COMPLEX MANIFOLDS WITH CERTAIN FAMILIES
OF BIHOLOMORPHISMS

ALBERT CHAU! AND LUEN-FAI TAM?

ABSTRACT. Given a family of biholomorphisms ¢; on a noncom-
pact complex manifold M, we provide conditions, on ¢;, under
which M is biholomorphic to C™. As an application, we general-
ize previous results in [1]. we prove that if (M™,g) is a complete
non-compact gradient Ké&hler-Ricci soliton with potential function
f which is either steady with positive Ricci curvature, or expand-
ing with non-negative Ricci curvature, and if the eigenvalues of the
complex Hessian of f at the unique stationary point of the soliton
satisfy some Diophantine conditions, then M is biholomorphic to
C™. Hence in a certain sense almost all complete non-compact
gradient Kahler-Ricci solitons with the above curvature conditions
are biholomorphic to C™.

1. INTRODUCTION

Let M™ be a complex manifold of complex dimension n. In this pa-
per, we want to study conditions on M so that it will be biholomorphic
to C™. In [1], it was proved that if M is a gradient K&hler-Ricci soli-
ton of steady type or expanding type (see the definitions below) with
positive or nonnegative Ricci curvature respectively, then M is biholo-
morphic to C™ provided that all eigenvalues of the complex Hessian of
the potential function at the stationary point are equal. In this work,
we want to generalize this result. Interestingly, it is not essential that
M is a gradient Kéahler-Ricci soliton provided there is a nice family of
biholomorphisms defined on M. So let us first describe the family of
biholomorphisms that we need.

We assume that there is a family of biholomorphisms ¢;, 0 <t < oo
on M such that (i) ¢ is the identity map; (ii) ¢, satisfies the semi-group
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property, i.e. ¢y © ¢, = Py 44, for all ty, to > 0; (iii) ¢; has a fixed
point p, i.e. ¢(p) = p for all ¢; (iv) ¢, is shrinking to p in the sense that
for any open set U of p and for any compact set W of M, there exists
T > 0 such that ¢r(W) C U; (v) in some coordinate neighborhood
U of p with coordinates z = (z!,...,2") so that p corresponds to the
origin, ¢; is given by ¢;(zo) = z(t) for all zg € U where z(t) satisfies

(1.1) {Cii_t jﬁ,"@)

for 1 < i < n, with some holomorphic functions Fi. as long as the
solution curve z(t) remains in U.
We want to prove the following:

Theorem 1.1. Let M™ be a complex manifold with a family of biholo-
morphisms ¢; satisfying the conditions mentioned above. Suppose F'

in (1.1) satisfies the following:
(a) For each i:
(1.2) Fi= - +2G+ F', 1<i<n
wheren, > --->m >0, F', G* are holomorphic, |G'| = O(]z|),

|F?| = O(|z|¥) for some k; > 2, F' does not depend on z;.
(b) The following Diophantine condition is true. For each i > 2:
i—1
(1.3) m # Zmﬂlj
j=1
for all sets of nonnegative integers my, ..., m;_1 with

i—1
gi —1 2 ij 2 2,
j=1

where £; > 2 is the smallest integer such that ¢;n; > ;.
Then M 1is biholomorphic to C™.

In particular, if 2, > n;, then there will be no restriction on ;.
Since 0 < m; < -+ < ny, condition (b) is in fact equivalent to

Gy my
J#
for all 7 and for all sets of nonnegative integers my, ..., m;_1, M1, ..., My
with ¢, — 1 > Z#imj > 2.
We may apply Theorem 1.1 to Kahler-Ricci solitons. Recall that a
Kéhler manifold (M, g;;(x)) is said to be a Kéhler-Ricci soliton if there
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is a family of biholomorphisms ¢; given by a holomorphic vector field
V', such that g;;(x,t) = ¢;(gi;()) is a solution of the Kéhler-Ricci flow:

6 —
ot~
for 0 <t < oo with initial data g;;(x,t) = g;;(x), where R;; denotes
the Ricci tensor at time ¢ and p is a constant. If p = 0, then the
Kéahler-Ricci soliton is said to be of steady type and if p > 0 then the
Kahler-Ricci soliton is said to be of expanding type. We always assume
that ¢ is complete and M is noncompact.

