊗2

It is very interesting to understand to relations among these morphisms
Let M be the quasi-projective smooth curve C0 = C \ S with S = {s1, · · · , sk}.

Using local Torelli theorem and above proposition we obtain :

Exercise 4.22 (Viehweg-Zuo & L-T-Y-Z). Let f : X0 → C0 be a smooth family
of n-dimensional Calabi-Yau manifolds satisfying the condition (∗∗). If the Yukawa
coupling is not zero at some point,then the family f must be rigid.
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Hint1.Using the properties of Higgs bundle and locally Torelli theorem for Calabi-
Yau.

2.Certainly,one can prove this criterion directly by the same method in proof of
proposition 4.20.

3.One can obtain the result right away by Viehweg-Zuo’s criterion 4.24

Example 4.23 (Liu-Todorov-Yau-Zuo). Let F ,H be homogenous polynomial of
degree n + 2 such that F defines a nonsingular hypersurface in Pn+1 and H is not
in the Jacobian ideal of F .Let us think about a special family F (t) = F + tH for
t ∈ P1.If the family satisfied the condition that

Hn is not in the Jacobian ideal of F + μH for some μ ∈ P1,

as shown in the paper [18],the Yukawa coupling at the point μ ∈ P1 is not zero.Thus
this family will be rigid.

We should give a picture to this description,though Higgs field is essential the
Kodaira-Spencer map which determines totally the deformation of the manifold,if we
deform every manifold of the family along same direction, we just get a deformation
of the family.
Remark on the proposition 4.22: Let (E, ∂, θ) be the analytic Higgs bundle
over a quasi projective variety M such that D∞ = M \ M normal crossing.If
Higgs map θ has regular singularities at D,E has a canonical extension over M ,by
GAGA principal E becomes a algebraic vector bundle under holomorphic structure
∂. Restricting to M , we get an algebraic Higgs bundle (E, θ),then θ is really a
algebraic map,so that the Yukawa coupling is algebraic θn is a global section of
((R0f∗(ΩX/C0

))∗)⊗2 ⊗ SnΩC0 . Denote

Z = {s ∈ C0 | θns = 0},

then Z is either a set of finite points or C0.The criterion says that the family will
be rigid when Z is of finite points.And Z = C0 when the family is non-rigid, but
the converse is not necessary true.

A readable proof from view of differential geometric can be found in preprint
of Liu-Todorev-Yau-Zuo [18].Actually,the author got idea of the proposition form
a manuscript of Kang Zuo and this paper.Communication by email, Liu,K.F and
Todorov again pointed out the relation between σn and Yukawa coupling from the
view of solution of Picard-Fuch equation,and that one zero implies another zero too.

The proposition 4.22 is really a special case of the Viehweg-Zuo’s original works,they
deal with more general cases: not only Calabi-Yau manifolds but also any projective
manifolds with semi-ample canonical line bundle(include CY);or of general type [33,
Corollary 6.5].The proof can also be found in their another paper[35, corollary 8.4
].

I would like to introduce this general criterion and show the application:

Criterion 4.24. [Viehweg-Zuo] Let Mh be the coarse moduli space of polarized
n-folds with semi-ample canonical line bundle ω; or of general type.Assume Mh

has a nice compactification and carries a universal family π : X → M(In the real
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situation,one needs to work on stacks).Let kM be the largest integer such that kM-
times iterate Kodaira-Spencer class of this deformation complex on the moduli stack
M is not zero.Certainly, 1 ≤ kM ≤ dimension of the fibres.

If kM-times iterated K-S class for a family f : X → Y is not zero,then
the family f must be rigid.

Remark: Here we always assume the flat family f : X → Y satisfies the “good
”completion : X ,Y are projective manifolds,S = Y −U is a reduced normal crossing
divisor such that the restricted family f : V → U is smooth morphism and Δ =
f∗S = X \U is a also a normal crossing divisor(if Δ is reduced,we get a semi-stable
family).

We have Deligne quasi-canonical extension of the VHS Rnf∗QV (i.e. that the real
part of the eigenvalues of the residues around the components of S lies in [0, 1)),
the reader can see a simple example of canonical extension soon),take grading of the
filtration,so get a extension Higgs bundle

(
⊕
p+q=n

Ep,q,
⊕

θp,q)

where
θp,q : Ep,q → Ep−1,p+1 ⊗ Ω1

Y (logS).

