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Abstract

We study the zero-dissipation problem in L2 and L1 spaces of the Keyfitz-Kranzer
system. When the solution of the inviscid problem is piecewise smooth and having finitely
many noninteracting shocks with finite strength, there exists unique solution to the vis-
cous problem which converges to the given inviscid solution away from shock discontinu-
ities. Convergence rates are given in terms of ε the viscosity. The proof is given by a
matched asymptotic analysis and a weighted elementary energy method.
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1 Introduction

We consider the following two 2 × 2 systems{
ut + (φ(u, v)u)x = 0,

vt + (φ(u, v)v)x = 0, t > 0, x ∈ R,
(1.1)

{
ut + (φ(u, v)u)x = εuxx,

vt + (φ(u, v)v)x = εvxx, t > 0, x ∈ R.
(1.2)

The system (1.1) is a special form of the Temple class system (see [2]), with one contact field

and one line field. And the shock wave curves and rarefaction wave curves coincide. Such

systems arise in the fields of elasticity theory (see [3],enhanced oil recovery and magnetohy-

drodynamics (see [4] ), etc.

Let (r, θ) be the polar coordinates,

r(u, v) =
√

u2 + v2, tan θ = v/u.
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In this paper we only consider the case when φ(u, v) = φ(r). The following assumption on φ

are consistent with physical considerations:

• (A1) φ(r) → +∞ as r → 0 or r → +∞,

• (A2) φ(r) > 0,

• (A3) φr > 0 ,∂(rφ)
∂r > 0, ∂2(rφ)

∂r2 > 0,

• (A4) φ is convex.

Then the system is strictly hyperbolic with two eigenvalues

λ1 = φ, λ2 = φ + rφr = (rφ)r, (1.3)

where λ1 is linearly degenerate and λ2 genuinely nonlinear; the corresponding eigenvectors

are

r1 = l1 = (− sin θ, cos θ), r2 = l2 = (cos θ, sin θ). (1.4)

The well-posedness of the system (1.1) in our case has been studied by G.Q. Chen in

[5],[6],[7] and he obtained some properties which are similar to those in the scalar conservation

law. A very important approach to study the well-posedness of the hyperbolic system is the

viscosity method. Ever since Goodman and Xin [1] studied the rates of convergence of the

viscous approximate solutions for general strictly hyperbolic systems with weak shock initial

data, we are interested in knowing for what kinds of systems we can get convergence results

for bounded shock data, just like in the scalar case.

Our aim is to get the L1 and L2 convergence rates of the viscous solutions, given the

inviscid solution h(x, t) = (u, v)(x, t) which has finitely many noninteracting shocks of finite

strength. The method we use is mainly motivated by [1]. But in the stability analysis, we

use an initial weighted energy estimate. The result in the L1 space is based on that in the

L2 space.

The proof consists of main parts. In the first part, we use the weighted asymptotic

expansions to construct an approximate solution Aε(x, t) of (1.2) without requiring that the

shock is weak. The Aε(x, t) is close to the given solution h(x, t) for ε = 0 away from the

shock. However, Aε(x, t) has a smoothed viscous shock profile of width ε near the shock.

The detailed construction of the approximate solution, is also crucial for our method, since

we need to have estimates on the higher order correction. In the second part, we show a

priori estimate on the difference between Aε and the exact viscous solution hε. The crucial

part is the estimate in an very thin initial layer 0 ≤ t ≤ O(1)ε obtained by using a weighted
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energy estimate. Here we choose the weight to be t−
2
3 . Then the special feature of the two

eigenvalues allows us to get the a priori estimates. In the last section, we get the L1 estimate.

Without loss of generality, we assume the given inviscid solution h(x, t) = (u, v)(x, t) is a

single-shock solution up to time T , that is

1. h(x, t) is a distributional solution of the hyperbolic system (1.1) in the region R1×[0, T ];

2. There is a smooth curve, the shock, x = s(t), 0 ≤ t ≤ T , so that h(x, t) is sufficiently

smooth at any point x �= s(t).

3. The limits

∂k
xh(s(t) − 0, t) = lim

x→s(t)−
∂k

xh(x, t), ∂k
xh(s(t) + 0, t) = lim

x→s(t)+
∂k

xh(x, t),

exist and are finite for t ≤ T and k = 0, 1, 2, 3, 4.

4. The Lax geometrical entropy condition is satisfied at x = s(t), that is

λ1(h(s(t) − 0, t)) < λ2(h(s(t) − 0, t)), (1.5)

λ2(h(s(t) + 0, t)) < ṡ(t) < λ2(h(s(t) − 0, t)). (1.6)

Here we assume the discontinuity is of the second family. Here and in the following, we always

use the notation ṡ = ds(t)
dt . We also assume that

λl
1 < ṡ, and r(u, v) > r∗, (1.7)

for some positive constant r∗. Now we state our main theorem

Theorem 1. Suppose that (u, v)(x, t) is a single-shock solution of (1.1)up to time T > 0.

Under condition (1.7), if

∑
1≤α≤7

∫ T

0

(∫ x=s(t)

−∞
+

∫ ∞

x=s(t)

)
|∂α

x (u, v)(x, t)|2dxdt < +∞, (1.8)

∫
R1

(|(u, v)x(x, 0)| + |(u, v)xx(x, 0)|)dx ≤ +∞, (1.9)

there exists positive constant ε0, such that for any ε ∈ (0, ε0], there is a smooth solution

(uε, vε)(x, t) of (1.2), satisfying

(uε
x, vε

x) ∈ C1([0, T ], H2). (1.10)

Moreover, for any given β ∈ (0, 1),

sup
0≤t≤T

∫
R1

|(uε − u, vε − v)(x, t)|2dx ≤ Cβεβ, (1.11)
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and

sup
0≤t≤T,|x−s(t)|≥εβ

|(uε − u, vε − v)(x, t)| ≤ Cε, (1.12)

and

sup
0≤t≤T

∫
R1

|(uε − u, vε − v)(x, t)|dx ≤ Cβε, (1.13)

where Cβ , C are positive constants independent of ε.