(1.4) —2R;5 — 2pg;;

Corollary 1.1. Let (M™", g) be a Kdihler-Ricci soliton such that Rj; > 0
if it 1s of steady type and R;; > 0 if it is of expanding type. Let V' be the
holomorphic vector field of the Kdhler-Ricci soliton. Suppose V (p) = 0
for some p and suppose near p, in holomorphic local coordinates z*
around p with p being at the origin, V. = Y " Fiaazi such that F'’s
satisfy conditions (a) and (b) in Theorem 1.1. Then M is biholomor-
phic to C™.

Suppose (M, g) is a Kéhler-Ricci soliton. If in addition, the holo-
morphic vector field is given by the gradient of a real valued function
f, then it is called a gradient Kéhler-Ricci soliton. Note that in this
case, we have that

fii = Rij + 2pg;5
fi; = 0.

If (M,g) is a gradient Kéhler-Ricci soliton (of steady or expanding
type) satisfying the curvature condition of Corollary 1.1, so that the
scalar curvature attains its maximum at some point in case it is a steady
gradient Kahler-Ricci soliton, then it is not hard to see that the flow has
a unique fixed point p, see [1, 3]. Since f;; can be unitarily diagonalized
at p with real eigenvalues 0 < n; <1y < ...1m,, the gradient of f near
p can be written as > ., Fi% in some holomorphic local coordinates
which is unitary at p such that Fi(z) = —n;z" + 2/G* + F', where G
and F are holomorphic, with |G?| = O(|z]) and |F?| = O(|z|*¥). We
have the following:

(1.5)

Corollary 1.2. Let (M, g) be a complete non-compact gradient Kdhler-
Ricci soliton with potential f satisfying the curvature condition as in
Corollary 1.1. In case it is a steady gradient Kdhler-Ricci soliton, it is
assumed that the scalar curvature attains its maximum at some point.
In the above notations, suppose n;’s satisfy Diophantine conditions (b)
in Theorem 1.1. Then M s biholomorphic to C".
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Remark 1.1.

(i) By the corollary, if (M, g) is a Ké&hler-Ricci soliton satisfying
the curvature assumptions in the corollary, and if 7;’s satisfy

ni# > mn;
J#
for all ¢ and for sets of nonnegative integers m;’s with ki MG 2
2, then M is biholomorphic to C". Hence in a certain sense,
almost all Kéhler-Ricci soliton with satisfying the curvature as-
sumptions in the corollary are biholomorphic to C™.

(ii) By the corollary, it is easy to see that if 2np; > n,, then M
is biholomorphic to C". In particular, if (M, g) is a gradient
Kahler-Ricci soliton of expanding type with potential f sat-
isfying fi; = R + 2pg;;, then M is biholomorphic to C" if
0 < Ry; < pgij-

(iii) In [1], it was proved that if 7, = -+ = 1,, then M is biholo-
morphic to C". Hence Corollary 1.2 generalize the result in
[1].

2. ANALYSIS OF THE ORIGINAL FLOW AND A CORRECTED FLOW

In this section we shall restrict ourselves on flows defined on an open
ball with center at the origin in C™. Denote such an open ball with
radius r by D(r). For a > 0, Consider the following flow on D(a).
dz
dt

where 0 < 1p < 1y < --- < 1m,,, G and F* are holomorphic functions
satisfying condition (a) in Theorem 1.1.

Lemma 2.1. Consider (2.1) in D(a). Suppose G* and F* satisfy con-
ditions (a) and (b) in Theorem 1.1. Then there is a biholomorphism
w = w(z) with w(0) = 0 near the origin such that z(t) is a solution of
(2.1) if and only if w(z(t)) is a solution of

dw’
dt
such that G*, F'* are holomorphic in w. Moreover |G| = O(|w|), |F'| =
O(|w|%) for all i, and F* does not depend on w;. Here as before, {; is
the smallest integer such that €;n, > n;.