Generally, we still call the n-iterated Higgs map

θn : En,0 −−→ E0,n ⊗ SnΩ1
Y (logS)

be Yukawa coupling.By abusing the notation,sometimes we regard the coupling as

θn : Sn(TY (− logS)) −−→ E0,n ⊗ (En,0)∨.

When the local monodromies are all unipotent around the components of S(for
example,if f is semi-stable the condition will hold),it happens that (cf.[9])

Ep,q = Rqf∗Ω
p
X/Y (log Δ).

One finds for Δ = f∗S

(4.24.1) Ωn
X/Y (log Δ) = ωX/Y (Δred − Δ) = ωX/Y .

The Yukawa coupling is

θn : R0f∗Ωn
X/Y (log Δ) −−→ Rnf∗OX ⊗ SnΩ1

Y (logS),

so it can be regarded as

θn : SnT 1
Y (− logS) −−→ Rnf∗OX ⊗ (f∗ωX/Y )−1.

The Criterion 4.24 implies the following :

Corollary 4.25. f : X → Y is a family as above and every smooth fiber is of n-dim
projective manifolds with semi-ample canonical line bundle or of general type.

If the Yukawa coupling

En,o
θn

−−→ E0,n ⊗ SnΩ1
Y (logS)

is not zero,then the family f : X → Y is rigid.
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Proof of the corollary 4.25: We give a proof in situation of the monodromies are
unipotent(otherwise one can use the Kawamata covering trick to reduce the problem
to the case [33]).

(4.25.1) 0 −−→ f∗Ω1
Y (logS) −−→ Ω1

X (log Δ) −−→ Ω1
X/Y (log Δ) −−→ 0

The wedge product sequences

(4.25.2) 0 −−→ f∗Ω1
Y (logS) ⊗ Ωp−1

X/Y (log Δ) −−→
gr(Ωp

X (log Δ)) −−→ Ωp
X/Y (log Δ) −−→ 0,

where

gr(Ωp
X (log Δ)) = Ωp

X (log Δ)/f∗Ω2
Y (logS) ⊗ Ωp−2

X/Y (log Δ).

For the invertible sheaf L = Ωn
X/Y (log Δ) = ωX/Y we consider the sheaves

F p,q := Rqf∗(Ω
p
X/Y (log Δ) ⊗ L−1)

together with the edge morphisms

τp,q : F p,q −−→ F p−1,q+1 ⊗ Ω1
Y (logS),

induced by the exact sequence (4.25.2), tensored with L−1. As explained in [33],
Proof of 4.4 iii), F p,q = Rqf∗(

∧n−p TX/Y (− log Δ)) can be regarded as the deforma-
tion complex of f : X → Y .Moreever over U the edge morphisms τp,q can also be
obtained in the following way. Consider the exact sequence

0 −−→ TV/U −−→ TV −−→ f∗TU −−→ 0,

and the induced wedge product sequences

0 −−→
n−p+1∧

TV/U −−→ T̃n−p+1
V −−→

n−p∧
TV/U ⊗ f∗TU −−→ 0,

where T̃n−p+1
V is a subsheaf of

∧n−p+1 TV . One finds edge morphisms

τ∨p,q : (Rqf∗(
n−p∧

TV/U )) ⊗ TU −−→ Rq+1f∗(
n−p+1∧

TV/U ).

Restricted to η ∈ U those are just the wedge product with the Kodaira-Spencer
class. Moreover, tensoring with Ω1

U one gets back τp,q|U .
Because of Rqf∗(

∧n−p TX/Y (− log Δ)) = Rqf∗(Ω
p
X/Y (log Δ)⊗ω−1

X/Y ),we also call

τn−q,q : F p,q −−→ F p−1,q+1 ⊗ Ω1
Y (logS)

the log Kodaira-Spencer map and

τm : Fn,0 = OY
τn,0−−→ Fn−1,1 ⊗ Ω1

Y (logS)
τn−1,1−−−−→ Fn−2,2 ⊗ S2(Ω1

Y (logS)) −−→ · · ·
τn−m+1,m−1−−−−−−−−→ Fn−m,m ⊗ Sm(Ω1

Y (logS))

m-times iterated K-S class.
One has a factor map



34 Yi Zhang

Sn(TY (− logS))

�
��
τn(f) �

��
θn(f)

Rnf∗(ω−1
X/Y ) −−−−−−−−−−−−−−→ Rnf∗OX ⊗ (f∗ωX/Y )−1

Hence
θn(f) 
= 0 =⇒ τn(f) 
= 0 =⇒ τnM 
= 0 =⇒ kM = n.

