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Abstract. Given a family of biholomorphisms φt on a noncom-
pact complex manifold M , we provide conditions, on φt, under
which M is biholomorphic to C

n. As an application, we general-
ize previous results in [1]. we prove that if (Mn, g) is a complete
non-compact gradient Kähler-Ricci soliton with potential function
f which is either steady with positive Ricci curvature, or expand-
ing with non-negative Ricci curvature, and if the eigenvalues of the
complex Hessian of f at the unique stationary point of the soliton
satisfy some Diophantine conditions, then M is biholomorphic to
C

n. Hence in a certain sense almost all complete non-compact
gradient Kähler-Ricci solitons with the above curvature conditions
are biholomorphic to C

n.

1. introduction

Let Mn be a complex manifold of complex dimension n. In this pa-
per, we want to study conditions on M so that it will be biholomorphic
to C

n. In [1], it was proved that if M is a gradient Kähler-Ricci soli-
ton of steady type or expanding type (see the definitions below) with
positive or nonnegative Ricci curvature respectively, then M is biholo-
morphic to C

n provided that all eigenvalues of the complex Hessian of
the potential function at the stationary point are equal. In this work,
we want to generalize this result. Interestingly, it is not essential that
M is a gradient Kähler-Ricci soliton provided there is a nice family of
biholomorphisms defined on M . So let us first describe the family of
biholomorphisms that we need.

We assume that there is a family of biholomorphisms φt, 0 ≤ t < ∞
on M such that (i) φ0 is the identity map; (ii) φt satisfies the semi-group
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property, i.e. φt1 ◦ φt2 = φt1+t2 for all t1, t2 ≥ 0; (iii) φt has a fixed
point p, i.e. φt(p) = p for all t; (iv) φt is shrinking to p in the sense that
for any open set U of p and for any compact set W of M , there exists
T > 0 such that φT (W ) ⊂ U ; (v) in some coordinate neighborhood
U of p with coordinates z = (z1, . . . , zn) so that p corresponds to the
origin, φt is given by φt(z0) = z(t) for all z0 ∈ U where z(t) satisfies

(1.1)

{
dzi

dt
= F̂ i(z)

zi(0) = zi
0

for 1 ≤ i ≤ n, with some holomorphic functions F̂ i, as long as the
solution curve z(t) remains in U .

We want to prove the following:

Theorem 1.1. Let Mn be a complex manifold with a family of biholo-
morphisms φt satisfying the conditions mentioned above. Suppose F̂ i

in (1.1) satisfies the following:

(a) For each i:

(1.2) F̂ i = −ηiz
i + ziGi + F i, 1 ≤ i ≤ n

where ηn ≥ · · · ≥ η1 > 0, F i, Gi are holomorphic, |Gi| = O(|z|),
|F i| = O(|z|ki) for some ki ≥ 2, F i does not depend on zi.

(b) The following Diophantine condition is true. For each i ≥ 2:

(1.3) ηi �=
i−1∑
j=1

mjηj

for all sets of nonnegative integers m1, . . . ,mi−1 with

�i − 1 ≥
i−1∑
j=1

mj ≥ 2,

where �i ≥ 2 is the smallest integer such that �iη1 > ηi.

Then M is biholomorphic to C
n.

In particular, if 2η1 > ηi, then there will be no restriction on ηi.
Since 0 < η1 ≤ · · · ≤ ηn, condition (b) is in fact equivalent to

�i �=
∑
j �=i

mjηj

for all i and for all sets of nonnegative integers m1, . . . ,mi−1,mi+1, . . . ,mn

with �i − 1 ≥ ∑
j �=i mj ≥ 2.