(2.1) = -Vi(2)= -2 +2G + F'(2), 1<i<n

(2.2) = —nw' + WG+ F, 1<i<n

Proof. Suppose that k; > ¢; for all 7, then there is nothing to be proved.
Suppose there is 7 such that ¢; < k;. Recall that ¢; > 2 is the smallest
integer such that ¢;n; > ;. Hence ¢+ > 1. We want to prove that there



Complex manifolds with certain families of biholomorphisms 5

is a biholomorphism w near the origin with w(0) = 0 such that z(¢)
is a solution of (2.1) if and only if w(z(¢)) is a solution of (2.2) such
that |G| = O(|w|), |F7| = O(|w|*) if j # i and |F’| = O(Jw|**") and
FJ does not depend on w’ for each j. It is easy to see that the lemma
follows from this and induction.

For simplicity, let us assume that ¢ = n and let k = k,, > 2. The other
cases are similar. Denote Z = (z',...,2""1). Since F" is holomorphic
and |F"| = O(|z|¥), F* = F"(Z), we have

(2.3) Fr(z) =) a2

where «a is a multi-index so that if & = (aq,...,a,_1) is a set of
nonnegative integers, then z* = (z1)21 ... (z"71)* -1 Define the map
w = w(z) as follows: w' =2, 1<i<n-—1andw" = 2D =k baZ”
where b, are constants to be determined later. For 1 <7 <n —1,

dw'  dw'
e At |
= —nz' +2'G'(2) + F*

= —nut + 0 G (z(w)) + F(2(w)).

(2.4)

We can write F'(z(w)) = w'H'(w) + Fi(w) where Fi(w) does not
depend on w' because we can express F(w) as a power series. Let
Gi(w) = G'(2(w)) + H'(w). By the assumptions on G’ and F’ and the
fact that k; > 2, we have |G| = O(|w|), |Fi(w)| = O(|w|*).
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(2.5)
dw™
dt
dz" dz®
= —_— bOé—
a g::k i
= —n2" + 2"G"(2) + F"(2)

+ Z ba X

a=(a1,..,an—1),|la|=k

X (i (1) (zj—l)%'—l%(zj)aj—l(zj“)af e (z”‘l)a”l)

J=1

= " + WG (2) + (1, — G"(2(w))) Y baE + F7(3)
o=k

+ Z ba ( Zl (2 (T x

X (=nmjz? + 2G4 F7) ()9 120 (z”_l)o‘"l)

= —nw" + w"G"(2(w)) + H(w)

n—1
+ Z [ba (nn - Z%’Uj) + aq
)lal=k

a=(a1,...,0tn—1 j=1

() (e

where |H(w)| = O(Jw|**!) by the assumptions on G*, F and the fact
that k; > 2. Since a3 +...,a,1 = kand ¢, > k, = k > 2, by

condition (b) in Theorem 1.1, we conclude that 7, — 27:_11 a;n; # 0 for
any multi-index o = («v, ..., a,_1) so that |a| = k. Hence for such an

o we can find b, such that

n—1
(26) ba (nn - ZO‘jnj> + an = 0.

Jj=1
Hence for such choices of b,, we have

(2.7) d;i" = —nw" +w"G"(z(w)) + H(w)

where H is holomorphic and |H| = O(|lw[**!). We can write H (w)
w"H (w) + F"(w) where F does not depend on w,,. Let G" = G"
H(w), the result follows.

O+



Complex manifolds with certain families of biholomorphisms 7

It is easy to see that condition (b) in Theorem 1.1 is necessary for
the Lemma 2.1. Consider the following example, see [4].
Example: Consider the system in C?

