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1 Introduction

The scaled one-dimensional isothermal drift-diffusion model for semiconductors reads

nλ
t = (nλ

x − nλΦλ
x)x, 0 < x < 1, t > 0, (1)

pλ
t = (pλ

x + pλΦλ
x)x, 0 < x < 1, t > 0, (2)

λ2Φλ
xx = nλ − pλ − D, 0 < x < 1, t > 0, (3)

nλ
x − nλΦλ

x = pλ
x + pλΦλ

x = Φλ
x = 0, x = 0, 1, t > 0, (4)

nλ(t = 0) = nλ
0 , p

λ(t = 0) = pλ
0 , 0 ≤ x ≤ 1. (5)

The variables nλ, pλ, Φλ are the electron density, the hole density and the electric
potential, respectively. The constant λ is the scaled Debye length of the semicon-
ductor device under consideration. D = D(x) is the given function of space and
models the doping profile(i.e., the preconcentration of electrons and holes). Because
of the occurrence of p-n-junctions in realistic semiconductor devices, the doping
profile D(x) typically changes its sign.

In this paper, we assume that D(x) is a smooth function.
Note that for the sake of simplicity we take insulating boundary conditions

modelled by outward electric field and current density components.
A necessary solvability condition for the Poisson equation (3) subject to the

Neumann boundary condition for the field in (4)3 is global space charge neutrality,

∫ 1

0

(nλ − pλ − D)dx = 0.

Since the total numbers of electrons and holes are conserved, it is sufficient to require
the corresponding condition for the initial data:

∫ 1

0

(nλ
0 − pλ

0 − D)dx = 0. (6)

Usually semiconductor physics are concerned with large scale structures with respect
to the Debye length λ (λ takes small values, typically λ2 ≈ 10−7). For such scales, the
semiconductor is almost electrically neutral, i.e. there is no space charge separation
or electric field. This is so called quasineutrality assumption of semiconductors or
plasma physics, which had been applied by W. Shockley [31] in the first theoretical
studies of semiconductor devices in 1949, but also in other contexts such as the
modelling of plasmas [32] and ionic membranes [29]. Under the assumption of space
charge neutrality, i.e. λ = 0, we formally arrive at the following quasineutral drift-
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diffusion model

nt = (nx + nE)x, (7)

pt = (px − pE)x, (8)

0 = n − p − D, (9)

E = −Φx.

This formal limit was obtained by Roosbroeck [28] in 1950. For further formal
asymptotic analysis, see [25, 27, 20].

Generally speaking, it should be expected at least formally that (nλ, pλ,−Φλ
x) →

(n, p, E) as λ → 0 in the interior of the interval [0, 1] while it cannot be a priorily
expected that all boundary and initial value conditions are maintained for the limit
problem because of the singular perturbation character of the problem (the Poisson
equation becomes an algebraic equation in the limit). However, by the conservation
form of the continuity equations the property of zero fluxes through the boundary
will prevail in the limit:

(nx + nE)(x = 0, 1) = 0, (px − pE)(x = 0, 1) = 0 (10)

while the boundary condition for the electric field Eλ does not.
Similarly, we can a priorily expect that quasineutral drift-diffusion models (7)-

(9) is supplemented by the following initial data:

n(t = 0) = n0, p(t = 0) = p0 (11)

satisfying locally initial time space charge neutrality

n0 − p0 − D = 0. (12)

The aim of this paper is to justify rigorously the above formal limit for O(1)−time
and sufficiently smooth solutions.

It is important to mention that the quasineutral limit is a well-known challenging
and physically very complex modelling problem for (bipolar) fluid dynamic models
and for kinetic models of semiconductors and plasmas. In both cases there exist only
partial results. In particular, for time-dependent transport models, the limit λ → 0
has been performed for the Vlasov-Poisson system by Brenier [2], Grenier [12, 13]
and Masmoudi [21], for the Schrödinger-Poisson system by Puel [26] and Jüngel and
Wang [16], for the drift-diffusion-Poisson system by Gasser et al [10, 11], Jüngel and
Peng [15] and Schmeiser and Wang [30] under much more restrictive assumptions
on the doping profile that used in this paper (no sign-changes of D are allowed),
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and for the Euler-Poisson system by Cordier and Grenier [5, 6], Cordier et al [4]
and Wang [35], respectively. However, as already mentioned, all these results are
restricted to the special cases of doping profiles, i.e., either assuming that D(x) is
constant zero, or assuming that D(x) does not change its sign. But, p-n junctions are
of great importance both in modern electronic applications and in understanding
semiconductor devices since the p-n junction theory serves as foundation of the
physics of semiconductor devices(see Sze[34]). For physically interesting doping
profiles with p-n junctions, i.e., for the case where the doping profile can change its
sign, there is no rigorous result available for time-dependent semiconductor models
both for fluid dynamic models and for kinetic models up to now. Therefore, it is
natural to study the quasineutral limit on the level of the drift-diffusion-Poisson
models first. For stationary drift-diffusion-Poisson models, rigorous convergence
results for p-n junction devices with contacts can be found in Markowich [19] and
recent extensions were done by Caffarelli et al [3] and Dolbeault et al [7].

In this paper we consider the quasineutral limit of the time-dependent drift-
diffusion model (1)-(6) for semiconductors with p-n junctions in the general case of
physically relevant sign-changing doping profiles.

Our main result can be summarized as follows: The convergence of the drift
diffusion models (1)-(5) to (7)-(11) is rigorously proven for general sign-changing
and smooth doping profiles in one-space dimension case on time intervals, on which
a smooth nonvacuum solution of the reduced problem (7)-(11) exists(The precise
statement will be given in section 2).

We mention that one of the main difficulties in dealing with quasineutral limits is
the oscillatory behavior of the electric field. Usually it is difficult to obtain uniform
estimates on the electric field with respect to the Debye length λ due to a possible
vacuum set of the density, in particular, the occurrence of the depletion region.

To overcome this difficulty, our main strategy is to construct a better uniformly
valid approximation solution to (1)-(5) by using the matched asymptotic analysis
methods, and then to show the asymptotic structural stability of the resulting ap-
proximate solution by energy methods. This approach is strongly motivated by
the analysis of boundary layers in the fluid-dynamic limit of a nonlinear Boltz-
mann equation by Liu and Xin in [18] and viscous boundary layers by Xin in [36].
This ansatz deviates from the solutions to (7)-(11) slightly in a region away from the
parabolic boundaries, as changes more rapidly in the electronic field in the parabolic
boundaries (boundary layers and initial layers). Due to the special structure of the
quasineutral drift-diffusion model (7)-(11), and the more or less explicit forms of the
boundary layer functions and initial layer functions, the asymptotic ansatz can be
estimated rather easily. Thus, the quasineutral limit problem is reduced to show the
scaling structure stability of such as ansatz. To this end, one control the deviation of
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the solution to (1)-(5) from the ansatz by introducing the following two λ−weighted
Liapunov-type functionals

Γλ(t) =

∫ 1

0

(|zλ
R|2 + |zλ

R,x|2 + |zλ
R,t|2 + λ2(|Eλ

R|2 + |Eλ
R,x|2 + |Eλ

R,t|2) + |Eλ
R|2

)
dx

and

Gλ(t) =

∫ 1

0

(|zλ
R,x|2 + |zλ

R,xt|2 + |Eλ
R|2 + |Eλ

R,t|2 + λ2(|Eλ
R,x|2 + |Eλ

R,xt|2)
)
dx,

where zλ
R = nλ

R + pλ
R, Eλ

R = −Φλ
R,x, and (nλ

R, pλ
R, Φλ

R)T denotes the difference between
the solution to (1)-(5) from the ansatz, see section 2 for details. By a careful energy
method, we are able to prove the following entropy production integration inequality:

Γλ(t) +

∫ t

0

Gλ(s)ds

≤ MΓλ(t = 0) + M

∫ t

0

(Γλ(s) + (Γλ(s))ι)ds

+M

∫ t

0

Γλ(s)Gλ(s)ds + Mλq, t ≥ 0

for some ι > 1, q > 0 and M > 0, independent of λ, which implies the desired
convergence result of this paper.

Finally, we also mention that for drift-diffusion models there are many results on
existence, uniqueness, large time asymptotic behavior, stability of stationary states
and regularity of weak solutions etc., for example, see, [1, 8, 9, 14, 20, 22, 23, 24].

The plan of this paper is as follows. In Section 2 we reformulate our problem
and state the main results of this paper. In Section 3 we give the formal asymp-
totic expansion. In section 4 we discuss the existence and regularity of solutions
of quasineutral drift-diffusion models. In Section 5 we discuss the properties of
the initial layer and boundary layer functions. Sections 6 is devoted to the energy
estimates for the main theorems of this paper.

2 Reformulation of the Equations and Main Re-

sults

Introduce the new variables (zλ, Eλ) by the following transformation

Eλ = −Φλ
x, n

λ =
zλ + D − λ2Eλ

x

2
, pλ =

zλ − D + λ2Eλ
x

2
(zλ = nλ + pλ), (13)
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we can reduce the initial boundary value problem (1)-(6) to the following equivalent
system

zλ
t = (zλ

x + DEλ)x − λ2(EλEλ
x )x, 0 ≤ x ≤ 1, t > 0, (14)

λ2(Eλ
t − Eλ

xx) = −(Dx + zλEλ), 0 ≤ x ≤ 1, t > 0, (15)

zλ
x = Eλ = 0, x = 0, 1, t > 0, (16)

zλ(t = 0) = zλ
0 , Eλ(t = 0) = Eλ

0 , 0 ≤ x ≤ 1. (17)

Note that the equivalence between system (1)-(6)and system (14)-(17) is easy to be
verified for classical solutions. Thus, we have

Proposition 1 (Existence and Uniqueness) Assume that (zλ
0 , Eλ

0 ) ∈ (C2)2 sat-
isfies the compatibility conditions

zλ
0,x = Eλ

0 = 0, −λ2Eλ
0,xx = −Dx, at x = 0, 1. (18)

Then system (14)-(17) has a unique, global and classical solution (zλ, Eλ) ∈ C2,1([0, 1]×
[0,∞)).

Remark 1 The existence in Proposition 1 is obtained by the known existence re-
sults for (1)-(6), see, for example, [24, 9], and by the transformation (13) while
uniqueness in Proposition 1 can be proved easily for H1-solutions of (14)-(17).

Let us assume that the initial datum (zλ
0 , Eλ

0 ) is taken to guarantee that boundary-
initial consistency for the initial boundary value problem (14)-(17) for λ > 0 holds.
In particular, the compatibility condition (18) is assumed and the initial datum
(zλ

0 , Eλ
0 ) is assumed to have an expansion of the form

(zλ
0 , Eλ

0 )T =
(
z0
0(x) + λ

(
f(x)z1

+(
x

λ
) + g(x)z1

−(
1 − x

λ
)
)

+ λzλ
0R(x),

E0
0(x) + f(x)E0

+(
x

λ
) + g(x)E0

−(
1 − x

λ
) + λEλ

0R(x)
)T

. (19)

To justify the rigorous quasineutral assumptions, we make the following “ansatz”
for the approximate solution:

(zλ, Eλ)T
app =

(
Z0(x, t) +

2∑
i=0

λi
(
f(x)zi

+(ξ, t) + g(x)zi
−(η, t) + zi

I(x, s)
)
,

E0(x, t) + f(x)E0
+(ξ, t) + g(x)E0

−(η, t) + E0
I (x, s)

)T

, (20)
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where the inner function (Z0, E0)T is independent of λ; zi
+, E0

+, zi
−, E0

−, i = 0, 1, 2, are
the left boundary layer functions near x = 0 and the right boundary layer functions
near x = 1, respectively, and zi

I , i = 0, 1, 2, E0
I , are the initial time layer functions

near t = 0. The cut-off functions f(x) and g(x) are smooth C2 functions satisfying
f(0) = g(1) = 1 and f(1) = f ′(1) = f ′′(1) = f ′(0) = f ′′(0) = g(0) = g′(0) =
g′′(0) = g′(1) = g′′(1) = 0. Here we set ξ = x

λ
, η = 1−x

λ
and s = t

λ2 , corresponding
physically to the dielectric relaxation time scale, and (·, ·)T represents transposition.
We will discuss in detail the construction of the inner, boundary layer and initial
layer functions in the next section, however, we summarize the results here.