We may apply Theorem 1.1 to Kähler-Ricci solitons. Recall that a
Kähler manifold (M, gij̄(x)) is said to be a Kähler-Ricci soliton if there
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is a family of biholomorphisms φt given by a holomorphic vector field
V , such that gij(x, t) = φ∗

t (gij(x)) is a solution of the Kähler-Ricci flow:

(1.4)
∂

∂t
gij̄ = −2Rij̄ − 2ρgij̄

for 0 ≤ t < ∞ with initial data gij̄(x, t) = gij̄(x), where Rij̄ denotes
the Ricci tensor at time t and ρ is a constant. If ρ = 0, then the
Kähler-Ricci soliton is said to be of steady type and if ρ > 0 then the
Kähler-Ricci soliton is said to be of expanding type. We always assume
that g is complete and M is noncompact.

Corollary 1.1. Let (Mn, g) be a Kähler-Ricci soliton such that Rij̄ > 0
if it is of steady type and Rij̄ ≥ 0 if it is of expanding type. Let V be the
holomorphic vector field of the Kähler-Ricci soliton. Suppose V (p) = 0
for some p and suppose near p, in holomorphic local coordinates zi

around p with p being at the origin, V =
∑n

i=1 F̂ i ∂
∂zi such that F̂ i’s

satisfy conditions (a) and (b) in Theorem 1.1. Then M is biholomor-
phic to C

n.

Suppose (M, g) is a Kähler-Ricci soliton. If in addition, the holo-
morphic vector field is given by the gradient of a real valued function
f , then it is called a gradient Kähler-Ricci soliton. Note that in this
case, we have that

fij̄ = Rij̄ + 2ρgij̄

fij = 0.
(1.5)

If (M, g) is a gradient Kähler-Ricci soliton (of steady or expanding
type) satisfying the curvature condition of Corollary 1.1, so that the
scalar curvature attains its maximum at some point in case it is a steady
gradient Kähler-Ricci soliton, then it is not hard to see that the flow has
a unique fixed point p, see [1, 3]. Since fij̄ can be unitarily diagonalized
at p with real eigenvalues 0 < η1 ≤ η2 ≤ . . . ηn, the gradient of f near
p can be written as

∑n
i=1 F̂ i ∂

∂zi in some holomorphic local coordinates

which is unitary at p such that F̂ i(z) = −ηiz
i + ziGi + F i, where Gi

and F i are holomorphic, with |Gi| = O(|z|) and |F i| = O(|z|ki). We
have the following:

Corollary 1.2. Let (M, g) be a complete non-compact gradient Kähler-
Ricci soliton with potential f satisfying the curvature condition as in
Corollary 1.1. In case it is a steady gradient Kähler-Ricci soliton, it is
assumed that the scalar curvature attains its maximum at some point.
In the above notations, suppose ηi’s satisfy Diophantine conditions (b)
in Theorem 1.1. Then M is biholomorphic to C

n.
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Remark 1.1.

(i) By the corollary, if (M, g) is a Kähler-Ricci soliton satisfying
the curvature assumptions in the corollary, and if ηi’s satisfy

ηi �=
∑
j �=i

mjηj

for all i and for sets of nonnegative integers mj’s with
∑

j �=i mj ≥
2, then M is biholomorphic to C

n. Hence in a certain sense,
almost all Kähler-Ricci soliton with satisfying the curvature as-
sumptions in the corollary are biholomorphic to C

n.
(ii) By the corollary, it is easy to see that if 2η1 > ηn, then M

is biholomorphic to C
n. In particular, if (M, g) is a gradient

Kähler-Ricci soliton of expanding type with potential f sat-
isfying fij̄ = Rij̄ + 2ρgij̄, then M is biholomorphic to C

n if
0 ≤ Rij̄ ≤ ρgij̄.

(iii) In [1], it was proved that if η1 = · · · = ηn, then M is biholo-
morphic to C

n. Hence Corollary 1.2 generalize the result in
[1].

2. Analysis of the original flow and a corrected flow

In this section we shall restrict ourselves on flows defined on an open
ball with center at the origin in C

n. Denote such an open ball with
radius r by D(r). For a > 0, Consider the following flow on D(a).

(2.1)
dzi

dt
= −V i(z) = −ηiz

i + ziGi + F i(z), 1 ≤ i ≤ n

where 0 < η1 ≤ η2 ≤ · · · ≤ ηn, Gi and F i are holomorphic functions
satisfying condition (a) in Theorem 1.1.