By the Viehweg-Zuo criterion 4.24, the family f is rigid.
�

Remark : Except rankEn,0 = 1,it seems difficult to get a proof only using Variation
of Hodge Structure.

• Local study of families admitting maximal unipotent degenerate

Let f : X → C be family smooth over C0, (V,∇) be integrable algebraic vector
come from the polarized VHS of smooth part of the family. (V,∇) admits quasi-
unipotent monodromy,thus we have Deligne’s quasi-unipotent extension (V,∇),

∇ : V → V ⊗ Ω1
C(logS),

This algebraic vector bundle corresponds to a regular filtered Higgs bundle (E, θ)α.
Locally, It is explained as following:
Restricting the family f : X → C to the unit disk Δ,We think about the local

degenerated family
f : Xloc → (Δ, t)

Now,WLOG we assume
f ′ = f |X ∗

loc
: X ∗

loc → (Δ∗, t)

is smooth and the local monodromy is unipotent,i.e.

(4.25.3) (T − 1)k+1 = 0 and (T − 1)k 
= 0 for a fixed integer k, 0 ≤ k ≤ n.

If k = n, T is the maximal unipotent monodromy. Let

N = log T =
k∑
j=1

(1/j)(−1)j(T − Id)j ,

we have Nk 
= 0 and Nk+1 = 0.
In this simple case,let the Φ : Δ∗ → D/Γ be the period map corresponding to the

local VHS VC = Pnf ′∗(C). Before Schmid’s Nilpotent orbit theorem,Deligne also
showed that the holomorphic map

Ψ(t) = exp(
− log t
2π

√
−1

N)Φ(t)

can extend cross zero.Therefore we have the Deligne canonical extension (V,∇)
where V is generated holomorphically by

ṽ(t) = exp(
− log t
2π

√
−1

N) · v
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for all v ∈ Pnf ′∗(C) and ṽ(te2π
√
−1) = ṽ(t). However, as we have shown in the

previous chapter, V|0 can be represented by VU for a small neighborhood( in complex
topology) U of 0.[27] Thus the monodromy T can be extended naturally to an
endomorphism on E and we have the restriction and we have

T0 : V|0 −−→ V|0
T0 has same property 4.25.3 as T .

Definition 4.26 (Residues of (V,∇)). For an integrable logarithmic connection

∇ : V −−→ V ⊗ Ω1
Δ(log 0)

we have the composed map

(idV ⊗R0) ◦ ∇ : V ∇−−→ V ⊗ Ω1
Δ(log 0)

idV⊗R0−−−−−→ V|0 ,
where R0 : Ω1

Δ(log 0) −−→ C is defined by R0(fdt/t) = f(0).
This composed map is zero at tV,then it induces a residue map along 0

Res0(∇) : V|0 −−→ V|0 .

Remark 4.27. Generally,letM \M = D be a reduced smooth connected divisor.For
any integrable logarithmic connection

∇ : F −−→ F ⊗ Ω1
M

(log D)

we will get

(idF ⊗R0) ◦ ∇ : F ∇−−→ F ⊗ Ω1
M

(log D) idF⊗R0−−−−−→ OD ⊗F ,

(idF ⊗R0) ◦ ∇ is OM−linear morphism and factors through

F restr.−−−→ F ⊗OD
ResD(∇)−−−−−→ F ⊗OD.

Thus ResD(∇) ∈ End(F) ⊗OD and we have the short sequence

0 −−→ Ω1
M

⊗ End(F) −−→ Ω1
M

(logD) ⊗ End(F) RD⊗id−−−−→ OD ⊗ End(F) −−→ 0.

Therefore by directly calculation, we have the

Exercise 4.28. If (V,∇) is induces from the VHS of the above local family,then

(4.28.1) Res0(∇) =
−1

2π
√
−1

N.

which is a particular case of Theorem II,3.11 in Deligne’s book [4].