2 Approximate solutions

Suppose the exact solution to (1.2) is hε(x, t) = (uε, vε)(x, t). Following Goodman-Xin, in [1],

we will use the formal Hilbert expansion and the shock expansion to construct an approximate

solution to hε(x, t).

2.0.1 Outer expansion

Let h0(x, t) = (v0, u0)(x, t), hi(x, t) = (vi, ui)(x, t), i = 1, 2, · · · · · · . In the domain away from

the shock, we expand hε(x, t) formally in order of ε.

hε(x, t) ∼ h0(x, t) + εh1(x, t) + ε2h2(x, t) + · · · · · · , x �= s(t). (2.1)

Substituting (2.1) into (1.2) and comparing the coefficients of powers, we get, with f(h) =

f(u, v) = (φ(r)u, φ(r)v)t ( where F t denotes the transport of F ),

O(1) : h0t + f(h0)x = 0, , (2.2)

O(1)ε : h1t +
(
f ′(h0)h1

)
x = h0xx, (2.3)

O(1)ε2 : h2t +
(
f ′(h0)h2

)
x

= h1xx − 1
2
(
f ′′(h0)(h1, h1)

)
x
. (2.4)

etc.

The outer functions, h0, h1, · · · · · · are generally discontinuous at the shock, but smooth

up to the shock. The leading term, h0, is taken to be the single shock solution of (1.1),

(u, v)(x, t). Near the shock, hε(x, t) will be represented by a shock layer expansion

Hε(x, t) ∼ H0(ξ, t) + εH1(ξ, t) + · · · · · · , (2.5)

where Hi = (Ui, Vi), i = 0, 1, 2, · · · , and

ξ =
x − s(t)

ε
+ δ(t, ε), (2.6)
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and δ(t, ε) is the perturbation of the shock position to be determined later. We assume δ(t, ε)

has the form

δ(t, ε) = δ0(t) + εδ1(t) + ε2δ2(t) + · · · · · · . (2.7)

Substituting (2.5)-(2.6)-(2.7) into (1.2) to obtain

O(1)
1
ε

: H0ξξ + ṡH0ξ − f(H0)ξ = 0, (2.8)

O(1) : H1ξξ + ṡH1ξ −
(
f ′(H0)H1

)
ξ

= δ̇0(t)H0ξ + H0t, (2.9)

O(1)ε : H2ξξ + ṡH2ξ −
(
f ′(H0)H2

)
ξ

(2.10)

= δ̇0(t)H1ξ + δ̇1(t)H0ξ+H1t +
1
2
(
f ′′(H0)(H1, H2)

)
ξ
, (2.11)

etc.

The inner expansion is supposed to hold in a small zone of width O(ε) around x =

s(t). The outer expansion and inner expansion are expected to agree with each other in the

”matching zone”, where |ξ| → +∞ and |x−s(t)| is small. Using Taylor’s expansion to express

the outer solution in terms of ξ, we get the following ”matching conditions” as ξ → ±∞:

H0(ξ, t) = h0(s(t) ± 0, t) + o(1).

H1(ξ, t) = h1(s(t) ± 0, t) + (ξ − δ0)∂xh0(s(t) ± 0, t) + o(1) (2.12)

H2(ξ, t) = h2(s(t) ± 0, t) + (ξ − δ0)∂xh1(s(t) ± 0, t)

− δ1∂xh0(s(t) ± 0, t) +
1
2
(ξ − δ0)2∂2

xh0(s(t) ± 0, t) + o(1).

etc. After we construct the various outer and inner functions, we can verify the algebraic

growth of Hi as ξ → ±∞.

2.1 Properties of the viscous shock profile

Since much of our construction depends on the properties of viscous shock profiles, we recall

them as follows. Viscous shock profiles are the travelling wave solutions of (1.2)on the whole

R
1 of the form

(u, v)(x, t) = (U, V )(ξ) = H(ξ), ξ =
x − σ

ε
,

which satisfies

−σH ′ + f(H)′ = H ′′, (2.13)

and (U, V )(±∞) = (v±, u±), with{
σ(u+ − u−) =

(
φ(r)u

)
+
− (

φ(r)u
)
−,

σ(v+ − v−) =
(
φ(r)v

)
+
− (

φ(r)v
)
−,

(2.14)
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where ′ = d/dξ, σ denotes the shock speed.

The advantage of taking φ(u, v) = φ(r) is that the behavior of the 2-waves of (1.1) can

be studied independently. Across the 1-wave, the value of r is unchanged; across the 2-wave,

the value of θ is constant. Therefore, the behavior of r and hence the behavior of 2-waves,

can be described by the scalar conservation law

rt +
(
rφ(r)

)
x

= 0. (2.15)

This can be justified because the jump condition and entropy conditions for (1.1) are consis-

tent with that for (2.18), i.e. σ(r− − r+) =
(
rφ(r)

)
− − (

rφ(r)
)
+
.

Then the behavior of the viscous shock profile of the 2-wave is like that in the scalar

equation

rt +
(
rφ(r)

)
x

= εrxx, r → r±, as ξ → ±∞, (2.16)

and r(x, t) = R(ξ), θ(x, t) = θ− = θ+ = constant. Integrate (2.16) once to give

Rξ =
(
Rφ(R)

) − (
rφ(r)

)
− − σ(R − r−). (2.17)

Consequently, we get the following results adopted from that in the scalar case ,without

requirements on the shock strength,

1. ∂ξλ2(R) < 0, for all ξ,

2. |∂ξR| ≤ c′|r− − r+|,

3. as ξ → −∞, R(ξ, r−, σ) − r− = O(1)|r− − r+|e−α|ξ|,

∂R

∂r−
− 1 = O(1)e−α|ξ|,

∂R

∂σ
= O(1)e−α|ξ|

.