Lemma 2.1. Consider (2.1) in D(a). Suppose Gi and F i satisfy con-
ditions (a) and (b) in Theorem 1.1. Then there is a biholomorphism
w = w(z) with w(0) = 0 near the origin such that z(t) is a solution of
(2.1) if and only if w(z(t)) is a solution of

(2.2)
dwi

dt
= −ηiw

i + wiG̃i + F̃ i, 1 ≤ i ≤ n

such that G̃i, F̃ i are holomorphic in w. Moreover |G̃i| = O(|w|), |F̃ i| =
O(|w|�i) for all i, and F i does not depend on wi. Here as before, �i is
the smallest integer such that �iη1 > ηi.

Proof. Suppose that ki ≥ �i for all i, then there is nothing to be proved.
Suppose there is i such that �i < ki. Recall that �i ≥ 2 is the smallest
integer such that �iη1 > ηi. Hence i > 1. We want to prove that there
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is a biholomorphism w near the origin with w(0) = 0 such that z(t)
is a solution of (2.1) if and only if w(z(t)) is a solution of (2.2) such
that |G̃i| = O(|w|), |F̃ j| = O(|w|kj) if j �= i and |F̃ i| = O(|w|ki+1) and
F̃ j does not depend on wj for each j. It is easy to see that the lemma
follows from this and induction.

For simplicity, let us assume that i = n and let k = kn ≥ 2. The other
cases are similar. Denote z̃ = (z1, . . . , zn−1). Since F n is holomorphic
and |F n| = O(|z|k), F n = F n(z̃), we have

(2.3) F n(z̃) =
∞∑

n=k

∑
|α|=n

aαz̃α

where α is a multi-index so that if α = (α1, . . . , αn−1) is a set of
nonnegative integers, then z̃α = (z1)α1 · · · (zn−1)αn−1 . Define the map
w = w(z) as follows: wi = zi, 1 ≤ i ≤ n−1 and wn = zn +

∑
|α|=k bαz̃α

where bα are constants to be determined later. For 1 ≤ i ≤ n − 1,

dwi

dt
=

dwi

dt
= −ηiz

i + ziGi(z) + F i

= −ηiw
i + wiGi(z(w)) + F̃ i(z(w)).

(2.4)

We can write F i(z(w)) = wiH i(w) + F̃ i(w) where F i(w) does not
depend on wi because we can express F i(w) as a power series. Let
G̃i(w) = Gi(z(w)) + H i(w). By the assumptions on Gi and F i and the
fact that ki ≥ 2, we have |G̃i| = O(|w|), |F̃ i(w)| = O(|w|ki).
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dwn

dt

=
dzn

dt
+

∑
|α|=k

bα
dz̃α

dt

= −ηnzn + znGn(z) + F n(z̃)

+
∑

α=(α1,...,αn−1),|α|=k

bα×

×
(

n−1∑
j=1

αj(z
1)α1 . . . (zj−1)αj−1

dzj

dt
(zj)αj−1(zj+1)αj . . . (zn−1)αn−1

)

= −ηnwn + wnGn(z) + (ηn − Gn(z(w)))
∑
|α|=k

bαz̃α + F n(z̃)

+
∑

α=(α1,...,αn−1),|α|=k

bα

( n−1∑
j=1

αj(z
1)α1 . . . (zj−1)αj−1×

× (−ηjz
j + zjGj + F j

)
(zj)αj−1(zj+1)αj . . . (zn−1)αn−1

)
= −ηnwn + wnGn(z(w)) + H(w)

+
∑

α=(α1,...,αn−1),|α|=k

[
bα

(
ηn −

n−1∑
j=1

αjηj

)
+ aα

]
(z1)α1 . . . (zn−1)αn−1

(2.5)

where |H(w)| = O(|w|k+1) by the assumptions on Gi, F i and the fact
that ki ≥ 2. Since α1 + . . . , αn−1 = k and �n > kn = k ≥ 2, by
condition (b) in Theorem 1.1, we conclude that ηn−

∑n−1
j=1 αjηj �= 0 for

any multi-index α = (α1, . . . , αn−1) so that |α| = k. Hence for such an
α we can find bα such that

(2.6) bα

(
ηn −

n−1∑
j=1

αjηj

)
+ aα = 0.