! _ 1
(2.8) { ;

2 =222+ (22

Suppose there is a biholomorphism w = w(z) with w(0) = 0 such that
the above equation can be transformed to

(2.9) {% = AW

dd—“f = —2w? + w G(w) + F(w')

where H, G and F are holomorphic with |G| = O(|w|) and |F| =
O(Jw]?). Suppose w! = f(2!,2?) and w? = g(z', 2?). In the following,
derivatives of a function ¢ with respect to 2! is denoted by ¢; etc.

w2
(2.10) a  ar TP
= —2lg + (—222 + (21)2) Ja.
Since
d 2
d—u; = —2w® + w?G(w) + F(w'),
we have

—2'g 4 (222 + (1)) o = 29 + G + F.
Differentiate with respect to z', we have
—q1 — 2 g + 22 ge + (—222 + (21)2) go1 = =291 + 9gG1 + 1G + F1.

By the assumptions on F' and G and the fact that w(z) is a biholo-
morphism with w(0) = 0, we conclude from the above equality that
g1(0,0) = 0. Differentiate once more with respect to z!, we have

—gi1—g11 — 2 i1 + 292 + 42 g1 + (=227 + (2')?) gonr

2.11
( ) = —2g11 + 9G11 + 201G + g G + Fiy.

By the assumptions on F' and G and the fact that ¢;(0,0) = 0, we
conclude from the above equality that g»(0,0) = 0. Hence there is no
such biholomorphism w so that the conclusion of the lemma is true.

Remark 2.1. By a theorem of Poincareé, (see [4]), if

ni 7 Z m;n;,
J
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for all 7 and for all sets of nonnegative integers my, ..., m, with m; +
-+++m, > 1, then (2.1) can actually be transformed through a biholo-
morphism into the system

dw’

at

—n;w".

By Lemma 2.1, after a holomorphic change of coordinates, we may
assume that |F?|(z) = O(|z|%) for all 7 in (1.1). From now on, we
always assume this is true in D(a).

Lemma 2.2. There exists 0 < b < a such that if z(t) is an integral
curve of 2.1 with initial data |zo| < b, then |z(t)| < b for allt > 0 and
there is a constant C' independent of zy and t such that

(2.12) |z(t)| < Cexp(—nt).

Proof. Let zy be such that |z9] < a. If zy = 0, then z(t) = 0 for all ¢
and the lemma is obviously true. Suppose zy # 0 then z(t) # 0 for all
t. Let H' = 2'G" + F*. By (2.1), we have that

d 4 S o
I’ = =2 il P+ (z’HZ + lel)

(2.13) -
< —2m|2)* + Z <Z’Hi + Z‘HZ> :

Since there exists a constant C such that |[H(z)| < Cy|z|* in D(a) for

all 1,

d
(2.14) |27 < =2m2f 4 Colaf’
for some constant Cy depending only on H's as long as z(t) € D(a).
From this it is easy to see that given € > 0 there exists a > b > 0

depending on F’s and € such that if |zg| < b, then the integral curve
z(t) with initial data zo will satisfy

(2.15) — |22 < (=21 + 2¢0)|2)?
as long as z(t) € D(b). In particular, z(¢) will be in D(b) for all ¢ if €
is small enough. From this inequality, we have
|2(t) < |20)? exp[(—=2m1 + 2€)t] < b exp[(—2m + 2€)1].
By (2.14)

d
pr log |2]* < —2m; + Cobexp[(—n1 + €)t].

Integrating from 0 to ¢ and exponentiate, we conclude that the lemma
is true provided € is small enough. O
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From now on we assume that a is chosen small enough so that the
conclusions of Lemma 2.2 are true in D(a). In particular, (2.1) has
long time solution in D(a) if the initial point is in D(a). Moreover, for
any t > 0, the map ¢; given by the flow (2.1) is a biholomorphism from
D(a) onto its image. In fact, from the proof of the lemma, it is easy
to see that for any 0 < @’ < a, ¢; is a biholomorphism from D(a’) onto
its image which is a subset of D(d’).

Lemma 2.3. In the flow (2.1), suppose for each i, |G'| = O(]|z]),
|FY| = O(|2]%) where €; > 2 is the smallest integer such that £ > ;.
Then

(2.16) [2'(t)] < Cexp(—mit)

for some constant C independent of z(t), t and i.