4. as ξ → +∞, R(ξ, r−, σ) − r+ = O(1)|r− − r+|e−α|ξ|,

∂R

∂r−
− ∂r+

∂r−
= O(1)e−α|ξ|,

∂R

∂σ
− ∂r−

∂σ
= O(1)e−α|ξ|.

We remark here that these estimates can be proved by estimating the linear systems of

ordinary differential equations obtained by differentiating the equation (2.25) .
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2.2 Constructions of the outer and inner solutions

We need to construct the outer and inner solutions order by order simultaneously, making

use of the matching conditions. The leading order of outer solutions, h0, is exactly the single

shock solution given in Theorem 1. For any fixed t (viewed as a parameter), the leading

order of inner solutions, H0(ξ, t) determined by (2.9) is just the viscous shock profile with

end states h− = (u−(t), v−(t)) = h0(s(t)−0, t), and h+ = (u+(t), v+(t)) = h0(s(t)+0, t), and

the shock speed σ = ṡ(t). So we take

H0(ξ, t) = (R, θ)(ξ; h−(t), ṡ(t)),

Since the shift can be absorbed by δ0(t, ε), we can take it to be zero. The next order terms

h1, H1 and δ̇0(t) are determined together. Integrating the two equations of (2.9) over [0, ξ),

we have

H1ξξ + ṡH1ξ −
(
f ′(H0)H1

)
ξ

= δ̇0(t)H0ξ +
∂H0

∂h−
ḣ− +

∂H0

∂ṡ
s̈. (2.18)

Set H1 = F1 + D1, where D1 is smooth and

D1 =

{
ξ∂xh0(s(t) − 0, t), ξ < −1,

ξ∂xh0(s(t) + 0, t), ξ > 1.
(2.19)

Now using the identity

ḣ−,+ =
d

dt
h0(s(t) ± 0, t) =

(
ṡI − f ′(h0(s(t) ± 0, t

))
h0x(s(t) ± 0, t), (2.20)

we compute that

F1ξξ + ṡF1ξ −
(
f ′(H0)F1

)
ξ

= δ̇0(t)H0ξ + g(ξ, t), (2.21)

where |g(ξ, t)| ≤ ce−α|ξ| for large |ξ|. Then defining G(ξ, t) =
∫ ξ
0 g(η, t)dη, we get

F1ξ =
(
f ′(H0) − ṡI

)
F1 + δ̇0H0 + G + c(t), (2.22)

for some constants of integration c(t) in R2, to be defined later. Now we are to determine F1, δ0

and c(t). First we express F1 in terms of the basis r1(H0), r2(H0) of the right eigenvectors

of f ′(H0), where r1 = (− sin θ, cos θ), r2 = (cos θ, sin θ), θ = θ(H0). We also note that

θ(h0(s(t)± 0, t) = θ(H0(ξ, t)) , hence we can express h1(s(t)± o, t), ∂xh0(s(t)± 0, t) at r1, r2

too. Now we write

F1 = α1(ξ, t)r1 + α2(ξ, t)r2,

h1(s(t) ± 0, t) = β1±(t)r1 + β2±(t)r2,

∂xh0(s(t) ± 0, t) = γ1±(t)r1 + γ2±(t)r2.

(2.23)
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Taking the matching condition into account, we have

αj(ξ, t) = βj±(t) − δ0γj± + o(1), as ξ → ±∞, for j = 1, 2. (2.24)

So it can be easily seen that

α1ξ + (ṡ − λ1(H0))α1 = r1G + r1c(t),
α2ξ + (ṡ − λ2(H0))α2 = δ̇0r(H0) + r2G + r2c(t),

(2.25)

And we can solve the above equations and get unique solutions, as stated in the following

lemma.

Lemma 1. There exists a smooth solution, (α1, α2)(ξ, t), to equations (2.1), with the following

property:

αj(ξ, t) =

{ (
ṡ − λj(h−)

)−1rj[c(t) + G− + ηjδ̇r−] + O(1)e−α0|ξ|, , ξ → −∞,(
ṡ − λ2(h+)

)−1r2[c(t) + G+ + ηjδ̇r+] + O(1)e−α0|ξ| ξ → +∞.
(2.26)

for j = 1, 2, η1 = 0, η2 = 1, G± = limξ→±∞ G(ξ, t), and α0 is a positive constant.

We omit the proof.

Taking (2.24) and (2.2) together, we have

r1[G− + c(t)] =
(
β1− − δ0(t)γ1−

)
(ṡ − λ1−),

δ̇0r− + r2[G− + c(t)] =
(
β2− − δ0(t)γ2−

)
(ṡ − λ2−),

r1[G+ + c(t)] =
(
β1+ − δ0(t)γ1+

)
(ṡ − λ1+),

δ̇0r+ + r2[G+ + c(t)] =
(
β2+ − δ0(t)γ2+

)
(ṡ − λ2+).

(2.27)

So we can solve δ0(t), r1c(t), r2c(t), β1− in terms of β1+, β2+, β2− from the above equations.

And in view of the linear initial-boundary problem (2.3) for h1(x, t), , and after taking up

suitable initial values of h1(x, t) around x = s(0), we can solve , by the theory of first order

linear hyperbolic systems, h1(x, t) uniquely and furthermore have the following regularity

assertion (see [8],[9]). Here we make use of the condition (1.7).