Hence for such choices of bα, we have

(2.7)
dwn

dt
= −ηnw

n + wnGn(z(w)) + H(w)

where H is holomorphic and |H| = O(|w|k+1). We can write H(w) =
wnH̃(w) + F̃ n(w) where F̃ n does not depend on wn. Let G̃n = Gn +
H̃(w), the result follows. �
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It is easy to see that condition (b) in Theorem 1.1 is necessary for
the Lemma 2.1. Consider the following example, see [4].

Example: Consider the system in C
2

(2.8)

{
dz1

dt
= −z1

dz2

dt
= −2z2 + (z1)2.

Suppose there is a biholomorphism w = w(z) with w(0) = 0 such that
the above equation can be transformed to

(2.9)

{
dw1

dt
= −w1 + H(w)

dw2

dt
= −2w2 + w2G(w) + F (w1)

where H, G and F are holomorphic with |G| = O(|w|) and |F | =
O(|w|3). Suppose w1 = f(z1, z2) and w2 = g(z1, z2). In the following,
derivatives of a function φ with respect to z1 is denoted by φ1 etc.

dw2

dt
= g1

dz1

dt
+ g2

dz2

dt
= −z1g1 +

(−2z2 + (z1)2
)
g2.

(2.10)

Since
dw2

dt
= −2w2 + w2G(w) + F (w1),

we have

−z1g1 +
(−2z2 + (z1)2

)
g2 = −2g + gG + F.

Differentiate with respect to z1, we have

−g1 − z1g11 + 2z1g2 +
(−2z2 + (z1)2

)
g21 = −2g1 + gG1 + g1G + F1.

By the assumptions on F and G and the fact that w(z) is a biholo-
morphism with w(0) = 0, we conclude from the above equality that
g1(0, 0) = 0. Differentiate once more with respect to z1, we have

−g11−g11 − z1g111 + 2g2 + 4z1g21 +
(−2z2 + (z1)2

)
g211

= −2g11 + gG11 + 2g1G1 + g11G + F11.
(2.11)

By the assumptions on F and G and the fact that g1(0, 0) = 0, we
conclude from the above equality that g2(0, 0) = 0. Hence there is no
such biholomorphism w so that the conclusion of the lemma is true.

Remark 2.1. By a theorem of Poincareé, (see [4]), if

ηi �=
∑

j

mjηj,
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for all i and for all sets of nonnegative integers m1, . . . ,mn with m1 +
· · ·+mn > 1, then (2.1) can actually be transformed through a biholo-
morphism into the system

dwi

dt
= −ηiw

i.

By Lemma 2.1, after a holomorphic change of coordinates, we may
assume that |F i|(z) = O(|z|�i) for all i in (1.1). From now on, we
always assume this is true in D(a).

Lemma 2.2. There exists 0 < b < a such that if z(t) is an integral
curve of 2.1 with initial data |z0| < b, then |z(t)| < b for all t ≥ 0 and
there is a constant C independent of z0 and t such that

(2.12) |z(t)| ≤ C exp(−η1t).

Proof. Let z0 be such that |z0| < a. If z0 = 0, then z(t) = 0 for all t
and the lemma is obviously true. Suppose z0 �= 0 then z(t) �= 0 for all
t. Let H i = ziGi + F i. By (2.1), we have that

d

dt
|z|2 = −2

∑
i

ηi|zi|2 +
∑

i

(
ziH i + z̄iH i

)

≤ −2η1|z|2 +
∑

i

(
ziH i + z̄iH i

)
.