First, the inner function (Z0, E0)T is determined as a solution of the follow-
ing initial boundary value problems for the transformed quasineutral drift diffusion
equations:

Z0
t = (Z0

x + DE0)x, 0 < x < 1, t > 0, (21)

0 = −(Dx + Z0E0), 0 < x < 1, t > 0, (22)

(Z0
x + DE0)(x = 0, 1; t) = 0, t > 0, (23)

Z0(t = 0) = z0
0(x), 0 ≤ x ≤ 1. (24)

The existence of the above inner problem is guaranteed by the following propo-
sition:

Proposition 2 Assume that D ∈ C2(l+1)+1 and that z0
0 ∈ C2(l+1) for some in-

teger l ≥ 0. Also assume that z0
0 ≥ δ0 > 0 satisfy the compatibility condition

of order l for (21)-(24). Then there exist a T0 ∈ (0, +∞] and a unique classical
solution (Z0, E0), well-defined on [0, 1] × [0, T0], of (21)-(24) satisfying Z0, E0 ∈
C2(l+1),l+1([0, 1] × [0, T0]) and Z0(x, t) ≥ δ1 > 0 on [0, 1] × [0, T0] for some positive
constant δ1. In particular, if D ∈ C∞([0, 1]) and z0

0 ∈ C∞([0, 1]) satisfying the
compatibility condition of any order, then Z0, E0 ∈ C∞([0, 1] × [0, T0]).

Moreover, if δ0 is suitably large, then T0 = ∞.

Remark 2 By the transformation

n(x, t) =
Z0(x, t) + D(x)

2
, p(x, t) =

Z0(x, t) − D(x)

2
, E(x, t) = E0(x, t)

it is easy to verify that the system (7)-(12) and the system (21)-(24) are equiva-
lent. Thus, by Proposition 2, one obtains the existence of the classical non-vacuum
solution of the quasineutral drift diffusion system (7)-(12). The uniform positivity
of z0

0(x), together with (12), excludes singularities of the solution of the quasineu-
tral drift-diffusion system (7)-(12). Indeed, if z0

0(x) = D(x), then (21)-(24) has a
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stationary solution

Z0(x, t) = D(x), E0 = −(lnD(x))x.

In this case, the electric field E0 has a singularity in the vacuum set of the density
Z0. In the present paper, thus the case of singular solutions of the quasineutral drift
diffusion models is not allowed due to our assumption that z0

0 ≥ δ0 > 0. But the
singular solution case is interesting and will be investigated in the future.

Remark 3 Proposition 2 can not hold true in the unipolar case. In fact, in the
unipolar case, we must have z0

0(x) = D(x) or z0
0(x) = −D(x) due to the local

quasineutrality assumption (12) of the initial data, which excludes the uniform pos-
itivity of z0

0(x) if the doping profile D(x) has the zero roots. This comes back to the
above vacuum singular solution case.

Next, the boundary layer functions zi
B, E0

B, B = +/−, i = 0, 1, 2, are governed
by the following boundary value problems for the elliptic equations:

−E0
+,ξξ = J0

+, −E0
−,ηη = J0

−, 0 < ξ, η < ∞, t > 0, (25)

E0
+(ξ = 0, t) = −E0(x = 0, t), E0

−(η = 0, t) = −E0(x = 1, t), t > 0, (26)

E0
+(ξ → ∞, t) = E0

−(η → ∞, t) = 0, t > 0 (27)

and

z0
+ = z0

− = z2
+ = z2

+ = 0, 0 < ξ, η < ∞, t > 0, (28)

z1
+,ξ + D(0)E0

+ = 0, 0 < ξ, η < ∞, t > 0, (29)

−z1
−,η + D(1)E0

− = 0, 0 < ξ, η < ∞, t > 0, (30)

z0
+(ξ → ∞, t) = z0

−(η → ∞, t) = 0, t > 0, (31)

where

J0
+ = −Z0(0, t)E0

+, J0
− = −Z0(1, t)E0

−. (32)

Finally, the initial layer functions zi
I , i = 0, 1, 2, E0

I are given by the following equa-
tions (IVPs)

E0
I,s = J0

I , s > 0, 0 < x < 1, (33)

E0
I (s = 0) = E0

0(x) − E0(t = 0), 0 < x < 1, (34)

9



and

z0
I = z1

I = 0, 0 < x < 1, s > 0, (35)

z2
I,s = (DE0

I )x, 0 < x < 1, s > 0, (36)

z2
I (s = 0) = 0, 0 < x < 1, (37)

where

J0
I = −Z0(x, 0)E0

I . (38)

It follows from the special structures of the boundary layer problem (25)-(31) and
the initial layer problem (33)-(37) that the existence of solutions of these equations
is immediate. We will solve these equations explicitly in section 3 and section 5.

Define the error term (zλ
R, Eλ

R)T of the approximation solution (20) to (14)-(17)
with the initial datum

(zλ
0 , Eλ

0 )T

=
(
z0
0(x) + λ

(
f(x)z1

+(
x

λ
, t = 0) + g(x)z1

−(
1 − x

λ
, t = 0)

)
+ λzλ

0R(x),

E0
0(x) + f(x)E0

+(
x

λ
, t = 0) + g(x)E0

−(
1 − x

λ
, t = 0) + λEλ

0R(x)
)T

(39)

by

(zλ
R(x, t), Eλ

R(x, t))T = (zλ, Eλ)T − (zλ, Eλ)T
app. (40)

Theorem 3 Let l ≥ 1 and all assumptions of Proposition 2 hold. Assume also that
the initial data (zλ

0 , Eλ
0 ) satisfies (39) with E0

0 ∈ C2(l+1)([0, 1]),

E0
0(x)|x=0,1 = −Dx(x)

z0
0(x)

|x=0,1(= E0(x = 0, 1; t = 0)) (41)

and

‖zλ
0R(x)‖H1 ≤ M

√
λ, ‖zλ

0R,xx(x)‖L2
x
≤ Mλ− 1

2 , (42)

‖∂j
xE

λ
0R(x)‖L2

x
≤ Mλ

1
2
−j, j = 0, 1, 2. (43)

Then, for any T ∈ (0, T0), where T0 is given by Proposition 2, there exist positive
constants M and λ0, λ0 
 1, such that, for any λ ∈ (0, λ0],

sup
0≤t≤T

(‖(zλ
R, Eλ

R, zλ
R,x, z

λ
R,t)‖L2

x
+ λ‖(Eλ

R, Eλ
R,x, E

λ
R,t)‖L2

x

) ≤ M
√

λ1−δ (44)
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for any δ with 0 < δ < 1.
In particular, if (zλ

0 , Eλ
0 ) satisfies (39) with (zλ

0R, Eλ
0R) = (0, 0), then

sup
0≤t≤T

‖(zλ −Z0)(·, t)‖L∞
x
≤ M

√
λ1−δ.

Remark 4 The compatibility assumption (41) in Theorem 3 is important in our
analysis. It guarantees that one can take the ‘well-prepared’ initial datum (39)
instead of the general initial datum (19) and hence the “ansatz” (20) is appropriate
in this case while, generally speaking, its breakdown will introduce an extra layer
WIB(x, ξ, η, s) of mixing of fast time and fast space scales. The main strategy
involved here can be applied to this case too. This will be done in the future.

It should also be noted that the assumptions (42) and (43) are just technical ones.
In general, (zλ

0R, Eλ
0R)T in (19) can be written as

(zλ
0R, Eλ

0R)T = (z1
0(x), E1

0(x))T + (z̃λ
0R, Ẽλ

0R)T , (45)

where

(z̃λ
0R, Ẽλ

0R)T = λO(1), (46)

here O(1) is a smooth bounded function in x, x
λ
, 1−x

λ
, so that the general assumptions

on the initial data become

‖(zλ
0R − z1

0)(x)‖H1 ≤ M
√

λ, ‖(zλ
0R − z1

0)xx(x)‖L2
x
≤ Mλ− 1

2 , (47)

‖∂j
x(E

λ
0R − E1

0)(x)‖L2
x
≤ Mλ

1
2
−j, j = 0, 1, 2. (48)

In this case, it turn out that an additional correction term λ(z1
0 , E

1
0) and hence an

extra initial layer term (λ3z3
I , λE1

I ), caused by z1
0 , will appear in the solution. Thus,

we have more general results as follows.

Theorem 4 Under the assumptions of Theorem 3 with the assumptions (42) and
(43) replaced by (47) and (48) with (z1

0 , E
1
0) ∈ C3, we have that, for any T ∈ (0, T0),

where T0 is given by Proposition 2, there exist positive constants M and λ0, λ0 
 1,
such that, for any λ ∈ (0, λ0],

sup
0≤t≤T

(‖(z̃λ
R, Ẽλ

R, z̃λ
R,x, z̃

λ
R,t)‖L2

x
+ λ‖(Ẽλ

R, Ẽλ
R,x, Ẽ

λ
R,t)‖L2

x

) ≤ M
√

λ1−δ (49)

for any δ ∈ (0, 1), where

(z̃λ
R(x, t), Ẽλ

R(x, t))T = (zλ
R(x, t), Eλ

R(x, t))T − (λz1
0 + λ3z3

I , λ(E1
0 + E1

I ))
T

= (zλ, Eλ)T − (zλ, Eλ)T
app − (λz1

0 + λ3z3
I , λ(E1

0 + E1
I ))T .
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The initial layer functions z3
I and E1

I solve the following problems (IVPs)

E1
I,s = −Z0(x, 0)E1

I − z1
0(x)E0

I , s > 0, 0 < x < 1, (50)

E1
I (s = 0) = 0, 0 < x < 1 (51)

and

z3
I,s = (DE1

I )x, 0 < x < 1, s > 0, (52)

z3
I (s = 0) = 0, 0 < x < 1. (53)

Remark 5 It follows from Theorems 3 and 4 above that the approximation of
vanishing space charge holds in the interior part of the parabolic domain, but cannot
be valid uniformly up to the boundary in the case where the doping profile changes
its sign.

Remark 6 Note that our smoothness assumption on the doping profile D excludes
so called abrupt p-n junctions, where the doping profile has a jump discontinuity.
Additional layer thus has to be introduced locally at abrupt junctions. This will be
studied further in the future.

Remark 7 It should be noted in Theorem 3 and 4, the quasineutral limits justified
rigorously only in spatial L2-norm. In order to justify this limit in super-norm, a
more accurate ansatz than (20) has to be constructed by using higher order correc-
tions. This is left for the future.

3 Formal Asymptotic Expansion

In this section we derive the limit equation and the forms of the boundary layers and
of the initial time layers by the multiple scaling asymptotic expansion of a singular
perturbation with respect to the scaled Debye length.

Let us look for W λ = (zλ, Eλ)T of the following form

W λ =

N∑
i=0

λiW i(x,
x

λ
,
1 − x

λ
, t,

t

λ2
) + W λ

R(x, t),

where λ and λ2 are the lengths of the boundary layer and of the initial time layer
respectively, and

W i = W i
Inn(x, t) + W i

B(x, ξ, η, t) + W i
I(x, s),

12



sum of an interior term W i
Inn, of the boundary layer term W i

B near x = 0 and x = 1
and of the initial time layer term W i

I near t = 0. Here we set ξ = x
λ
, η = 1−x

λ
, s = t

λ2

and W = (z, E)T .
For simplicity of presentation, we will carry out the constructions of boundary

layers, W i
B = W i

+(ξ, t), only near the left boundary, x = 0, the parts at x = 1 can
be done similarly. Thus, we enforce

lim
ξ→∞

WB(ξ, t) = 0. (54)

In this section, without explicitly writing out the scaled variables the functions
marked by “Inn, B, I, BI” and “R” are ones with respect to (x, t), (ξ, t), (x, s),
(x, ξ, t, s) and (x, t) respectively. In the following we denote (zInn, EInn) by (Z, E).