Proposition 1. h1(x, t), H1(ξ, t) and δ0 can be determined such that

• h1(x, t) and its derivatives are uniformly continuous up to x = s(t) and

∑
|α|≤5

∫ T

0

∫
x �=s(t)

|∂α
x h1(x, t)|2dxdt < +∞. (2.28)

• H1(ξ, t) is smooth and for some c0 > 0,

H1(ξ, t) = h1(s(t) ± 0, t) + (ξ − δ0)∂xh0(s(t) ± 0, t) + O(1) exp{−c0|ξ|},
as ξ → ±∞.

(2.29)

It is clear that the above procedure can be carried out similarly to any order. In particular,

we can construct h2, H2, h3, H3, δ1 and δ2 and similar estimates hold for them.
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2.3 Construction of the Approximate solution

Now we can construct a smooth approximate solution to (1.1) by patching the truncated

outer and inner solutions in the previous discussion as in [1].

Set

I(x, t) = (H0 + εH1 + ε2H2)(
x − s(t)

ε
+ δ0 + εδ1 + ε2δ2, t), (2.30)

and

O(x, t) = (h0 + εh1 + ε2h2)(x, t), x �= s(t). (2.31)

Let m(y) ∈ C∞
0 (R1) such that 0 ≤ m(y) ≤ 1 and

m(y) =

{
1, |y| ≤ 1
0, |y| ≥ 2.

(2.32)

Choose γ ∈ (2
3 , 1) as a constant. Then we define the approximate solutions as

Aε(x, t) = m
(x − s(t)

εγ

)
I(x, t) + (1 − m

(x − s(t)
εγ

)
)O(x, t) + d(x, t), (2.33)

where d(x, t) = (d1, d2) is a higher order correction to be determined later. Using the structure

of various orders of outer and inner solutions, and the estimates in Proposition 1 , we can

choose a suitable d(x, t) such that

Aε
t + f(Aε)x − εAε

xx =
(
f(Aε) − f(Aε) − d)

)
x

(2.34)

and d(x, 0) = 0. In the following we give the estimates on d(x, t) but omit the proof which is

exactly as that in [1].

Lemma 2. We can find a smooth d(x, t) satisfies (2.34), and the following estimates

||∂l
xd(·, t)||L∞ ≤ O(1)ε(3−l)γ−1/2 for l = 0, 1, 2, 3.

||d(·, t)||L2(R1) ≤ O(1)ε3γ−1/2 for α ∈ (0, 1/2),
||∂l

xd(·, t)||L2(R1) ≤ O(1)ε(3−l+1/2)γ−1/2 for l = 1, 2.

(2.35)

Lemma 2 implies the following estimates on Aε(x, t).

Lemma 3. Let Aε(x, t) be defined as in (2.33). Then

Aε(x, t) =

{
h0(x, t) + O(1)ε if |x − s(t)| ≥ εγ ,

H0(ξ, t) + O(1)εγ if |x − s(t)| ≤ 2εγ .
(2.36)

For ε small, there exists positive constant r∗∗ such that

r(Aε) > r∗∗. (2.37)
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And taking the coordinate transformation y =
(
x − s(t)

)
/ε, τ = t/ε, we have

∂Aε

∂y
= m∂ξH0 + εO(1),

∂Aε

∂τ
= εO(1). (2.38)

To be exact, we set

R = R(Aε), θ = θ(Aε), (2.39)

then

∂R

∂y
= m∂ξR(H0) + εO(1),

∂θ

∂y
= ε2O(1),

∂(R, θ)
∂τ

= εO(1). (2.40)

Proof: By construction, we have

Aε(x, t) =

⎧⎪⎨
⎪⎩

O + d for |x − s(t)| ≥ 2εγ ,

O + m(I − O) + d for εγ < |x − s(t)| < 2εγ ,

I + d for |x − s(t)| ≤ εγ .

We also have O(x, t) = h0 + O(1)ε on |x − s(t)| > ε, I(x, t) = H0 + O(1)εγ on |x − s(t)| ≤ εγ

which can be obtained by using (2.29) , and for l = 0, 1, 2, ∂l
x(I − O)(x, t) = O(1)ε(3−l)γ on

{(x, t) : εγ ≤ |x − s(t)| ≤ 2εγ , t ∈ [0, T ]} which is verified by using the matching conditions

with O(1) = O(1)e−α0|ξ|. These, together with (2.35)1, yield (2.36). And (2.37) is the direct

consequence of (2.36). Similarly, one can show (2.38). Moreover, again by construction we

have ∂yθ(H0) = 0 which gives that ∂yθ(Aε) = O(1)ε2. This completes the proof.

This finishes the construction of the formal approximation solution to (1.2).

3 Stability Analysis

Having the approximate solution Aε(x, t) at hand, we now show that there exists an exact

solution hε(x, t) to (1.2) that is close to Aε(x, t). Here we let

hε(x, 0) = Aε(x, 0), for each ε. (3.1)

Set

w̃(x, t) = hε(x, t) − Aε(x, t), (3.2)

w̃ = (ũ, ṽ), then w̃(x, t) satisfies the error equation

w̃t +
(
f ′(Aε)w̃

)
x

+ Q(Aε, w̃)x = εw̃xx +
(
f(Aε − d) − f(Aε)

)
x
.

w̃(x, 0) = 0,
(3.3)
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where Q(Aε, w̃) = f(hε)− f(Aε)− f ′(Aε)w̃ satisfying |Q| ≤ O(1)|w̃|2 for small w̃. To exploit

the fact that a shock satisfying the entropy condition is compressive, we need to integrate

system (3.3) once. Thus we use the coordinate transformation

y =
x − s(t)

ε
, τ =

t

ε
.

and set

w̃(x, t) = εwx = wy, for (x, t) ∈ R × [0, T ]. (3.4)

So w(y, τ) satisfies

wτ − ṡwy + f ′(Aε)wy = wyy + q(Aε, d) − Q(Aε, wy),
w(y, 0) = 0,

(3.5)

where q(Aε, d) = f(Aε − d) − f(Aε) and |q| ≤ O(1)|f ′(Aε)d| ≤ O(1)|d|. Our purpose is to

show that for ε suitably small, (3.5) has a unique ”small” smooth solution up to time T . This

will follow from the following three lemmas.