(2.13)

Since there exists a constant C1 such that |H i(z)| ≤ C1|z|2 in D(a) for
all i,

(2.14)
d

dt
|z|2 ≤ −2η1|z|2 + C2|z|3

for some constant C2 depending only on H i’s as long as z(t) ∈ D(a).
From this it is easy to see that given ε > 0 there exists a > b > 0
depending on F i’s and ε such that if |z0| < b, then the integral curve
z(t) with initial data z0 will satisfy

(2.15)
d

dt
|z|2 ≤ (−2η1 + 2ε)|z|2

as long as z(t) ∈ D(b). In particular, z(t) will be in D(b) for all t if ε
is small enough. From this inequality, we have

|z|2(t) ≤ |z0|2 exp[(−2η1 + 2ε)t] ≤ b2 exp[(−2η1 + 2ε)t].

By (2.14)
d

dt
log |z|2 ≤ −2η1 + C2b exp[(−η1 + ε)t].

Integrating from 0 to t and exponentiate, we conclude that the lemma
is true provided ε is small enough. �
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From now on we assume that a is chosen small enough so that the
conclusions of Lemma 2.2 are true in D(a). In particular, (2.1) has
long time solution in D(a) if the initial point is in D(a). Moreover, for
any t > 0, the map φt given by the flow (2.1) is a biholomorphism from
D(a) onto its image. In fact, from the proof of the lemma, it is easy
to see that for any 0 < a′ < a, φt is a biholomorphism from D(a′) onto
its image which is a subset of D(a′).

Lemma 2.3. In the flow (2.1), suppose for each i, |Gi| = O(|z|),
|F i| = O(|z|�i) where �i ≥ 2 is the smallest integer such that �iη1 > ηi.
Then

(2.16) |zi(t)| ≤ C exp(−ηit)

for some constant C independent of z(t), t and i.

Proof. As in the proof of Lemma 2.2,

d

dt
|zi|2 ≤ (−2ηi + C|z|)|zi|2 + C|z|�i |zi|

≤ (−2ηi + C exp(−η1t)) |zi|2 + C exp(−�iη1t)|zi|.
(2.17)

Here and below C always denote a constant independent of z(t), t and
i. For any ε > 0, we have

d

dt

(|zi|2 + ε
) ≤ (−2ηi + C exp(−η1t))

(|zi|2 + ε
)

+ C exp(−�iη1t)
(|zi|2 + ε

) 1
2 + 2ηiε.

(2.18)

Hence

d

dt

(|zi|2 + ε
) 1

2 ≤ (−ηi + C exp(−η1t))
(|zi|2 + ε

) 1
2 + C exp(−�iη1t)

+ ηiε
(|zi|2 + ε

)− 1
2

≤ (−ηi + C exp(−η1t))
(|zi|2 + ε

) 1
2 + C exp(−�iη1t)

+ ηiε
1
2

(2.19)

Hence

d

dt

(
exp

[
ηit −

∫ t

0

C exp(−η1s)ds

] (|zi|2 + ε
) 1

2

)

≤ exp

[
ηit −

∫ t

0

C exp(−η1s)ds

](
C exp(−�iη1t) + ηiε

1
2

)
.

(2.20)
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Integrating from 0 to t and let ε → 0, we have

exp

[
ηit −

∫ t

0

C exp(−η1s)ds

]
|zi|(t)

≤ |zi(0)| +
∫ t

0

exp

[
ηiτ −

∫ τ

0

C exp(−η1s)ds

]
· C exp(−�iη1τ) dτ.

(2.21)

Since η1 > 0 and �iη1 > ηi, the lemma follows from the above inequality.
�

In [1], it was proved that if the eigenvalues ηi of the Hessian of the
potential are equal, then the Kähler-Ricci soliton with nonnegative or
positive Ricci curvature depending it is expanding or steady is biholo-
morphic to C

n. In the present situation,ηi may not be equal to each
other, we introduce the following corrected flow to correct the difference
between ηi:

(2.22)
dzi

dt
= −(

∑
j �=i

ηj)z
i.