Our primary interests lie in the rigorous justification of the quasinuetral assump-
tions. Thus, we will ignore the higher corrections to the drift-diffusion equations.
Hence, we impose the following decomposition for the solution (zλ, Eλ) of (14)-(17):

(zλ, Eλ)T =
(Z0 + z0

B + z0
I + λ(z1

B + z1
I ) + λ2(z2

B + z2
I ) + zλ

R(x, t),

E0 + E0
B + E0

I + Eλ
R(x, t)

)T
. (55)

Thus, we obtain an approximation of the solution (zλ, Eλ) of (14)-(17). The ex-
pansion (55) will satisfy the differential equations (14)-(15), the boundary condition
(16) and the initial condition (17) for arbitrary ‘well-prepared’ initial data (zλ

0 , Eλ
0 )

satisfying (39).
Inserting (55) into (14) and (15), by direct computations, one gets

Z0
t +

2∑
i=0

λizi
B,t +

1

λ2
z0

I,s +
1

λ
z1

I,s + z2
I,s + zλ

R,t

=
[
(zλ

R,x + DEλ
R)x + (Z0

x + DE0)x

+
1

λ

(1

λ
z0

B,ξ + (z1
B,ξ + D(0)E0

B) + λz2
B,ξ + (D(λξ) − D(0))E0

B

)
ξ

+

2∑
i=0

λizi
I,xx + (DE0

I )x

]
− λ2

[
K0

Inn + K̃B + Kλ
I + K̃λ

IB + F̃ λ
R

]
x

(56)

and

λ2(E0
t − E0

xx) +
(
E0

I,s − λ2E0
I,xx

)
+

(
λ2E0

B,t − E0
Bξξ

)
+ λ2(Eλ

R,t − Eλ
R,xx)

= J0
Inn + (J̃0

B + J̃0
BR) + (J0

I + J0
IR) + J̃0

BI +

2∑
i=1

λi
(
J̃ i

B + J i
I + J̃ i

BI

)
+ G̃λ

R,(57)
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where K0
Inn, K̃i

B, Kλ
I , K̃λ

IB and F̃ λ
R are defined by the following:

K0
Inn = E0E0

x ,

K̃λ
B = (E0(0, t) + E0

B)E0
B,ξ + E0

BE0
x(0, t)

+(E0(λξ, t) − E0(0, t))E0
B,ξ + E0

B(E0
x(λξ, t) − E0

x(0, t)),

Kλ
I =

(E0(x, λ2s)E0
I,x + E0

I (E0
Inn,x(x, λ2s) + E0

I,x)
)
,

K̃λ
IB = E0

BE0
I,x + E0

I

1

λ
E0

B,ξ,

F̃ λ
R = (E0 + E0

B + E0
I )E

λ
R,x + Eλ

R(E0
x + E0

B,ξ

1

λ
+ E0

I,x) + Eλ
R,x),

and J0
Inn, J̃

0
B, J̃0

BR, J0
I , J0

IR, J̃0
BI , J̃

i
B, J i

I , J̃
i
BI , i = 1, 2 and G̃λ

R are defined by the follow-
ing:

J0
Inn = −(Dx + Z0E0),

J̃0
B = −(Z0(0, t)E0

B + z0
B(E0(0, t) + E0

B)),

J̃0
BR = −(

(Z0 −Z0(0, t))E0
B + z0

B(E − E0(0, t))
)
,

J0
I = −(Z0(x, 0)E0

I + z0
I (E0(x, 0) + E0

I )
)
,

J0
IR = −(

(Z0 −Z0(x, 0))E0
I + z0

I (E0 − E0(x, 0))
)
,

J̃0
BI = −(z0

BE0
I + z0

IE
0
B),

J̃ i
B = −zi

B(E0 + E0
B), i = 1, 2,

J i
I = −zi

I(E0 + E0
I ), i = 1, 2,

J̃ i
BI = −zi

BE0
I + zi

IE
0
B, i = 1, 2,

and

Gλ
R = −(

(E0 + E0
B + E0

I )zλ
R + (Z0 + z0

B + z0
I +

2∑
i=1

λi(zi
B + zi

I))E
λ
R

) − zλ
REλ

R.

Similarly, inserting (55) into the boundary condition (16) yields an expansion
at the boundary x = 0. Since the boundary expansion is expected to correct well
the boundary conditions of inner solutions to quasineutral drift diffusion equations,
according to the expansion at the boundary x = 0, we may impose the following
boundary conditions

z0
B,ξ(ξ = 0; t) = 0, (58)

z1
B,ξ(ξ = 0; t) = −Z0

x(x = 0; t), (59)

z2
B,ξ(ξ = 0; t) = 0, (60)

E0
B(ξ = 0; t) = −E0(x = 0; t). (61)

14



Now we start to derive the equations of the inner solution (Z0, E0), of the various
orders of boundary layer and initial time layer functions in the above expansion (55)
by comparing coefficients of O(λk) of (56) and (57). At the leading order λ−2 of
(56), one gets

z0
I,s(x, s) = 0. (62)

For z0
I we take the initial data

z0
I (s = 0) = 0. (63)

The only solution of (62) and (63) is given as

z0
I (x, s) = 0, x ∈ [0, 1], s ≥ 0. (64)

Similarly

z0
B,ξξ = 0. (65)

We also expect the decay condition at the infinity for z0
B such that

z0
B(ξ, t) → 0 as ξ → ∞. (66)

The only solution of (58), (65) and (66) is given as

z0
B(ξ, t) = 0, ξ ≥ 0, t ≥ 0, (67)

which explains partially that the Neumann boundary condition of the density does
not produce the boundary layer at the leading order.

At the order λ−1 of (56), one gets

z1
I,s(x, s) = 0, hence z1

I = 0, x ∈ [0, 1], s ≥ 0 (68)

since z1
I (x, s = 0) = 0.

One also has from the order λ−1 of (56)

z1
B,ξξ + D(0)E0

B,ξ = 0. (69)

As before, we impose the decay condition at the infinity such that

z1
B(ξ, t) → 0, E0

B(ξ, t) → 0 as ξ → ∞. (70)

It follows from (69) and (70) that

z1
B,ξ + D(0)E0

B = 0. (71)
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Next, we determine the limit equations, which form a system satisfied by the first-
order term (Z0, E0) in the above expansion. At the order of λ0 of (56) and (57), one
gets

Z0
t = (Z0

x + DE0)x, 0 < x < 1, t > 0, (72)

0 = −(Dx + Z0E0), 0 < x < 1, t > 0. (73)

This is nothing but the well-known quasineutral drift diffusion models, which can
be formally obtained by setting λ equal to zero in (14)-(15), too. In the context
of semiconductor device physics problems (72)-(73) is referred to as “space charge
approximation”.

Notice that (73) is a algebraic equation. If Z0(x, t) ≥ C0 > 0, then

E0(x, t) = − Dx(x)

Z0(x, t)
.

Generally speaking, E0(x, t)|x=0,1 �= 0, but Eλ(x, t)|x=0,1 = 0. Therefore, E0(x, t) has
to be supplemented by a boundary layer term there. Similarly, owe to the arbitrary
of the initial data Eλ

0 (x), there is an initial layer. Furthermore, it should be clear
that the boundary and initial layers are caused by the electric field.

Now we supplement the limit equations (72)-(73) by the appropriate boundary
conditions. According to the condition conditions (59), (61) and the equation (71),
one gets

Z0
x(x = 0, t) = −z1

B,ξ(ξ = 0, t) = D(0)E0
B(ξ = 0) = −D(0)E0(x = 0, t), t ≥ 0,

i.e.

Z0
x + D(0)E0 = 0, x = 0, t ≥ 0. (74)

For the initial data of Z0(x, t), we can take it as

Z0(x, t = 0) = z0
0(x) ≥ δ > 0, 0 ≤ x ≤ 1. (75)

Here z0
0(x) is given by (19).

Finally, one also gets from the order λ0 of (56) and (57)

E0
I,s(x, s) = J0

I (x, s), 0 ≤ x ≤ 1, s ≥ 0 (76)

z2
I,s(x, s) = (D(x)E0

I )x, 0 ≤ x ≤ 1, s ≥ 0, (77)

and

−E0
B,ξξ(ξ, t) = J̃0

B(ξ, t), ξ > 0, t > 0. (78)

z2
B,ξξ = 0, ξ > 0, t > 0, (79)
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The initial data of E0
I can be taken as

E0
I (x, s = 0) = E0

0(x) − E0(x, t = 0), 0 ≤ x ≤ 1. (80)

The only solution to (76) and (80) can be given explicitly by

E0
I (x, s) = (E0

0(x) − E0(x, t = 0)) exp(−z0
0(x)s). (81)

The initial data of z2
I is

z2
I (x, s = 0) = 0, 0 ≤ x ≤ 1. (82)

The unique solution of (77) and (82), can be given, using (81), by

z2
I (x, s) =

∫ s

0

(D(x)E0
I )xds

= b(x) + (b0(x) + b1(x)s) exp{−z0
0(x)s}, 0 ≤ x ≤ 1, s ≥ 0, (83)

where b(x), b0(x) and b1(x) depend only upon D(x) and (z0
0 , E

0
0) and satisfy b0(x) =

−b(x) �= 0.
For E0

B, we impose the decay condition at infinity as

E0
B(ξ, t) = 0, as ξ → ∞ (84)

and we also take the boundary condition at ξ = 0 as

E0
B(ξ = 0, t) = −E0(x = 0, t), t > 0. (85)

The unique solution of (78), (84) and (85) can be given by

E0
B(ξ, t) = −E0(x = 0, t) exp(−

√
Z0(x = 0, t)ξ). (86)

For z2
B, the decay condition at infinity is

z2
B(ξ, t) = 0, as ξ → ∞. (87)

Then the only solution of (79), (60) and (87) is given by

z2
B(ξ, t) = 0, ξ > 0, t > 0. (88)

Similarly, we can construct the boundary layer functions near x = 1 and hence
deduce the similar boundary conditions of the inner solutions at x = 1.
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4 Existence and Regularity of Solutions to Quasi-

neutral Drift Diffusion Models

In this section we discuss existence and regularity of solutions to quasineutral drift
diffusion models (21)-(24) and we will prove Proposition 2.

The Proof of Proposition 2 The proof is elementary. For completeness, we outline it
here. First, it follows from (73) that E0(x, t) = − Dx

Z0(x,t)
. Then the problem (72)-(75)

is reduced to the following system

Z0
t = (Z0

x − DDx

Z0
)x, 0 < x < 1, t > 0, (89)

(Z0
x − DDx

Z0
)(x = 0, 1, t) = 0, t > 0, (90)

Z0(t = 0) = z0
0(x), 0 ≤ x ≤ 1. (91)

For z0
0 ≥ δ0 > 0, the standard parabolic theory yields the desired local existence of

classical positive solution Z0. This concludes the first part of proposition 2.
To prove the global existence of large classical solution for large initial data, one

introduces the transformation

(Z0)2 − D2 = w. (92)

Then it follows from the system (89)-(91) that w satisfies

wt = wxx − w2
x + 2DDxwx

2(w + D2)
, 0 < x < 1, t > 0 (93)

wx(x = 0, 1, t) = 0, t > 0 (94)

w(t = 0) = w0 = (z0
0)

2 − D2. (95)

If δ0 ≥
√

D2 + δ2 for some δ2 > 0, then w0 ≥ δ2 > 0.
By the standard parabolic theory [17], we know that there exists a unique, clas-

sical and global solution w for (93)-(95) satisfying 0 < δ2 ≤ w ∈ C2(l+1),l+1([0, 1] ×
[0, T ]) for any T > 0. By transformation (92), we conclude the second part of
Proposition 2. The proof of Proposition 2 is complete. �

5 Properties of the Initial Time Layer and the

Boundary Layer Functions

In this section we summarize the properties of the boundary layers and the initial
time layer and discuss their decay rate, which will be useful for the energy estimates
next section.
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Using (86), one gets from (71) and (70) that

z1
B(ξ, t) = −D(0)E0(0, t)

∫ ∞

ξ

e−
√

Z0(0,t)ydy

= −D(0)E0(0, t)√Z0(0, t)
e−

√
Z0(0,t)ξ. (96)

Thus, we obtained exact formulaes of all initial layer functions and the left boundary
layer functions. In particular, we can determine the values of z1

B(ξ) and E0
B(ξ),

depending only upon D(0), z0
0(0) and E0(0, 0) = E0

0(0), which is given by

z1
B(ξ) = z1

B(x, t = 0)

= −D(0)E0
0(0)√

z0
0(0)

e−
√

z0
0(0)ξ, ξ > 0, (97)

E0
B(ξ) = E0

B(x, t = 0) = −E0
0(0)e−

√
z0
0(0)ξ, ξ > 0. (98)

Similarly, the right boundary layer functions at x = 1, denoted by zi
−(η, t), i =

0, 1, 2, E0
−(η, t), satisfy similar equations and have completely same properties as

the left boundary layer functions zi
B(ξ, t), i = 0, 1, 2, E0

B(ξ, t) at x = 0, denoted by
zi
+(ξ, t), i = 0, 1, 2, E0

+(ξ, t). We omit this.
We end this section by summarizing the properties of the boundary layer and

initial layer functions:

Lemma 5 (i) z0
+ = z0

− = z2
+ = z2

− = z0
I = z1

I = 0.
(ii) Assume that the inner solution (Z0, E0) is suitably smooth. Then,
(a) For any T > 0, there exists a positive constant M independent of λ such

that

‖(∂k1
t (ξk2∂k3

ξ (z1
+, E0

+), ηk4∂k5
η (z1

−, E0
−))‖L∞

(x,t)
([0,1]×[0,T ]) ≤ M (99)

and

‖(∂k1
t (ξk2∂k3

ξ (z1
+, E0

+), ηk4∂k5
η (z1

−, E0
−))‖L∞

t ([0,T ];L2
x([0,1])) ≤ Mλ

1
2 (100)

for any nonnegative integer kj, j = 0, · · · , 5.
(b) For any T > 0, there exists a positive constant M independent of λ such that

‖∂k6
x (z2

I , s
k7(∂k8

s z2
I , ∂

k9
s E0

I ))‖L∞
(x,t)

([0,1]×[0,T ]) ≤ M (101)

and

‖∂k10
x sk11(∂k12

s z2
I , ∂

k13
s E0

I )‖L2
t ([0,T ];L∞

x ([0,1])) ≤ Mλ (102)

for any nonnegative integer kj, j = 6, 7, 9, 10, 11, 13 and any positive integer k8, k12.
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6 Energy Estimates

In this section we investigate the asymptotic behavior of the solution to the problem
(14)-(17) as λ → 0 and we will also prove our main theorems 3 and 4 in this section.
From now on, we may assume 0 < λ ≤ 1.