Lemma 4. (Local estimate) For each ε, the initial value problem (3.5) has a unique solution

w ∈ C1
(
[0, τ0] : H2(R1)

)
for some τ0 ≤ 1/N , with N sufficiently large and independent of ε,

and

e−Nτ ||w||2H1(R1) +
∫ τ0

0
e−Nτ ||wy||2H1(R1)ds ≤ cε6γ+α−2, (3.6)

where γ and α are defined in Section 2.3.

Lemma 5. (A priori estimate) Suppose that the Cauchy problem (3.5) has a solution w ∈
C1

(
[0, τ1] : H2(R1)

)
for some τ ∈ (0, T ], and

sup
[0,τ1]

||w(·, τ)||L∞ ≤ cε (3.7)

for some constant c independent of ε and τ . There exist positive constants ε1, μ1 and C,

which are independent of ε and τ1, such that if

ε ∈ (0, ε1), sup
[0,τ1]

||w(·, τ)||H2 ≤ μ1, (3.8)

then

sup
[0,τ1]

||w(·, τ)||2H2 +
∫ τ1

0
||wy(·, τ)||2H2dτ ≤ Cε6γ+α−4. (3.9)

Remark : The discovery of Lemma 4 is very important in the energy proof. Having

the lemma, we need not impose restriction on the shock strength. In what follows, we use

H l(l ≥ 1) to denote the usual Sobolev’s space with the norm || · ||l and || · || = || · ||0 denotes

the usual L2-norm. We also use c to denote any positive constant which is independent of

ε, y and τ and use O(1) to denote any positive bounded function.
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3.1 Proof of Lemma 3.1

Since (3.5) is an initial-value problem for a uniformly parabolic system, the existence theory

( local in time) and the uniqueness theory in the space C1
(
[0, τ0]; H2(R1)

)
is standard. Thus

we can declare that the smooth solution w satisfies

sup
[0,τ0]

||w(·, τ)||H2 ≤ μ2, (3.10)

where μ2 is small.

Step 1: Multiplying both sides of (3.5) by e−Nτw and integrating over R1, we obtain

after integration by parts that

1
2

d

dτ
e−Nτ ||w(·, τ)||2 + e−Nτ ||wy(·, τ)||2 + Ne−Nτ ||w(·, τ)||2

= e−Nτ

∫
R1

{
− f ′(Aε)wwy + q(Aε, d)w − Q(Aε, wy)w

}
dy. (3.11)

Each term on the right hand side above will be estimated separately. First,∫
R1

f ′(Aε)wwydy ≤ 1
3
||wy(·, τ)||2 + c1||w(·, τ)||2. (3.12)

Next, ∫
R1

q(Aε)wdy ≤ c||w(·, τ)||2 + cε−1||d(·, ετ)||2 ≤ c2||w(·, τ)||2 + cε6γ+α−2, (3.13)

where we make use of Lemma 2. The third term,∫
R1

Q(Aε, wy)wdy ≤ c

∫
R1

|ww2
y|dy ≤ c3||w||L∞ ||wy(·, τ)||2. (3.14)

Now choose N sufficiently large to insure that

c1 + c2 < N, and
1
3

+ c3μ2 <
1
2
. (3.15)

Collecting all the above estimates and integrating the resulting inequality with respect to τ ,

we have

e−Nτ ||w(·, τ)||2 +
∫ τ

0
e−Ns||wy(·, s)||2ds ≤ c

1
N

ε6γ+α−2. (3.16)

Step 2: Now we are to get higher order estimates. Applying ∂l
y to (3.5) for l = 1, 2,

multiplying both sides of the resulting equation by e−Nτ∂l
yw and integrating over R1, we

compute that

1
2

d

dτ
e−Nτ ||∂l

yw(·, τ)||2 + e−Nτ ||∂l+1
y w(·, τ)||2 + Ne−Nτ ||∂l

yw(·, τ)||2

= e−Nτ

∫
∂l+1

y w · ∂l−1
y

{ − f ′(Aε)wy + q(Aε, d)w − Q(Aε, wy)
}
dy (3.17)
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In the case l = 1, we have by the Cauchy inequality that the right hand side (3.17) can be

estimated as∫
∂2

yw(·, τ)[−f ′(Aε)wy + q(Aε, d) − Q(Aε, wy)]dy

≤ 1
2
||∂2

yw(·, τ)||2 + c

∫ (|d|2 + |wy|2 + |wy|4
)
dy

≤ 1
2
||∂2

yw(·, τ)||2 + c(1 + ||wy||2L∞)||wy(·, τ)||2 + cε6γ+α−2, (3.18)

where ||wy||L∞ is bounded because of (3.10) we use Lemma 2 . It follows that

d

dτ
e−Nτ ||wy(·, τ)||2 + e−Nτ ||∂2

yw(·, τ)||2 + Ne−Nτ ||wy(·, τ)||2

≤ c
(
1 + μ2

2)e
−Nτ ||wy(·, τ)||2 + cε6γ+α−2e−Nτ . (3.19)

Integrating this inequality with respect to τ , we obtain, by virtue of (3.16), that

e−Nτ ||wy(·, τ)||2 +
∫ τ

0
e−Ns||∂2

yw(·, s)||2ds ≤ c
1
N

ε6γ+α−2. (3.20)

Similarly, for l = 2, we can estimate the right hand side (3.16) as follows∫
∂3

yw · {( − f ′(Aε)wy

)
y

+ q(Aε, d)y − Q(Aε, wy)y}dy

≤ 1
2
||∂3

y(·, τ)||2 + c

∫ (|wy|2 + |∂2
yw|2 + |wy|4 + |wy|2|∂2

yw|2 + |d|2 + |dy|2
)
dy

≤ 1
2
||∂3

yw||2 + c(1 + ||wy||2L∞)(||wy||2 + ||∂2
yw||2) + c

∫
(|d|2 + |dy|2)dy.