We will denote the flow corresponding to (2.22) by ψt. Note that
ψt is a biholomorphism from D(a) onto its image which is a subset of
D(a) because ηi < 0 for all i.

Lemma 2.4. for any T > 0 we have that

(2.23) (ϕT )∗

(∑
k

ak ∂

∂zk
(0)

)
=

∑
k

exp(−ηkT )ak ∂

∂zk
(0).

Proof. See the proof of Theorem 2.1 in [1]. �
Lemma 2.5. There exists 0 < a′ < a and C > 0 such that for any
q ∈ D̃ = D(a′), v ∈ T 1,0

q (Cn) and T > 0 we have
(2.24)

C−1 exp(−
∑

j

ηjT )‖v‖ ≤ ‖(ψT ◦ φT )∗(v)‖ ≤ C exp(−
∑

j

ηjT )‖v‖

where the norm is taken with respect to the Euclidean metric on D(a).

Proof. First note that φT and ψT are holomorphic and will map D(a′)
into D(a′) for all 0 < a′ < a. Let Φ(z) = ψT◦φT (z) = (Φ1(z), . . . , Φn(z)).

By Lemma 2.3 for any z ∈ D(a), | (φT (z))i | ≤ C1 exp(−ηiT ) for some
constant C1 independent of T , z and i. By (2.22)

(ψT ◦ φT (z))i = exp(−
∑
j �=i

ηjT ) (φT (z))i .
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Hence

|(ψT ◦ φT (z))i| ≤ C1 exp(−
∑

j

ηjT )

and so

|ψT ◦ φT (z)| ≤ C2 exp(−
∑

j

ηjT )

for some constant C2 independent of T and z. Thus for each Φi(z) we
have

(1) Φi(z) is holomorphic on D(a).
(2) |Φi(z)| ≤ C2 exp(−∑

i ηiT ) on D(a).

Combining these with standard derivative estimates for holomorphic
functions we have,

(2.25) ‖Φi(z)‖m ≤ C(m,n,C2) exp(−
∑

i

ηiT )

where ‖ · ‖m is the standard Cm norm on D(a/2), here and below
C(m,n,C2) denotes a positive constant depending only on m, n and
C2, but it may vary from line to line.

Now consider the following metric on D(a).

(2.26) hij̄(z) = exp(2
∑

l

ηlT ) ·
∑

k

dΦk

dzi
(z)

dΦk

dzj
(z).

Then hij̄ is just the local components for the pullback metric

(2.27) exp(2
∑

l

ηlT ) · Φ∗(gε)

on D(a) where gε is the Euclidean metric on D(a). Differentiating
(2.26), we can see from (2.25) that for any i and j

(2.28) ‖hij̄(z)‖m ≤ C(m,n,C2)

For some positive constants C(m,n,C2) depending only on m, n and
C2. But Lemma 2.4 and the definition of ψT , we have

(2.29) hij̄(0) = δij̄.

Thus by (2.28) with m = 1 we may conclude that for some 0 < a′ < a,
hij̄(z) is uniformly equivalent to δij̄ in D̃ = D(a′) by some factor C
which is independent of T . The lemma now follows from the definition
of hij̄(z). �
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Corollary 2.1. Let D̃ be as in Lemma 2.5, then there exists C > 0
such that for any q ∈ D̃, v ∈ T 1,0

q (Cn) and t2 ≥ t1 > 0 we have

C−1 exp

(
−

∑
j

ηjt1 −
∑
j �=1

ηj(t2 − t1)

)
||v||

≤ ‖(ψt2 ◦ φt1)∗(v)‖

≤ C exp

(
−

∑
j

ηjt1 −
∑
j �=n

ηj(t2 − t1)

)
||v||

(2.30)

where the norm is taken with respect to the Euclidean metric on D̃.