6.1 The Proof of Theorem 3

In this subsection we prove Theorem 3 by a careful energy method based on the
approximate solutions constructed in the previous section.

Let Z0, E0, E0
+, E0

−, E0
I , z

1
+, z1

−, z2
I be the functions constructed in the previous

sections.
Let us assume

(zλ(x, t = 0), Eλ(x, t = 0))T

=
(
z0
0(x) + λ(f(x)z1

+(
x

λ
, 0) + g(x)z1

−(
1 − x

λ
, 0)) + λzλ

0R(x),

E0
0(x) + f(x)E0

+(
x

λ
, 0) + g(x)E0

−(
1 − x

λ
, 0) + λEλ

0R(x)
)T

,

where f(x) and g(x) are two smooth C2 cut-off functions satisfying that f(0) =
g(1) = 1 and f(1) = f ′(1) = f ′′(1) = f ′(0) = f ′′(0) = g(0) = g′(0) = g′′(0) =
g′(1) = g′′(1) = 0 and (zλ

0R, Eλ
0R) satisfies assumptions (42) and (43). In this case,

one gets

(zλ
R, Eλ

R)T (x, t = 0) = λ(zλ
0R(x), Eλ

0R(x))T .

Replacing (zλ, Eλ)T by

(zλ, Eλ)T =
(
Z0 + λ(f(x)z1

+ + g(x)z1
−) + λ2z2

I + zλ
R(x, t),

E0 + f(x)E0
+ + g(x)E0

− + E0
I + Eλ

R(x, t)
)T

(103)

in the system (14)-(15), using the equations of the inner solutions, of the boundary
layers, and of the initial layers, one gets

zλ
R,t = Hλ

x + fλ, 0 < x < 1, t > 0, (104)

λ2(Eλ
R,t − Eλ

R,xx) + Z0Eλ
R = gλ, 0 < x < 1, t > 0, (105)

where

Hλ = zλ
R,x + DEλ

R + HInn + Hλ
B + Hλ

I + Hλ
IB + Hλ

R,

fλ = −λ1(f(x)z1
+,t + g(x)z1

−,t), gλ = GInn + Gλ
B + Gλ

I + Gλ
IB + Gλ

R
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and HInn (GInn), Hλ
B (Gλ

B), Hλ
I (Gλ

I ), Hλ
IB (Gλ

IB), Hλ
R (Gλ

R) represent the inner part,
the boundary layer part, the initial layer part, the mixed boundary and initial layer
part and the error parts involving nonlinearities, respectively, and are defined by
the following:

HInn(x, t) = −λ2E0E0
x .

Hλ
B(x, t, ξ, η) =

(
(D(x) − D(0))f(x)E0

+ + (D(x) − D(1))g(x)E0
−
)

+λ
(
f ′(x)z1

+ + g′(x)z1
− − E0(f(x)E0

+,ξ − g(x)E0
−,η)

+(f(x)E0
+ + g(x)E0

−)(f(x)E0
+,ξ − g(x)E0

−,η)
)

+λ2
(
− E0(f ′(x)E0

+ + g′(x)E0
−)

−(f(x)E0
+ + g(x)E0

−)(E0
x + f ′(x)E0

+ + g′(x)E0
−)

)

=
(
(D(x) − D(0))f(x)Ei

+ + (D(x) − D(1))g(x)Ei
−
)

+ λ{· · · }R
HB.

Noting that {· · · }R
HB is the sums of the boundary layer functions z1

+, z1
−, E0

+, E0
−, E0

+,ξ,
E0

−,η, E0
+E0

+, E0
−E0

−, E0
+E0

−, E0
+E0

+,ξ, E0
−E0

−,η, E0
+E0

−,η and E0
−E0

+,ξ with the coeffi-
cients consisting of D(x), f(x), g(x), E0, f ′(x), g′(x) and E0

x and that {· · · }R
HB does

not depend upon the fast dielectric relaxation time scale and hence, by (99) and
(100), we easily obtain that there exists a constant M , independent of λ, such that

‖{· · · }R
HB(t)‖2

L2
x

+

∫ t

0

‖∂t{· · · }R
HB(t)‖2

L2
x
dt ≤ Mλ. (106)

Hλ
I (x, s) = λ2z2

I,x − λ2
(E0E0

I + E0
I (E0

x + E0
I,x)

)
,

Hλ
IB(x, ξ, η, t, s) = −λ

(
E0

I (f(x)E0
+,ξ − g(x)E0

−,η)
)

−λ2
(
E0

I (f
′(x)E0

+ + g′(x)E0
−) + (f(x)E0

+ + g(x)E0
−)E0

I,x

)
,

Hλ
R = −λEλ

R(f(x)E0
+,ξ − g(x)E0

−,η)

−λ2
(
(E0 + f(x)E0

+ + g(x)E0
−)Eλ

R,x + (E0
x + f ′(x)E0

+ + g′(x)E0
−)Eλ

R

)

−λ2
(
E0

I E
λ
R,x + E0

I,xE
λ
R

) − λ2Eλ
REλ

R,x,

GInn(x, t) = −λ2
(E0

t − E0
xx

)
,
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Gλ
B(x, ξ, η, t) =

(
− f(x)(Z0(x, t) − Z0(0, t))E0

+ − g(x)(Z0(x, t) − Z0(1, t))E0
−
)

+λ{· · · }R
GB.

Here {· · · }R
GB is the sums of the boundary layer functions z1

+,t, z
1
−,t, E

0
+, E0

−, E0
+,ξ, E

0
−,η,

z1
+E0

+, z1
−E0

−, z1
+E0

− and z1
−E0

+ with the coefficients consisting of f(x), g(x), E0, f ′(x),
g′(x), f ′′(x), g′′(x) and Z0. Like {· · · }R

HB, {· · · }R
GB does not depend upon the fast

dielectric relaxation time scale and hence it easily follows from (99) and (100) that
there exists a constant M , independent of λ, such that

‖{· · · }R
GB(t)‖2

L2
x

+

∫ t

0

‖∂t{· · · }R
GB(t)‖2

L2
x
dt ≤ Mλ. (107)

Gλ
I = (Z0 − Z0(x, 0))E0

I + λ2E0
I,xx + λ2z2

I (E0 + E0
I ),

Gλ
IB = −λ(f(x)z1

+ + g(x)z1
−)E0

I − λ2z2
I (f(x)E0

+ + g(x)E0
−),

Gλ
R = −(E0 + f(x)E0

+ + g(x)E0
− + E0

I )z
λ
R

−λ(f(x)z1
+ + g(x)z1

−)Eλ
R − λ2z2

I E
λ
R − zλ

REλ
R.

We now derive the boundary conditions for the error functions.
First, the assumption

E0
0(x = 0, 1) = −Dx(x = 0, 1)

z0
0(x = 0, 1)

= E0(x = 0, 1; t = 0),

together with the initial layer function (81), gives

E0
I (x = 0, 1; t) = 0, t > 0. (108)

Then it follows from (17), (61) and (108) that

Eλ
R(x = 0, 1; t) = 0, t > 0. (109)

Next we claim that

Hλ(x = 0, 1; t) = 0, t > 0. (110)

In fact, we can rewrite Hλ(x, t) as

Hλ = zλ
R,x + DEλ

R + HInn + Hλ
B + Hλ

I + Hλ
IB + Hλ

R

= zλ
R,x + λ(f ′(x)z1

+ + g′(x)z1
−) + λ2z2

I,x + f(x)(D(x) − D(0))E0
+

+g(x)(D(x) − D(1))E0
− + DEλ

R − λ2EλEλ
x . (111)
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Then, by the definitions of cut-off functions f(x) and g(x), the boundary condition
Eλ(x = 0, 1; t) = 0 and (109), one gets from (111) that

Hλ(x = 0, 1; t) = (zλ
R,x + λ2z2

I )|x=0,1. (112)

Also, replacing zλ by (103) in the boundary condition zλ
x(x = 0, 1; t) = 0 and using

z1
+,ξ(ξ = 0; t) = −Z0

x(x = 0; t); z1
−,η(η = 0; t) = Z0

x(x = 1; t), t > 0,

one gets

(zλ
R,x + λ2z2

I )|x=0,1 = 0,

which, together with (112), gives (110).
Now we start the energy estimates. In the following, we use ci, δi, ε and M(ε) or

M to denote the constants which are independent of λ and may be different from
one line to another line.

First we derive the basic energy estimates on (zλ
R, Eλ

R).

Lemma 6 Under the assumptions of Theorem 3, we have

‖zλ
R(t)‖2

L2
x

+ λ2‖Eλ
R(t)‖2

L2
x

+

∫ t

0

‖(zλ
R,x, E

λ
R)‖2

L2
x
dt + λ2

∫ t

0

‖Eλ
R,x‖2

L2
x
dt

≤ ‖zλ
R(t = 0)‖2

L2
x

+ λ2‖Eλ
R(t = 0)‖2

L2
x

+M

∫ t

0

‖zλ
R‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
dt

+M

∫ t

0

‖(zλ
R, zλ

R,x)‖2
L2

x
‖Eλ

R‖2
L2

x
dt + Mλ. (113)

Proof of Lemma 6 Multiplying (104) by zλ
R and integrating the resulting equation

over [0, 1] with respect to x, by (110) and integrations by parts, one gets

1

2

d

dt
‖zλ

R‖2
L2

x
= −

∫ 1

0

Hλzλ
R,xdx +

∫ 1

0

fλzλ
Rdx

= −
∫ 1

0

(zλ
R,x + DEλ

R)zλ
R,xdx +

∫ 1

0

fλzλ
Rdx

−
∫ 1

0

(HInn + Hλ
B + Hλ

I + Hλ
IB + Hλ

R)zλ
R,xdx. (114)

Now we estimate each term in the right hand side of (114).
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First, by the Cauchy-Schwarz’s inequality and the properties of the boundary
layers, one gets

−
∫ 1

0

(zλ
R,x + DEλ

R)zλ
R,xdx ≤ −1

2
‖zλ

R,x‖2
L2

x
+ M(ε)‖Eλ

R‖2
L2

x
(115)

and ∫ 1

0

fλzλ
Rdx ≤ M‖zλ

R‖2
L2

x
+ M‖fλ‖2

L2
x
dx ≤ M‖zλ

R‖2
L2

x
+ Mλ3. (116)

Here we used ‖(z1
+,t, z

1
−,t)‖2

L2
x
≤ Mλ due to (100).

Then, using the regularity of inner solutions, the properties (99) and (100) of
boundary layer functions, the properties (101) and (102) of initial layer functions
and the definitions of HInn, H

λ
B, Hλ

I and Hλ
IB, one easily gets

‖HInn‖2
L2

x
+ ‖Hλ

B‖2
L2

x
+ ‖Hλ

I ‖2
L2

x
+ ‖Hλ

IB‖2
L2

x
≤ Mλ.