Proof. As in the proof of Lemma 2.2,

d i i i |0
oary a2 ClDI + Il

< (=21, + Cexp(—mt)) |2']* + C exp(—Limt)[2'].

Here and below C' always denote a constant independent of z(t), ¢ and
1. For any € > 0, we have

d ~ '
(2.18) dt (IZ'P 4+ €) < (—=2m + Cexp(—mt)) (|2']* +¢)
+ Cexp(—¥;mt) (|zz|2 + e)% + 2ne.
Hence
(2.19)

d ) 1 . 1
pr (|zzl2 + 6) 2 < (—=m; + Cexp(—mt)) (|,ZZ]2 + 6) 2+ Cexp(—limt)

1
2

+mie (|2 +€)
< (=i + Cexp(—mt)) (|22 + €)? + Cexp(— L)
+ e
Hence
4

dt (eXp {mt - /OtCexp(—ms)ds] (1271 + 6)%)

(2.20) t
< exp {771'15 — / CeXP(_mS)dS] <C exp(—£imt) + 771'6%) .
0
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Integrating from 0 to ¢ and let ¢ — 0, we have
(2.21)

exp [mt - /0 t C’exp(—ms)ds] 1)(8)

t T
< |2(0)| +/ exp |:77i’7' - / C’exp(—ms)ds] - Cexp(—€;mT) dr.
0 0

Since n; > 0 and ¢;1m7, > n;, the lemma follows from the above inequality.
O

In [1], it was proved that if the eigenvalues 7; of the Hessian of the
potential are equal, then the Kahler-Ricci soliton with nonnegative or
positive Ricci curvature depending it is expanding or steady is biholo-
morphic to C". In the present situation,7; may not be equal to each
other, we introduce the following corrected flow to correct the difference
between 7);:

(2.22) == _ )=
J#i
We will denote the flow corresponding to (2.22) by ;. Note that
)y is a biholomorphism from D(a) onto its image which is a subset of

D(a) because n; < 0 for all 1.
Lemma 2.4. for any T > 0 we have that

(2.23) (Za P ) :Zexp(—nkT)ak%(O).

Proof. See the proof of Theorem 2.1 in [1]. O
Lemma 2.5. There erists 0 < a’ < a and C > 0 such that for any
geD=D(d),veT;*(C") and T > 0 we have

(2.24)

C‘lexp(—ZmT)HUH < [(@r 0 dr)«(v)]| < Cexp(— Zm vl

where the norm is taken with respect to the Fuclidean metric on D(a).
Proof. First note that ¢ and 1r are holomorphic and will map D(a’)
into D(a’) forall 0 < @’ < a. Let ®(2) = Yrodp(z) = (P'(2),...,P"(2)).
By Lemma 2.3 for any z € D(a), | (¢r(2))"| < Cyexp(—n;T) for some
constant Cy independent of T', z and ¢. By (2 22)

(Ur o ¢r(2))" = exp(— Z n;iT
J#u
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Hence

(¥r 0 6r(z))| < Crexp(= 3 n,T)

and so

b7 0 ¢r(2)] < Coexp(— 277]

for some constant Cy independent of 7" and z. Thus for each ®%(z) we
have

(1) ®(z) is holomorphic on D(a).

(2) [9(2)] < Cyexp(— X2, niT) on Dia).
Combining these with standard derivative estimates for holomorphic
functions we have,

(2.25) 12°(2) [l < C(m,n, Cs) exp(— Zm

where || - ||, is the standard C™ norm on D(a/2), here and below
C(m,n,Cy) denotes a positive constant depending only on m, n and
Cs, but it may vary from line to line.

Now consider the following metric on D(a).

kE Ipk
(2.26) his(z) = exp(2) nT)- ) ‘2‘1; (2) % (2).

Then h;; is just the local components for the pullback metric

(2.27) exp( Z T ge)

on D(a) where g, is the Euclidean metric on D(a). Differentiating
(2.26), we can see from (2.25) that for any i and j

(2.28) [hiz(2)[[m < C(m,n, Cy)

For some positive constants C'(m,n,Cs) depending only on m, n and
(5. But Lemma 2.4 and the definition of ¥y, we have

(2.29) his(0) = 8.