Definition 4.29 (Residues of Higgs map [27]). Let (V,H,D) is tamed harmonic
bundle, it induces (E, θ)α a regular filtered Higgs system which includes (E, θ) a
Higgs bundle over Δ∗ and a system of decreasing filtered sheaves Eα,0 which extend
E across 0 and extend the Higgs map

θ : Eα,0 −−→ Eα,0 ⊗ Ω1
Δ(log 0)

Here the coherent sheaf Eα is generated by e ∈ E|Δ∗ such that |e(t)|H ≤ C|t|α+ε

for every ε > 0.
Denote E = E0 = ∪Eα,0

(idE ⊗R0) ◦ θ : E θ−−→ E ⊗ Ω1
Δ(log 0)

idE⊗R0−−−−−→ E|0 ,
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this morphism induces
Res0(θ) : E|0 −−→ E|0.

Also, formally we have the short exact sequence:

0 −−→ Ω1
Δ ⊗ End(E) −−→ Ω1

Δ(log 0) ⊗ End(E) R0⊗id−−−−→ End(E)|0 −−→ 0.

Thus Res0(θ) = (R0 ⊗ id)(θ).

Remark: In this case (E, θ) is weight n Hodge bundle, because of θn+1 ≡ 0, we
have (Res0(θ))n+1 = 0.Then Res0(θ) is automatically nilpotent.

Proposition 4.30 (Simpson[27],Schmid[25]). The nilpotent parts of Res0(∇) is iso-
morphic to the nilpotent part of Res0(θ) under E|0 ∼= V|0.In the case of Hodge bundle
shown by Schmid,with the above lemma

Res0(θ) ∼= Res0(∇) ∼= −1
2π

√
−1

N,

where N is the nilpotent part of the monodromy.

Now, we come back to the Yukawa coupling.

Exercise 4.31. If the local family f : Xloc → (Δ, t) degenerate at 0 with maximal
unipotent monodromy,then the Yukawa coupling is nonzero.

Therefore,as an application of the proposition 4.22,we have an interesting result
which is implied in the paper of Liu-Todorov-Yau-Zuo(cf [18]) and the manuscript
of Zuo Kang[45].

Theorem 4.32 (Zhang [41][42]). Let f : X → C be a family of n-dimensional
Calabi-Yau manifolds satisfying the condition (∗∗) in the section 4.2.

If the family f admits a degeneration with maximal unipotent monodromy,then f
must be rigid.

Remark 4.33. We should point out the degenerations of Lefschetz pencil of CY
manifolds are all of minimal unipotent monodromy. So, we will ask the question:
Whether the CY family with minimal unipotent monodromy degeneration is rigid?

Example 4.34. In the recent paper of Lian-Todorov-Yau,the authors show the
following type CY families have the degenerate of maximal unipotent monodromy
(cf.[17]),thus they will be rigid by the theorem 4.32.

One parameter family of complete intersections of CY manifolds in Pn+k for n ≥ 4
and k ≥ 1 defined by the following equations :

G1,t = tF1 −
∏n1
i=0 xi = 0, .., Gk,t = tFk −

∏nk
j=n1+..+nk−1

xj = 0, t ∈ P1

where the system F1 = .. = Fk = 0 defines a non singular CY manifolds,
ni = degFi ≥ 2 and

∑
ni = n+ k + 1

and x i are the standard homogeneous coordinates in Pn+k.

The condition
∑
ni = n+ k + 1 implies that the fibers π−1(t) = Xt for t 
= 0 are

CY manifolds of complex dimension n.

Example 4.35. As a special case of Lian-Todorov-Yau, Morrison.D showed the
Yukawa coupling of the following family is not zero at 0.

X5
0 +X5

1 +X5
2 +X5

3 +X5
4 − 5λX0X1X2X3X4 = 0
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for λ ∈ P1 and [X0, X1, X2, X3, X4] ∈ P4.
By the example 4.34,this family admits a degeneration with maximal unipotent

monodromy at 0.One also can show this family rigid by the example 4.23,because
(X0X1X2X3X4)3 is not in the Jacobian ideal of

X5
0 +X5

1 +X5
2 +X5

3 +X5
4 .

Example 4.36. We should point out these two examples are both of strong degen-
eration(with surgery of semi-stable reduction).Thus they have to be rigid by theorem
4.15.Recently Viehweg-Zuo construct some meaningful families with maximal unipo-
tent degeneration by covering trick (not only just by complete intersection)[36].
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