This, combining with the Cauchy-Schwarz’s inequality, yields

−
∫ 1

0

(HInn + Hλ
B + Hλ

I + Hλ
IB)zλ

R,xdx

≤ ε‖zλ
R,x‖2

L2
x

+ M(ε)(‖HInn‖2
L2

x
+ ‖Hλ

B‖2
L2

x
+ ‖Hλ

I ‖2
L2

x
+ ‖Hλ

IB‖2
L2

x
)

≤ ε‖zλ
R,x‖2

L2
x

+ Mλ. (117)

Finally, for the nonlinear term, using E0, E0
x ∈ C0([0, 1]× [0, T ]), (99) and (101), one

gets, with the aid of the Cauchy-Schwarz’s inequality and Sobolev’s Lemma, that

∫ 1

0

Hλ
Rzλ

R,xdx

≤ ε‖zλ
R,x‖2

L2
x

+ M(ε)‖Hλ
R‖2

L2
x

≤ ε‖zλ
R,x‖2

L2
x

+ Mλ2‖Eλ
R‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+ Mλ4

∫ 1

0

|Eλ
REλ

R,x|2dx

≤ ε‖zλ
R,x‖2

L2
x

+ Mλ2‖Eλ
R‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
. (118)

Thus, combining (114) with (115)-(118) and taking ε small enough, one gets

d

dt
‖zλ

R‖2
L2

x
+ c1‖zλ

R,x‖2
L2

x
≤ M‖(zλ

R, Eλ
R)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4(‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
+ Mλ. (119)
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Integrating (119) with respect to t over [0, t], one gets

‖zλ
R(t)‖2

L2
x

+ c1

∫ t

0

‖zλ
R,x‖2

L2
x
dt

≤ ‖zλ
R(t = 0)‖2

L2
x

+ M

∫ t

0

‖(zλ
R, Eλ

R)‖2
L2

x
dt + Mλ4

∫ t

0

‖Eλ
R,x‖2

L2
x
dt

+Mλ4

∫ t

0

‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
dt + Mλ. (120)

Multiplying (105) by Eλ
R and integrating the resulting equation over [0, 1] with re-

spect to x, by (109) and integrations by parts, one gets

λ2

2

d

dt
‖Eλ

R‖2
L2

x
+ λ2‖Eλ

R,x‖2
L2

x
+

∫ 1

0

Z0|Eλ
R|2dx =

∫ 1

0

gλEλ
Rdx. (121)

By the Cauchy-Schwarz’s inequality, we have
∫ 1

0

gλEλ
Rdx ≤ ε‖Eλ

R‖2
L2

x
+ M(ε)‖gλ‖2

L2
x
.

On one hand, noting that
∫ 1

0

|(Z0(x, t) −Z0(x, 0))E0
I (x,

t

λ2
)|2dx

=

∫ 1

0

|
∫ 1

0

∂tZ0(x, tθ)dθt · E0
I (x,

t

λ2
)|2dx

≤ M sup
s≥0

( max
0≤x≤1

|sE0
I (x, s)|2)λ4

≤ Mλ4,

using Z0, E0 ∈ C2,1([0, 1] × [0, T ]), (99), (100), (101), (102) and the definitions of
GInn, Gλ

B, Gλ
I and Gλ

IB, we have

∫ 1

0

(|GInn|2 + |Gλ
B|2 + |Gλ

I |2 + |Gλ
IB|2)dx ≤ Mλ.

On the other hand, as in (118), we have, with the aid of Sobolev’s lemma, that

‖Gλ
R‖2

L2
x
≤ M‖zλ

R‖2
L2

x
+ Mλ2‖Eλ

R‖2
L2

x
+ M‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R‖2
L2

x
.

Thus∫ 1

0

gλEλ
Rdx ≤ ε‖Eλ

R‖2
L2

x
+ M‖zλ

R‖2
L2

x
+ Mλ2‖Eλ

R‖2
L2

x
+ M‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ.(122)
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Then, combining (121) with (122), using the positivity of Z0, taking ε small enough
and then restricting λ to be small enough, one gets

λ2 d

dt
‖Eλ

R‖2
L2

x
+ λ2‖Eλ

R,x‖2
L2

x
+ c2‖Eλ

R‖2
L2

x

≤ M‖zλ
R‖2

L2
x

+ M‖(zλ
R, zλ

R,x)‖2
L2

x
‖Eλ

R‖2
L2

x
+ Mλ. (123)

Integrating (123) with respect to t, one gets

λ2‖Eλ
R(t)‖2

L2
x

+ λ2

∫ t

0

‖Eλ
R,x‖2

L2
x
dt + c2

∫ t

0

‖Eλ
R‖2

L2
x
dt

≤ λ2‖Eλ
R(t = 0)‖2

L2
x

+ M

∫ t

0

‖zλ
R‖2

L2
x
dt

+M

∫ t

0

‖(zλ
R, zλ

R,x)‖2
L2

x
‖Eλ

R‖2
L2

x
dt + Mλ. (124)

The desired estimate (113) follows from (120) and (124). This completes the proof
of Lemma 6. �

Next we show the estimates of the time tangential derivatives ∂t(z
λ
R, Eλ

R) of
(zλ

R, Eλ
R).

Lemma 7 Under the assumptions of Theorem 3, we have

‖zλ
R,t(t)‖2

L2
x

+ λ2‖Eλ
R,t(t)‖2

L2
x

+

∫ t

0

‖(zλ
R,xt, E

λ
R,t)‖2

L2
x
dt + λ2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt

≤ M(‖zλ
R,t(t = 0)‖2

L2
x
+ λ2‖Eλ

R,t(t = 0)‖2
L2

x
)

+M

∫ t

0

‖(Eλ
R, zλ

R, zλ
R,t)‖2

L2
x
dt + Mλ2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

+Mλ4

∫ t

0

(‖(Eλ
R,t, E

λ
R,xt)‖2

L2
x
‖ER,x‖2

L2
x

+ ‖Eλ
R‖2

L2
x
‖Eλ

R,xt‖2
L2

x

)
dt

+M

∫ t

0

(‖(zλ
R,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt + Mλ. (125)

Proof of Lemma 7 Differentiating (104) with respect to t, multiplying the resulting
equations by zλ

R,t, then integrating it over [0, 1]×[0, t] and noting that Ht also satisfies
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the same boundary condition as in (110), one gets by integrations by parts that

‖zλ
R,t(t)‖2

L2
x

= ‖zλ
R,t(t = 0)‖2

L2
x

+

∫ t

0

∫ 1

0

fλ
t zλ

R,tdxdt −
∫ t

0

∫ 1

0

(zλ
R,xt + DEλ

R,t)z
λ
R,xtdxdt

−
∫ t

0

∫ 1

0

HInn,tz
λ
R,xtdxdt −

∫ t

0

∫ 1

0

Hλ
B,tz

λ
R,xtdxdt −

∫ t

0

∫ 1

0

Hλ
I,tz

λ
R,xtdxdt

−
∫ t

0

∫ 1

0

Hλ
IB,tz

λ
R,xtdxdt −

∫ t

0

∫ 1

0

Hλ
R,tz

λ
R,xtdxdt. (126)

One needs to estimate the terms on the right above carefully.
First, it follows from the Cauchy-Schwartz’s inequality that

∫ t

0

∫ 1

0

(zλ
R,xt + DEλ

R,t)z
λ
R,xtdxdt ≤ −1

2

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M

∫ t

0

‖Eλ
R,t‖2

L2
x
dt (127)

and
∫ t

0

∫ 1

0

fλ
t zλ

R,tdxdt ≤ ε

∫ t

0

‖zλ
R,t‖2

L2
x
dt + M(ε)λ3 (128)

since fλ does not depend upon the fast time scale. Here we also used Z0
tt, E0

tt ∈
C0([0, 1] × [0, T ]).

Similarly, since HInn and Hλ
B do not depend upon the fast time scale, so HInn,t

and Hλ
B,t have the same structures as HInn and HB,t, respectively. Hence, one obtains

in a similar way as for (117), (using (106)), that

∫ t

0

∫ 1

0

HInn,tz
λ
R,xtdxdt ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ4 (129)

and
∫ t

0

∫ 1

0

Hλ
B,tz

λ
R,xtdxdt ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ. (130)

Here we used the regularity of the inner solutions E0, E0
x , E0

t , E0
xt,Z0,Z0

x ,Z0
t , Z0

xt ∈
C0([0, 1] × [0, T ]).

Owe to the strong singularity of time derivatives of the initial layers, we must
estimate the integrals involving initial layers carefully.

First, by the Cauchy-Schwarz’s inequality, we have

∫ t

0

∫ 1

0

Hλ
I,tz

λ
R,xtdxdt ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

|Hλ
I,t|2dxdt.
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But, by (101) and (102), one gets

∫ t

0

∫ 1

0

|Hλ
I,t|2dxdt

=

∫ t

0

∫ 1

0

|z2
I,xs − λ2

(E0
t (x, t)E0

I,x + E0
IE0

xt(x, t)
)

−(E0(x, t)E0
I,xs + E0

I,s(E0
x(x, t) + E0

I,x) + E0
I E

0
I,xs

)|2dxdt

≤ M

∫ t

0

∫ 1

0

(
|z2

I,xs|2 + |E0
I,x|2 + |E0

I |2 + |E0
I,xs|2 + |E0

I,s|2
)
dxdt

≤ Mλ2.

Hence
∫ t

0

∫ 1

0

Hλ
I,tz

λ
R,xtdxdt ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x

+ Mλ2. (131)

Then, using the definition of Hλ
IB, we have

∫ t

0

∫ 1

0

Hλ
IB,tz

λ
R,txdxdt

=

∫ t

0

∫ 1

0

−λ
(
E0

I (f(x)E0
+,ξ − g(x)E0

−,η)
)

t
zλ

R,txdxdt

+

∫ t

0

∫ 1

0

λ2∂t

(
· · ·

)R

HIB
zλ

R,xtdxdt, (132)

where
(
· · ·

)R

HIB
represents the remaining higher order term O(λ2) of Hλ

IB. By (101)

and (102), one easily gets

∫ t

0

∫ 1

0

|λ2∂t

(
· · ·

)R

HIB
|2dxdt ≤ Mλ3,

which leads to
∫ t

0

∫ 1

0

λ2∂t

(
· · ·

)R

HIB
zλ

R,txdxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

|λ2∂t

(
· · ·

)R

HIB
|2dxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ3. (133)
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It remains to control the first term on the right hand side of (132). Note that
this singular integration is caused by the interactions between the boundary layer
and the initial layer. So, to control it, we must use two-fold integrals in the time
and space directions to cancel the oscillation of the electric field. Indeed, it can be
treated as follows:

−
∫ t

0

∫ 1

0

λ
(
E0

I (f(x)E0
+,ξ − g(x)E0

−,η)
)

t
zλ

R,txdxdt

= −1

λ

∫ t

0

∫ 1

0

(
E0

I,s(f(x)E0
+,ξ − g(x)E0

−,η)
)
zλ

R,txdxdt

−
∫ t

0

∫ 1

0

λ
(
E0

I (f(x)E0
+,ξt − g(x)E0

−,ηt)
)
zλ

R,txdxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt +

1

λ2

∫ t

0

∫ 1

0

|E0
I,s(f(x)E0

+,ξ − g(x)E0
−,η)|2dxdt + Mλ5

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ, (134)

where we have used

1

λ2

∫ t

0

∫ 1

0

|E0
I,s(f(x)E0

+,ξ + g(x)E0
−,η)|2dxdt

≤ M

λ2

∫ t

0

∫ 1

0

|E0
I,s|2(|E0

+,ξ|2 + |E0
−,η|2)dxdt

≤ M

λ2

∫ t

0

max
0≤x≤1

|E0
I,s|2dt

( ∫ 1

0

max
0≤t≤T

|E0
+,ξ|2dx +

∫ 1

0

max
0≤t≤T

|E0
+,ξ|2dx

)
≤ Mλ.