Thus by (2.28) with m = 1 we may conclude that for some 0 < a’ < a,
hi;(2) is uniformly equivalent to é; in D = D(a’) by some factor C
which is independent of T". The lemma now follows from the definition
of hi;(2). O



12 Albert Chau and Luen-Fai Tam

Corollary 2.1. Let D~ be as in Lemma 2.5, then there exists C' > 0
such that for any q € D, v € qu’o((C”) and ty > t1 > 0 we have

texp ( thl > it =t > [|v]]

J#1
(2.30) < [ (e, %)*( )l

SC’exp( th—Z% (ta —t4 ) [[v]]

j#n

where the norm is taken with respect to the Euclidean metric on D.

Proof. Since

0 0
(50-(7) = el )
and 9 < n; <n, for all i, we have that

(2.31) exp(= Y mt)|loll < 1) ()] < exp(= D nt)|o]

#1 j#n
for any holomorphic tangent vector v, where the norm is taken with
respect to the Euclidean metric. Note that ¢y, o ¢y, = Yy, ¢, 0y, © @4y,
the lemma follows from Lemma 2.5 and the (2.31). O

3. CONSTRUCTING THE LIMIT METRIC

The idea of the proof of the Theorem 1.1 is rather simple. We want
to construct a complete flat Kahler metric on M. Let M be a complex
manifold satisfying the conditions in the theorem. Let p be a fixed point
of the biholomorphisms ¢;. We identify the holomorphic coordinate
neighborhood of p in the assumptions of the theorem with a ball D in
C™ with center at the origin so that p corresponds the origin. By the
assumptions of the theorem and Lemma 2.1, we may assume that D is
small enough so that G' and F* satisfy |G!| = O(]z]), |F?| = O(|z|%)
where ¢;n; > n;. Hence by the results in §2, we may assume that the
conclusions of Lemmas 2.3-2.5 and Corollary 2.1 are true for ¢, and v
in D.

For the rest of the paper, [ and k will always represent positive
integers and g, is the Euclidean metric on D.

Lemma 3.1. For any ¢ and for any v € Ty°(C")
(Ve o dr), (v) = A
where \; = exp[—2(>_;n;)l].
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Proof. By Lemma 2.4 and the definition of ¢, we have that

(o 00, (Z i <o>> = (W), (Z exp(—nd)d <o>)

%

(2

(3.1) 5
= exp(— Y _njl) (Z ai$(0)> :
j i
This completes the proof of the lemma. 0
Since %’s are orthonormal at 0, with respect to g.(0), it is easy to

see that \; be the unique eigenvalue of (1, o ¢;)*g.(0) relative to g.(0).
For every [, let

(3.2) D() = ¢ (D).

where ¢, is considered as a flow on M and we identify U C M with
D(a). Note that by the semi-group property of ¢, if [ > k, then

Y10 @y =10 gy © P and so

o ¢i(D(k)) = o ¢r_x(D) C D.
Hence D(l) D D(k). We also have:
Lemma 3.2. D(I) exhausts M with [.

Proof. This follows from property (iv) of ¢; mentioned in §1 and the
above remark. U

Now we define the following metrics on D(1)

(3.3) g =N "o d) ge
For any k, for [ > k, define metrics h;; on D
(3.4) hug =N (Yo dip)" ge
Since ¢(D(k)) = D, on D(k) we have

(3.5) g1 = Or(hug).