Proof. Since

(ψt)∗(
∂

∂zi
) = exp(−

∑
j �=i

ηjt)(
∂

∂zi
)

and η1 ≤ ηi ≤ ηn for all i, we have that

(2.31) exp(−
∑
j �=1

ηjt)||v|| ≤ ||(ψt)∗(v)|| ≤ exp(−
∑
j �=n

ηjt)‖v‖

for any holomorphic tangent vector v, where the norm is taken with
respect to the Euclidean metric. Note that ψt2 ◦φt1 = ψt2−t1 ◦ψt1 ◦φt1 ,
the lemma follows from Lemma 2.5 and the (2.31). �

3. constructing the limit metric

The idea of the proof of the Theorem 1.1 is rather simple. We want
to construct a complete flat Kähler metric on M . Let M be a complex
manifold satisfying the conditions in the theorem. Let p be a fixed point
of the biholomorphisms φt. We identify the holomorphic coordinate
neighborhood of p in the assumptions of the theorem with a ball D̃ in
C

n with center at the origin so that p corresponds the origin. By the
assumptions of the theorem and Lemma 2.1, we may assume that D̃ is
small enough so that Gi and F i satisfy |Gi| = O(|z|), |F i| = O(|z|�i)
where �iη1 > ηi. Hence by the results in §2, we may assume that the
conclusions of Lemmas 2.3–2.5 and Corollary 2.1 are true for φt and ψt

in D̃.
For the rest of the paper, l and k will always represent positive

integers and gε is the Euclidean metric on D̃.

Lemma 3.1. For any � and for any v ∈ T 1,0
0 (Cn)

(ψ� ◦ φ�)∗ (v) = λ�v

where λl = exp[−2(
∑

j ηj)l].
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Proof. By Lemma 2.4 and the definition of ψt we have that

(ψl ◦ φl)∗

(∑
i

ai ∂

∂zi
(0)

)
= (ψl)∗

(∑
i

exp(−ηil)a
i ∂

∂zi
(0)

)

= exp(−
∑

j

ηjl)

(∑
i

ai ∂

∂zi
(0)

)
.

(3.1)

This completes the proof of the lemma. �
Since ∂

∂zi ’s are orthonormal at 0, with respect to gε(0), it is easy to
see that λl be the unique eigenvalue of (ψl ◦ φl)

∗gε(0) relative to gε(0).
For every l, let

(3.2) D(l) := φ−1
l (D̃).

where φt is considered as a flow on M and we identify U ⊂ M with
D(a). Note that by the semi-group property of φt, if l ≥ k, then
ψl ◦ φl = ψl ◦ φl−k ◦ φk and so

ψl ◦ φl(D(k)) = ψl ◦ φl−k(D̃) ⊂ D̃.

Hence D(l) ⊃ D(k). We also have:

Lemma 3.2. D(l) exhausts M with l.

Proof. This follows from property (iv) of φt mentioned in §1 and the
above remark. �

Now we define the following metrics on D(l)

(3.3) gl := λ−1
l (ψl ◦ φl)

∗gε

For any k, for l ≥ k, define metrics hl,k on D̃

(3.4) hl,k := λ−1
l (ψl ◦ φl−k)

∗ gε.

Since φk(D(k)) = D̃, on D(k) we have

(3.5) gl = φ∗
k(hl,k).

Lemma 3.3. There exists a constant C > 0 independent of k and l
such that if l ≥ k, then

(3.6) C−1 exp(η1k)gε ≤ hl,k ≤ C exp(ηnk)gε

in D̃. Moreover, for any m ≥ 1 and for any compact subset K of D̃,
there is a constant Cm,k,K which is independent of l such that for l ≥ k

and z ∈ D̃,

(3.7) ‖(hl,k)ij̄(z)‖m ≤ Cm,k,K

where ‖ · ‖m is the standard Cm norm on D̃.
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Proof. For fixed k and l ≥ k, we simply denote hl,k by hl. Let q ∈ D̃
and v ∈ T 1,0

q (Cn). By Corollary 2.1 with t1 = l − k and t2 = l we have
that

C−1
1 exp(−

∑
j

ηj(l − k) −
∑
j �=1

ηjk)||v||

≤ ||(ψl ◦ φl−k)∗(v)||
≤ C1 exp(−

∑
j

ηj(l − k) −
∑
j �=n

ηjk)||v||
(3.8)

for some constant C1 > 0 independent of l, k, q and v, where the norm
is with respect to the Euclidean metric on D̃. Hence by Lemma 3.1

(3.9) C−1
1 exp(η1k)||v|| ≤ ||λ− 1

2
l (ψl ◦ φl−k)∗(v)|| ≤ C1 exp(ηnk)||v||

Thus (3.6) is true.
To prove the estimates of the Cm norm of (hl)ij̄, let Φ = ψl ◦ φl−k.