Combining (132) with (133) and (134), one gets∫ t

0

∫ 1

0

Hλ
IB,tz

λ
R,xtdxdt ≤

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ. (135)

Finally, we estimate the last integral on the right hand side of (126). We split it
into five parts. ∫ t

0

∫ 1

0

Hλ
R,tz

λ
R,xtdxdt = I1 + I2 + I3 + I4 + I5, (136)

where

I1 = −λ

∫ t

0

∫ 1

0

{(
f(x)E0

+,ξ − g(x)E0
−,η

)
Eλ

R,t

+
(
f(x)E0

+,ξt − g(x)E0
−,ηt

)
Eλ

R

}
zλ

R,xtdxdt,
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I2 = −λ2

∫ t

0

∫ 1

0

{(E0 + f(x)E0
+ + g(x)E0

−
)
Eλ

R,xt

+
(E0

t + f(x)E0
+,t + g(x)E0

−,t

)
Eλ

R,x +
(E0

x + f ′(x)E0
+ + g′(x)E0

−
)
Eλ

R,t

+
(E0

xt + f ′(x)E0
+,t + g′(x)E0

−,t

)
Eλ

R

}
zλ

R,xtdxdt,

I3 = −λ2

∫ t

0

∫ 1

0

(E0
I E

λ
R,xt + E0

I,xE
λ
R,t)z

λ
R,xtdxdt,

I4 = −λ2

∫ t

0

∫ 1

0

(Eλ
R,tE

λ
R,x + Eλ

REλ
R,xt)z

λ
R,xtdxdt,

I5 = −
∫ t

0

∫ 1

0

(E0
I,sE

λ
R,x + E0

I,xsE
λ
R)zλ

R,xtdxdt

Noting that there are an λ factor in the first term I1 of (136) and an λ2 factor in
the second and third terms I2, I3 of (136), by the Cauchy-Schwarz’s inequality, (99),
(101) and the fact that E0, E0

x , E0
t , E0

xt ∈ C0([0, 1] × [0, T ]) , we have

I1 ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)λ2

∫ t

0

‖(Eλ
R, Eλ

R,t)‖2
L2

x
dt, (137)

I2 ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)λ4

∫ t

0

‖(Eλ
R, Eλ

R,x, E
λ
R,t, E

λ
R,xt)‖2

L2
x
dt (138)

and

I3 ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)λ4

∫ t

0

‖(Eλ
R,t, E

λ
R,xt)‖2

L2
x
dt. (139)

For the nonlinear term I4 of (136), one gets by Sobolev’s lemma that

I4 ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x

+ M(ε)λ4

∫ t

0

∫ 1

0

(|Eλ
R,tE

λ
R,x|2 + |Eλ

REλ
R,xt|2)dxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x

+ Mλ4

∫ t

0

(‖Eλ
R,t‖2

L∞
x
‖Eλ

R,x‖2
L2

x
+ ‖Eλ

R‖2
L∞

x
‖Eλ

R,xt‖2
L2

x
)dt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x

+Mλ4

∫ t

0

(‖(Eλ
R,t, E

λ
R,xt)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ ‖Eλ

R‖2
L2

x
‖Eλ

R,xt‖2
L2

x
)dt. (140)
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It remains to estimate I5. This is more difficult due to the lack of the uniform
L2 estimate of Eλ

R,x. This will be achieved by using the uniform boundedness on
‖s(E0

I,s, E
0
I,xs)‖L∞

(x,t)
([0,1]×[0,T ]) and employing Hardy-Littlewood’s inequality. In fact,

by the Cauchy-Schwarz’s inequality, one gets

I5 ≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

|E0
I,sE

λ
R,x + E0

I,xsE
λ
R|2dxdt

= ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

|t(E0
I,s

Eλ
R,x − Eλ

R,x(x, t = 0)

t

+E0
I,xs

Eλ
R − Eλ

R(x, 0)

t

)
+

(
E0

I,sE
λ
R,x(x, 0) + E0

I,xsE
λ
R(x, 0)

)|2dxdt

= ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

|λ2s
(
E0

I,s

Eλ
R,x − Eλ

R,x(x, t = 0)

t

+E0
I,xs

Eλ
R − Eλ

R(x, 0)

t

)
+

(
E0

I,sE
λ
R,x(x, 0) + E0

I,xsE
λ
R(x, 0)

)|2dxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt

+Mλ4 max
0≤s≤∞

max
0≤x≤1

(s|E0
I,s| + s|E0

I,xs|)2

∫ 1

0

∫ t

0

(|E
λ
R,x − Eλ

R,x(x, 0)

t
|2

+|E
λ
R − Eλ

R(x, 0)

t
|2)dtdx + M

∫ t

0

∫ 1

0

(|E0
I,sE

λ
R,x(x, 0)|2 + |E0

I,xsE
λ
R(x, 0)|2)dxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ4

∫ 1

0

(

∫ t

0

|Eλ
R,xt|2dt +

∫ t

0

|Eλ
R,t|2dt)dx + Mλ

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R,xt, E

λ
R,t)‖2

L2
x
dt + Mλ. (141)

Here we have used

∫ t

0

∫ 1

0

(|E0
I,sE

λ
R,x(x, 0)|2 + |E0

I,xsE
λ
R(x, 0)|2)dxdt

≤ Mλ2(‖Eλ
0R,x‖2

L∞
x

∫ t

0

∫ 1

0

|E0
I,s|2dxdt + ‖Eλ

0R‖2
L∞

x

∫ t

0

∫ 1

0

|E0
I,xs|2dxdt)

≤ Mλ4((Mλ
1
2
−2)2 + (Mλ

1
2
−1)2)

≤ Mλ,
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due to Sobolev’s lemma, (102) and the assumption (43),

max
0≤s≤∞

max
0≤x≤1

(s|E0
I,s| + s|E0

I,xs|)

= max
0≤t≤T

max
0≤x≤1

( t

λ2
(|E0

I,s(x,
t

λ2
)| + |E0

I,xs(x,
t

λ2
)|))

≤ M max
0≤t≤T

((
t

λ2
)e−δ t

λ2 )

≤ M

and the fact that (Eλ
R − Eλ

R(t = 0))(t = 0) = 0 and hence (Eλ
R,x − Eλ

R,x(t = 0))(t =

0) = 0, and applied Hardy-Littlewood’s inequality to control
∫ t

0
|E

λ
R,x−Eλ

R,x(t=0)

t
|2dt

and
∫ t

0
|Eλ

R−Eλ
R(t=0)

t
|2dt by

∫ t

0
|Eλ

R,xt|2dt and
∫ t

0
|Eλ

R,t|2dt, respectively.
Combining (136) with (137)-(141), one gets∫ t

0

∫ 1

0

Hλ
R,tz

λ
R,xtdxdt

≤ ε

∫ t

0

‖zλ
R,xt‖2

L2
x
dt + Mλ2

∫ t

0

‖(Eλ
R, Eλ

R,t)‖2
L2

x
dt + Mλ4

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

+Mλ4

∫ t

0

(‖(Eλ
R,t, E

λ
R,xt)‖2

L2
x
‖Eλ

R,x‖2
L2

x
+ ‖Eλ

R‖2
L2

x
‖Eλ

R,xt‖2
L2

x

)
dt + Mλ2. (142)

Therefore, putting (126) and estimates (127), (128), (129), (130), (131), (135)
and (142), together, and taking ε small enough, one shows that

‖zλ
R,t(t)‖2

L2
x

+ c3

∫ t

0

‖zλ
R,xt‖2

L2
x
dt

≤ ‖zλ
R,t(t = 0)‖2

L2
x

+ M

∫ t

0

‖(zλ
R,t, E

λ
R,t)‖2

L2
x
dt

+Mλ2

∫ t

0

‖Eλ
R‖2

L2
x
dt + Mλ4

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

+Mλ4

∫ t

0

(‖(Eλ
R,t, E

λ
R,xt)‖2

L2
x
‖ER,x‖2

L2
x

+ ‖Eλ
R‖2

L2
x
‖Eλ

R,xt‖2
L2

x

)
dt + Mλ.(143)

Note that Eλ
R,t also satisfies the same boundary condition as in (109). Thus, dif-

ferentiating (104) with respect to t, multiplying the resulting equations by zλ
R,t and

then integrating it over [0, 1] × [0, t], one gets by integrations by parts that

λ2

2
‖Eλ

R,t(t)‖2
L2

x
+ λ2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt +

∫ t

0

∫ 1

0

Z0|Eλ
R,t|2dxdt

=
λ2

2
‖Eλ

R,t(t = 0)‖2
L2

x
−

∫ t

0

∫ 1

0

Z0
t Eλ

REλ
R,tdxdt +

∫ t

0

∫ 1

0

gλ
t Eλ

R,tdxdt. (144)
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First, by the Cauchy-Schwarz’s inequality, one gets

−
∫ t

0

∫ 1

0

Z0
t Eλ

REλ
R,tdxdt ≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

‖Eλ
R‖2

L2
x
dt (145)

and ∫ t

0

∫ 1

0

gλ
t Eλ

R,tdxdt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

‖gλ‖2
L2

x
dt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

( ∫ t

0

∫ 1

0

|GInn,t|2dxdt +

∫ t

0

∫ 1

0

|Gλ
B,t|2dxdt

+

∫ t

0

∫ 1

0

|Gλ
I,t|2dxdt +

∫ t

0

∫ 1

0

|Gλ
IB,t|2dxdt +

∫ t

0

∫ 1

0

|Gλ
R,t|2dxdt

)
. (146)

Now we treat each term on the right hand side of (146).
Using the structures of the inner solutions E0

tt, E0
xxt ∈ C0([0, 1]× [0, T ]), one can

get
∫ t

0

∫ 1

0

|GInn,t|2dxdt ≤ Mλ4. (147)

term of (146), Since Gλ
B,t has the same structure as Gλ

B, one can estimate the third
term of (146) by (107) as

∫ t

0

∫ 1

0

|Gλ
B,t|2dxdt ≤ Mλ. (148)

Using the definition of Gλ
I , we have

∫ t

0

∫ 1

0

|Gλ
I,t|2dxdt

≤
∫ t

0

∫ 1

0

|E0
I,xxs|2dxdt + JIR

≤ Mλ2 + JIR, (149)

where

JIR =

∫ t

0

∫ 1

0

|z2
I,s(E0 + E0

I ) + z2
I E

0
I,s|2dxdt +

∫ t

0

∫ 1

0

(|λ2z2
IE0

t |2 + |Z0
t E0

I |2
)
dxdt

+

∫ t

0

∫ 1

0

|λ−2(Z0 −Z0(x, 0))E0
I,s|2dxdt.
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Using ‖z2
I‖L∞

x,t
≤ M and ‖(z2

I,s, E
0
I , E

0
I,s)‖L2

t (L∞
x ) ≤ Mλ, one gets

JIR ≤ Mλ2 +

∫ t

0

∫ 1

0

|λ−2(Z0 − Z0(x, 0))E0
I,s|2dxdt. (150)

To estimate the remaining singular term on the right hand side of (150), we will use
the higher regularity of Z0

t . It will follow from the mean value theorem and (102)
that

∫ t

0

∫ 1

0

|λ−2(Z0 −Z0(x, 0))E0
I,s|2dxdt

=

∫ t

0

∫ 1

0

|
∫ 1

0

Z0
t (x, tθ)dθ

t

λ2
E0

I,s(x,
t

λ2
)|2dxdt

≤ M

∫ t

0

∫ 1

0

(
t

λ2
)2|E0

I,s(x,
t

λ2
)|2dxdt

≤ Mλ2. (151)

Thus,

JIR ≤ Mλ2. (152)

And so,

∫ t

0

∫ 1

0

|Gλ
I,t|2dxdt ≤ Mλ2. (153)

The fifth term of (146) can be treated as in (132) so that

∫ t

0

∫ 1

0

|Gλ
IB,t|2dxdt

=

∫ t

0

∫ 1

0

|λ
(
(f(x)z1

+ + g(x)z1
−)E0

I

)
t
+ λ2∂t

(
· · ·

)R

GIB
|2dxdt

≤ M

λ2

∫ t

0

∫ 1

0

(|z1
+E0

I,s|2 + |z1
−E0

I,s|2)dxdt + Mλ2

≤ Mλ. (154)

To estimate the sixth term of (146), we split it into four parts.

∫ t

0

∫ 1

0

Gλ
R,tE

λ
R,tdxdt = I6 + I7 + I8 + I9, (155)
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where

I6 = −
∫ t

0

∫ 1

0

{
(E0

t + f(x)E0
+,t + g(x)E0

−,t)z
λ
R

+(E0 + f(x)E0
+ + g(x)E0

− + E0
I )z

λ
R,t

+(Z0
t + λ(f(x)z1

+,t + g(x)z1
−,t))E

λ
R

}
Eλ

R,tdxdt,

I7 = −
∫ t

0

∫ 1

0

(Z0 + λ(f(x)z1
+ + g(x)z1

−) + λ2z2
I )E

λ
R,tE

λ
R,tdxdt,

I8 = −
∫ t

0

∫ 1

0

(zλ
R,tE

λ
R + zλ

REλ
R,t)E

λ
R,tdxdt,

and

I9 = − 1

λ2

∫ t

0

∫ 1

0

(E0
I,sz

λ
R + λ2z2

I,sE
λ
R)Eλ

R,tdxdt.