Using Lemma 2 again, one gets

d

dτ
e−Nτ ||∂2

yw(·, τ)||2 + e−Nτ ||∂3
yw(·, τ)||2

≤ ce−Nτ{(1 + ||wy(·, τ)||2 + ||∂2
yw(·, τ)||2) + c(ε6γ+α−2 + ε5γ)},

provided ||wy||2 is bounded. Then it follows from (3.16) and (3.20) that

e−Nτ ||∂2
yw(·, τ)||2 +

∫ τ

0
e−Ns||∂3

yw(·, s)||2ds ≤ c
1
N

ε6γ+α−2. (3.21)

Combining (3.16), (3.20) and (3.21), we complete the proof of Lemma 4.

Remark: The above proof is valid only when τ is very small.

3.2 Proof of Lemma 5

First we diagonalize the system (3.5). We take L = (l1, l2)t(Aε), where l1(Aε) = (− sin θ, cos θ),

l2(Aε) = (cos θ, sin θ) , θ = θ(Aε), and define

Lw :=

(
w1

w2

)
, Λ =

(
λ1(Aε)

λ2(Aε)

)
. (3.22)
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Then we have

(Lw)τ − ṡ(Lw)y + Λ(Lw)y − (Lw)yy

= (Lτ + ΛLy − Lyy)w − 2Lywy − ṡLyw + Lq(Aε, d) + LQ(Aε, wy). (3.23)

Notice that

Lτ = Lθθτ ,

Ly = Lθθy,
Lθ =

(
−l2
l1

)
, Lθθ = −L, Lyy = −Lθ2

y + Lθθyy, (3.24)

Lywy = Lθwyθy, and Lθwy = (Lθw)y − Lθθwθy, (3.25)

so (3.21) can be rewritten as(
w1τ + (λ1 − ṡ)w1y − w1yy

w2τ + (λ2 − ṡ)w2y − w2yy

)

=

(
−w2θτ + (ṡ − λ1)w2θy + 2w1θ

2
y + w2θyy + 2w2yθy

w1θτ − (ṡ − λ2)w1θy + 2w2θ
2
y − w1θyy − 2w1yθy

)
+ L · (q(Aε, d) + Q(Aε, wy)

)
.

(3.26)

Step 1: (Basic estimate) Taking the inner product of both sides above with (w1, w2)t and

integrating over R1, we get after integration by parts that

1
2

d

dτ
||(w1, w2)||2 + ||(w1, w2)y||2 − 1

2

∫ (
∂yλ1w

2
1 + ∂yλ2w

2
2

)
dy

=
∫ {

(λ2 − λ1)w1w2θy + 2(w2
1 + w2

2)θ
2
y + 2(w1w2y − w2w1y)θy + wLq + wLQ

}
dy. (3.27)

Since ∂r(λ1, λ2) > 0 by our assumption on φ(r), and ∂yR(H0) < 0 by our construction, one

gets

∂y(λ1, λ2)(Aε) = ∂r(λ1, λ2)
(
m(ε1−γy)∂yR(H0) + O(1)ε

)
. (3.28)

Notice that ∂yθ = O(1)ε ( see (2.2)), so we have∫ {
(λ2 − λ1)w1w2θy + 2(w2

1 + w2
2)θ

2
y + 2(w1w2y − w2w1y)θy

}
dy

≤ cε||(w1, w2)||2 + cε||(w1, w2)y||2.

Now ∫
wLq(Aε, d)dy ≤ ε||(w1, w2)||2 + cε−1

∫
d2(εy + δ0 + εδ1, ετ)dy

≤ ε||(w1, w2)||2 + cε−2||d(·, ετ)||2

≤ ε||(w1, w2)(·, τ)||2 + cε6γ+α−3.
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Finally, ∫
wLQ(Aε, wy)dy ≤ c

∫
|w|w2

y|dy ≤ cε||wy(·, τ)||2

which is by the assumption that ||w||L∞ ≤ cε. Collecting all the estimates we have obtained

thus far, we get

d

dτ
||w(·, τ)||2 + ||wy(·, τ)||2

≤ −c

∫
m|∂yR(H0)|w2dy + cε||w(·, τ)||2 + cε||wy(·, τ)||2 + cε6γ+α−3.

Choosing ε suitably small, we have

d

dτ
||w(·, τ)||2 + ||wy(·, τ)||2 ≤ −c

∫
m|∂yR(H0)|w2dy + cε||w(·, τ)||2 + cε6γ+α−3. (3.29)

Applying a classical Gronwall-type inequality to (3.29) yields

||w(·, τ)||2 +
∫ τ

0
||wy(·, s)||2ds ≤ cε6γ+α−4 for all τ ∈ [0, τ0]. (3.30)

Here we used the fact that

ε

∫ τ

0
||w(·, τ)||2dτ ≤ cε6γ+α−4 for all τ ≤ τ0.

Therefore, we have derived the desired L2 energy estimate on w.

Step 2: To complete the proof of Lemma 5 , we need the higher order L2 estimates on w.

But the procedures are exactly the same as that Step2 in the proof of Lemma 4. So we omit

the proof here. In this section, we prove that

||∂yw(·, τ)||21 +
∫ τ

0
||∂yw(·, τ)||22dτ ≤ cε6γ+α−4 (3.31)

for τ ∈ [0, τ ] and c is independent of τ0 and ε.