Lemma 3.3. There exists a constant C' > 0 independent of k and 1
such that if | > k, then

(3.6) ot exp(mk)ge < hiy < Cexp(n,k)ge

in D. Moreover, for any m > 1 and for any compact subset K of D,
there is a constant C, .k which is independent of | such that for | > k

and z € D,
(3.7) 1 (hek)iz(2)][m < Copexc

where || - || is the standard C™ norm on D.
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Proof. For fixed k and | > k, we simply denote h; by h;. Let ¢ € D
and v € T"°(C"). By Corollary 2.1 with t; = [ — k and ¢, = [ we have
that

Crtexp(= Y ni(l—k) = > mik)[|o]]
j J#1
(3.8) < |[(¥r 0 i)« (V)]]
< Crexp(= Y _mi(l=k) =Y m;k)|[vl]
J J#n
for some constant ¢y > 0 independent of [, k, ¢ and v, where the norm
is with respect to the Euclidean metric on D. Hence by Lemma 3.1

(3.9) i exp(mk)|[ol < A7 (1 0 ). (0)]| < Crexp(nak)Jo]

Thus (3.6) is true.
To prove the estimates of the C™ norm of (hy;);;, let ® = 9 0 ¢_y.
Then by (3.4) we have

dde do®

(3.10) (i) = N (2) 5 (),

For each ®%(z) we have

(1) ®%(2) is holomorphic on D. i
(2) There exists C}, such that for any [ and for any z € D, |®%(2)]* <
Cr\i

where (2) follows from (3.6). Combining these with standard derivative
estimates for holomorphic functions we have, for any [ and m,

(3.11) 19°(2)[12, < Crtexc N

in any compact set K of D, where Chnk i 18 & constant independent on
[. Using these estimates, (3.7) follows from differentiating (3.10). O

Lemma 3.4. There exists a subsequence of g which converges uni-
formly in the C* norm on compact sets of M to a Kdhler and flat
Melric Juoo.-

Proof. By Lemma 3.3, for any k we can find a subsequence of g;, which
is equal to ¢;(h k), on D(k) such that the subsequence converges uni-
formly in the C'* norm on compact subsets to a flat Kahler metric on
D(k), where flatness follows from the flatness of the Euclidean metric.
Let k=1, 2, 3,... and use a diagonal process, the lemma then follows
from the fact that D(k) exhaust M with k. O
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4. PROOF OF THE MAIN THEOREM AND ITS COROLLARIES

Proof of Theorem 1.1. By Lemma 3.4, it remains to prove that g., con-
structed in the lemma is complete and that M is simply connected. Let
a(s) be a divergent path from the stationary point p. For any k, let
sp = inf{s| a(s) ¢ D(k)} and let o, = t|[o5,)- Then ¢p(ay) is a curve
in D from the origin to a point on the boundary of D. Suppose D
is the Euclidean ball of radius a’ > 0 with center at the origin in C".
Let §x be that part of ¢x(ay) from p to the boundary of D(a’/2). By
Lemma 3.3, there is a constant C' > 0 independent of [ and k such that
the length L;; with | > k of § in the metric h;; in (3.4) satisfies

Ly > Cexp(nk)

for some positive constant C' independent of [ and k. By the definition
of g, we conclude that the length of a; in the metric g, is at least
C'exp(mk). Hence the length of o in the metric g, is infinite.

Since D(l) exhaust M with [ and each D([) is homeomorphic to the
Euclidean ball D, it is easy to see that M is simply connected. This
completes the proof of the main theorem. O

Proof of Corollary 1.1. Let ¢; be the biholomorphisms generated by
the holomorphic vector field V. Since V(p) = 0, it is easy to see that
properties (i)—(iii) in the assumptions of Theorem 1.1 are satisfied by
¢¢. As for property (iv), for any R > 0, let B(R) be the geodesic ball
of radius R with center at p with respect to the metric ¢g(0). From
the proof of Lemma 3.2 in [1], there exists Cr > 0 such that for any
q € B(R) and for any v € T"%(M) at g,

l0lle; () < exp(=Crt)|[v]]y-

Since ¢y(p) = p, it is easy to see that given any open set U C M
containing p, we have ¢,(B(R)) C U provided ¢ is large. By Theorem
1.1, the corollary follows. 0

Proof of Corollary 1.2. Under the curvature conditions of the Kahler-
Ricci soliton, there is a unique fixed point of the flow by Lemma 3.1 in
[1]. The result then follows from Corollary 1.1. O
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