First I6, I7 and I8 are treated as in (137)-(140) so that

I6 + I7 ≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλ
R, zλ

R,t, E
λ
R)‖2

L2
x
dt + Mλ2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt (156)

and

I8 ≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

∫ 1

0

(|zλ
R,tE

λ
R|2 + |zλ

REλ
R,t|2)dxdt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

(‖zλ
R,t‖2

L∞‖Eλ
R‖2

L2
x

+ ‖zλ
R‖2

L∞
x
‖Eλ

R,t‖2
L2

x
)dt

≤ ε

∫ t

0

‖Eλ
R,t‖2

L2
x
dt

+M

∫ t

0

(‖(zλ
R,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt. (157)
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Now we treat the most singular term I9 by employing Hardy-Littlewood’s inequality.

I9 = − 1

λ2

∫ t

0

∫ 1

0

(E0
I,sz

λ
R + λ2z2

I,sE
λ
R)Eλ

R,tdxdt

= − 1

λ2

∫ t

0

∫ 1

0

t(E0
I,s

zλ
R − zλ

R(t = 0)

t
+ λ2z2

I,s

Eλ
R − Eλ

R(t = 0)

t
)Eλ

R,tdxdt

− 1

λ2

∫ t

0

∫ 1

0

(E0
I,sz

λ
R(t = 0) + λ2z2

I,sE
λ
R(t = 0))Eλ

R,tdxdt

≤
∫ t

0

∫ 1

0

(
‖sE0

I,s‖L∞
(x,t)

|z
λ
R − zλ

R(t = 0)

t
||Eλ

R,t| + λ2‖sz2
I,s‖L∞

(x,t)
|E

λ
R − Eλ

R(t = 0)

t
||Eλ

R,t|
)
dxdt

+
1

λ2

∫ t

0

∫ 1

0

|(E0
I,sz

λ
R(t = 0) + λ2z2

I,sE
λ
R(t = 0))Eλ

R,t|dxdt

≤ M

∫ 1

0

‖zλ
R − zλ

R(t = 0)

t
‖L2

t
‖Eλ

R,t‖L2
t
dx + Mλ2

∫ 1

0

‖Eλ
R − Eλ

R(t = 0)

t
‖L2

t
‖Eλ

R,t‖L2
t
dx

+
ε

2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt +

M

λ4

∫ t

0

∫ 1

0

|E0
I,sz

λ
R(t = 0)|2dxdt + M

∫ t

0

∫ 1

0

|z2
I,sE

λ
R(t = 0)|2dxdt

≤ ε

2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ 1

0

‖zλ
R,t‖L2

t
‖Eλ

R,t‖L2
t
dx + Mλ2

∫ 1

0

‖Eλ
R,t‖L2

t
‖Eλ

R,t‖L2
t
dx

+
M

λ4
‖zλ

R(t = 0)‖2
L∞

x

∫ t

0

∫ 1

0

|E0
I,s|2dxdt + M‖Eλ

R(t = 0)‖2
L∞

x

∫ t

0

∫ 1

0

|z2
I,s|2dxdt

≤ (ε + Mλ2)

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M(ε)

∫ t

0

‖zλ
R,t‖2

L2
x
dt + Mλ. (158)

Here we used the fact that ‖zλ
R(t = 0)‖L∞

x
= λ‖zλ

0R‖L∞
x

≤ Mλ
3
2 and ‖Eλ

R(t =
0)‖L∞

x
= λ‖Eλ

0R‖L∞
x
≤ M .

Hence, combining (155) with (156)-(158), one gets

∫ t

0

∫ 1

0

Gλ
R,tE

λ
R,tdxdt

≤ (ε + Mλ2)

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλ
R, zλ

R,t, E
λ
R)‖2

L2
x
dt

+M

∫ t

0

(‖(zλ
R,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt. (159)

Thus, putting (146), (147), (148), (153), (154) and (159) together and taking ε small
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enough shows∫ t

0

∫ 1

0

gλ
t Eλ

R,tdxdt

≤ (ε + Mλ2)

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλ
R, zλ

R,t, E
λ
R)‖2

L2
x
dt

+M

∫ t

0

(‖(zλ
R,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt + Mλ.(160)

Therefore, for ε small enough, (144), together with (145) and (160), gives

λ2‖Eλ
R,t(t)‖2

L2
x

+ λ2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt + c4

∫ t

0

‖Eλ
R,t‖2

L2
x
dt

≤ Mλ2‖Eλ
R,t(t = 0)‖2

L2
x

+ Mλ2

∫ t

0

‖Eλ
R,t‖2

L2
x
dt + M

∫ t

0

‖(zλ
R, Eλ

R, zλ
R,t)‖2

L2
x
dt

+M

∫ t

0

∥∥(zλ
R,t, z

λ
R,xt)‖2

L2
x
‖Eλ

R‖2
L2

x
+ ‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R,t‖2
L2

x

)
dt + Mλ. (161)

The desired estimate (125) follows from (143) and (161). This completes the proof
of Lemma 7. �

Finally, we use the basic estimates and the time derivative estimates of (zλ
R, Eλ

R)
to obtain these of the space derivatives ∂x(z

λ
R, Eλ

R) of (zλ
R, Eλ

R).

Lemma 8 Under the assumptions of Theorem 3, we have

‖(zλ
R,x, E

λ
R)‖2

L2
x

+ λ2‖Eλ
R,x‖2

L2
x

≤ M‖(zλ
R, zλ

R,t)‖2
L2

x
+ Mλ2‖(Eλ

R, Eλ
R,t)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
+ M‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ. (162)

Proof of Lemma 8 It follows from (119) and the Cauchy-Schwartz’s inequality that

c1‖zλ
R,x‖2

L2
x

≤ − d

dt
‖zλ

R‖2
L2

x
+ M‖(zλ

R, Eλ
R)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4(‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
+ Mλ

≤ M‖(zλ
R, zλ

R,t, E
λ
R)‖2

L2
x

+ Mλ4‖Eλ
R,x‖2

L2
x

+Mλ4‖(Eλ
R, Eλ

R,x)‖2
L2

x
‖Eλ

R,x‖2
L2

x
+ Mλ. (163)

Similarly, it follows from (123) and the Cauchy-Schwartz’s inequality that

λ2‖Eλ
R,x‖2

L2
x

+ c2‖Eλ
R‖2

L2
x

≤ −λ2 d

dt
‖Eλ

R‖2
L2

x
+ M‖zλ

R‖2
L2

x
+ M‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ

≤ Mλ2‖(Eλ
R, Eλ

R,t)‖2
L2

x
+ M‖zλ

R‖2
L2

x
+ M‖(zλ

R, zλ
R,x)‖2

L2
x
‖Eλ

R‖2
L2

x
+ Mλ. (164)
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The desired estimate (162) follows from (163) and (164). This completes the proof
of Lemma 8. �

The End of the Proof of Theorem 3 Introduce the following λ-weighted func-
tional for the remainder terms

Γλ(t) = ‖(zλ
R, zλ

R,x, z
λ
R,t)‖2

L2
x

+ λ2‖(Eλ
R, Eλ

R,x, E
λ
R,t)‖2

L2
x

+ ‖Eλ
R‖2

L2
x
. (165)

Then it follows from (113) + (125) + δ(162), by taking δ small enough and then
λ small enough, and hence absorbing δ

(
M‖(zλ

R, zλ
R,t)‖2

L2
x

+ Mλ2‖(Eλ
R, Eλ

R,t)‖2
L2

x

)
and

Mδλ4‖Eλ
R,x‖2

L2
x
+Mλ4

∫ t

0
‖Eλ

R,xt‖2
L2

x
dt of the right hand side of (113)+(125)+δ(162) by

‖(zλ
R, zλ

R,t)‖2
L2

x
+λ2‖(Eλ

R, Eλ
R,t)‖2

L2
x

and δλ2‖Eλ
R,x‖2

L2
x
+λ2

∫ t

0
‖Eλ

R,xt‖2
L2

x
dt of the left hand

side of (113)+(125)+δ(162) and then performing a lengthy and direct computations,
that

Γλ(t) +

∫ t

0

‖(zλ
R,x, z

λ
R,xt, E

λ
R, Eλ

R,t)‖2
L2

x
dt + λ2

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

≤ MΓλ(t = 0) + M

∫ t

0

(Γλ(t) + (Γλ(t))2)dt + Mλ2

∫ t

0

Γλ(t)‖Eλ
R,xt‖2

L2
x
dt

+M

∫ t

0

Γλ(t)‖(zλ
R,xt, E

λ
R,t)‖2

L2
x
dt + Mλ + M(Γλ(t))2. (166)

We claim that, for any T ∈ [0, Tmax), Tmax ≤ ∞, there exists an λ0 
 1 such that,
for any λ ≤ λ0, if Γλ(t = 0) ≤ M̃λmin{α,1} for some α > 0, then

Γλ(t) ≤ M̃λmin{α,1}−δ (167)

holds for any δ ∈ (0, min{α, 1}) and 0 ≤ t ≤ T .
Otherwise, there exists T ∈ [0, Tmax), Tmax ≤ ∞,, for any λ0 
 1 such that, for

some λ ≤ λ0,

Γλ(tλ0) > M̃λmin{α,1}−δ

holds for some δ ∈ (0, min{α, 1}) and for some 0 < tλ0 ≤ T .
Denote the first root of Γλ(t) = M̃λmin{α,1}−δ in [0, tλ0 ] by tλ1 . Then we have

Γλ(t) ≤ M̃λmin{α,1}−δ, 0 < t ≤ tλ1 ≤ tλ0 ≤ T, Γλ(tλ1) = M̃λmin{α,1}−δ (168)
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Using (166) and (168), one gets

Γλ(t) +

∫ t

0

‖(zλ
R,x, z

λ
R,xt, E

λ
R, Eλ

R,t)‖2
L2

x
dt + λ2

∫ t

0

‖(Eλ
R,x, E

λ
R,xt)‖2

L2
x
dt

≤ MM̃λmin{α,1} + M

∫ t

0

(Γλ(t) + M̃λmin{α,1}−δΓλ(t))dt + Mλ2

∫ t

0

M̃λmin{α,1}−δ‖Eλ
R,xt‖2

L2
x
dt

+M

∫ t

0

M̃λmin{α,1}−δ‖(zλ
R,xt, E

λ
R,t)‖2

L2
x
dt + Mλ + MM̃λmin{α,1}−δΓλ(t)

≤ MM̃λmin{α,1} + 2M

∫ t

0

Γλ(t)dt +
λ2

2

∫ t

0

‖Eλ
R,xt‖2

L2
x
dt

+
1

2

∫ t

0

(‖zλ
R,xt‖2

L2
x

+ ‖Eλ
R,t‖2

L2
x
)dt + Mλ +

1

2
Γλ(t) (169)

since λ ≤ λ0 
 1 and λ0 can be chosen to satisfy that

M̃λ
min{α,1}−δ
0 ≤ 1, MM̃λ

min{α,1}−δ
0 ≤ 1

2
.

Hence, it follow from (169) that

Γλ(t) ≤ 2MM̃λmin{α,1} + 4M

∫ t

0

Γλ(t)dt + 2Mλ.

Grownwall’s Lemma gives

Γλ(t) ≤ (4Me4MT T + 1) max{2MM̃, 2M}λmin{α,1}

≤ (4Me4MT T + 1) max{2MM̃, 2M}λδλmin{α,1}−δ

≤ M̃

2
λmin{α,1}−δ

which contradicts with (168). This proves our claim (167).
The rest is to prove that there exist a positive constant M̃ and an α > 0 such

that

Γλ(t = 0) ≤ M̃λα. (170)

In fact, it follows from the assumptions (42) and (43) on the initial data and (165)
that

Γλ(t = 0) = ‖zλ
R,t(t = 0)‖2

L2
x

+ λ2‖Eλ
R,t(t = 0)‖2

L2
x

+ Mλ. (171)
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First, note that (104) implies

‖zλ
R,t(t = 0)‖L2

x
≤ λ‖zλ

0R,xx‖L2
x

+ λ‖(DEλ
0R)x‖L2

x

+‖(HInn,x, H
λ
B,x, H

λ
I,x, H

λ
IB,x, H

λ
R,x)(t = 0)‖L2

x
+ M‖fλ(t = 0)‖L2

x
.