3.3 Proof of Theorem 1

To combine Lemma 4 and Lemma 5, we choose γ, α such that

6γ + α − 4 ≥ 2,

then from Lemma 4, one has Sobolev’s inequality that

||w||L∞ ≤ ||w||1/2 · ||wy||1/2

≤ ce−Nτ 1
N

ε(6γ+α−2)/2 ≤ cε2 ≤ cε for all τ ∈ [0, 1/N ].
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So (3.7) is satisfied. Furthermore, when Lemma 5 is valid, again by Sobolev’s inequality, one

gets

||w||L∞ ≤ ||w||1/2 · ||wy||1/2 ≤ cε(6γ+α−4)/2 ≤ cε,

therefore, Lemma 5 can be carried out till T/ε. We conclude that

Proposition 2. There exist positive constants ε0 and c0, independent of ε, such that if

0 < ε ≤ ε0, then the Cauchy problem (3.5) has a unique smooth solution w ∈ C1
(
[0, T/ε]

)
:

H2(R1)
)
. And the following inequality holds:

sup
[0,T/ε]

||w(·, τ)||22 +
∫ T/ε

0
||wy(·, τ)||22dτ ≤ c0ε

6γ+α−4. (3.32)

Consequently, we have from (3.2,(3.4)and(3.32) that

sup
[0,T ]

||(hε − Aε)(·, t)||2 = ε sup
[0,T/ε]

||wy(·, τ)||2 ≤ c0ε
6γ+α−3 ≤ c0ε

3. (3.33)

Next , using Sobolev’s inequality, we have

||(hε − Sε)(·, t)||L∞ = ||wy(·, τ)||L∞

≤ O(1)||wy(·, τ)|| 12 ||wyy(·, τ)|| 12
≤ Cε(6γ+α−4)/2 ≤ Cε,

which together with (2.36) gives (1.12).

Finally , we are to get the L1 estimate. For this aim, we need several lemmas.

Lemma 6. For the given single-shock solution h(x, t) = (u, v)(x, t) to (1.1), we have

∫ T
0

∫−R1 + |(u, v)xx(x, t)|dxdt ≤ c, (3.34)

for some constant c.

Proof: For simplicity of presentation, we take the polar coordinates (r, θ). Then the

behavior of h(x, t) can be described by

rt +
(
rφ(r)

)
x

= 0,

θt + φ(r)θx = 0.
(3.35)

Denote by (r0, θ0)(x) the initial value. By definition, there is no discontinuity on θ, no

spontaneous shock on r, and only one initial shock on r for each t , 0 ≤ t ≤ T . Therefore,

for each (x, t) with x �= s(t), we can trace two characteristic lines backward to t = 0:

x(t) = ξ1 + λ2(r0(ξ1))t, x(t) = ξ2 +
∫ t

0
φ
(
r(x(s))

)
ds, (3.36)
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where λ2 =
(
rφ(r)

)
r

and

r0(ξ1) = r(x), θ0(ξ2) = θ(x). (3.37)

Differentiating the two equations in (3.36) with respect to ξ1 and ξ2 respectively , one has

∂x
∂ξ1

= 1 + d
dξ1

λ2(r0(ξ1))t, ∂x
∂ξ2

= 1 +
∫ t
0

∂
∂ξ2

φ
(
r(x(s))

)
ds. (3.38)

Since there is no other discontinuity,

0 < c1 < 1 +
d

dξ1
λ2(r0(ξ1))t < c2, 0 < c3 < 1 +

∫ t

0

∂

∂ξ2
φ
(
r(x(s))

)
ds < c4. (3.39)

Differentiating once again the two equations in (3.38) with respect to ξ1 and ξ2 respectively,

we have

∂2x
∂ξ2

1
= d2

dξ2
1
λ2(r0(ξ1))t, ∂2x

∂ξ2
2

=
∫ t
0

{∂2φ
∂x2

(
∂x
∂ξ2

)2 + ∂φ
∂x

∂x2

∂ξ2
2

}
ds (3.40)

By the definition of single shock solution, φx andφxx are bounded. This together with (3.39)

yields that

|∂2x
∂ξ2

1
| ≤ c, |∂2x

∂ξ2
2
| ≤ c, (3.41)

for some constant c.

Differentiating both equations of (3.37) once with respect to ξ1, ξ2 respectively, we have

r0ξ1 = rx
∂x

∂ξ1
, θ0ξ2 = θx

∂x

∂ξ2
. (3.42)

Continuing, differentiate the above two equations once again with respect to ξ1, ξ2, respec-

tively, to give

rxx
∂x

∂ξ1
= r0ξ1ξ1

( ∂x

∂ξ1

)−1 − r0ξ1

∂2x

∂ξ2
1

( ∂x

∂ξ1

)−2
, (3.43)

θxx
∂x

∂ξ2
= θ0ξ2ξ2

( ∂x

∂ξ2

)−1 − θ0ξ2

∂2x

∂ξ2
2

( ∂x

∂ξ2

)−2
. (3.44)

Thus ∫
R1 |rxx(x, t)|dx =

∫
R1 |rxx

∂x
∂ξ1

|dξ1

≤ ∫
R1 |r0ξ1ξ1 |

(
∂x
∂ξ1

)−1
dξ1 +

∫
R1 |r0ξ1

∂2x
∂ξ2

1
|( ∂x

∂ξ1

)−2
dξ1

≤ c,

(3.45)

∫
R1 |θxx(x, t)|dx =

∫
R1 |θxx

∂x
∂ξ2

|dξ2

≤ ∫
R1 |θ0ξ2ξ2 |

(
∂x
∂ξ2

)−1
dξ2 +

∫
R1 |θ0ξ2

∂2x
∂ξ2

2
|( ∂x

∂ξ2

)−2
dξ2

≤ c,

(3.46)
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where we have made use of the assumption (1.9). Hence

∫ T
0

∫
R1 |(rxx, θxx)(x, t)|dxdt ≤ c, (3.47)

which is (3.34).