Then by (3.4) we have

(3.10) (hl)ij̄(z) = λ−1
l

dΦa

dzi
(z)

dΦā

dz j̄
(z).

For each Φa(z) we have

(1) Φa(z) is holomorphic on D̃.
(2) There exists Ck such that for any l and for any z ∈ D̃, |Φa(z)|2 ≤

Ckλl

where (2) follows from (3.6). Combining these with standard derivative
estimates for holomorphic functions we have, for any l and m,

(3.11) ‖Φa(z)‖2
m ≤ Cm,k,Kλl

in any compact set K of D̃, where Cm,k,K is a constant independent on
l. Using these estimates, (3.7) follows from differentiating (3.10). �

Lemma 3.4. There exists a subsequence of gl which converges uni-
formly in the C∞ norm on compact sets of M to a Kähler and flat
metric g∞.

Proof. By Lemma 3.3, for any k we can find a subsequence of gl, which
is equal to φ∗

k(hl,k), on D(k) such that the subsequence converges uni-
formly in the C∞ norm on compact subsets to a flat Kähler metric on
D(k), where flatness follows from the flatness of the Euclidean metric.
Let k = 1, 2, 3, . . . and use a diagonal process, the lemma then follows
from the fact that D(k) exhaust M with k. �
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4. proof of the main theorem and its corollaries

Proof of Theorem 1.1. By Lemma 3.4, it remains to prove that g∞ con-
structed in the lemma is complete and that M is simply connected. Let
α(s) be a divergent path from the stationary point p. For any k, let
sk = inf{s| α(s) /∈ D(k)} and let αk = α|[0,sk]. Then φk(αk) is a curve

in D̃ from the origin to a point on the boundary of D̃. Suppose D̃
is the Euclidean ball of radius a′ > 0 with center at the origin in C

n.
Let βk be that part of φk(αk) from p to the boundary of D(a′/2). By
Lemma 3.3, there is a constant C > 0 independent of l and k such that
the length Ll,k with l ≥ k of βk in the metric hl,k in (3.4) satisfies

Ll,k ≥ C exp(η1k)

for some positive constant C independent of l and k. By the definition
of g∞, we conclude that the length of αk in the metric g∞ is at least
C exp(η1k). Hence the length of α in the metric g∞ is infinite.

Since D(l) exhaust M with l and each D(l) is homeomorphic to the
Euclidean ball D̃, it is easy to see that M is simply connected. This
completes the proof of the main theorem. �
Proof of Corollary 1.1. Let φt be the biholomorphisms generated by
the holomorphic vector field V . Since V (p) = 0, it is easy to see that
properties (i)–(iii) in the assumptions of Theorem 1.1 are satisfied by
φt. As for property (iv), for any R > 0, let B(R) be the geodesic ball
of radius R with center at p with respect to the metric g(0). From
the proof of Lemma 3.2 in [1], there exists CR > 0 such that for any
q ∈ B(R) and for any v ∈ T 1,0(M) at q,

||v||φ∗
t (g) ≤ exp(−CRt)||v||g.

Since φt(p) = p, it is easy to see that given any open set U ⊂ M
containing p, we have φt(B(R)) ⊂ U provided t is large. By Theorem
1.1, the corollary follows. �
Proof of Corollary 1.2. Under the curvature conditions of the Kähler-
Ricci soliton, there is a unique fixed point of the flow by Lemma 3.1 in
[1]. The result then follows from Corollary 1.1. �
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