The assumptions (42) and (43) lead to

λ‖zλ
0R,xx‖L2

x
+ λ‖(DEλ

0R)x‖L2
x
≤ M

√
λ,

while the definitions of HInn, H
λ
B, Hλ

I , Hλ
IB and fλ yield that

‖(HInn,x, H
λ
I,x, H

λ
IB,x)(t = 0)‖L2

x
≤ M

√
λ,

‖fλ(t = 0)‖L2
x
≤ Mλ

3
2

and

‖Hλ
B,x(t = 0)‖L2

x

≤ M
√

λ + ‖(((D(x) − D(0))
1

λ
f(x)E0

+,ξ + (D(x) − D(1))
1

λ
g(x)E0

−,η

)
(t = 0)‖L2

x

= M
√

λ + ‖(
∫ 1

0

Dx(θx)dθ
x

λ
f(x)E0

+,ξ

−
∫ 1

0

Dx(1 − θ(1 − x))dθ(x)
1 − x

λ
g(x)E0

−,η

)
(t = 0)‖L2

x

≤ M
√

λ.

Here we have used the mean value theorem and the estimates ‖(ξE0
+,ξ, ηE0

+,η)(t =

0)‖L2
x
≤ M

√
λ.

In addition, the definition of Hλ
R(t = 0) and the assumption (43) imply that

‖Hλ
R,x‖L2

x
≤ Mλ2‖λEλ

0R,xx(x)‖L2
x

+ Mλ‖λEλ
0R,x‖L2

x
+ M‖λEλ

0R(x)‖L2
x

+λ2‖(λ2Eλ
0R(x)Eλ

0R,xx(x), (λEλ
0R,x(x))2)‖L2

x

≤ Mλ
3
2 .

Hence,

‖zλ
R,t(t = 0)‖L2

x
≤ M

√
λ. (172)
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Next, (105) implies that

‖λEλ
R,t(t = 0)‖L2

x
≤ λ2‖Eλ

0R,xx(x)‖L2
x

+ ‖z0
0(x)Eλ

0R(x)‖L2
x

+‖1

λ
(GInn, Gλ

B, Gλ
I , G

λ
IB, Gλ

R)(t = 0)‖L2
x
.

Note that the only singular term is I10 = ‖ 1
λ

( − f(x)(Z0(x, t) − Z0(0, t))E0
+ −

g(x)(Z0(x, t) − Z0(1, t))E0
−
)
(t = 0)‖L2

x
, while the other terms are easily controlled

by M
√

λ. By the mean value theorem, one gets

I10 ≤ M‖1

λ
(Z0(x, t) −Z0(0, t))E0

+(t = 0)‖L2
x

+ M‖1

λ
(Z0(x, t) − Z0(1, t))E0

−(t = 0)‖L2
x

= M‖x

λ

∫ 1

0

Z0
x(θx, 0)dθE0

+(t = 0)‖L2
x

+ M‖1 − x

λ

∫ 1

0

Z0
x(1 − θ(1 − x), 0)dθE0

−(t = 0)‖L2
x

≤ M‖(ξE0
+, ηE0

−)(t = 0)‖2
L2

x

≤ M
√

λ.

This gives

‖λEλ
R,t(t = 0)‖L2

x
≤ M

√
λ. (173)

Notice that here we have used the assumptions

‖Eλ
0R,xx(x)‖L2

x
≤ Mλ

1
2
−2, ‖Eλ

0R(x)‖L2
x
≤ M

√
λ.

Thus, (171), together with (172) and (173), gives the desired result (170) with
α = 1.

By (167) with α = 1, one gets (44). This completes the proof of Theorem 3. �

6.2 The Proof of Theorem 4

In this subsection we prove Theorem 4 by pointing out some necessary modifications
of the proof of Theorem 3. We want to proceed as in the proof of Theorem 3.

Now we assume that (47) and (48) hold. In this case, we must consider the
effect of the nonzero limit (z1

0 , E
1
0) of the error terms (zλ

0R, Eλ
0R) of the initial data

(39). In fact, z1
0(x) produces the extra initial layer functions (z3

I , E
1
I ), given by the

solution to (50)-(53). Since (50)-(53) can be solved exactly, it is easy to see that
(z3

I , E
1
I ) has the completely same properties as these of (z2

I , E
0
I ). Hence we choose

the ‘ansatz’ as

(z̃λ, Ẽλ)T
app =

(
Z0 + λ(f(x)z1

+ + g(x)z1
−) + λz1

0(x) + λ2z2
I + λ3z3

I ,

E0 + f(x)E0
+ + g(x)E0

− + E0
I + λ(E1

0(x) + E1
I )

)T

.
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Set (
z̃λ

R(x, t), Ẽλ
R(x, t)

)T
= (zλ, Eλ)T − (

z̃λ, Ẽλ
)T

app
. (174)

Then (
z̃λ

R(x, t), Ẽλ
R(x, t)

)T
(t = 0) = λ(zλ

0R − z1
0 , E

λ
0R − E1

0)
T

= λ(z̃λ
0R, Ẽλ

0R).

By assumptions (47) and (48), one gets that (z̃λ
0R, Ẽλ

0R) satisfies assumptions (47) and

(48). It remains to establish the energy estimates for the error function
(
z̃λ

R(x, t), Ẽλ
R(x, t)

)T
.

First, replacing (zλ, Eλ)T by

(zλ, Eλ)T =
(
z̃λ, Ẽλ

)T

app
+

(
z̃λ

R(x, t), Ẽλ
R(x, t)

)T

in the system (14)-(15), we obtain the equations (104) and (105) with (zλ
R, Eλ

R)
replaced by (z̃λ

R(x, t), Ẽλ
R(x, t))T and H, G replaced by H̃, G̃, where H̃λ

B = Hλ
B, G̃λ

B =
Gλ

B and H̃Inn (G̃Inn), H̃λ
I (G̃λ

I ), H̃λ
IB (G̃λ

IB), H̃λ
R (G̃λ

R) are defined by the following:

H̃Inn(x, t) = λ(z1
0x(x) + D(x)E1

0(x)) − λ2E0E0
x − λ3E0E1

0(x),

H̃λ
I (x, s) = λ2z2

I,x + λ3z3
I,x

−λ2
(E0(E0

I,x + λE1
I,x) + (E0

I + λE1
I )(E0

x + E0
I,x + λ(E1

0x + E1
I,x))

)
,

H̃λ
IB(x, ξ, η, t, s) = −λ

(
(E0

I + λE1
I )(f(x)E0

+,ξ − g(x)E0
−,η)

)

−λ2
(
(E0

I + λE1
I )(f ′(x)E0

+ + g′(x)E0
−) + (f(x)E0

+ + g(x)E0
−)(E0

I,x + λE1
I,x)

)
,

H̃λ
R = −λẼλ

R(f(x)E0
+,ξ − g(x)E0

−,η)

−λ2
(
((E0 + λE1

0) + f(x)E0
+ + g(x)E0

−)Ẽλ
R,x + ((E0

x + λE1
0x) + f ′(x)E0

+ + g′(x)E0
−)Ẽλ

R

)

−λ2
(
(E0

I + λE1
I )Ẽ

λ
R,x + (E0

I,x + λE1
I,x)Ẽ

λ
R

) − λ2Ẽλ
RẼλ

R,x,

G̃Inn(x, t) = −λ2
(E0

t − E0
xx − λE1

0xx

) − λ(Z0E1
0 + z1

0E0) − λ2z1
0E

1
0 ,

G̃λ
I = −(Z0 − Z0(x, 0))(E0

I + λE1
I ) + λ2E0

I,xx + λ3E1
I,xx − λ2z1

0E
1
I

−λ2(z2
I + λz3

I )(E0 + λE1
0 + E0

I + λE1
I ),

G̃λ
IB = −λ(f(x)z1

+ + g(x)z1
−)(E0

I + λE1
I ) − λ2(z2

I + λz3
I )(f(x)E0

+ + g(x)E0
−),

G̃λ
R = −(E0 + λE1

0 + f(x)E0
+ + g(x)E0

− + E0
I + λE1

I )z̃λ
R

−λ(f(x)z1
+ + g(x)z1

− + z1
0)Ẽ

λ
R − λ2(z2

I + λz3
I )Ẽ

λ
R − z̃λ

RẼλ
R.
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Next, we point out the difference at the boundary between (z̃λ
R, Ẽλ

R) and (zλ
R, Eλ

R).
At present, Ẽλ

R satisfies the nonhomogeneous boundary condition

(Ẽλ
R + λE1

0)(x = 0, 1; t) = 0, t > 0. (175)

In fact, since E0
I (x = 0, 1; t) = 0, it follows from the system (50)-(51) that

E0
I (x = 0, 1; t) = 0, t > 0, (176)

which gives with (50) and (51) that

E1
I (x = 0, 1; t) = 0, t > 0. (177)

Combining (174), the boundary condition (16)2, (61), (176) and (177), one gets
(175).

But H̃λ still satisfies the homogeneous boundary condition

H̃λ(x = 0, 1; t) = 0, t > 0.

Thus

H̃λ
t (x = 0, 1; t) = Ẽλ

R,t(x = 0, 1; t) = 0, t > 0

due to the fact that E1
0 = E1

0(x) does not depend upon time t.
Finally, notice that H̃(G̃) are the sum of H(G) and the extra higher order O(λ)

and hence has the completely similar structure as H(G) and that the only term

to be affected by nonhomogeneous boundary condition (175) is −λ2
∫ 1

0
Ẽλ

R,xxẼ
λ
Rdx,

which can be dealt with as follows:

−λ2

∫ 1

0

Ẽλ
R,xxẼ

λ
Rdx

= −λ2

∫ 1

0

Ẽλ
R,xx(Ẽ

λ
R + λE1

0)dx + λ3

∫ 1

0

Ẽλ
R,xxE

1
0dx

= λ2

∫ 1

0

|Ẽλ
R,x|2dx + λ3

∫ 1

0

Ẽλ
R,xE

1
0xdx + λ

∫ 1

0

(λ2Ẽλ
R,t + Z0Ẽλ

R − gλ)E1
0dx

≥ λ2

2

∫ 1

0

|Ẽλ
R,x|2dx − Mλ − Mλ5

∫ 1

0

|Ẽλ
R,t|2dx − λ

∫ 1

0

(|Ẽλ
R|2 + |gλ|2)dx

≥ λ2

2

∫ 1

0

|Ẽλ
R,x|2dx − Mλ5

∫ 1

0

|Ẽλ
R,t|2dx − λ

∫ 1

0

|Ẽλ
R|2dx − Mλ.

Here we had used the equation (105). Thus, we can proceed the energy method as
in the previous proof of Theorem 3. These remarks conclude the proof of Theorem
4. The proof of Theorem 4 is complete. �
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[16] A. Jüngel and S. Wang, Convergence of nonlinear Schrödinger-Poisson systems
to the compressible Euler equations, Commun. in Patial Diff. Eqns., 28(2003),
1005-1022.

[17] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-
linear Equations of Parabolic Type, Translations of Math. Monographs, A. M.
S., 1968.

[18] J. G. Liu and Z. P. Xin, Boundary layer behavior in the fluid-dynamic limit for
a nonlinear model Boltzmann equation, Arch. Rat. Mech. Anal., 135 (1996),
61-105.

[19] P. A. Markowich, A singular perturbation analysis of the fundational semicon-
ductor device equations, SIAM J. Appl. Math., 44(1984), 231-256.

[20] P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductors Equations,
Springer-Verlag, Vienna, New York, 1990.

[21] N. Masmoudi, From Vlasov-Poisson system to the incompressible Euler system,
Comm. Partial Differential Equations, 26(2001), 1913-1928.

[22] M. S. Mock, On equations describing steady-state carrier distributions in a
semiconductor device, Comm. Pure Appl. Math., 25(1972), 781-792.

[23] M. S. Mock, An initial value problem from semiconductor device theory, SIAM
J. Math. Anal., 5(1974), 697-612.

[24] M. S. Mock, Analysis of Mathematical Models of Semiconductor Devices. Boole
Press, Dublin, 1983.

[25] C. P. Please, An analysis of semiconductor p-n junctions, IMA J. Appl. Math.,
28 (1982), 301-318.

45



[26] M. Puel, Etudes Variationnelles et Asymptotiques des Problèmes de la
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