In the polar coordinates, equations (1.2) can be written as

rt +
(
rφ(r)

)
x

= εrxx − εrθ2
x, (3.48)

θt + φ(r)θx = εθxx − 2ε
1
r
rxθx. (3.49)

To derive the L1 estimate, we construct another approximate solution ha(x, t) as

ha(x, t) = h(x, t) + H0(y; h−, t) − J(y; h−, h+) (3.50)

where y = x−s(t)
ε and J is the so-called Heaviside function defined by

J(y; h−0, h+) =

{
h+ if y ≥ 0,

h− if y < 0.
(3.51)

. Then ha(x, t) is continuous . Define

r̃(x, t) = rε(x, t) − ra(x, t) = r(hε) − r(ha), (3.52)

θ̃(x, t) = θε(x, t) − θa(x, t) = θ(hε) − θ(ha), (3.53)

then for x �= s(t), the error equations are

r̃t +
(
rεφ(rε) − rφ(r)

)
x

= εr̃xx + εrxx − εrεθε2
x , (3.54)

θ̃t + φ(rε)θ̃x +
(
φ(rε) − φ(r)

)
θx = εθ̃xx + εθxx − 2ε

1
rε

rε
xθε

x. (3.55)

Lemma 7.

sup
[0,T ]

||(ha − Aε(·, t)||2 ≤ cε, (3.56)

for some constant c.

Proof:

ha(x, t) − Aε(x, t) = (H0 − J) + m(H0 − h) − ε(mH1 + (1 − m)h1) (3.57)

+ ε2(mH2 + (1 − m)h2) − d (3.58)

Note that in our case, the viscous travelling wave of the second family is actually like that in

the scalar conservation laws with convex flux function. So we can apply the result obtained

in [10], that

|H0(y; h−, h+) − J(y; h−, h+)| ≤ (r− − r+)e−α(r−−r+)|y|/2. (3.59)
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where α = min{(rφ(r))rr} > 0. Thus∫
|H0(y; h−, t) − J(y; h−, h+)|2dx ≤ cε.

On the other hand, since h(x, t) is left and right continuous at x = s(t) for each t ≤ T , ∃ ε3

such that if ε ≤ ε3, then

|h(x, t) − h−|, |h(x, t) − h+| ≤ ε1−γ/2, for all |x − s(t)| ≤ 2εγ . (3.60)

Consequently, we have∫
|m(H0(y, t) − h(x, t))|2dx (3.61)

=
∫

m|(H0(y, t) − J(y; h−, h+)
)

+
(
J(y; h−, h+) − h(x, t)

)|2dx ≤ cε. (3.62)

Then by the estimates on the functions H1, H2, h1 h2, d and (3.57), the inequality (3.56)

follows.

Lemma 8.

sup
[0,T ]

∫
|hε(x, t) − ha(x, t)|dx ≤ cε. (3.63)

Proof: Multiplying both sides of (3.54) with sign(r̃) and integrating it over R1, we obtain

after integrating by parts that

d

dt

∫
|r̃|dx = ε

(
aj r̃x(pj+1 − 0, t) − aj r̃x(pj + 0, t)

)
(3.64)

+ ε

∫
rεθε2

x dx + ε

∫
|rxx|dx, (3.65)

where aj is the sign of r̃x in (pj , pj+1). Since r̃(pj , t) = r̃(pj+1, t) = 0 and aj r̃ ≥ 0 for

x ∈ (pj , pj+1), we have aj r̃x(pj + 0, t) ≥ 0 and aj r̃x(pj+1 − 0, t) ≤ 0. By (2.37) , (3.32) and

choosing ε small enough, rε > r∗ > 0 for some constant r∗. Then
∫ T
0

∫
θ2
xdxdt ≤ c. Using

Lemma 6, we integrate (3.64) over [0, T ] to get

sup
[0,T ]

∫
|r̃(x, t)|dx ≤ cε. (3.66)

Continuing, we multiply both sides of (3.55) with sign(θ̃) and integrate the resultant equation

over R1 to get , after integrating by parts , that

d

dt

∫
|θ̃(x, t)|dx (3.67)

≤
∫

φ(rε)x|θ̃|dx + c

∫
|r̃| · |θx|dx + ε

∫
|θxx|dx + εc

∫
(rε2

x + θε2
x )dx. (3.68)
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Now the first term on the right of (3.67) is estimated as

∫
φ(rε)x|θ̃|dx

≤ ∫
φ(rε) − φ(R)

)
x
|θε − θ(Aε) + θ(Aε) − θ(ha)|dx +

∫
φ(R)x|θ̃|dx

≤ ∫ (
φ(rε) − φ(R)

)
x
|θ(Aε) − θ(ha)|dx +

∫
φ′(R)

(
1
ε mR(H0)y + c

)|θ̃|dx + c||w̃(·, t)||21
≤ c

∫ |θ̃(x, t)|dx + c||w̃(·, t)||21 + c||Aε − ha||2

where R = r(Aε), w̃ = hε − Aε. Note that θ(ha)x is bounded. By (3.66),t he second term on

the right is estimated as ∫
(φ(rε) − φ(ra))θxdx ≤ cε.

Collecting all the above estimates and using Lemma 6, one has

d

dt

∫
|θ̃(x, t)|dx ≤ c

∫
|θ̃(x, t)|dx + c

(||w̃(·, t)||21) + cε (3.69)

Applying Gronwall-type inequality, one obtains

sup
[0,T ]

∫
|θ̃(x, t)|dx ≤ cε. (3.70)

Finally, by (3.59), one easily has that∫
|h(x, t) − ha(x, t)|dx ≤ cε. (3.71)

This together with Lemmas 7 and 8, leads to (1.13). This completes the proof.
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